1
|
Dikovskaya D, Pemberton R, Taylor M, Tasegian A, Bhattacharya P, Zeneviciute K, Sammler EM, Howden AJM, Alessi DR, Swamy M. Inflammation and IL-4 regulate Parkinson's and Crohn's disease associated kinase LRRK2. EMBO Rep 2025:10.1038/s44319-025-00473-x. [PMID: 40394349 DOI: 10.1038/s44319-025-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Mutations in Leucine-Rich Repeat protein Kinase 2 (LRRK2) are associated with Parkinson's disease (PD) and Crohn's disease (CD), but the regulation of LRRK2 during inflammation remains relatively unexplored. Here we describe the development of a flow cytometry-based assay to assess LRRK2 activity in individual cells and the generation of an EGFP-Lrrk2 knock-in reporter mouse to analyse cell-specific LRRK2 expression. Using these tools, we measured LRRK2 levels and activity in murine splenic and intestinal immune cells and in human blood. Anti-CD3 induced inflammation increases LRRK2 expression and activity in B cells and monocytes, while in mature neutrophils, inflammation stimulates activity but reduces LRRK2 expression. A kinase-activating PD-associated LRRK2-R1441C mutation exacerbates inflammation-induced activation of LRRK2 specifically in monocytes and macrophages. We identify IL-4 as a novel T-cell-derived factor that upregulates LRRK2 expression and activity in B cells, replicating inflammatory effects observed in vivo. Our findings provide valuable new insights into the regulation of the LRRK2 pathway in immune cells, crucial for understanding LRRK2 and its therapeutic potential in inflammatory diseases such as CD.
Collapse
Affiliation(s)
- Dina Dikovskaya
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
- Peninsula Medical School, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Rebecca Pemberton
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Matthew Taylor
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- GlaxoSmithKline, Stevenage, UK
| | - Anna Tasegian
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Amphista Therapeutics Ltd., Granta Park, Great Abington, Cambridge, CB21 6GQ, UK
| | - Purbasha Bhattacharya
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Karolina Zeneviciute
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Esther M Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew J M Howden
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
2
|
Zhao P, Tian R, Song D, Zhu Q, Ding X, Zhang J, Cao B, Zhang M, Xu Y, Fang J, Tan J, Yi C, Xia H, Liu W, Zou W, Sun Q. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J Cell Biol 2025; 224:e202410150. [PMID: 40197538 PMCID: PMC11977514 DOI: 10.1083/jcb.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Selective autophagy plays a crucial role in maintaining cellular homeostasis by specifically targeting unwanted cargo labeled with "autophagy cues" signals for autophagic degradation. In this study, we identify Rab GTPases as a class of such autophagy cues signals involved in selective autophagy. Through biochemical and imaging screens, we reveal that human Rab GTPases are common autophagy substrates. Importantly, we confirm the conservation of Rab GTPase autophagic degradation in different model organisms. Rab GTPases translocate to damaged mitochondria, lipid droplets, and invading Salmonella-containing vacuoles (SCVs) to serve as degradation signals. Furthermore, they facilitate mitophagy, lipophagy, and xenophagy, respectively, by recruiting receptors. This interplay between Rab GTPases and receptors may ensure the de novo synthesis of isolation membranes around Rab-GTPase-labeled cargo, thereby mediating selective autophagy. These processes are further influenced by upstream regulators such as LRRK2, GDIs, and RabGGTase. In conclusion, this study unveils a conserved mechanism involving Rab GTPases as autophagy cues signals and proposes a model for the spatiotemporal control of selective autophagy.
Collapse
Affiliation(s)
- Pengwei Zhao
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Rui Tian
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Dandan Song
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Zhu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xianming Ding
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqin Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengyuan Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yilu Xu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jie Fang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
3
|
Li X, Fu Q, Guo M, Du Y, Cheng Y. Unlocking Parkinson's disease: the role of microRNAs in regulation, diagnosis, and therapy. Apoptosis 2025:10.1007/s10495-025-02117-w. [PMID: 40310577 DOI: 10.1007/s10495-025-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder globally, imposes substantial healthcare burdens on aging populations. The pathogenesis of PD is complex and multifaceted. Emerging evidence highlights microRNA (miRNA) dysregulation as a critical regulatory layer that drives PD progression. These small noncoding RNAs mediate posttranscriptional gene regulation through target mRNA binding, inducing either transcript degradation or translational repression. This article reviews the distinct miRNAs that orchestrate PD pathogenesis by disrupting mitochondrial homeostasis, lysosomal clearance pathways, ferroptosis regulation, and neuroinflammatory responses. Notably, some miRNAs achieve these effects by selectively targeting risk genes central to PD pathology. Crucially, certain miRNAs exhibit aberrant expression patterns in the brain tissues and biofluids of PD patients or models, highlighting their potential as minimally invasive diagnostic or prognostic biomarkers. Furthermore, this review highlights the novel role of exosomes as miRNA carriers, offering innovative possibilities for PD therapeutic interventions. With the deepening understanding of miRNA research advances in PD, we propose that these insights may not only inform PD treatment strategies but also hold relevance for addressing other genetic disorders.
Collapse
Affiliation(s)
- Xiaodong Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27th South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Qiang Fu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27th South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
- Institute of National Security, Minzu University of China, Haidian District, Beijing, 100081, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Haidian District, Beijing, 100081, China
| | - Yang Du
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorders, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27th South Zhongguancun Avenue, Haidian District, Beijing, 100081, China.
- Institute of National Security, Minzu University of China, Haidian District, Beijing, 100081, China.
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 410008, Changsha, China.
| |
Collapse
|
4
|
Bueno D, Schäfer MK, Wang S, Schmeisser MJ, Methner A. NECAB family of neuronal calcium-binding proteins in health and disease. Neural Regen Res 2025; 20:1236-1243. [PMID: 38934399 PMCID: PMC11624857 DOI: 10.4103/nrr.nrr-d-24-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.
