1
|
González-Novo R, Armesto M, González-Murillo Á, Dreger M, Hurlstone AFL, Benito A, Samaniego R, Ramírez M, Redondo-Muñoz J. Dual effect of targeting LSD1 on the invasiveness and the mechanical response of acute lymphoblastic leukemia cells. Biomed Pharmacother 2025; 183:117830. [PMID: 39818101 DOI: 10.1016/j.biopha.2025.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination. In this study, we demonstrate that targeting LSD1 enhances the invasive capacity of ALL cells, inducing an elongated, invasive phenotype and increasing nuclear deformability. Using a 3D matrix model, LSD1 inhibition promoted ALL cell invasion without significantly affecting the cell cycle progression or apoptosis under the tested conditions. Interestingly, LSD1 targeting reduced ALL cell spreading and tissue colonization in vivo, suggesting differential effects depending on the cellular context. Our findings indicate that LSD1 inhibition impairs chemotactic responses and transendothelial migration, key processes for extravasation and in vivo invasiveness. These results reveal a dual role for LSD1 in leukemia cell migration: promoting invasiveness in 3D environments while reducing extravasation and chemotaxis in vivo. This dual effect underscores the importance of cellular context in determining therapeutic outcomes and the development of strategies targeting specific stages of leukemia dissemination.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Marina Armesto
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Marcel Dreger
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Adam F L Hurlstone
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology, The University of Manchester, Manchester, UK
| | - Ana Benito
- Hospital Universitario Niño Jesús, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Lambert M, Jambon S, Bouhlel MA, Depauw S, Vrevin J, Blanck S, Marot G, Figeac M, Preudhomme C, Quesnel B, Boykin DW, David‐Cordonnier M. Induction of AML cell differentiation using HOXA9/DNA binding inhibitors as a potential therapeutic option for HOXA9-dependent AML. Hemasphere 2024; 8:e77. [PMID: 38716146 PMCID: PMC11072194 DOI: 10.1002/hem3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
The mainstay of acute myeloid leukemia (AML) treatment still relies on traditional chemotherapy, with a survival rate of approximately 30% for patients under 65 years of age and as low as 5% for those beyond. This unfavorable prognosis primarily stems from frequent relapses, resistance to chemotherapy, and limited approved targeted therapies for specific AML subtypes. Around 70% of all AML cases show overexpression of the transcription factor HOXA9, which is associated with a poor prognosis, increased chemoresistance, and higher relapse rates. However, direct targeting of HOXA9 in a clinical setting has not been achieved yet. The dysregulation caused by the leukemic HOXA9 transcription factor primarily results from its binding activity to DNA, leading to differentiation blockade. Our previous investigations have identified two HOXA9/DNA binding competitors, namely DB1055 and DB818. We assessed their antileukemic effects in comparison to HOXA9 knockdown or cytarabine treatment. Using human AML cell models, DB1055 and DB818 induced in vitro cell growth reduction, death, differentiation, and common transcriptomic deregulation but did not impact human CD34+ bone marrow cells. Furthermore, DB1055 and DB818 exhibited potent antileukemic activities in a human THP-1 AML in vivo model, leading to the differentiation of monocytes into macrophages. In vitro assays also demonstrated the efficacy of DB1055 and DB818 against AML blasts from patients, with DB1055 successfully reducing leukemia burden in patient-derived xenografts in NSG immunodeficient mice. Our findings indicate that inhibiting HOXA9/DNA interaction using DNA ligands may offer a novel differentiation therapy for the future treatment of AML patients dependent on HOXA9.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
- Université Sorbonne Paris NordBobignyFrance
| | - Samy Jambon
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Mohamed A. Bouhlel
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Sabine Depauw
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Julie Vrevin
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Samuel Blanck
- Univ. Lille, CHU Lille, ULR 2694—METRICSLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014—PLBS, BililleLilleFrance
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694—METRICSLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014—PLBS, BililleLilleFrance
- Inria, MODAL: Models for Data Analysis and LearningLilleFrance
| | - Martin Figeac
- Plateau de Génomique Fonctionnelle et Structurale, CHU Lille, Univ. Lille, FranceLilleFrance
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - David W. Boykin
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Marie‐Hélène David‐Cordonnier
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| |
Collapse
|
4
|
Yuan J, Que R, Zhao W, Song F, Cao Y, Yu B. Influences of lysine-specific demethylase 1 inhibitors on NO synthase-Kruppel-like factor pathways in human endothelial cells in vitro and zebrafish (Danio rerio) larvae in vivo. J Appl Toxicol 2023; 43:1748-1760. [PMID: 37408164 DOI: 10.1002/jat.4512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) inhibitors are being developed for cancer therapy, but their bioeffects on vasculatures are not clear. In this study, we compared the influences of ORY-1001 (an LSD1 inhibitor being advanced into clinical trials) and 199 (a novel LSD1 inhibitor recently developed by us) to human umbilical vein endothelial cells (HUVECs) in vitro and further verified the bioeffects of ORY-1001 to zebrafish (Danio rerio) larvae in vivo. The results showed that up to 10 μM ORY-1001 or 199 did not significantly affect the cellular viability of HUVECs but substantially reduced the release of inflammatory interleukin-8 (IL-8) and IL-6. The signaling molecule in vasculatures, NO, was also increased in HUVECs. As the mechanism, the protein levels of endothelial NO synthase (eNOS) or p-eNOS, and their regulators Kruppel-like factor 2 (KLF2) or KLF4, were also increased after drug treatment. In vivo, 24 h treatment with up to 100 nM ORY-1001 reduced blood speed without changing morphologies or locomotor activities in zebrafish larvae. ORY-1001 treatment reduced the expression of il8 but promoted the expression of klf2a and nos in the zebrafish model. These data show that LSD1 inhibitors were not toxic but capable to inhibit inflammatory responses and affect the function of blood vessels through the up-regulation of the NOS-KLF pathway.
Collapse
Affiliation(s)
- Jialin Yuan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruiman Que
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Mafi A, Rismanchi H, Gholinezhad Y, Mohammadi MM, Mousavi V, Hosseini SA, Milasi YE, Reiter RJ, Ghezelbash B, Rezaee M, Sheida A, Zarepour F, Asemi Z, Mansournia MA, Mirzaei H. Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives. Front Pharmacol 2023; 14:1224151. [PMID: 37645444 PMCID: PMC10461318 DOI: 10.3389/fphar.2023.1224151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Leukaemia is a dangerous malignancy that causes thousands of deaths every year throughout the world. The rate of morbidity and mortality is significant despite many advancements in therapy strategies for affected individuals. Most antitumour medications used now in clinical oncology use apoptotic signalling pathways to induce cancer cell death. Accumulated data have shown a direct correlation between inducing apoptosis in cancer cells with higher tumour regression and survival. Until now, the efficacy of melatonin as a powerful antitumour agent has been firmly established. A change in melatonin concentrations has been reported in multiple tumours such as endometrial, hematopoietic, and breast cancers. Findings show that melatonin's anticancer properties, such as its prooxidation function and ability to promote apoptosis, indicate the possibility of utilizing this natural substance as a promising agent in innovative cancer therapy approaches. Melatonin stimulates cell apoptosis via the regulation of many apoptosis facilitators, including mitochondria, cytochrome c, Bcl-2, production of reactive oxygen species, and apoptosis receptors. This paper aimed to further assess the anticancer effects of melatonin through the apoptotic pathway, considering the role that cellular apoptosis plays in the pathogenesis of cancer. The effect of melatonin may mean that it is appropriate for use as an adjuvant, along with other therapeutic approaches such as radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ali Hosseini
- School of Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX, United States
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Bao L, Zhu P, Mou Y, Song Y, Qin Y. Targeting LSD1 in tumor immunotherapy: rationale, challenges and potential. Front Immunol 2023; 14:1214675. [PMID: 37483603 PMCID: PMC10360200 DOI: 10.3389/fimmu.2023.1214675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is an enzyme that removes lysine methylation marks from nucleosome histone tails and plays an important role in cancer initiation, progression, metastasis, and recurrence. Recent research shows that LSD1 regulates tumor cells and immune cells through multiple upstream and downstream pathways, enabling tumor cells to adapt to the tumor microenvironment (TME). As a potential anti-tumor treatment strategy, immunotherapy has developed rapidly in the past few years. However, most patients have a low response rate to available immune checkpoint inhibitors (ICIs), including anti-PD-(L)1 therapy and CAR-T cell therapy, due to a broad array of immunosuppressive mechanisms. Notably, inhibition of LSD1 turns "cold tumors" into "hot tumors" and subsequently enhances tumor cell sensitivity to ICIs. This review focuses on recent advances in LSD1 and tumor immunity and discusses a potential therapeutic strategy for combining LSD1 inhibition with immunotherapy.
