1
|
Foliaki ST, Groveman BR, Dews EA, Williams K, El Soufi H, Schwarz B, Leung JM, Schneider CA, Schwartz CL, Bohrnsen E, Kimzey CD, Race B, Haigh CL. Limbic system synaptic dysfunctions associated with prion disease onset. Acta Neuropathol Commun 2024; 12:192. [PMID: 39707496 DOI: 10.1186/s40478-024-01905-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Misfolding of normal prion protein (PrPC) to pathological isoforms (prions) causes prion diseases (PrDs) with clinical manifestations including cognitive decline and mood-related behavioral changes. Cognition and mood are linked to the neurophysiology of the limbic system. Little is known about how the disease affects the synaptic activity in brain parts associated with this system. We hypothesize that the dysfunction of synaptic transmission in the limbic regions correlates with the onset of reduced cognition and behavioral deficits. Here, we studied how prion infection in mice disrupts the synaptic function in three limbic regions, the hippocampus, hypothalamus, and amygdala, at a pre-clinical stage (mid-incubation period) and early clinical onset. PrD caused calcium flux dysregulation associated with lesser spontaneous synchronous neuronal firing and slowing neural oscillation at the pre-clinical stage in the hippocampal CA1, ventral medial hypothalamus, and basolateral amygdala (BLA). At clinical onset, synaptic transmission and synaptic plasticity became significantly disrupted. This correlated with a substantial depletion of the soluble prion protein, loss of total synapses, abnormal neurotransmitter levels and synaptic release, decline in synaptic vesicle recycling, and cytoskeletal damage. Further, the amygdala exhibited distinct disease-related changes in synaptic morphology and physiology compared with the other regions, but generally to a lesser degree, demonstrating how different rates of damage in the limbic system influence the evolution of clinical disease. Overall, PrD causes synaptic damage in three essential limbic regions starting at a preclinical stage and resulting in synaptic plasticity dysfunction correlated with early disease signs. Therapeutic drugs that alleviate these early neuronal dysfunctions may significantly delay clinical onset.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.
| | - Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Emmett A Dews
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Katie Williams
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Hadil El Soufi
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Christine A Schneider
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cindi L Schwartz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cole D Kimzey
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
2
|
Erdenebat T, Komatsu Y, Uwamori N, Tanaka M, Hoshika T, Yamasaki T, Shimakura A, Suzuki A, Sato T, Horiuchi M. Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice. Front Mol Neurosci 2024; 17:1498142. [PMID: 39726739 PMCID: PMC11669680 DOI: 10.3389/fnmol.2024.1498142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The accumulation of a disease-specific isoform of prion protein (PrPSc) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrPSc and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection. However, the underlying mechanism is largely unknown. In this study, we provided evidence that the prion 22L strain propagates more efficiently in excitatory neurons than inhibitory neurons and that excitatory neurons in the thalamus are vulnerable to prion infection. PrPSc accumulation was less intense in the striatum, where GABAergic inhibitory neurons predominate, compared to the cerebral cortex and thalamus, where glutamatergic excitatory neurons are predominant, in mice intracerebrally or intraperitoneally inoculated with the 22L strain. PrPSc stains were observed along the needle track after stereotaxic injection into the striatum, whereas they were also observed away from the needle track in the thalamus. Consistent with inefficient prion propagation in the striatum, the 22L prion propagated more efficiently in glutamatergic neurons than GABAergic neurons in primary neuronal cultures. RNAscope in situ hybridization revealed a decrease in Vglut1- and Vglut2-expressing neurons in the ventral posterolateral nuclei of the thalamus in 22L strain-infected mice, whereas no decrease in Vgat-expressing neurons was observed in the adjacent reticular nucleus, mainly composed of Vgat-expressing interneurons. The excitatory neuron-prone prion propagation and excitatory neuronal loss in 22L strain-infected mice shed light on the neuropathological mechanism of prion diseases.