Collapse
Affiliation(s)
- Diones Bueno
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Bai X, Zhu J, Chen Y, Sun H. The design and development of LRRK2 inhibitors as novel therapeutics for Parkinson's disease. Future Med Chem 2025; 17:221-236. [PMID: 39717965 PMCID: PMC11749465 DOI: 10.1080/17568919.2024.2444875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting nearly 10 million people worldwide and placing a heavy medical burden on both society and families. However, due to the complexity of its pathological mechanisms, current treatments for PD can only alleviate patients' symptoms. Therefore, novel therapeutic strategies are urgently sought in clinical practice. Leucine-rich repeat kinase 2 (LRRK2) has emerged as a highly promising target for PD therapy. Missense mutations within the structural domain of LRRK2, the most common genetic risk factor for PD, lead to abnormally elevated kinase activity and increase the risk of developing PD. In this article, we provide a comprehensive overview of the structure, biological function, and pathogenic mutations of LRRK2, and examine recent advances in the development of LRRK2 inhibitors. We hope that this article will provide a reference for the design of novel LRRK2 inhibitors based on summarizing the facts and elucidating the viewpoints.
Collapse
Affiliation(s)
- Xiaoxue Bai
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
7
|
Martinez Fiesco JA, Li N, Alvarez de la Cruz A, Metcalfe RD, Beilina A, Cookson MR, Zhang P. 14-3-3 binding maintains the Parkinson's associated kinase LRRK2 in an inactive state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624879. [PMID: 39605327 PMCID: PMC11601620 DOI: 10.1101/2024.11.22.624879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central player in cellular signaling and a significant contributor to Parkinson's disease (PD) pathogenesis. 14-3-3 proteins are essential regulators of LRRK2, modulating its activity. Here, we present the cryo- electron microscopy structure of the LRRK2:14-3-3 2 autoinhibitory complex, showing that a 14-3-3 dimer stabilizes an autoinhibited LRRK2 monomer by binding to key phosphorylation sites and the COR-A and COR-B subdomains within the Roc-COR GTPase domain of LRRK2. This interaction locks LRRK2 in an inactive conformation, restricting LRR domain mobility and preventing dimerization and oligomer formation. Our mutagenesis studies reveal that PD-associated mutations at the COR:14-3-3 interface and within the GTPase domain reduce 14-3-3 binding, diminishing its inhibitory effect on LRRK2. These findings provide a structural basis for understanding how LRRK2 likely remains dormant within cells, illuminate aspects of critical PD biomarkers, and suggest therapeutic strategies to enhance LRRK2-14-3-3 interactions to treat PD and related disorders.
Collapse
|
8
|
Yang K, Zhou Y, Cui J, Tang W, Chen Y, Chen X. LRRK2 G2019S enhances immune response pathways and aggravates asthma in mouse models. Biochem Biophys Res Commun 2024; 734:150593. [PMID: 39217812 DOI: 10.1016/j.bbrc.2024.150593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Asthma is a complex inflammatory airway disease that arises from the interplay between genetic predisposition and environmental influences. Leucine-rich repeat kinase 2 (LRRK2), a gene commonly associated with Parkinson's disease, has recently gained attention for its role in immune regulation and inflammation beyond the brain. However, its involvement in asthma has not yet been reported. In this study, we used LRRK2 G2019S transgenic mice and LRRK2 knockout mice to establish asthmatic models to explore LRRK2 impact on asthma. We found that LRRK2 G2019S transgenic mice showed exacerbated airway hyperresponsiveness (AHR) and airway inflammation in asthma mouse models induced by house dust mite. RNA sequencing data unveiled that the LRRK2 G2019S mutation enhanced immune response pathways, including NOD-like receptor, cellular response to interferon β and activation of innate immune response signaling. Conversely, LRRK2 deficiency attenuated AHR and airway inflammation in the same asthma models. Our study offers new insights into the role of LRRK2 in allergic inflammation and highlights its potential as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Kai Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiqun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
10
|
da Silva D, Matsui A, Murray EM, Mamais A, Authement ME, Shin JH, Shaw M, Ron D, Cookson MR, Alvarez VA. Leucine-rich repeat kinase 2 limits dopamine D1 receptor signaling in striatum and biases against heavy persistent alcohol drinking. Neuropsychopharmacology 2024; 49:824-836. [PMID: 37684522 PMCID: PMC10948780 DOI: 10.1038/s41386-023-01731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.
Collapse
Affiliation(s)
- Daniel da Silva
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Erin M Murray
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Michael E Authement
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Marlisa Shaw
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, 20892, USA.
- NIMH, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
11
|
Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Narayanan NS, Short S, Xiong Y, Kang Z. LRRK2 G2019S Promotes Colon Cancer Potentially via LRRK2-GSDMD Axis-Mediated Gut Inflammation. Cells 2024; 13:565. [PMID: 38607004 PMCID: PMC11011703 DOI: 10.3390/cells13070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine protein kinase belonging to the ROCO protein family. Within the kinase domain of LRRK2, a point mutation known as LRRK2 G2019S has emerged as the most prevalent variant associated with Parkinson's disease. Recent clinical studies have indicated that G2019S carriers have an elevated risk of cancers, including colon cancer. Despite this observation, the underlying mechanisms linking LRRK2 G2019S to colon cancer remain elusive. In this study, employing a colitis-associated cancer (CAC) model and LRRK2 G2019S knock-in (KI) mouse model, we demonstrate that LRRK2 G2019S promotes the pathogenesis of colon cancer, characterized by increased tumor number and size in KI mice. Furthermore, LRRK2 G2019S enhances intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, KI mice exhibit heightened susceptibility to DSS-induced colitis, with inhibition of LRRK2 kinase activity ameliorating colitis severity and CAC progression. Our investigation also reveals that LRRK2 G2019S promotes inflammasome activation and exacerbates gut epithelium necrosis in the colitis model. Notably, GSDMD inhibitors attenuate colitis in LRRK2 G2019S KI mice. Taken together, our findings offer experimental evidence indicating that the gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, suggesting LRRK2 as a potential therapeutic target in colon cancer patients exhibiting hyper LRRK2 kinase activity.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Joyce Z. Gao
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Taylor Sakaguchi
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Thorsten Maretzky
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Short
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Østergaard FG. Knocking out the LRRK2 gene increases sensitivity to wavelength information in rats. Sci Rep 2024; 14:4984. [PMID: 38424139 PMCID: PMC10904730 DOI: 10.1038/s41598-024-55350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene related to familial Parkinson's disease (PD). It has been associated with nonmotor symptoms such as disturbances in the visual system affecting colour discrimination and contrast sensitivity. This study examined how deficiency of LRRK2 impacts visual processing in adult rats. Additionally, we investigated whether these changes can be modelled in wild-type rats by administering the LRRK2 inhibitor PFE360. Visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) were recorded in the visual cortex and superior colliculus of female LRRK2-knockout and wild-type rats to study how the innate absence of LRRK2 changes visual processing. Exposing the animals to stimulation at five different wavelengths revealed an interaction between genotype and the response to stimulation at different wavelengths. Differences in VEP amplitudes and latencies were robust and barely impacted by the presence of the LRRK2 inhibitor PFE360, suggesting a developmental effect. Taken together, these results indicate that alterations in visual processing were related to developmental deficiency of LRRK2 and not acute deficiency of LRRK2, indicating a role of LRRK2 in the functional development of the visual system and synaptic transmission.