Collapse
Affiliation(s)
- Lei Bao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Yuan Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
7
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
8
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
9
|
Shan L, Li Z, Chen H, Ge M, Sun Y, Sun Y, Li Y, Li H, Fu L, Liu H. 6-Heterocyclic carboxylic ester derivatives of gliotoxin lead to LSD1 inhibitors in gastric cancer cells. Bioorg Chem 2023; 131:106150. [PMID: 36508940 DOI: 10.1016/j.bioorg.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023]
Abstract
Gliotoxin is a representative compound of the epipolythiodioxopiperazine (ETP) class of fungal metabolites. Histone Lysine Specific Demethylase 1 (LSD1) is highly expressed in a variety of cancers. Herein, a series of 6-heterocyclic carboxylic ester derivatives of gliotoxin was designed and synthesized as new LSD1 inhibitors and their biological evaluations in human gastric MGC-803 and HGC-27 cells were carried out. All of the derivatives effectively suppressed the enzymatic activities of LSD1. In particular, compound 4e exhibited excellent LSD1 inhibition with IC50 = 62.40 nM, as well as anti-proliferation against MGC-803 and HGC-27 cells with IC50 values of 0.31 μM and 0.29 μM, respectively. 4e also had a remarkable capacity to inhibit the colony formation, suppress migration and induce the apoptosis of these two cancer cell lines. In sum, our findings identified and characterized the 6-heterocyclic carboxylic ester derivatives of gliotoxin as potent and cellular active LSD1 inhibitors, which may provide a novel chemotype of LSD1 inhibitors for gastric cancer treatment.
Collapse
Affiliation(s)
- Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxiang Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Huabin Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Hongyu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
11
|
Novel dual LSD1/HDAC6 inhibitor for the treatment of cancer. PLoS One 2023; 18:e0279063. [PMID: 36595522 PMCID: PMC9810167 DOI: 10.1371/journal.pone.0279063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/11/2022] [Indexed: 01/04/2023] Open
Abstract
Dually targeting the epigenetic proteins lysine specific demethylase 1 (LSD1) and histone deacetylases (HDACs) that play a key role in cancer cells by modulating gene repressor complexes including CoREST will have a profound effect in inhibiting tumour growth. Here, we evaluated JBI-097 a dual LSD1/HDAC6 inhibitor, for its in vitro and in vivo activities in various tumor models. In vitro, JBI-097 showed a strong potency in inhibiting LSD1 and HDAC6 enzymatic activities with the isoform selectivity over other HDACs. Cell-based experiments demonstrated a superior anti-proliferative profile against haematological and solid tumor cell lines. JBI-097 also showed strong modulation of HDAC6 and LSD1 specific biomarkers, alpha-tubulin, CD86, CD11b, and GFi1b. In vivo, JBI-097 showed a stronger effect in erythroleukemia, multiple myeloma xenograft models, and in CT-26 syngeneic model. JBI-097 also showed efficacy as monotherapy and additive or synergistic efficacy in combination with the standard of care or with immune checkpoint inhibitors. These and other findings suggest that JBI-097 could be a promising molecule for targeting the LSD1 and HDAC6. Further studies are warranted to elucidate the mechanism of action.
Collapse
|
12
|
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010215. [PMID: 36612210 PMCID: PMC9818548 DOI: 10.3390/cancers15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.
Collapse
|
13
|
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol 2022; 13:955218. [PMID: 36059955 PMCID: PMC9428822 DOI: 10.3389/fphar.2022.955218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetics has emerged as a prime focus area in the field of cancer research. Lysine-specific demethylase 1A (LSD1), the first discovered histone demethylase, is mainly responsible for catalysing demethylation of histone 3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is abnormally expressed in various cancers and participates in cancer proliferation, apoptosis, metastasis, invasion, drug resistance and other processes by interacting with regulatory factors. Therefore, it may serve as a potential therapeutic target for cancer. This review summarises the major oncogenic mechanisms mediated by LSD1 and provides a reference for developing novel and efficient anticancer strategies targeting LSD1.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohong Zang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| |
Collapse
|
14
|
Nie S, Wu F, Wu J, Li X, Zhou C, Yao Y, Song Y. Structure-activity relationship and antitumor activity of 1,4-pyrazine-containing inhibitors of histone acetyltransferases P300/CBP. Eur J Med Chem 2022; 237:114407. [PMID: 35512565 PMCID: PMC9165588 DOI: 10.1016/j.ejmech.2022.114407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023]
Abstract
Acetylation of histone lysine residues by histone acetyltransferase (HAT) p300 and its paralog CBP play important roles in gene regulation in health and diseases. The HAT domain of p300/CBP has been found to be a potential drug target for cancer. Compound screening followed by structure-activity relationship studies yielded a novel series of 1,4-pyrazine-containing inhibitors of p300/CBP HAT with their IC50s as low as 1.4 μM. Enzyme kinetics and other studies support the most potent compound 29 is a competitive inhibitor of p300 HAT against the substrate histone. It exhibited a high selectivity for p300 and CBP, with negligible activity on other classes of HATs in human. Compound 29 inhibited cellular acetylation of several histone lysine residues and showed strong activity against proliferation of a panel of solid and blood cancer cells. These results indicate it is a novel pharmacological lead for drug development targeting these cancers as well as a useful chemical probe for biological studies of p300/CBP.