Collapse
Affiliation(s)
- Temuulen Erdenebat
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Yusuke Komatsu
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Nozomi Uwamori
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takashi Hoshika
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Ayano Shimakura
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Scuto M, Majzúnová M, Torcitto G, Antonuzzo S, Rampulla F, Di Fatta E, Trovato Salinaro A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int J Mol Sci 2024; 25:12155. [PMID: 39596221 PMCID: PMC11594618 DOI: 10.3390/ijms252212155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between functional food nutrients and neurosteroids has garnered significant attention for its potential to enhance stress resilience in health and/or disease. Several bioactive nutrients, including medicinal herbs, flavonoids, and bioavailable polyphenol-combined nanoparticles, as well as probiotics, vitamin D and omega-3 fatty acids, have been shown to improve blood-brain barrier (BBB) dysfunction, endogenous neurosteroid homeostasis and brain function. These nutrients can inhibit oxidative stress and neuroinflammation, which are linked to the pathogenesis of various neurological disorders. Interestingly, flavonoids exhibit dose-dependent effects, activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway at the physiological/low dose (neurohormesis). This leads to the upregulation of antioxidant phase II genes and proteins such as heme oxygenase-1 (HO-1) and sirtuin-1 (Sirt1), which are activated by curcumin and resveratrol, respectively. These adaptive neuronal response mechanisms help protect against reactive oxygen species (ROS) and neurotoxicity. Impaired Nrf2 and neurosteroid hormone signaling in the brain can exacerbate selective vulnerability to neuroinflammatory conditions, contributing to the onset and progression of neurodegenerative and psychiatric disorders, including Alzheimer's disease, anxiety and depression and other neurological disorders, due to the vulnerability of neurons to stress. This review focuses on functional food nutrients targeting Nrf2 antioxidant pathway and redox resilience genes to regulate the neurosteroid homeostasis and BBB damage associated with altered GABAergic neurotransmission. By exploring the underlying molecular mechanisms using innovative technologies, we aim to develop promising neuroprotective strategies and personalized nutritional and neuroregenerative therapies to prevent or attenuate oxidative stress and neuroinflammation, ultimately promoting brain health.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Miroslava Majzúnová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia;
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovakia
| | - Gessica Torcitto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Silvia Antonuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| |
Collapse
|
4
|
Hong H, Jun Y, Yoon SB, Park S, Lee J, Jang JW, Nam HJ, Cho H. Manufacturing Uniform Cerebral Organoids for Neurological Disease Modeling and Drug Evaluation. Biomater Res 2024; 28:0104. [PMID: 39507522 PMCID: PMC11538552 DOI: 10.34133/bmr.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Human cerebral organoids are promising tools for investigating brain development and the pathogenesis underlying neurological disorders. To use organoids for drug effectiveness and safety screening, the organoids dispensed into each well must be prepared under precisely the same conditions as the cells. Despite decades of extensive research on approaches to improve organoid generation, various challenges remain, such as low yields and heterogeneity in size and differentiation both within and between batches. Here, we newly established uniform cerebral organoids (UCOs) derived from induced pluripotent stem cells by optimizing organoid size and performing real-time monitoring of telencephalic differentiation marker expression. These organoids exhibited morphological uniformity and consistent expression of FOXG1 during telencephalic differentiation, with high productivity. Moreover, UCOs faithfully recapitulated early corticogenesis, concomitant with the establishment of neuroepithelial populations, cortical plate neurons, and glial cells. Furthermore, UCOs systematically developed neural networks and exhibited both excitatory and inhibitory electrophysiological signals when exposed to neurotransmission blockers. Neurodevelopmental disease models derived from UCOs manifested neurite outgrowth defects, which could be ameliorated with targeted drug treatment. We propose UCOs as an advanced platform with low organoid variations and high reproducibility for modeling both brain development and neurological diseases.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yesl Jun
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seoyoon Park
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jaemeun Lee
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong Woon Jang