Collapse
Affiliation(s)
- Freja Gam Østergaard
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
- GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
13
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
Koros C, Bougea A, Simitsi AM, Papagiannakis N, Angelopoulou E, Pachi I, Antonelou R, Bozi M, Stamelou M, Stefanis L. The Landscape of Monogenic Parkinson's Disease in Populations of Non-European Ancestry: A Narrative Review. Genes (Basel) 2023; 14:2097. [PMID: 38003040 PMCID: PMC10671808 DOI: 10.3390/genes14112097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION There has been a bias in the existing literature on Parkinson's disease (PD) genetics as most studies involved patients of European ancestry, mostly in Europe and North America. Our target was to review published research data on the genetic profile of PD patients of non-European or mixed ancestry. METHODS We reviewed articles published during the 2000-2023 period, focusing on the genetic status of PD patients of non-European origin (Indian, East and Central Asian, Latin American, sub-Saharan African and Pacific islands). RESULTS There were substantial differences regarding monogenic PD forms between patients of European and non-European ancestry. The G2019S Leucine Rich Repeat Kinase 2 (LRRK2) mutation was rather scarce in non-European populations. In contrast, East Asian patients carried different mutations like p.I2020T, which is common in Japan. Parkin (PRKN) variants had a global distribution, being common in early-onset PD in Indians, in East Asians, and in early-onset Mexicans. Furthermore, they were occasionally present in Black African PD patients. PTEN-induced kinase 1 (PINK1) and PD protein 7 (DJ-1) variants were described in Indian, East Asian and Pacific Islands populations. Glucocerebrosidase gene variants (GBA1), which represent an important predisposing factor for PD, were found in East and Southeast Asian and Indian populations. Different GBA1 variants have been reported in Black African populations and Latin Americans. CONCLUSIONS Existing data reveal a pronounced heterogeneity in the genetic background of PD. A number of common variants in populations of European ancestry appeared to be absent or scarce in patients of diverse ethnic backgrounds. Large-scale studies that include genetic screening in African, Asian or Latin American populations are underway. The outcomes of such efforts will facilitate further clinical studies and will possibly contribute to the identification of either new pathogenic mutations in already described genes or novel PD-related genes.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Maria Bozi
- Dafni Psychiatric Hospital, 12462 Athens, Greece;
- 2nd Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| |
Collapse
|
15
|
Bueno D, Narayan Dey P, Schacht T, Wolf C, Wüllner V, Morpurgo E, Rojas-Charry L, Sessinghaus L, Leukel P, Sommer C, Radyushkin K, Florin L, Baumgart J, Stamm P, Daiber A, Horta G, Nardi L, Vasic V, Schmeisser MJ, Hellwig A, Oskamp A, Bauer A, Anand R, Reichert AS, Ritz S, Nocera G, Jacob C, Peper J, Silies M, Frauenknecht KBM, Schäfer MKE, Methner A. NECAB2 is an endosomal protein important for striatal function. Free Radic Biol Med 2023; 208:643-656. [PMID: 37722569 DOI: 10.1016/j.freeradbiomed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.
Collapse
Affiliation(s)
- Diones Bueno
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Partha Narayan Dey
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Teresa Schacht
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Christina Wolf
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Verena Wüllner
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Elena Morpurgo
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| | - Liliana Rojas-Charry
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany; University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Anatomy, Germany.
| | - Lena Sessinghaus
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute of Neuropathology, Germany.
| | - Petra Leukel
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute of Neuropathology, Germany.
| | - Clemens Sommer
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute of Neuropathology, Germany.
| | - Konstantin Radyushkin
- University Medical Center of the Johannes Gutenberg-University Mainz, Mouse Behavior Unit, Germany.
| | - Luise Florin
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Virology, Germany.
| | - Jan Baumgart
- University Medical Center of the Johannes Gutenberg-University Mainz, Translational Animal Research Center (TARC), Germany.
| | - Paul Stamm
- University Medical Center of the Johannes Gutenberg-University Mainz, Center for Cardiology, Germany.
| | - Andreas Daiber
- University Medical Center of the Johannes Gutenberg-University Mainz, Center for Cardiology, Germany.
| | - Guilherme Horta
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Anatomy, Germany.
| | - Leonardo Nardi
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Anatomy, Germany.
| | - Verica Vasic
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Anatomy, Germany.
| | - Michael J Schmeisser
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Anatomy, Germany.
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Germany.
| | - Angela Oskamp
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany.
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sandra Ritz
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany.
| | - Gianluigi Nocera
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, Germany.
| | - Claire Jacob
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, Germany.
| | - Jonas Peper
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, Germany.
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, Germany.
| | - Katrin B M Frauenknecht
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute of Neuropathology, Germany; Institute of Neuropathology, University and University Hospital Zurich, Switzerland.