Collapse
Affiliation(s)
- Shenyou Nie
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xin Li
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chao Zhou
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Pedicona F, Casado P, Hijazi M, Gribben JG, Rouault-Pierre K, Cutillas PR. Targeting the lysine-specific demethylase 1 rewires kinase networks and primes leukemia cells for kinase inhibitor treatment. Sci Signal 2022; 15:eabl7989. [PMID: 35439021 DOI: 10.1126/scisignal.abl7989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most tumor types either fail to respond or become resistant to kinase inhibitors, often because of compensatory prosurvival pathways in the cancer cell's broader signaling circuitry. Here, we found that intrinsic resistance to kinase inhibitors in cultured primary acute myeloid leukemia (AML) cells may be overcome by reshaping kinase networks into topologies that confer drug sensitivity. We identified several antagonists of chromatin-modifying enzymes that sensitized AML cell lines to kinase inhibitors. Of these, we confirmed that inhibitors of the lysine-specific demethylase (LSD1; also known as KDM1A) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK and that broadly suppressed the activity of other kinases and feedback loops. As a result, AML cell lines and about half of primary human AML samples were primed for sensitivity to the MEK inhibitor trametinib. Primary human cells with KRAS mutations and those with high MEK pathway activity were the best responders to sequential treatment with LSD1 inhibitors then trametinib, whereas those with NRAS mutations and high mTOR activity were poor responders. Overall, our study reveals the MEK pathway as a mechanism of resistance to LSD1 inhibitors in AML and shows a way to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Federico Pedicona
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Casado
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Maruan Hijazi
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
- Alan Turing Institute, British Library, 2QR, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
16
|
Li X, Yao Y, Wu F, Song Y. A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth. J Hematol Oncol 2022; 15:41. [PMID: 35395864 PMCID: PMC8994274 DOI: 10.1186/s13045-022-01258-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5–10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. Methods Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. Results Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. Conclusion Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01258-8.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
LI ZR, GU MZ, XU X, ZHANG JH, ZHANG HL, HAN C. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med 2022; 20:241-257. [DOI: 10.1016/s1875-5364(22)60141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/24/2022]
|
18
|
Yi Y, Ge S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol 2022; 15:35. [PMID: 35331314 PMCID: PMC8944089 DOI: 10.1186/s13045-022-01251-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
Disrupting the methylation of telomeric silencing 1-like (DOT1L)-mediated histone H3 lysine 79 has been implicated in MLL fusion-mediated leukemogenesis. Recently, DOT1L has become an attractive therapeutic target for MLL-rearranged leukemias. Rigorous studies have been performed, and much progress has been achieved. Moreover, one DOT1L inhibitor, EPZ-5676, has entered clinical trials, but its clinical activity is modest. Here, we review the recent advances and future trends of various therapeutic strategies against DOT1L for MLL-rearranged leukemias, including DOT1L enzymatic activity inhibitors, DOT1L degraders, protein-protein interaction (PPI) inhibitors, and combinatorial interventions. In addition, the limitations, challenges, and prospects of these therapeutic strategies are discussed. In summary, we present a general overview of DOT1L as a target in MLL-rearranged leukemias to provide valuable guidance for DOT1L-associated drug development in the future. Although a variety of DOT1L enzymatic inhibitors have been identified, most of them require further optimization. Recent advances in the development of small molecule degraders, including heterobifunctional degraders and molecular glues, provide valuable insights and references for DOT1L degraders. However, drug R&D strategies and platforms need to be developed and preclinical experiments need to be performed with the purpose of blocking DOT1L-associated PPIs. DOT1L epigenetic-based combination therapy is worth considering and exploring, but the therapy should be based on a thorough understanding of the regulatory mechanism of DOT1L epigenetic modifications.
Collapse
Affiliation(s)
- Yan Yi
- Departments of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shenglei Ge
- Departments of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Street, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Yang C, Fang Y, Luo X, Teng D, Liu Z, Zhou Y, Liao G. Discovery of natural product-like spirooxindole derivatives as highly potent and selective LSD1/KDM1A inhibitors for AML treatment. Bioorg Chem 2022; 120:105596. [DOI: 10.1016/j.bioorg.2022.105596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
|
20
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
21
|
Richter WF, Shah RN, Ruthenburg AJ. Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia. eLife 2021; 10:64960. [PMID: 34263728 PMCID: PMC8315800 DOI: 10.7554/elife.64960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates HOXA9 and MEIS1, and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway. In this context, we define alternative proliferation pathways that more directly derive from H3K79me2 loss. By ICeChIP-seq, H3K79me2 is markedly depleted at pinometostat-downregulated and MLL-fusion targets, with paradoxical increases of H3K4me3 and loss of H3K27me3. Although downregulation of polycomb components accounts for some of the proliferation defect, transcriptional downregulation of FLT3 is the major pathway. Loss-of-FLT3-function recapitulates the cytotoxicity and gene expression consequences of low-dose pinometostat, whereas overexpression of constitutively active STAT5A, a target of FLT3-ITD-signaling, largely rescues these defects. This pathway also depends on MLL1, indicating combinations of DOT1L, MLL1 and FLT3 inhibitors should be explored for treating FLT3-mutant leukemia.
Collapse
Affiliation(s)
- William F Richter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Rohan N Shah
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Pritzker School of Medicine, The University of Chicago, Chicago, United States
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
22
|
Wu F, Nie S, Yao Y, Huo T, Li X, Wu X, Zhao J, Lin YL, Zhang Y, Mo Q, Song Y. Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics 2021; 11:8172-8184. [PMID: 34373735 PMCID: PMC8344022 DOI: 10.7150/thno.56737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Chromosome translocations involving mixed lineage leukemia (MLL) gene cause acute leukemia with a poor prognosis. MLL is frequently fused with transcription cofactors AF4 (~35%), AF9 (25%) or its paralog ENL (10%). The AHD domain of AF9/ENL binds to AF4, its paralog AFF4, or histone-H3 lysine-79 (H3K79) methyltransferase DOT1L. Formation of AF9/ENL/AF4/AFF4-containing super elongation complexes (SEC) and the catalytic activity of DOT1L are essential for MLL-rearranged leukemia. Protein-protein interactions (PPI) between AF9/ENL and DOT1L/AF4/AFF4 are therefore a potential drug target. Methods: Compound screening followed by medicinal chemistry was used to find inhibitors of such PPIs, which were examined for their biological activities against MLL-rearranged leukemia and other cancer cells. Results: Compound-1 was identified to be a novel small-molecule inhibitor of the AF9/ENL-DOT1L/AF4/AFF4 interaction with IC50s of 0.9-3.5 µM. Pharmacological inhibition of the PPIs significantly reduced SEC and DOT1L-mediated H3K79 methylation in the leukemia cells. Gene profiling shows compound-1 significantly suppressed the gene signatures related to onco-MLL, DOT1L, HoxA9 and Myc. It selectively inhibited proliferation of onco-MLL- or Myc-driven cancer cells and induced cell differentiation and apoptosis. Compound-1 exhibited strong antitumor activity in a mouse model of MLL-rearranged leukemia. Conclusions: The AF9/ENL-DOT1L/AF4/AFF4 interactions are validated to be an anticancer target and compound-1 is a useful in vivo probe for biological studies as well as a pharmacological lead for further drug development.
Collapse
|
23
|
Zee BM, Poels KE, Yao CH, Kawabata KC, Wu G, Duy C, Jacobus WD, Senior E, Endress JE, Jambhekar A, Lovitch SB, Ma J, Dhall A, Harris IS, Blanco MA, Sykes DB, Licht JD, Weinstock DM, Melnick A, Haigis MC, Michor F, Shi Y. Combined epigenetic and metabolic treatments overcome differentiation blockade in acute myeloid leukemia. iScience 2021; 24:102651. [PMID: 34151238 PMCID: PMC8192696 DOI: 10.1016/j.isci.2021.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.