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Novak TS, McGregor KM, Krishnamurthy LC, Evancho A, Mammino K, Walters CE, Weber A, Nocera JR. GABA, Aging and Exercise: Functional and Intervention Considerations. Neurosci Insights 2024; 19:26331055241285880. [PMID: 39377050 PMCID: PMC11457286 DOI: 10.1177/26331055241285880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The global growth of an aging population is expected to coincide with an increase in aging-related pathologies, including those related to brain health. Thus, the potential for accelerated cognitive health declines due to adverse aging is expected to have profound social and economic implications. However, the progression to pathological conditions is not an inevitable part of aging. In fact, engaging in activities that improve cardiovascular fitness appears to be a means that offers the benefits of maintaining and/or improving cognitive health in older age. However, to date, the underlying mechanisms responsible for improved central nervous system health and function with exercise are not yet fully elucidated. Consequently, there is considerable interest in studies aimed at understanding the neurophysiological benefits of exercise on aging. One such area of study suggests that the improvements in brain health via exercise are, in part, driven by the recovery of inhibitory processes related to the neurotransmitter gamma-aminobutyric acid (GABA). In the present review, we highlight the opposing effects of aging and exercise on cortical inhibition and the GABAergic system's functional integrity. We highlight these changes in GABA function by reviewing work with in vivo measurements: transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). We also highlight recent and significant technological and methodological advances in assessing the GABAergic system's integrity with TMS and MRS. We then discuss potential future research directions to inform mechanistic GABA study targeted to improve health and function in aging. We conclude by highlighting the significance of understanding the effects of exercise and aging, its influence on GABA levels, and why a better understanding is crucial to allow for more targeted and effective interventions aimed to ultimately improve age-related decline in aging.
Collapse
Affiliation(s)
| | - Keith M McGregor
- Birmingham VA Health Care System, Birmingham, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa C Krishnamurthy
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Kevin Mammino
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | | | - Ashton Weber
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe R Nocera
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
7
|
Groveman BR, Williams K, Race B, Foliaki S, Thomas T, Hughson AG, Walters RO, Zou W, Haigh CL. Lack of Transmission of Chronic Wasting Disease Prions to Human Cerebral Organoids. Emerg Infect Dis 2024; 30:1193-1202. [PMID: 38781931 PMCID: PMC11138967 DOI: 10.3201/eid3006.231568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.
Collapse
|
8
|
Williams K, Foliaki ST, Race B, Smith A, Thomas T, Groveman BR, Haigh CL. Neural cell engraftment therapy for sporadic Creutzfeldt-Jakob disease restores neuroelectrophysiological parameters in a cerebral organoid model. Stem Cell Res Ther 2023; 14:348. [PMID: 38049877 PMCID: PMC10696693 DOI: 10.1186/s13287-023-03591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is a fatal neurodegenerative disease with currently no treatment options. Stem cell therapy for neurodegenerative diseases is emerging as a possible treatment option. However, while there are a few clinical trials for other neurodegenerative disorders such as Parkinson's disease, prion disease cell therapy research has so far been confined to animal models. METHODS Here, we use a novel approach to study cell therapies in sCJD using a human cerebral organoid model. Cerebral organoids can be infected with sCJD prions allowing us to assess how neural precursor cell (NPC) therapy impacts the progression of sCJD. After 90 days of sCJD or mock infection, organoids were either seeded with NPCs or left unseeded and monitored for cellular composition changes, prion infection parameters and neuroelectrophysiological function at 180 days post-infection. RESULTS Our results showed NPCs integrated into organoids leading to an increase in neuronal markers and changes in cell signaling irrespective of sCJD infection. Although a small, but significant, decrease in protease-resistant PrP deposition was observed in the CJD-infected organoids that received the NPCs, other disease-associated parameters showed minimal changes. However, the NPCs had a beneficial impact on organoid function following infection. sCJD infection caused reduction in neuronal spike rate and mean burst spike rate, indicative of reduced action potentials. NPC seeding restored these electrophysiological parameters to the uninfected control level. CONCLUSIONS Together with the previous animal studies, our results support that cell therapy may have some functional benefit for the treatment of human prion diseases.
Collapse
Affiliation(s)
- Katie Williams
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
9
|
Deininger L, Jung-Klawitter S, Mikut R, Richter P, Fischer M, Karimian-Jazi K, Breckwoldt MO, Bendszus M, Heiland S, Kleesiek J, Opladen T, Kuseyri Hübschmann O, Hübschmann D, Schwarz D. An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids. Sci Rep 2023; 13:21231. [PMID: 38040865 PMCID: PMC10692072 DOI: 10.1038/s41598-023-48343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023] Open
Abstract
Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.