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany.
| | - Axel Methner
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Germany.
| |
Collapse
|
16
|
Miller GK, Kuruvilla S, Jacob B, LaFranco-Scheuch L, Bakthavatchalu V, Flor J, Flor K, Ziegler J, Reichard C, Manfre P, Firner S, McNutt T, Quay D, Bellum S, Doto G, Ciaccio PJ, Pearson K, Valentine J, Fuller P, Fell M, Tsuchiya T, Williamson T, Wollenberg G. Effects of LRRK2 Inhibitors in Nonhuman Primates. Toxicol Pathol 2023; 51:232-245. [PMID: 37916535 DOI: 10.1177/01926233231205895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Toxicology studies in nonhuman primates were conducted to evaluate selective, brain penetrant inhibitors of LRRK2. GNE 7915 was limited to 7-day administration in cynomolgus monkeys at 65 mg/kg/day or limited to 14 days in rhesus at 22.5 mg/kg b.i.d. due to physical signs. Compound 25 demonstrated acceptable tolerability at 50 and 225 mg/kg b.i.d. for 7 days in rhesus monkeys. MK-1468 was tolerated during 7-day administration at 100, 200 or 800 mg/kg/day or for 30-day administration at 30, 100, or 500 mg/kg b.i.d. in rhesus monkeys. The lungs revealed hypertrophy of type 2 pneumocytes, with accumulation of intra-alveolar macrophages. Transmission electron microscopy confirmed increased lamellar structures within hypertrophic type 2 pneumocytes. Hypertrophy and hyperplasia of type 2 pneumocytes with accumulation of intra-alveolar macrophages admixed with neutrophils were prominent at peripheral lungs of animals receiving compound 25 or MK-1468. Affected type 2 pneumocytes were immuno-positive for pro-surfactant C, but negative for CD11c, a marker for intra-alveolar macrophages. Accumulation of collagen within alveolar walls, confirmed by histochemical trichrome stain, accompanied changes described for compound 25 and MK-1468. Following a 12-week treatment-free interval, animals previously receiving MK-1468 for 30 days exhibited remodeling of alveolar structure and interstitial components that did not demonstrate reversibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason Flor
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | | | | | | | | - Diane Quay
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Greg Doto
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | | | | - Matt Fell
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | |
Collapse
|
17
|
Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Short S, Xiong Y, Kang Z. LRRK2 G2019S promotes the development of colon cancer via modulating intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546897. [PMID: 37425755 PMCID: PMC10326997 DOI: 10.1101/2023.06.28.546897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
LRRK2 G2019S is the most prevalent variant associated with Parkinson's disease (PD), found in 1-3% of sporadic and 4-8% of familial PD cases. Intriguingly, emerging clinical studies have suggested that LRRK2 G2019S carriers have an increased risk of cancers including colorectal cancer. However, the underlying mechanisms of the positive correlation between LRRK2-G2019S and colorectal cancer remain unknown. Using a mouse model of colitis-associated cancer (CAC) and LRRK2 G2019S knockin (KI) mice, here we report that LRRK2 G2019S promotes the pathogenesis of colon cancer as evidenced by increased tumor number and tumor size in LRRK2 G2019S KI mice. LRRK2 G2019S promoted intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, we found that LRRK2 G2019S KI mice are more susceptible to dextran sulfate sodium (DSS)-induced colitis. Suppressing the kinase activity of LRRK2 ameliorated the severity of colitis in both LRRK2 G2019S KI and WT mice. At the molecular level, our investigation unveiled that LRRK2 G2019S promotes the production of reactive oxygen species, triggers inflammasome activation, and induces cell necrosis in the gut epithelium in a mouse model of colitis. Collectively, our data provide direct evidence that gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, implicating LRRK2 as a potential target in colon cancer patients with hyper LRRK2 kinase activity.
Collapse
|
18
|
Sosero YL, Gan‐Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy. Ann Clin Transl Neurol 2023; 10:850-864. [PMID: 37021623 PMCID: PMC10270275 DOI: 10.1002/acn3.51776] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD has a generally benign clinical presentation and variable pathology, with inconsistent presence of Lewy bodies and marked Alzheimer's disease pathology. The mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among others. As novel therapies targeting LRRK2 are under development, understanding the role and function of LRRK2 in PD is becoming increasingly important. Here, we outline the epidemiological, pathophysiological, and clinical features of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2 and possible future directions for research.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
| | - Ziv Gan‐Or
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Neurology and NeurosurgeryMcGill UniversityMontréalQuébecH3A 0G4Canada
| |
Collapse
|
19
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
20
|
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
21
|
Rinaldi C, Waters CS, Li Z, Kumbier K, Rao L, Nichols RJ, Jacobson MP, Wu LF, Altschuler SJ. Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity. Cell Rep 2023; 42:112447. [PMID: 37141099 DOI: 10.1016/j.celrep.2023.112447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.
Collapse
Affiliation(s)
- Capria Rinaldi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher S Waters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zizheng Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karl Kumbier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lee Rao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - R Jeremy Nichols
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
23
|
LRRK2 and GBA1 variant carriers have higher urinary bis(monacylglycerol) phosphate concentrations in PPMI cohorts. NPJ Parkinsons Dis 2023; 9:30. [PMID: 36854767 PMCID: PMC9974978 DOI: 10.1038/s41531-023-00468-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/26/2023] [Indexed: 03/02/2023] Open
Abstract
We quantified concentrations of three isoforms of the endolysosomal lipid, bis(monoacylglycerol) phosphate (BMP) in the urine of deeply phenotyped cohorts in the Parkinson's Progression Markers Initiative: LRRK2 G2019S PD (N = 134) and non-manifesting carriers (NMC) (G2019S+ NMC; N = 182), LRRK2 R1441G PD (N = 15) and R1441G+ NMC (N = 15), GBA1 N409S PD (N = 76) and N409S+ NMC (N = 178), sporadic PD (sPD, N = 379) and healthy controls (HC) (N = 190). The effects of each mutation and disease status were analyzed using nonparametric methods. Longitudinal changes in BMP levels were analyzed using linear mixed models. At baseline, all LRRK2 carriers had 3-7× higher BMP levels compared to HC, irrespective of the disease status. GBA1 N409S carriers also showed significant, albeit smaller, elevation (~30-40%) in BMP levels compared to HC. In LRRK2 G2019S PD, urinary BMP levels remained stable over two years. Furthermore, baseline BMP levels did not predict disease progression as measured by striatal DaT imaging, MDS-UPDRS III Off, or MoCA in any of the cohorts. These data support the utility of BMP as a target modulation biomarker in therapeutic trials of genetic and sPD but not as a prognostic or disease progression biomarker.