Collapse
Affiliation(s)
- Barry M. Zee
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Kamrine E. Poels
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimihito C. Kawabata
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - William D. Jacobus
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth Senior
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Ashwini Jambhekar
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Scott B. Lovitch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jiexian Ma
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Abhinav Dhall
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Isaac S. Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - M. Andres Blanco
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan D. Licht
- Division of Hematology and Oncology, University of Florida Health Care Center, Gainesville, FL 32610, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Biology Program, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ari Melnick
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| |
Collapse
|
24
|
Li Y, Sun Y, Zhou Y, Li X, Zhang H, Zhang G. Discovery of orally active chalcones as histone lysine specific demethylase 1 inhibitors for the treatment of leukaemia. J Enzyme Inhib Med Chem 2021; 36:207-217. [PMID: 33307878 PMCID: PMC7738283 DOI: 10.1080/14756366.2020.1852556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Zhou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guojun Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Kerstjens M, Garrido Castro P, Pinhanços SS, Schneider P, Wander P, Pieters R, Stam RW. Irinotecan Induces Disease Remission in Xenograft Mouse Models of Pediatric MLL-Rearranged Acute Lymphoblastic Leukemia. Biomedicines 2021; 9:biomedicines9070711. [PMID: 34201500 PMCID: PMC8301450 DOI: 10.3390/biomedicines9070711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) in infants (<1 year of age) remains one of the most aggressive types of childhood hematologic malignancy. The majority (~80%) of infant ALL cases are characterized by chromosomal translocations involving the MLL (or KMT2A) gene, which confer highly dismal prognoses on current combination chemotherapeutic regimens. Hence, more adequate therapeutic strategies are urgently needed. To expedite clinical transition of potentially effective therapeutics, we here applied a drug repurposing approach by performing in vitro drug screens of (mostly) clinically approved drugs on a variety of human ALL cell line models. Out of 3685 compounds tested, the alkaloid drug Camptothecin (CPT) and its derivatives 10-Hydroxycamtothecin (10-HCPT) and 7-Ethyl-10-hydroxycamtothecin (SN-38: the active metabolite of the drug Irinotecan) appeared most effective at very low nanomolar concentrations in all ALL cell lines, including models of MLL-rearranged ALL (n = 3). Although the observed in vitro anti-leukemic effects of Camptothecin and its derivatives certainly were not specific to MLL-rearranged ALL, we decided to further focus on this highly aggressive type of leukemia. Given that Irinotecan (the pro-drug of SN-38) has been increasingly used for the treatment of various pediatric solid tumors, we specifically chose this agent for further pre-clinical evaluation in pediatric MLL-rearranged ALL. Interestingly, shortly after engraftment, Irinotecan completely blocked leukemia expansion in mouse xenografts of a pediatric MLL-rearranged ALL cell line, as well as in two patient-derived xenograft (PDX) models of MLL-rearranged infant ALL. Also, from a more clinically relevant perspective, Irinotecan monotherapy was able to induce sustainable disease remissions in MLL-rearranged ALL xenotransplanted mice burdened with advanced leukemia. Taken together, our data demonstrate that Irinotecan exerts highly potent anti-leukemia effects against pediatric MLL-rearranged ALL, and likely against other, more favorable subtypes of childhood ALL as well.
Collapse
Affiliation(s)
- Mark Kerstjens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Sandra S. Pinhanços
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
26
|
Lu Y, Guo G, Hong R, Chen X, Sun Y, Liu F, Zhang Z, Jin X, Dong J, Yu K, Yang X, Nan Y, Huang Q. LncRNA HAS2-AS1 Promotes Glioblastoma Proliferation by Sponging miR-137. Front Oncol 2021; 11:634893. [PMID: 34094916 PMCID: PMC8173206 DOI: 10.3389/fonc.2021.634893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
GBM (Glioblastoma multiform) is the most malignant tumor type of the central nervous system and has poor diagnostic and clinical outcomes. LncRNAs (Long non-coding RNAs) have been reported to participate in multiple biological and pathological processes, but their underlying mechanism remains poorly understood. Here, we aimed to explore the role of the lncRNA HAS2-AS1 (HAS2 antisense RNA 1) in GBM. GSE103227 was analyzed, and qRT-PCR was performed to measure the expression of HAS2-AS1 in GBM. FISH (Fluorescence in situ hybridization) was performed to verify the localization of HAS2-AS1. The interaction between HAS2-AS1 and miR-137 (microRNA-137) was predicted by LncBook and miRcode followed by dual-luciferase reporter assays, and the relationships among HAS2-AS1, miR-137 and LSD1 (lysine-specific demethylase 1) were assessed by WB (western blot) and qRT-PCR. Colony formation and CCK-8 (cell counting kit-8) assays were performed as functional tests. In vivo, nude mice were used to confirm the function of HAS2-AS1. HAS2-AS1 expression was upregulated in GBM cell lines, and HAS2-AS1 was localized mainly in the cytoplasm. In vitro, high HAS2-AS1 expression promoted proliferation, and knockdown of HAS2-AS1 significantly inhibited proliferation. Furthermore, HAS2-AS1 functioned as a ceRNA (competing endogenous RNA) of miR-137, leading to the disinhibition of its downstream target LSD1. The miR-137 level was downregulated by HAS2-AS1 overexpression and upregulated by HAS2-AS1 knockdown. In a subsequent study, LSD1 expression was negatively regulated by miR-137, while miR-137 reversed the LSD1 expression levels caused by HAS2-AS1. These results were further supported by the nude mouse tumorigenesis experiment; compared with xenografts with high HAS2-AS1 expression, the group with low levels of HAS2-AS1 exhibited suppressed proliferation and better survival. We conclude that lncRNA HAS2-AS1 promotes proliferation by functioning as a miR-137 decoy to increase LSD1 levels and thus might be a possible biomarker for GBM.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang Liu
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
27
|
Siklos M, Kubicek S. Therapeutic targeting of chromatin: status and opportunities. FEBS J 2021; 289:1276-1301. [PMID: 33982887 DOI: 10.1111/febs.15966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.
Collapse
Affiliation(s)
- Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
28
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
29
|
Teresa Borrello M, Benelkebir H, Lee A, Hin Tam C, Shafat M, Rushworth SA, Bowles KM, Douglas L, Duriez PJ, Bailey S, Crabb SJ, Packham G, Ganesan A. Synthesis of Carboxamide-Containing Tranylcypromine Analogues as LSD1 (KDM1A) Inhibitors Targeting Acute Myeloid Leukemia. ChemMedChem 2021; 16:1316-1324. [PMID: 33533576 DOI: 10.1002/cmdc.202000754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Indexed: 01/14/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) oxidatively removes methyl groups from histone proteins, and its aberrant activity has been correlated with cancers including acute myeloid leukemia (AML). We report a novel series of tranylcypromine analogues with a carboxamide at the 4-position of the aryl ring. These compounds, such as 5 a and 5 b with benzyl and phenethylamide substituents, respectively, had potent sub-micromolar IC50 values for the inhibition of LSD1 as well as cell proliferation in a panel of AML cell lines. The dose-dependent increase in cellular expression levels of H3K4me2, CD86, CD11b and CD14 supported a mechanism involving LSD1 inhibition. The tert-butyl and ethyl carbamate derivatives of these tranylcypromines, although inactive in LSD1 inhibition, were of similar potency in cell-based assays with a more rapid onset of action. This suggests that carbamates can act as metabolically labile tranylcypromine prodrugs with superior pharmacokinetics.