Collapse
Affiliation(s)
- Luca Deininger
- Group for Automated Image and Data Analysis, Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Sabine Jung-Klawitter
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ralf Mikut
- Group for Automated Image and Data Analysis, Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Petra Richter
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Jens Kleesiek
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Cancer Research Center Cologne Essen (CCCE), Essen, Germany
| | - Thomas Opladen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, DKFZ, Heidelberg, Germany
- Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| |
Collapse
|
10
|
Cheng X, Tang Y, Vidyadhara D, Li BZ, Zimmerman M, Pak A, Nareddula S, Edens PA, Chandra SS, Chubykin AA. Impaired pre-synaptic plasticity and visual responses in auxilin-knockout mice. iScience 2023; 26:107842. [PMID: 37766983 PMCID: PMC10520332 DOI: 10.1016/j.isci.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - D.J. Vidyadhara
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Electrical Engineering, University of Colorado, Denver, Denver, CO, USA
| | - Michael Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Alyssa Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| | - Alexander A. Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Foliaki ST, Haigh CL. Prion propagation and cellular dysfunction in prion disease: Disconnecting the dots. PLoS Pathog 2023; 19:e1011714. [PMID: 37883332 PMCID: PMC10602321 DOI: 10.1371/journal.ppat.1011714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Simote T. Foliaki
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cathryn L. Haigh
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
12
|
Santos AC, Nader G, El Soufi El Sabbagh D, Urban K, Attisano L, Carlen PL. Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation. Cells 2023; 12:1949. [PMID: 37566028 PMCID: PMC10416870 DOI: 10.3390/cells12151949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Human cerebral organoids resemble the 3D complexity of the human brain and have the potential to augment current drug development pipelines for neurological disease. Epilepsy is a complex neurological condition characterized by recurrent seizures. A third of people with epilepsy do not respond to currently available pharmaceutical drugs, and there is not one drug that treats all subtypes; thus, better models of epilepsy are needed for drug development. Cerebral organoids may be used to address this unmet need. In the present work, human cerebral organoids are used along with electrophysiological methods to explore oxygen-glucose deprivation as a hyperexcitability agent. This activity is investigated in its response to current antiseizure drugs. Furthermore, the mechanism of action of the drug candidates is probed with qPCR and immunofluorescence. The findings demonstrate OGD-induced hyperexcitable changes in the cerebral organoid tissue, which is treated with cannabidiol and bumetanide. There is evidence for NKCC1 and KCC2 gene expression, as well as other genes and proteins involved in the complex development of GABAergic signaling. This study supports the use of organoids as a platform for modelling cerebral cortical hyperexcitability that could be extended to modelling epilepsy and used for drug discovery.
Collapse
Affiliation(s)
- Alexandra C. Santos
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada (P.L.C.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - George Nader
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada (P.L.C.)
| | - Dana El Soufi El Sabbagh
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada (P.L.C.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada (P.L.C.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
13
|
Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry 2023; 13:217. [PMID: 37344450 PMCID: PMC10284884 DOI: 10.1038/s41398-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder caused by genetic or environmental perturbations during early development. Diagnoses are dependent on the identification of behavioral abnormalities that likely emerge well after the disorder is established, leaving critical developmental windows uncharacterized. This is further complicated by the incredible clinical and genetic heterogeneity of the disorder that is not captured in most mammalian models. In recent years, advancements in stem cell technology have created the opportunity to model ASD in a human context through the use of pluripotent stem cells (hPSCs), which can be used to generate 2D cellular models as well as 3D unguided- and region-specific neural organoids. These models produce profoundly intricate systems, capable of modeling the developing brain spatiotemporally to reproduce key developmental milestones throughout early development. When complemented with multi-omics, genome editing, and electrophysiology analysis, they can be used as a powerful tool to profile the neurobiological mechanisms underlying this complex disorder. In this review, we will explore the recent advancements in hPSC-based modeling, discuss present and future applications of the model to ASD research, and finally consider the limitations and future directions within the field to make this system more robust and broadly applicable.