Collapse
|
24
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
25
|
Volta M. Lysosomal Pathogenesis of Parkinson's Disease: Insights From LRRK2 and GBA1 Rodent Models. Neurotherapeutics 2023; 20:127-139. [PMID: 36085537 PMCID: PMC10119359 DOI: 10.1007/s13311-022-01290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
The discovery of mutations in LRRK2 and GBA1 that are linked to Parkinson's disease provided further evidence that autophagy and lysosome pathways are likely implicated in the pathogenic process. Their protein products are important regulators of lysosome function. LRRK2 has kinase-dependent effects on lysosome activity, autophagic efficacy and lysosomal Ca2+ signaling. Glucocerebrosidase (encoded by GBA1) is a hydrolytic enzyme contained in the lysosomes and contributes to the degradation of alpha-synuclein. PD-related mutations in LRRK2 and GBA1 slow the degradation of alpha-synuclein, thus directly implicating the dysfunction of the process in the neuropathology of Parkinson's disease. The development of genetic rodent models of LRRK2 and GBA1 provided hopes of obtaining reliable preclinical models in which to study pathogenic processes and perform drug validation studies. Here, I will review the extensive characterization of these models, their impact on understanding lysosome alterations in the course of Parkinson's disease and what novel insights have been obtained. In addition, I will discuss how these models fare with respect to the features of a "gold standard" animal models and what could be attempted in future studies to exploit LRRK2 and GBA1 rodent models in the fight against Parkinson's disease.
Collapse
Affiliation(s)
- Mattia Volta
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, via Volta 21, Bolzano, 39100, Italy.
| |
Collapse
|
26
|
Gu YZ, Vlasakova K, Miller G, Gatto NT, Ciaccio PJ, Kuruvilla S, Besteman EG, Smith R, Reynolds SJ, Amin RP, Glaab WE, Wollenberg G, Lebron J, Sistare FD. Early-Onset albuminuria and Associated Renal Pathology in Leucine-Rich Repeat Kinase 2 Knockout Rats. Toxicol Pathol 2023; 51:15-26. [PMID: 37078689 DOI: 10.1177/01926233231162809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.
Collapse
Affiliation(s)
- Yi-Zhong Gu
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Glen Miller
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Roger Smith
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Jose Lebron
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | |
Collapse
|
27
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
28
|
Abstract
Mutations in LRRK2 are associated with Parkinson’s disease. We have recently shown that LRRK2 is recruited and activated on damaged lysosomes; however, the mechanism underlying this process remains unclear. Here, we observe that lysosomal positioning regulates the ability of LRRK2 to phosphorylate and recruit Rab10 but not Rab12 on lysosomes. pRab10 is present almost exclusively at perinuclear LRRK2+ lysosomes, which also regulates LYTL (lysosomal tubulation/sorting driven by LRRK2) by recruiting its effector, JIP4. Manipulation of lysosomal positioning by promoting anterograde transport reduces pRab10 and JIP4 on lysosomes, while induction of retrograde transport has the opposite effect. This finding provides insight into the mechanism of LRRK2-dependent lysosomal damage regulation and supports future study of the role of LRRK2 in lysosomal biology. Genetic variation at the leucine-rich repeat kinase 2 (LRRK2) locus contributes to an enhanced risk of familial and sporadic Parkinson’s disease. Previous data have demonstrated that recruitment to various membranes of the endolysosomal system results in LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes and the cellular consequences of these events are still poorly understood. Here, we directed LRRK2 to lysosomes and early endosomes, triggering both LRRK2 autophosphorylation and phosphorylation of the direct LRRK2 substrates Rab10 and Rab12. However, when directed to the lysosomal membrane, pRab10 was restricted to perinuclear lysosomes, whereas pRab12 was visualized on both peripheral and perinuclear LRRK2+ lysosomes, suggesting that lysosomal positioning provides additional regulation of LRRK2-dependent Rab phosphorylation. Anterograde transport of lysosomes to the cell periphery by increasing the expression of ARL8B and SKIP or by knockdown of JIP4 blocked the recruitment and phosphorylation of Rab10 by LRRK2. The absence of pRab10 from the lysosomal membrane prevented the formation of a lysosomal tubulation and sorting process we previously named LYTL. Conversely, overexpression of RILP resulted in lysosomal clustering within the perinuclear area and increased LRRK2-dependent Rab10 recruitment and phosphorylation. The regulation of Rab10 phosphorylation in the perinuclear area depends on counteracting phosphatases, as the knockdown of phosphatase PPM1H significantly increased pRab10 signal and lysosomal tubulation in the perinuclear region. Our findings suggest that LRRK2 can be activated at multiple cellular membranes, including lysosomes, and that lysosomal positioning further provides the regulation of some Rab substrates likely via differential phosphatase activity or effector protein presence in nearby cellular compartments.
Collapse
|
29
|
Tsafaras G, Baekelandt V. The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiol Dis 2022; 172:105806. [PMID: 35781002 DOI: 10.1016/j.nbd.2022.105806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is currently considered a multisystemic disorder rather than a pure brain disease, in line with the multiple hit hypothesis from Braak. However, despite increasing evidence that the pathology might originate in the periphery, multiple unknown aspects and contradictory data on the pathological processes taking place in the periphery jeopardize the interpretation and therapeutic targeting of PD. Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been widely linked with familial and sporadic PD cases. However, the actual role of LRRK2 in PD pathophysiology is far from understood. There is evidence that LRRK2 may be involved in alpha-synuclein (α-synuclein) pathology and immune cell regulation, but it has also been associated with inflammatory diseases such as inflammatory bowel disease, tuberculosis, leprosy, and several other bacterial infections. In this review, we focus on the different roles of LRRK2 in the periphery. More specifically, we discuss the involvement of LRRK2 in the propagation of α-synuclein pathology and its regulatory role in peripheral inflammation. A deeper understanding of the multidimensional functions of LRRK2 will pave the way for more accurate characterization of PD pathophysiology and its association with other inflammatory diseases.