Collapse
Affiliation(s)
| | - Hanae Benelkebir
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Adam Lee
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chak Hin Tam
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Manar Shafat
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Leon Douglas
- Protein Core Facility and Cancer Sciences, Cancer Research UK Centre and Experimental Cancer Medicines Centre University of Southampton Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Patrick J Duriez
- Protein Core Facility and Cancer Sciences, Cancer Research UK Centre and Experimental Cancer Medicines Centre University of Southampton Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Sarah Bailey
- Protein Core Facility and Cancer Sciences, Cancer Research UK Centre and Experimental Cancer Medicines Centre University of Southampton Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Simon J Crabb
- Protein Core Facility and Cancer Sciences, Cancer Research UK Centre and Experimental Cancer Medicines Centre University of Southampton Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Graham Packham
- Protein Core Facility and Cancer Sciences, Cancer Research UK Centre and Experimental Cancer Medicines Centre University of Southampton Southampton General Hospital, Southampton, SO16 6YD, UK
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
30
|
Wander P, Arentsen-Peters STCJM, Pinhanҫos SS, Koopmans B, Dolman MEM, Ariese R, Bos FL, Castro PG, Jones L, Schneider P, Navarro MG, Molenaar JJ, Rios AC, Zwaan CM, Stam RW. High-throughput drug screening reveals Pyrvinium pamoate as effective candidate against pediatric MLL-rearranged acute myeloid leukemia. Transl Oncol 2021; 14:101048. [PMID: 33667892 PMCID: PMC7933809 DOI: 10.1016/j.tranon.2021.101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Drug library screening identified pyrvinium to be effective against MLL-rearranged AML. Pyrvinium targets the mitochondria of MLL-rearranged AML cells. Pyrvinium does not antagonize with standard chemotherapy in MLL-rearranged AML.
Pediatric MLL-rearranged acute myeloid leukemia (AML) has a generally unfavorable outcome, primarily due to relapse and drug resistance. To overcome these difficulties, new therapeutic agents are urgently needed. Yet, implementing novel drugs for clinical use is a time-consuming, laborious, costly and high-risk process. Therefore, we applied a drug-repositioning strategy by screening drug libraries, comprised of >4000 compounds that are mostly FDA-approved, in a high-throughput format on primary MLL-rearranged AML cells. Here we identified pyrvinium pamoate (pyrvinium) as a novel candidate drug effective against MLL-rearranged AML, eliminating all cell viability at <1000 nM. Additional screening of identified drug hits on non-leukemic bone marrow samples, resulted in a decrease in cell viability of ∼50% at 1000 nM pyrvinium, suggesting a therapeutic window for targeting leukemic cells specifically. Validation of pyrvinium on an extensive panel of AML cell lines and primary AML samples showed comparable viabilities as the drug screen data, with pyrvinium achieving IC50 values of <80 nM in these samples. Remarkably, pyrvinium also induced cell toxicity in primary MLL-AF10+ AML cells, an MLL-rearrangement associated with a poor outcome. While pyrvinium is able to inhibit the Wnt pathway in other diseases, this unlikely explains the efficacy we observed as β-catenin was not expressed in the AML cells tested. Rather, we show that pyrvinium co-localized with the mitochondrial stain in cells, and hence may act by inhibiting mitochondrial respiration. Overall, this study shows that pyrvinium is highly effective against MLL-rearranged AML in vitro, and therefore represents a novel potential candidate for further studies in MLL-rearranged AML.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Sandra S Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Rijndert Ariese
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Frank L Bos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Miriam Guillen Navarro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands.
| |
Collapse
|
31
|
Fang Y, Yang C, Teng D, Su S, Luo X, Liu Z, Liao G. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg Chem 2021; 109:104723. [PMID: 33618250 DOI: 10.1016/j.bioorg.2021.104723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Natural products are a rich source of lead compounds and have shown promise for epigenetic drug discovery. In this work, we discovered higenamine from our natural product library as a potent, selective and cellular active natural LSD1 inhibitor. Higenamine shows acceptable potency against LSD1 and high selectivity towards LSD1 over MAOA/B. Higenamine significantly increases expression of LSD1 substrates H3K4me1 and H3K4me2 in MLL-rearranged leukemia cells MV4-11 and MOLM-13, but nearly had no effect on LSD1 and H3K4Me3. Meanwhile, higenamine dose-dependently suppresses the levels of HOXA9 and MEIS1 that are overexpressed in leukemia cell lines. Notably, higenamine induces cell differentiation of MV4-11 and MOLM-13 cells accompanying by increased expression of CD11b, CD14 and CD86. Higenamine promotes cell apoptosis, inhibits colony formation, but does not inhibit proliferation of leukemia cells significantly. In addition, the expression levels of p53 are dramatically changed by higenamine in an LSD1-dependent manner in MV4-11 cells. Taken together, higenamine could be employed as a starting point for the development of more selective and potent LSD1 inhibitors. Our work firstly reveals the non-classical epigenetic regulation mechanism of higenamine in cancers, and also demonstrates the efficacy of higenamine for MLL-rearranged leukemia therapy.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Dehong Teng
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shiwei Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
32
|
Milzman J, Sheng W, Levy D. Modeling LSD1-Mediated Tumor Stagnation. Bull Math Biol 2021; 83:15. [PMID: 33433736 DOI: 10.1007/s11538-020-00842-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/30/2020] [Indexed: 11/27/2022]
Abstract
LSD1 (KDMA1) has gained attention in the last decade as a cancer biomarker and drug target. In particular, recent work suggests that LSD1 inhibition alone reduces tumor growth, increases T cell tumor infiltration, and complements PD1/PDL1 checkpoint inhibitor therapy. In order to elucidate the immunogenic effects of LSD1 inhibition, we develop a mathematical model of tumor growth under the influence of the adaptive immune response. In particular, we investigate the anti-tumor cytotoxicity of LSD1-mediated T cell dynamics, in order to better understand the synergistic potential of LSD1 inhibition in combination immunotherapies, including checkpoint inhibitors. To that end, we formulate a non-spatial delay differential equation model and fit to the B16 mouse model data from Sheng et al. (Cell 174(3):549-563, 2018. https://doi.org/10.1016/j.cell.2018.05.052 ). Our results suggest that the immunogenic effect of LSD1 inhibition accelerates anti-tumor cytotoxicity. However, cytotoxicity does not seem to account for the slower growth observed in LSD1-inhibited tumors, despite evidence suggesting immune-mediation of this effect.
Collapse
Affiliation(s)
- Jesse Milzman
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, 20742, USA.
| | - Wanqiang Sheng
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Doron Levy
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
33
|
Madan V, Koeffler HP. Differentiation therapy of myeloid leukemia: four decades of development. Haematologica 2021; 106:26-38. [PMID: 33054125 PMCID: PMC7776344 DOI: 10.3324/haematol.2020.262121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia is characterized by arrested differentiation, and agents that overcome this block are therapeutically useful, as shown by the efficacy of all-trans retinoic acid in acute promyelocytic leukemia. However, the early promise of differentiation therapy did not translate into clinical benefit for other subtypes of acute myeloid leukemia, in which cytotoxic chemotherapeutic regimens remained the standard of care. Recent advances, including insights from sequencing of acute myeloid leukemia genomes, have led to the development of targeted therapies, comprising agents that induce differentiation of leukemic cells in preclinical models and clinical trials, thus rejuvenating interest in differentiation therapy. These agents act on various cellular processes including dysregulated metabolic programs, signaling pathways, epigenetic machinery and the cell cycle. In particular, inhibitors of mutant IDH1/2 and FLT3 have shown clinical benefit, leading to approval by regulatory bodies of their use. Besides the focus on recently approved differentiation therapies, this review also provides an overview of differentiation- inducing agents being tested in clinical trials or investigated in preclinical research. Combinatorial strategies are currently being tested for several agents (inhibitors of KDM1A, DOT1L, BET proteins, histone deacetylases), which were not effective in clinical studies as single agents, despite encouraging anti-leukemic activity observed in preclinical models. Overall, recently approved drugs and new investigational agents being developed highlight the merits of differentiation therapy; and ongoing studies promise further advances in the treatment of acute myeloid leukemia in the near future.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital.