Collapse
Affiliation(s)
- Savannah Kilpatrick
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Foliaki ST, Wood A, Williams K, Smith A, Walters RO, Baune C, Groveman BR, Haigh CL. Temporary alteration of neuronal network communication is a protective response to redox imbalance that requires GPI-anchored prion protein. Redox Biol 2023; 63:102733. [PMID: 37172395 DOI: 10.1016/j.redox.2023.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cellular prion protein (PrPC) protects neurons against oxidative stress damage. This role is lost upon its misfolding into insoluble prions in prion diseases, and correlated with cytoskeletal breakdown and neurophysiological deficits. Here we used mouse neuronal models to assess how PrPC protects the neuronal cytoskeleton, and its role in network communication, from oxidative stress damage. Oxidative stress was induced extrinsically by potassium superoxide (KO2) or intrinsically by Mito-Paraquat (MtPQ), targeting the mitochondria. In mouse neural lineage cells, KO2 was damaging to the cytoskeleton, with cells lacking PrPC (PrP-/-) damaged more than wild-type (WT) cells. In hippocampal slices, KO2 acutely inhibited neuronal communication in WT controls without damaging the cytoskeleton. This inhibition was not observed in PrP-/- slices. Neuronal communication and the cytoskeleton of PrP-/- slices became progressively disrupted and degenerated post-recovery, whereas the dysfunction in WT slices recovered in 5 days. This suggests that the acute inhibition of neuronal activity in WT slices in response to KO2 was a neuroprotective role of PrPC, which PrP-/- slices lacked. Heterozygous expression of PrPC was sufficient for this neuroprotection. Further, hippocampal slices from mice expressing PrPC without its GPI anchor (PrPGPI-/-) displayed acute inhibition of neuronal activity by KO2. However, they failed to restore normal activity and cytoskeletal formation post-recovery. This suggests that PrPC facilitates the depressive response to KO2 and its GPI anchoring is required to restore KO2-induced damages. Immuno spin-trapping showed increased radicals formed on the filamentous actin of PrP-/- and PrPGPI-/- slices, but not WT and PrP+/- slices, post-recovery suggesting ongoing dysregulation of redox balance in the slices lacking GPI-anchored PrPC. The MtPQ treatment of hippocampal slices temporarily inhibited neuronal communication independent of PrPC expression. Overall, GPI-anchored PrPC alters synapses and neurotransmission to protect and repair the neuronal cytoskeleton, and neuronal communication, from extrinsically induced oxidative stress damages.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Aleksandar Wood
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Ryan O Walters
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
16
|
Teles E Silva AL, Yokota BY, Sertié AL, Zampieri BL. Generation of Urine-Derived Induced Pluripotent Stem Cells and Cerebral Organoids for Modeling Down Syndrome. Stem Cell Rev Rep 2023; 19:1116-1123. [PMID: 36652145 DOI: 10.1007/s12015-022-10497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.
Collapse
|
17
|
Walters RO, Haigh CL. Organoids for modeling prion diseases. Cell Tissue Res 2023; 392:97-111. [PMID: 35088182 PMCID: PMC9329493 DOI: 10.1007/s00441-022-03589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Human cerebral organoids are an exciting and novel model system emerging in the field of neurobiology. Cerebral organoids are spheres of self-organizing, neuronal lineage tissue that can be differentiated from human pluripotent stem cells and that present the possibility of on-demand human neuronal cultures that can be used for non-invasively investigating diseases affecting the brain. Compared with existing humanized cell models, they provide a more comprehensive replication of the human cerebral environment. The potential of the human cerebral organoid model is only just beginning to be elucidated, but initial studies have indicated that they could prove to be a valuable model for neurodegenerative diseases such as prion disease. The application of the cerebral organoid model to prion disease, what has been learned so far and the future potential of this model are discussed in this review.