Collapse
Affiliation(s)
- George Tsafaras
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Wallings RL, Hughes LP, Staley HA, Simon ZD, McFarland NR, Alcalay RN, Garrido A, Martí MJ, Sarró ET, Dzamko N, Tansey MG. WHOPPA Enables Parallel Assessment of Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Enzymatic Activity in Parkinson's Disease Monocytes. Front Cell Neurosci 2022; 16:892899. [PMID: 35755775 PMCID: PMC9229349 DOI: 10.3389/fncel.2022.892899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Both leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GCase) are promising targets for the treatment of Parkinson’s disease (PD). Evidence suggests that both proteins are involved in biological pathways involving the lysosome. However, studies to date have largely investigated the enzymes in isolation and any relationship between LRRK2 and GCase remains unclear. Both enzymes are highly expressed in peripheral blood monocytes and have been implicated in immune function and inflammation. To facilitate the standardized measurement of these readouts in large cohorts of samples collected from persons with PD across the globe, we developed and optimized a sample collection and processing protocol with parallel flow cytometry assays. Assay parameters were first optimized using healthy control peripheral blood mononuclear cells (PBMCs), and then LRRK2 and GCase activities were measured in immune cells from persons with idiopathic PD (iPD). We tested the ability of this protocol to deliver similar results across institutes across the globe, and named this protocol the Wallings-Hughes Optimized Protocol for PBMC Assessment (WHOPPA). In the application of this protocol, we found increased LRRK2 levels and stimulation-dependent enzymatic activity, and decreased GBA index in classical iPD monocytes, as well as increased cytokine release in PD PBMCs. WHOPPA also demonstrated a strong positive correlation between LRRK2 levels, pRab10 and HLA-DR in classical monocytes from subjects with iPD. These data support a role for the global use of WHOPPA and expression levels of these two PD-associated proteins in immune responses, and provide a robust assay to determine if LRRK2 and GCase activities in monocytes have potential utility as reliable and reproducible biomarkers of disease in larger cohorts of subjects with PD.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Laura P Hughes
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hannah A Staley
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Zachary D Simon
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Nikolaus R McFarland
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Roy N Alcalay
- Department of Neurology, Neurological Institute of New York, Columbia University, New York, NY, United States.,Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alicia Garrido
- Hospital Clínic de Barcelona, Servicio de Neurología, Barcelona, Spain
| | - María José Martí
- Hospital Clínic de Barcelona, Servicio de Neurología, Barcelona, Spain
| | | | - Nicolas Dzamko
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
31
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
32
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
33
|
Huang G, Bloodgood DW, Kang J, Shahapal A, Chen P, Kaganovsky K, Kim JI, Ding JB, Shen J. Motor Impairments and Dopaminergic Defects Caused by Loss of Leucine-Rich Repeat Kinase Function in Mice. J Neurosci 2022; 42:4755-4765. [PMID: 35534227 PMCID: PMC9186805 DOI: 10.1523/jneurosci.0140-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Guodong Huang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anu Shahapal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Phoenix Chen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - Jun B Ding
- Departments of Neurosurgery and
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Galper J, Dean NJ, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N. Lipid pathway dysfunction is prevalent in patients with Parkinson's disease. Brain 2022; 145:3472-3487. [PMID: 35551349 DOI: 10.1093/brain/awac176] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Many genetic risk factors for Parkinson's disease have lipid-related functions and lipid-modulating drugs such as statins may be protective against Parkinson's disease. Moreover, the hallmark Parkinson's disease pathological protein, α-synuclein, has lipid membrane function and pathways dysregulated in Parkinson's disease such as the endosome-lysosome system and synaptic signaling rely heavily on lipid dynamics. Despite the potential role for lipids in Parkinson's disease, most research to date has been protein-centric, with large-scale, untargeted serum and CSF lipidomic comparisons between genetic and idiopathic Parkinson's disease and neurotypical controls limited. In particular, the extent to which lipid dysregulation occurs in mutation carriers of one of the most common Parkinson's disease risk genes, LRRK2, is unclear. Further, the functional lipid pathways potentially dysregulated in idiopathic and LRRK2 mutation Parkinson's disease is underexplored. To better determine the extent of lipid dysregulation in Parkinson's disease, untargeted high performance liquid chromatography-tandem mass spectrometry was performed on serum (N = 221) and CSF (N = 88) obtained from a multiethnic population from the Michael J Fox Foundation LRRK2 Clinical Cohort Consortium. The cohort consisted of controls, asymptomatic LRRK2 G2019S carriers, LRRK2 G2019S carriers with Parkinson's disease and Parkinson's disease patients without a LRRK2 mutation. Age and sex were adjusted for in analyses where appropriate. Approximately one thousand serum lipid species per participant were analyzed. The main serum lipids that distinguished both Parkinson's disease patients and LRRK2 mutation carriers from controls included species of ceramide, triacylglycerol, sphingomyelin, acylcarnitine, phosphatidylcholine and lysophosphatidylethanolamine. Significant alterations in sphingolipids and glycerolipids were also reflected in Parkinson's disease and LRRK2 mutation carrier CSF, although no correlations were observed between lipids identified in both serum and CSF. Pathway analysis of altered lipid species indicated that sphingolipid metabolism, insulin signaling and mitochondrial function were the major metabolic pathways dysregulated in Parkinson's disease. Importantly, these pathways were also found to be dysregulated in serum samples from a second Parkinson's disease cohort (N = 315). Results from this study demonstrate that dysregulated lipids in Parkinson's disease generally, and in LRRK2 mutation carriers, are from functionally and metabolically related pathways. These findings provide new insight into the extent of lipid dysfunction in Parkinson's disease and therapeutics manipulating these pathways may potentially be beneficial for Parkinson's disease patients. Moreover, serum lipid profiles may be novel biomarkers for both genetic and idiopathic Parkinson's disease.