| |
Collapse
|
34
|
Salamero O, Montesinos P, Willekens C, Pérez-Simón JA, Pigneux A, Récher C, Popat R, Carpio C, Molinero C, Mascaró C, Vila J, Arévalo MI, Maes T, Buesa C, Bosch F, Somervaille TCP. First-in-Human Phase I Study of Iadademstat (ORY-1001): A First-in-Class Lysine-Specific Histone Demethylase 1A Inhibitor, in Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol 2020; 38:4260-4273. [PMID: 33052756 PMCID: PMC7768337 DOI: 10.1200/jco.19.03250] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Iadademstat is a novel, highly potent, and selective inhibitor of LSD1 (KDM1A), with preclinical in vitro and in vivo antileukemic activity. This study aimed to determine safety and tolerability of iadademstat as monotherapy in patients with relapsed/refractory acute myeloid leukemia (R/R AML). METHODS This phase I, nonrandomized, open-label, dose-escalation (DE), and extension-cohort (EC) trial included patients with R/R AML and evaluated the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antileukemic activity of this orally bioavailable first-in-class lysine-specific demethylase 1 inhibitor. RESULTS Twenty-seven patients were treated with iadademstat on days 1 to 5 (5-220 µg/m2/d) of each week in 28-day cycles in a DE phase that resulted in a recommended dose of 140 µg/m2/d of iadademstat as a single agent. This dose was chosen to treat all patients (n = 14) in an EC enriched with patients with MLL/KMT2A-rearranged AML. Most adverse events (AEs) were as expected in R/R AML and included myelosuppression and nonhematologic AEs, such as infections, asthenia, mucositis, and diarrhea. PK data demonstrated a dose-dependent increase in plasma exposure, and PD data confirmed a potent time- and exposure-dependent induction of differentiation biomarkers. Reductions in blood and bone marrow blast percentages were observed, together with induction of blast cell differentiation, in particular, in patients with MLL translocations. One complete remission with incomplete count recovery was observed in the DE arm. CONCLUSION Iadademstat exhibits a good safety profile together with signs of clinical and biologic activity as a single agent in patients with R/R AML. A phase II trial of iadademstat in combination with azacitidine is ongoing (EudraCT No.: 2018-000482-36).
Collapse
Affiliation(s)
- Olga Salamero
- Hospital Vall d’Hebron, Vall D’Hebron Institute of Oncology, Departament de Medicina, Universitat Autònoma de Barcelona, UAB, Barcelona, Spain
| | - Pau Montesinos
- Hospital Universitari I Politécnic La Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | | | - José Antonio Pérez-Simón
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (Insitituto de Biomedicina De Sevilla/Consejo Superior De Investigaciones Científicas/Centro de Investigación Biomédica en Red de Cáncer), Universidad de Sevilla, Sevilla, Spain
| | - Arnaud Pigneux
- Centre Hospitalier Universitaire CHU Bordeaux, Hôpital du Haut Lévêque, Pessac, France
| | - Christian Récher
- Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Rakesh Popat
- National Institute for Health Research UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Cecilia Carpio
- Hospital Vall d’Hebron, Vall D’Hebron Institute of Oncology, Departament de Medicina, Universitat Autònoma de Barcelona, UAB, Barcelona, Spain
| | | | | | | | | | | | | | - Francesc Bosch
- Hospital Vall d’Hebron, Vall D’Hebron Institute of Oncology, Departament de Medicina, Universitat Autònoma de Barcelona, UAB, Barcelona, Spain
| | - Tim C. P. Somervaille
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Epigenetic Regulation of the Non-Coding Genome: Opportunities for Immuno-Oncology. EPIGENOMES 2020; 4:epigenomes4030022. [PMID: 34968293 PMCID: PMC8594693 DOI: 10.3390/epigenomes4030022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The contribution of the non-coding genome to disease and its therapeutic potential have been largely unexplored. Recently, several epigenetic drugs developed for cancer treatment have been described to mediate therapeutic effects through the reactivation of the expression of transposable elements in cancer cells. This event activates innate immunity-related pathways and promotes the generation of neoantigens in tumor cells, improving the efficacy of immunotherapeutic treatments. This review focuses on the regulation of transposable elements by epigenetic inhibitors and its implications for immuno-oncology.
Collapse
|
37
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|
38
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Miyamoto K, Minami Y. Cutting Edge Molecular Therapy for Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21145114. [PMID: 32698349 PMCID: PMC7404220 DOI: 10.3390/ijms21145114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, whole exome sequencing for acute myeloid leukemia (AML) has been performed by a next-generation sequencer in several studies. It has been revealed that a few gene mutations are identified per AML patient. Some of these mutations are actionable mutations that affect the response to an approved targeted treatment that is available for off-label treatment or that is available in clinical trials. The era of precision medicine for AML has arrived, and it is extremely important to detect actionable mutations relevant to treatment decision-making. However, the percentage of actionable mutations found in AML is about 50% at present, and therapeutic development is also needed for AML patients without actionable mutations. In contrast, the newly approved drugs are less toxic than conventional intensive chemotherapy and can be combined with low-intensity treatments. These combination therapies can contribute to the improvement of prognosis, especially in elderly AML patients who account for more than half of all AML patients. Thus, the treatment strategy for leukemia is changing drastically and showing rapid progress. In this review, we present the latest information regarding the recent development of treatment for AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Combined Modality Therapy/methods
- Drug Approval
- Epigenesis, Genetic/drug effects
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy/methods
- Mutation/drug effects
- Precision Medicine/methods
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- Small Molecule Libraries/therapeutic use
Collapse
Affiliation(s)
| | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
40
|
Cai SF, Chu SH, Goldberg AD, Parvin S, Koche RP, Glass JL, Stein EM, Tallman MS, Sen F, Famulare CA, Cusan M, Huang CH, Chen CW, Zou L, Cordner KB, DelGaudio NL, Durani V, Kini M, Rex M, Tian HS, Zuber J, Baslan T, Lowe SW, Rienhoff HY, Letai A, Levine RL, Armstrong SA. Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discov 2020; 10:1500-1513. [PMID: 32606137 DOI: 10.1158/2159-8290.cd-19-1469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
The cell of origin of oncogenic transformation is a determinant of therapeutic sensitivity, but the mechanisms governing cell-of-origin-driven differences in therapeutic response have not been delineated. Leukemias initiating in hematopoietic stem cells (HSC) are less sensitive to chemotherapy and highly express the transcription factor MECOM (EVI1) compared with leukemias derived from myeloid progenitors. Here, we compared leukemias initiated in either HSCs or myeloid progenitors to reveal a novel function for EVI1 in modulating p53 protein abundance and activity. HSC-derived leukemias exhibit decreased apoptotic priming, attenuated p53 transcriptional output, and resistance to lysine-specific demethylase 1 (LSD1) inhibitors in addition to classical genotoxic stresses. p53 loss of function in Evi1 lo progenitor-derived leukemias induces resistance to LSD1 inhibition, and EVI1hi leukemias are sensitized to LSD1 inhibition by venetoclax. Our findings demonstrate a role for EVI1 in p53 wild-type cancers in reducing p53 function and provide a strategy to circumvent drug resistance in chemoresistant EVI1 hi acute myeloid leukemia. SIGNIFICANCE: We demonstrate that the cell of origin of leukemia initiation influences p53 activity and dictates therapeutic sensitivity to pharmacologic LSD1 inhibitors via the transcription factor EVI1. We show that drug resistance could be overcome in HSC-derived leukemias by combining LSD1 inhibition with venetoclax.See related commentary by Gu et al., p. 1445.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Sheng F Cai
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Haihua Chu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron D Goldberg
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob L Glass
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filiz Sen
- Hematopathology Diagnostic Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Famulare
- Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica Cusan
- University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Lihua Zou