Collapse
Affiliation(s)
- Ryan O Walters
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
18
|
Groveman BR, Race B, Foliaki ST, Williams K, Hughson AG, Baune C, Zanusso G, Haigh CL. Sporadic Creutzfeldt-Jakob disease infected human cerebral organoids retain the original human brain subtype features following transmission to humanized transgenic mice. Acta Neuropathol Commun 2023; 11:28. [PMID: 36788566 PMCID: PMC9930245 DOI: 10.1186/s40478-023-01512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Human cerebral organoids (COs) are three-dimensional self-organizing cultures of cerebral brain tissue differentiated from induced pluripotent stem cells. We have recently shown that COs are susceptible to infection with different subtypes of Creutzfeldt-Jakob disease (CJD) prions, which in humans cause different manifestations of the disease. The ability to study live human brain tissue infected with different CJD subtypes opens a wide array of possibilities from differentiating mechanisms of cell death and identifying neuronal selective vulnerabilities to testing therapeutics. However, the question remained as to whether the prions generated in the CO model truly represent those in the infecting inoculum. Mouse models expressing human prion protein are commonly used to characterize human prion disease as they reproduce many of the molecular and clinical phenotypes associated with CJD subtypes. We therefore inoculated these mice with COs that had been infected with two CJD subtypes (MV1 and MV2) to see if the original subtype characteristics (referred to as strains once transmitted into a model organism) of the infecting prions were maintained in the COs when compared with the original human brain inocula. We found that disease characteristics caused by the molecular subtype of the disease associated prion protein were similar in mice inoculated with either CO derived material or human brain material, demonstrating that the disease associated prions generated in COs shared strain characteristics with those in humans. As the first and only in vitro model of human neurodegenerative disease that can faithfully reproduce different subtypes of prion disease, these findings support the use of the CO model for investigating human prion diseases and their subtypes.
Collapse
Affiliation(s)
- Bradley R. Groveman
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Brent Race
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Simote T. Foliaki
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Katie Williams
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Andrew G. Hughson
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Chase Baune
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Gianluigi Zanusso
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cathryn L. Haigh
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| |
Collapse
|
19
|
Foliaki ST, Smith A, Schwarz B, Bohrnsen E, Bosio CM, Williams K, Orrú CD, Lachenauer H, Groveman BR, Haigh CL. Altered energy metabolism in Fatal Familial Insomnia cerebral organoids is associated with astrogliosis and neuronal dysfunction. PLoS Genet 2023; 19:e1010565. [PMID: 36656833 PMCID: PMC9851538 DOI: 10.1371/journal.pgen.1010565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
Fatal familial insomnia (FFI) is a rare neurodegenerative disease caused by a dominantly inherited single amino acid substitution (D178N) within the prion protein (PrP). No in vitro human brain tissue model for this disease has previously been available. Consequently, how this mutation exerts its damaging effect on brain cells is still unknown. Using CRISPR-Cas9 engineered induced pluripotent stem cells, we made D178N cerebral organoids and compared these with isotype control organoids. We found that, in the absence of other hallmarks of FFI, the D178N organoids exhibited astrogliosis with cellular oxidative stress. Abnormal post-translational processing of PrP was evident but no tissue deposition or propagation of mis-folded PrP isoforms were observed. Neuronal electrophysiological function was compromised and levels of neurotransmitters, particularly acetylcholine and GABA, altered. Underlying these dysfunctions were changes in cellular energy homeostasis, with substantially increased glycolytic and Krebs cycle intermediates, and greater mitochondrial activity. This increased energy demand in D178N organoids was associated with increased mitophagy and depletion of lipid droplets, in turn resulting in shifts of cellular lipid composition. Using a double mutation (178NN) we could confirm that most changes were caused by the presence of the mutation rather than interaction with PrP molecules lacking the mutation. Our data strongly suggests that shifting biosynthetic intermediates and oxidative stress, caused by an imbalance of energy supply and demand, results in astrogliosis with compromised neuronal activity in FFI organoids. They further support that many of the disease associated changes are due to a corruption of PrP function and do not require propagation of PrP mis-folding.