Collapse
Affiliation(s)
- Jasmin Galper
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Nicholas J Dean
- University of Sydney, Faculty of Medicine and Health, Central Clinical School Camperdown, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simon J G Lewis
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Woojin S Kim
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Nicolas Dzamko
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| |
Collapse
|
35
|
Marchand A, Sarchione A, Athanasopoulos PS, Roy HBL, Goveas L, Magnez R, Drouyer M, Emanuele M, Ho FY, Liberelle M, Melnyk P, Lebègue N, Thuru X, Nichols RJ, Greggio E, Kortholt A, Galli T, Chartier-Harlin MC, Taymans JM. A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells 2022; 11:cells11061018. [PMID: 35326469 PMCID: PMC8946913 DOI: 10.3390/cells11061018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson’s disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2’s heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Panagiotis S. Athanasopoulos
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | | | - Liesel Goveas
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, Platform of Integrative Chemical Biology, F-59000 Lille, France; (R.M.); (X.T.)
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Marco Emanuele
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Franz Y. Ho
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Patricia Melnyk
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, Platform of Integrative Chemical Biology, F-59000 Lille, France; (R.M.); (X.T.)
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Elisa Greggio
- Physiology, Genetics and Behavior Unit, Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Cité, INSERM U1266, F-75014 Paris, France;
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
- Correspondence: (M.-C.C.-H.); (J.-M.T.)
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
- Correspondence: (M.-C.C.-H.); (J.-M.T.)
| |
Collapse
|
36
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
37
|
Yousefi M, Peymani M, Ghaedi K, Irani S, Etemadifar M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci Rep 2022; 12:2569. [PMID: 35173238 PMCID: PMC8850599 DOI: 10.1038/s41598-022-06539-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease; the evidence suggests that lncRNAs and miRNAs play an important role in regulating the PD-related genes. The purpose of this research was to introduce two novel lncRNAs as the biomarker of PD diagnosis and treatment. We evaluated the expression profiles of six nodes of two regulatory networks in the PBMCs which had been got from 38 PD patients and 20 healthy individuals by qRT-PCR. Then, we compared the expression of these RNAs in both early and late stages of PD with the controls to determine if their expression could be related to the severity of disease. Further, this study investigated the direct interaction between one of the lncRNAs and target miRNA by using the dual luciferase assay. The results of the expression profiles of six nodes of the two ceRNA networks shown that linc01128, hsa-miR-24-3p and hsa-miR-30c-5p expression were significantly downregulated. While, the Linc00938, LRRK2 and ATP13A2 expression were up-regulated in the PBMC of the PD patients, in comparison to the controls. In addition, this study demonstrated that linc00938 directly sponged hsa-miR-30c-5p. The present study, therefore, for the first time, revealed two candidate lncRNAs as the biomarkers in the PD patients.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Chang EES, Ho PWL, Liu HF, Pang SYY, Leung CT, Malki Y, Choi ZYK, Ramsden DB, Ho SL. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022; 11:10. [PMID: 35152914 PMCID: PMC8842874 DOI: 10.1186/s40035-022-00285-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
Collapse
Affiliation(s)
- Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
39
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
40
|
Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK, Chidambaram SB. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson's Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules 2021; 11:1669. [PMID: 34827667 PMCID: PMC8615717 DOI: 10.3390/biom11111669] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.
Collapse
Affiliation(s)
- Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah 2059, Oman;
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
41
|
LRRK2 along the Golgi and lysosome connection: a jamming situation. Biochem Soc Trans 2021; 49:2063-2072. [PMID: 34495322 PMCID: PMC8589420 DOI: 10.1042/bst20201146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder, clinically characterized by bradykinesia, rigidity, and resting tremor. Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein containing two enzymatic domains. Missense mutations in its coding sequence are amongst the most common causes of familial PD. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence supports a role for LRRK2 in membrane and vesicle trafficking, mainly functioning in the endosome-recycling system, (synaptic) vesicle trafficking, autophagy, and lysosome biology. LRRK2 binds and phosphorylates key regulators of the endomembrane systems and is dynamically localized at the Golgi. The impact of LRRK2 on the Golgi may reverberate throughout the entire endomembrane system and occur in multiple intersecting pathways, including endocytosis, autophagy, and lysosomal function. This would lead to overall dysregulation of cellular homeostasis and protein catabolism, leading to neuronal dysfunction and accumulation of toxic protein species, thus underlying the possible neurotoxic effect of LRRK2 mutations causing PD.
Collapse
|
42
|
Guadagnolo D, Piane M, Torrisi MR, Pizzuti A, Petrucci S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front Neurol 2021; 12:648588. [PMID: 34630269 PMCID: PMC8494251 DOI: 10.3389/fneur.2021.648588] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| |
Collapse
|
43
|
Lee CY, Menozzi E, Chau KY, Schapira AHV. Glucocerebrosidase 1 and leucine-rich repeat kinase 2 in Parkinson disease and interplay between the two genes. J Neurochem 2021; 159:826-839. [PMID: 34618942 DOI: 10.1111/jnc.15524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/24/2023]
Abstract
The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.
Collapse
Affiliation(s)
- Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
44
|
Rosenbusch KE, Oun A, Sanislav O, Lay ST, Keizer-Gunnink I, Annesley SJ, Fisher PR, Dolga AM, Kortholt A. A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Front Cell Dev Biol 2021; 9:734554. [PMID: 34568343 PMCID: PMC8455996 DOI: 10.3389/fcell.2021.734554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease world-wide. Mutations in the multidomain protein Leucine Rich Repeat Kinase 2 (LRRK2) are the most frequent cause of hereditary PD. Furthermore, recent data suggest that independent of mutations, increased kinase activity of LRRK2 plays an essential role in PD pathogenesis. Isolated mitochondria of tissue samples from PD patients carrying LRRK2 mutations display a significant impairment of mitochondrial function. However, due to the complexity of the mitochondrial signaling network, the role of LRRK2 in mitochondrial metabolism is still not well understood. Previously we have shown that D. discoideum Roco4 is a suitable model to study the activation mechanism of LRRK2 in vivo. To get more insight in the LRRK2 pathways regulating mitochondrial activity we used this Roco4 model system in combination with murine RAW macrophages. Here we show that both Dictyostelium roco4 knockout and cells expressing PD-mutants show behavioral and developmental phenotypes that are characteristic for mitochondrial impairment. Mitochondrial activity measured by Seahorse technology revealed that the basal respiration of D. discoideum roco4- cells is significantly increased compared to the WT strain, while the basal and maximal respiration values of cells overexpressing Roco4 are reduced compared to the WT strain. Consistently, LRRK2 KO RAW 264.7 cells exhibit higher maximal mitochondrial respiration activity compared to the LRRK2 parental RAW264.7 cells. Measurement on isolated mitochondria from LRRK2 KO and parental RAW 264.7 cells revealed no difference in activity compared to the parental cells. Furthermore, neither D. discoideum roco4- nor LRRK2 KO RAW 264.7 showed a difference in either the number or the morphology of mitochondria compared to their respective parental strains. This suggests that the observed effects on the mitochondrial respiratory in cells are indirect and that LRRK2/Roco proteins most likely require other cytosolic cofactors to elicit mitochondrial effects.