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keith B Cordner
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole L DelGaudio
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vidushi Durani
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mitali Kini
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Madison Rex
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen S Tian
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Howard Hughes Medical Institute, New York, New York
| | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Leukemia Service, Department of Medicine, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
41
|
Fang Y, Yang C, Yu Z, Li X, Mu Q, Liao G, Yu B. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm Sin B 2020; 11:S2211-3835(20)30616-X. [PMID: 32837872 PMCID: PMC7305746 DOI: 10.1016/j.apsb.2020.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products generally fall into the biologically relevant chemical space and always possess novel biological activities, thus making them a rich source of lead compounds for new drug discovery. With the recent technological advances, natural product-based drug discovery is now reaching a new era. Natural products have also shown promise in epigenetic drug discovery, some of them have advanced into clinical trials or are presently being used in clinic. The histone lysine specific demethylase 1 (LSD1), an important class of histone demethylases, has fundamental roles in the development of various pathological conditions. Targeting LSD1 has been recognized as a promising therapeutic option for cancer treatment. Notably, some natural products with different chemotypes including protoberberine alkaloids, flavones, polyphenols, and cyclic peptides have shown effectiveness against LSD1. These natural products provide novel scaffolds for developing new LSD1 inhibitors. In this review, we mainly discuss the identification of natural LSD1 inhibitors, analysis of the co-crystal structures of LSD1/natural product complex, antitumor activity and their modes of action. We also briefly discuss the challenges faced in this field. We believe this review will provide a landscape of natural LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- CCC, cut countercurrent chromatography
- CD11b, integrin alpha M
- CD14, cluster of differentiation 14
- CD86, cluster of differentiation 86
- COVID-19, coronavirus disease
- Cancer therapy
- CoREST, RE1-silencing transcription factor co-repressor
- Drug discovery
- EMT, epithelial–mesenchymal transition
- EVOO, extra virgin olive oil
- EdU, 5-ethynyl-20-deoxyuridine
- Epigenetic regulation
- FAD, flavin adenine dinucleotide
- FDA, U.S. Food and Drug Administration
- GGA, geranylgeranoic acid
- H3K4, histone H3 lysine 4
- H3K9, histone H3 lysine 9
- HDAC, histone deacetylase
- HRP, horseradish peroxidase
- Histone demethylase
- Kt, competitive inhibition constant
- LSD1 inhibitors
- LSD1, lysine-specific histone demethylase 1A
- MAO-A, monoamine oxidase A
- MHC, myosin heavy chain
- MMA, methylmalonic acid
- NAD, nicotinamide adenine dinucleotide
- NTRK2, neurotrophic receptor tyrosine kinase 2
- Natural products
- PDX, patient-derived xenograft
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SARs, structure–activity relationship studies
- SIRT1, sirtuin 1
- SOX2, sex determining region Y-box 2
- SPR, surface plasmon resonance
- TCP, tranylcypromine
- THF, tetrahydrofolate
- Tm, melting temperature
- iPS, induced pluripotent stem
- mRNA, messenger RNA
- siRNA, small interfering RNA
- ΔΨm, mitochondrial transmembrane potential
- α-MG, α-mangostin
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chao Yang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Li
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
Johnston G, Ramsey HE, Liu Q, Wang J, Stengel KR, Sampathi S, Acharya P, Arrate M, Stubbs MC, Burn T, Savona MR, Hiebert SW. Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia. Gene 2020; 752:144758. [PMID: 32422235 DOI: 10.1016/j.gene.2020.144758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Drugs targeting chromatin-modifying enzymes have entered clinical trials for myeloid malignancies, including INCB059872, a selective irreversible inhibitor of Lysine-Specific Demethylase 1 (LSD1). While initial studies of LSD1 inhibitors suggested these compounds may be used to induce differentiation of acute myeloid leukemia (AML), the mechanisms underlying this effect and dose-limiting toxicities are not well understood. Here, we used precision nuclear run-on sequencing (PRO-seq) and ChIP-seq in AML cell lines to probe for the earliest regulatory events associated with INCB059872 treatment. The changes in nascent transcription could be traced back to a loss of CoREST activity and activation of GFI1-regulated genes. INCB059872 is in phase I clinical trials, and we evaluated a pre-treatment bone marrow sample of a patient who showed a clinical response to INCB059872 while being treated with azacitidine. We used single-cell RNA-sequencing (scRNA-seq) to show that INCB059872 caused a shift in gene expression that was again associated with GFI1/GFI1B regulation. Finally, we treated mice with INCB059872 and performed scRNA-seq of lineage-negative bone marrow cells, which showed that INCB059872 triggered accumulation of megakaryocyte early progenitor cells with gene expression hallmarks of stem cells. Accumulation of these stem/progenitor cells may contribute to the thrombocytopenia observed in patients treated with LSD1 inhibitors.
Collapse
Affiliation(s)
- Gretchen Johnston
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Haley E Ramsey
- Department of Medicine and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Maria Arrate
- Department of Medicine and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | | | - Michael R Savona
- Department of Medicine and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027, USA.
| |
Collapse
|
43
|
Wu F, Hua Y, Kaochar S, Nie S, Lin YL, Yao Y, Wu J, Wu X, Fu X, Schiff R, Davis CM, Robertson M, Ehli EA, Coarfa C, Mitsiades N, Song Y. Discovery, Structure-Activity Relationship, and Biological Activity of Histone-Competitive Inhibitors of Histone Acetyltransferases P300/CBP. J Med Chem 2020; 63:4716-4731. [PMID: 32314924 DOI: 10.1021/acs.jmedchem.9b02164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC50 values as low as 620 nM were discovered. The most potent inhibitor is competitive against histone substrates and exhibits a high selectivity for p300/CBP. It inhibited cellular acetylation and had strong activity with EC50 of 1-3 μM against proliferation of several tumor cell lines. Gene expression profiling in estrogen receptor (ER)-positive breast cancer MCF-7 cells showed that inhibitor treatment recapitulated siRNA-mediated p300 knockdown, inhibited ER-mediated gene transcription, and suppressed expression of numerous cancer-related gene signatures. These results demonstrate that the inhibitor is not only a useful probe for biological studies of p300/CBP HAT but also a pharmacological lead for further drug development targeting cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, United States
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, United States
| | | | | | | |
Collapse
|
44
|
Wang L, Li L, Han Q, Wang X, Zhao D, Liu J. Identification and biological evaluation of natural product Biochanin A. Bioorg Chem 2020; 97:103674. [DOI: 10.1016/j.bioorg.2020.103674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 12/27/2022]
|
45
|
Li ZR, Suo FZ, Guo YJ, Cheng HF, Niu SH, Shen DD, Zhao LJ, Liu ZZ, Maa M, Yu B, Zheng YC, Liu HM. Natural protoberberine alkaloids, identified as potent selective LSD1 inhibitors, induce AML cell differentiation. Bioorg Chem 2020; 97:103648. [PMID: 32065882 DOI: 10.1016/j.bioorg.2020.103648] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 02/09/2023]
Abstract
Natural protoberberine alkaloids were first identified and characterized as potent, selective and cellular active lysine specific demethylase 1 (LSD1) inhibitors. Due to our study, isoquinoline-based tetracyclic scaffold was identified as the key structural element for their anti-LSD1 activity, subtle changes of substituents attached to the core structure led to dramatic changes of the activity. Among these protoberberine alkaloids, epiberberine potently inhibited LSD1 (IC50 = 0.14 ± 0.01 μM) and was highly selective to LSD1 over MAO-A/B. Furthermore, epiberberine could induce the expression of CD86, CD11b and CD14 in THP-1 and HL-60 cells, confirming its cellular activity of inducing acute myeloid leukemia (AML) cells differentiation. Moreover, epiberberine prolonged the survival of THP-1 cells bearing mice and inhibited the growth of AML cells in vivo without obvious global toxicity. These findings give the potential application of epiberberine in AML treatment, and the isoquinoline-based tetracyclic scaffold could be used for further development of LSD1 inhibitors.