Collapse
Affiliation(s)
- Simote T. Foliaki
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Christina D. Orrú
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Hailey Lachenauer
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cathryn L. Haigh
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America,* E-mail:
| |
Collapse
|
20
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
21
|
Stress and viral insults do not trigger E200K PrP conversion in human cerebral organoids. PLoS One 2022; 17:e0277051. [PMID: 36301953 PMCID: PMC9612459 DOI: 10.1371/journal.pone.0277051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Prion diseases are a group of rare, transmissible, and invariably fatal neurodegenerative diseases that affect both humans and animals. The cause of these diseases is misfolding of the prion protein into pathological isoforms called prions. Of all human prion diseases, 10-15% of cases are genetic and the E200K mutation, which causes familial Creutzfeldt-Jakob disease (CJD), is the most prevalent. For both sporadic and genetic disease, it remains uncertain as to how initial protein misfolding is triggered. Prior studies have linked protein misfolding with oxidative stress insults, deregulated interactions with cellular cofactors, and viral infections. Our previous work developed a cerebral organoid (CO) model using human induced pluripotent stem cells containing the E200K mutation. COs are three-dimensional human neural tissues that permit the study of host genetics and environmental factors that contribute to disease onset. Isogenically matched COs with and without the E200K mutation were used to investigate the propensity of E200K PrP to misfold following cellular insults associated with oxidative stress. Since viral infections have also been associated with oxidative stress and neurodegenerative diseases, we additionally investigated the influence of Herpes Simplex Type-1 virus (HSV1), a neurotropic virus that establishes life-long latent infection in its host, on E200K PrP misfolding. While COs proved to be highly infectable with HSV1, neither acute nor latent infection, or direct oxidative stress insult, resulted in evidence of E200K prion misfolding. We conclude that misfolding into seeding-active PrP species is not readily induced by oxidative stress or HSV1 in our organoid system.
Collapse
|
22
|
Wang Y, Zhang C, Wang Y, Liu X, Zhang Z. Enhancer RNA (eRNA) in Human Diseases. Int J Mol Sci 2022; 23:11582. [PMID: 36232885 PMCID: PMC9569849 DOI: 10.3390/ijms231911582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Enhancer RNAs (eRNAs), a class of non-coding RNAs (ncRNAs) transcribed from enhancer regions, serve as a type of critical regulatory element in gene expression. There is increasing evidence demonstrating that the aberrant expression of eRNAs can be broadly detected in various human diseases. Some studies also revealed the potential clinical utility of eRNAs in these diseases. In this review, we summarized the recent studies regarding the pathological mechanisms of eRNAs as well as their potential utility across human diseases, including cancers, neurodegenerative disorders, cardiovascular diseases and metabolic diseases. It could help us to understand how eRNAs are engaged in the processes of diseases and to obtain better insight of eRNAs in diagnosis, prognosis or therapy. The studies we reviewed here indicate the enormous therapeutic potency of eRNAs across human diseases.
Collapse
Affiliation(s)
- Yunzhe Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Hereditary E200K mutation within the prion protein gene alters human iPSC derived cardiomyocyte function. Sci Rep 2022; 12:15788. [PMID: 36138047 PMCID: PMC9500067 DOI: 10.1038/s41598-022-19631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Cardiomyopathy is a co-morbidity of some prion diseases including genetic disease caused by mutations within the PrP gene (PRNP). Although the cellular prion protein (PrP) has been shown to protect against cardiotoxicity caused by oxidative stress, it is unclear if the cardiomyopathy is directly linked to PrP dysfunction. We differentiated cardiomyocyte cultures from donor human induced pluripotent stem cells and found a direct influence of the PRNP E200K mutation on cellular function. The PRNP E200K cardiomyocytes showed abnormal function evident in the irregularity of the rapid repolarization; a phenotype comparable with the dysfunction reported in Down Syndrome cardiomyocytes. PRNP E200K cardiomyocyte cultures also showed increased mitochondrial superoxide accompanied by increased mitochondrial membrane potential and dysfunction. To confirm that the changes were due to the E200K mutation, CRISPR-Cas9 engineering was used to correct the E200K carrier cells and insert the E200K mutation into control cells. The isotype matched cardiomyocytes showed that the lysine expressing allele does directly influence electrophysiology and mitochondrial function but some differences in severity were apparent between donor lines. Our results demonstrate that cardiomyopathy in hereditary prion disease may be directly linked to PrP dysfunction.