Collapse
Affiliation(s)
| | - Asmaa Oun
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sui T Lay
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Ineke Keizer-Gunnink
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Amalia M Dolga
- Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
45
|
Walkley SU. Rethinking lysosomes and lysosomal disease. Neurosci Lett 2021; 762:136155. [PMID: 34358625 DOI: 10.1016/j.neulet.2021.136155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases were recognized and defined over a century ago as a class of disorders affecting mostly children and causing systemic disease often accompanied by major neurological consequences. Since their discovery, research focused on understanding their causes has been an important driver of our ever-expanding knowledge of cell biology and the central role that lysosomes play in cell function. Today we recognize over 50 so-called storage diseases, with most understood at the level of gene, protein and pathway involvement, but few fully clarified in terms of how the defective lysosomal function causes brain disease; even fewer have therapies that can effectively rescue brain function. Importantly, we also recognize that storage diseases are not simply a class of lysosomal disorders all by themselves, as increasingly a critical role for the greater lysosomal system with its endosomal, autophagosomal and salvage streams has also emerged in a host of neurodevelopmental and neurodegenerative diseases. Despite persistent challenges across all aspects of these complex disorders, and as reflected in this and other articles focused on lysosomal storage diseases in this special issue of Neuroscience Letters, the progress and promise to both understand and effectively treat these conditions has never been greater.
Collapse
Affiliation(s)
- Steven U Walkley
- Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
46
|
Two Methods to Analyze LRRK2 Functions Under Lysosomal Stress: The Measurements of Cathepsin Release and Lysosomal Enlargement. Methods Mol Biol 2021. [PMID: 34043193 DOI: 10.1007/978-1-0716-1495-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a causative gene product of autosomal-dominant Parkinson's disease and has been shown to play a role in lysosomal regulation. We have previously shown that endogenous LRRK2 recruited its substrates Rab8a and Rab10 onto overloaded lysosomes depending on their phosphorylation, which functioned in the suppression of lysosomal enlargement as well as the promotion of the exocytic release of lysosomal cathepsins. In this chapter, we introduce two methods to analyze cellular functions of LRRK2 upon exposure to lysosomal overload stress in RAW264.7 cells.
Collapse
|
47
|
LRRK2 Kinase Inhibitor Rejuvenates Oxidative Stress-Induced Cellular Senescence in Neuronal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9969842. [PMID: 34306319 PMCID: PMC8282384 DOI: 10.1155/2021/9969842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Background Leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the pathogenesis of Parkinson's disease (PD). Aging is the most critical risk factor for the progression of PD. The correlation between aging and cellular senescence has been established. Cellular senescence is correlated with the dysregulation of the proteolytic pathway and mitochondrial dysfunction, which are also associated with the aggregation of α-synuclein (α-syn). Methods Human dopaminergic neuron-like cells (differentiated SH-SY5Y cells) were treated with rotenone in the presence or absence of the LRRK2 kinase inhibitor GSK2578215A (GSK-KI) for 48 h. The markers of cellular senescence, including p53, p21Waf1/Cip1 (p21), β-galactosidase (β-gal), Rb phosphorylation, senescence-associated (SA) β-gal activity, and lysosomal activity, were examined. The dSH cells and rat primary cortical neurons were treated with α-syn fibrils 30 min before treatment with rotenone in the presence or absence of GSK-KI for 48 h. Mice were intraperitoneally injected with rotenone and MLi-2 (LRRK2 kinase inhibitor) once every two days for two weeks. Results Rotenone upregulated LRRK2 phosphorylation and β-gal levels through the activation of the p53-p21 signaling axis and downregulated Rb phosphorylation. Additionally, rotenone upregulated SA β-gal activity, reactive oxygen species levels, and LRRK2 phosphorylation and inhibited lysosome activity. Rotenone-induced LRRK2 upregulation impaired the clearance of α-syn fibrils. Treatment with LRRK2 inhibitor mitigated rotenone-induced cellular senescence and α-syn accumulation. Conclusions Rotenone-induced upregulation of LRRK2 kinase activity promoted cellular senescence, which enhanced α-syn accumulation. However, the administration of an LRRK2 kinase inhibitor rejuvenated rotenone-induced cellular senescence.
Collapse
|
48
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Mazza MC, Nguyen V, Beilina A, Karakoleva E, Coyle M, Ding J, Bishop C, Cookson MR. Combined Knockout of Lrrk2 and Rab29 Does Not Result in Behavioral Abnormalities in vivo. JOURNAL OF PARKINSONS DISEASE 2021; 11:569-584. [PMID: 33523017 DOI: 10.3233/jpd-202172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Coding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson's disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, suggesting that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. OBJECTIVE Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, we set out to determine whether there are any consequences on brain function with aging after deletion of both genes. METHODS We generated a double knockout mouse model and performed a battery of motor and non-motor behavioral tests. We then investigated postmortem assays to determine the presence of PD-like pathology, including nigral dopamine cell count, astrogliosis, microgliosis, and striatal monoamine content. RESULTS Behaviorally, we noted only that 18-24-month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in the outcomes that represented PD-like pathology. CONCLUSION These results suggest that depletion of both LRRK2 and RAB29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.
Collapse
Affiliation(s)
- Melissa Conti Mazza
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Victoria Nguyen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Howard University, Washington, DC, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ema Karakoleva
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|