Collapse
Affiliation(s)
- Zhong-Rui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Feng-Zhi Suo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Yan-Jia Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Hai-Fang Cheng
- Henan Institute of Product Quality Inspection and Supervision, Zhengzhou 450001, PR China
| | - Sheng-Hui Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Dan-Dan Shen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Li-Juan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Zhen-Zhen Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Mamun Maa
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yi-Chao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China; National Center for International Research of Micro-nano Molding Technology & Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, PR China.
| |
Collapse
|
46
|
Zhang Z, Li L, Wu C, Yin G, Zhu P, Zhou Y, Hong Y, Ni H, Qian Z, Wu WS. Inhibition of Slug effectively targets leukemia stem cells via the Slc13a3/ROS signaling pathway. Leukemia 2020; 34:380-390. [PMID: 31492896 PMCID: PMC6995768 DOI: 10.1038/s41375-019-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 04/30/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are the rare populations of acute myeloid leukemia (AML) cells that are able to initiate, maintain, and propagate AML. Targeting LSCs is a promising approach for preventing AML relapse and improving long-term outcomes. While Slug, a zinc-finger transcription repressor, negatively regulates the self-renewal of normal hematopoietic stem cells, its functions in AML are still unknown. We report here that Slug promotes leukemogenesis and its loss impairs LSC self-renewal and delays leukemia progression. Mechanistically, Slc13a3, a direct target of Slug in LSCs, restricts the self-renewal of LSCs and markedly prolongs recipient survival. Genetic or pharmacological inhibition of SLUG or forced expression of Slc13a3 suppresses the growth of human AML cells. In conclusion, our studies demonstrate that Slug differentially regulates self-renewal of LSCs and normal HSCs, and both Slug and Slc13a3 are potential therapeutic targets of LSCs.
Collapse
Affiliation(s)
- Zhonghui Zhang
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Chen Wu
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Guoshu Yin
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Pei Zhu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yalu Zhou
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuanfan Hong
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hongyu Ni
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhijian Qian
- Division of Hematology/Oncology, Department of Medicine and The University of Florida, Cancer/Genetics Research Complex, Florida, FL, 32610, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
47
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
48
|
Sun P, Zhang SJ, Maksim S, Yao YF, Liu HM, Du J. Epigenetic Modification in Macrophages: A Promising Target for Tumor and Inflammation-associated Disease Therapy. Curr Top Med Chem 2019; 19:1350-1362. [PMID: 31215380 DOI: 10.2174/1568026619666190619143706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.
Collapse
Affiliation(s)
- Pei Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Shu-Jing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Semenov Maksim
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Yong-Fang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Juan Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Small molecule inhibition of lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) alone and in combination in Ewing sarcoma cell lines. PLoS One 2019; 14:e0222228. [PMID: 31550266 PMCID: PMC6759167 DOI: 10.1371/journal.pone.0222228] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ewing Sarcoma (ES) is characterized by recurrent translocations between EWSR1 and members of the ETS family of transcription factors. The transcriptional activity of the fusion oncoprotein is dependent on interaction with the nucleosome remodeling and deactylase (NuRD) co-repressor complex. While inhibitors of both histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1) subunits of the NuRD complex demonstrate single agent activity in preclinical models, combination strategies have not been investigated. We selected 7 clinically utilized chemotherapy agents, or active metabolites thereof, for experimentation: doxorubicin, cyclophosphamide, vincristine, etoposide and irinotecan as well as the HDAC inhibitor romidepsin and the reversible LSD1 inhibitor SP2509. All agents were tested at clinically achievable concentrations in 4 ES cell lines. All possible 2 drug combinations were then tested for potential synergy. Order of addition of second-line conventional combination therapy agents was tested with the addition of SP2509. In two drug experiments, synergy was observed with several combinations, including when SP2509 was paired with topoisomerase inhibitors or romidepsin. Addition of SP2509 after treatment with second-line combination therapy agents enhanced treatment effect. Our findings suggest promising combination treatment strategies that utilize epigenetic agents in ES.
Collapse
|
50
|
Li Z, Ding L, Li Z, Wang Z, Suo F, Shen D, Zhao T, Sun X, Wang J, Liu Y, Ma L, Zhao B, Geng P, Yu B, Zheng Y, Liu H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm Sin B 2019; 9:794-808. [PMID: 31384539 PMCID: PMC6663923 DOI: 10.1016/j.apsb.2019.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has been recognized as an important modulator in post-translational process in epigenetics. Dysregulation of LSD1 has been implicated in the development of various cancers. Herein, we report the discovery of the hit compound 8a (IC50 = 3.93 μmol/L) and further medicinal chemistry efforts, leading to the generation of compound 15u (IC50 = 49 nmol/L, and K i = 16 nmol/L), which inhibited LSD1 reversibly and competitively with H3K4me2, and was selective to LSD1 over MAO-A/B. Docking studies were performed to rationalize the potency of compound 15u. Compound 15u also showed strong antiproliferative activity against four leukemia cell lines (OCL-AML3, K562, THP-1 and U937) as well as the lymphoma cell line Raji with the IC50 values of 1.79, 1.30, 0.45, 1.22 and 1.40 μmol/L, respectively. In THP-1 cell line, 15u significantly inhibited colony formation and caused remarkable morphological changes. Compound 15u induced expression of CD86 and CD11b in THP-1 cells, confirming its cellular activity and ability of inducing differentiation. The findings further indicate that targeting LSD1 is a promising strategy for AML treatment, the triazole-fused pyrimidine derivatives are new scaffolds for the development of LSD1/KDM1A inhibitors.
Collapse
Key Words
- AML treatment
- AML, acute myeloid leukemia
- ATRA, all-trans retinoic acid
- Antiproliferative ability
- BTK, Bruton׳s tyrosine kinase
- CDK, cyclin-dependent kinase
- CuAAC, copper-catalyzed azide-alkyne cycloadditions
- DABCO, triethylenediamine
- DCM, dichloromethane
- DIPEA, N,N-diisopropylethylamine
- DNMTs, DNA methyltransferases
- EA, ethyl acetate
- Epigenetic regulation
- EtOH, ethanol
- FAD, flavin adenine dinucleotide
- GSCs, glioma stem cells
- Histone demethylase
- LSD1
- LSD1, histone lysine specific demethylase 1
- MAO, monoamine oxidase
- MeOH, methanol
- Mercapto heterocycles
- PAINS, pan-assay interference compound
- Pyrimidine-triazole
- Rt, room temperature
- SAR, structure—activity relationship
- Structure–activity relationships (SARs)
- TCP, tranylcypromine
- TEA, triethylamine
- THF, terahydrofuran
- TLC, thin layer chromatography.
Collapse
Affiliation(s)
- Zhonghua Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhongrui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhizheng Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Fengzhi Suo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Dandan Shen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Taoqian Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Xudong Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Junwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Liying Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| |
Collapse
|