Collapse
|
24
|
Mercer RCC, Harris DA. Mechanisms of prion-induced toxicity. Cell Tissue Res 2022; 392:81-96. [PMID: 36070155 DOI: 10.1007/s00441-022-03683-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are devastating neurodegenerative diseases caused by the structural conversion of the normally benign prion protein (PrPC) to an infectious, disease-associated, conformer, PrPSc. After decades of intense research, much is known about the self-templated prion conversion process, a phenomenon which is now understood to be operative in other more common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide the current state of knowledge concerning a relatively poorly understood aspect of prion diseases: mechanisms of neurotoxicity. We provide an overview of proposed functions of PrPC and its interactions with other extracellular proteins in the central nervous system, in vivo and in vitro models used to delineate signaling events downstream of prion propagation, the application of omics technologies, and the emerging appreciation of the role played by non-neuronal cell types in pathogenesis.
Collapse
Affiliation(s)
- Robert C C Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Chow SYA, Hu H, Osaki T, Levi T, Ikeuchi Y. Advances in construction and modeling of functional neural circuits in vitro. Neurochem Res 2022; 47:2529-2544. [PMID: 35943626 PMCID: PMC9463289 DOI: 10.1007/s11064-022-03682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Over the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Huaruo Hu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- IMS laboratory, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Gutierrez BA, Limon A. Synaptic Disruption by Soluble Oligomers in Patients with Alzheimer's and Parkinson's Disease. Biomedicines 2022; 10:1743. [PMID: 35885050 PMCID: PMC9313353 DOI: 10.3390/biomedicines10071743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by far Alzheimer's (AD) and Parkinson's (PD) disease, affecting millions of people worldwide. Although amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence of small soluble oligomers is the common bond between AD and PD: amyloid β oligomers (AβOs) and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear to be particularly increased during the early pathological stages, targeting synapses at vulnerable brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be dependent on the interactions between soluble oligomers and their synaptic targets. In this review, we will discuss the current knowledge about the interactions between soluble oligomers and synaptic dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic transmission, and the potential mechanisms of synaptic resilience in humans.
Collapse
Affiliation(s)
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
27
|
Cholesterol and its reciprocal association with prion infection. Cell Tissue Res 2022; 392:235-246. [PMID: 35821439 DOI: 10.1007/s00441-022-03669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.
Collapse
|
28
|
Parmentier T, James FMK, Hewitson E, Bailey C, Werry N, Sheridan SD, Perlis RH, Perreault ML, Gaitero L, Lalonde J, LaMarre J. Human cerebral spheroids undergo 4-aminopyridine-induced, activity associated changes in cellular composition and microrna expression. Sci Rep 2022; 12:9143. [PMID: 35650420 PMCID: PMC9160269 DOI: 10.1038/s41598-022-13071-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 01/03/2023] Open
Abstract
Activity-induced neurogenesis has been extensively studied in rodents but the lack of ante mortem accessibility to human brain at the cellular and molecular levels limits studies of the process in humans. Using cerebral spheroids derived from human induced pluripotent stem cells (iPSCs), we investigated the effects of 4-aminopyridine (4AP) on neuronal activity and associated neurogenesis. Our studies demonstrate that 4AP increases neuronal activity in 3-month-old cerebral spheroids while increasing numbers of new neurons and decreasing the population of new glial cells. We also observed a significant decrease in the expression of miR-135a, which has previously been shown to be decreased in exercise-induced neurogenesis. Predicted targets of miR-135a include key participants in the SMAD2/3 and BDNF pathways. Together, our results suggest that iPSC-derived cerebral spheroids are an attractive model to study several aspects of activity-induced neurogenesis.
Collapse
Affiliation(s)
- Thomas Parmentier
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, QC, Canada
| | - Fiona M K James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Elizabeth Hewitson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Craig Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nicholas Werry
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Melissa L Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Luis Gaitero
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
29
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|