1
|
Shi Y, Liu J, Cheng Q, Wu S, Song W, Wang K, Chen Z, Li X, Wei Q, Tayier D, Liao B, Yang Z. METTL3/IGF2BP3 mediates ORC6 via N6-methyladenosine modification to promote the progression of pancreatic ductal adenocarcinoma. Gene 2025; 955:149468. [PMID: 40185346 DOI: 10.1016/j.gene.2025.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is recognized globally as one of the most lethal tumours, and effective biomarkers to diagnose PDAC early are needed. ORC6, a subunit of the origin recognition complex (ORC), initiates DNA replication and ensures genomic stability. Previous studies have indicated that ORC6 is procarcinogenic in various cancers, yet its role in PDAC remains uninvestigated. METHODS We evaluated the relationships between ORC6 expression and the clinical features of patients with PDAC with the TCGA, GTEx, and GEO databases. The role of ORC6 in PDAC cells was explored by RNA interference in vitro and in vivo. Next, we verified the effect of the METTL3/IGF2BP3/ORC6 axis on PDAC progression by western blotting, RT-qPCR, RNA immunoprecipitation, and methylated RNA immunoprecipitation. Finally, transcriptome analysis was performed to explore the influence of ORC6 on p53 in PDAC cells. RESULTS Elevated ORC6 levels were observed in PDAC cells, which correlated with poorer clinical outcomes. Both in vivo and in vitro experiments demonstrated that ORC6 knockdown suppressed proliferation and promoted apoptosis. Additionally, we demonstrated that METTL3/IGF2BP3 interacted with ORC6 mRNA via N6-methyladenosine modification to improve ORC6 mRNA stability. Transcriptomic analysis and experiments indicated that ORC6 promoted PDAC progression by inhibiting serine-15 phosphorylation in p53. CONCLUSION Our findings validate the role of ORC6 in PDAC and support the hypothesis that the METTL3/IGF2BP3/ORC6/p53 axis may be a novel therapeutic target for PDAC, and inhibiting this axis may be an advantageous therapeutic strategy for curing PDAC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Shuaihui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Qifeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Dilinigeer Tayier
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| |
Collapse
|
2
|
Wang D, An TY, Hu QM, Hua YQ, Ni P, Jia B, Duan GC, Chen SY. Helicobacter pylori promotes YTHDF2-mediated SRA1 m 6 A modification and promotes the occurrence and development of gastric cancer. Eur J Gastroenterol Hepatol 2025; 37:717-727. [PMID: 40207488 DOI: 10.1097/meg.0000000000002972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) is known to be linked to gastric cancer development, but its precise carcinogenic mechanisms are not fully understood. This study aims to investigate the function and mechanism of N 6 -methyladenosine (m 6 A) modification in H. pylori -associated gastric cancer, and to elucidate its regulatory network, offering novel insights and potential therapeutic targets for gastric cancer management. METHODS Western blotting and quantitative PCR (q-PCR) will be used to assess the expression of YTH N 6 -methyladenosine RNA binding protein 2 (YTHDF2) and Steroid Receptor RNA Activator 1 (SRA1), and the impact of YTHDF2 overexpression/knockdown on SRA1 expression. The m 6 A MAZF enzyme digestion method, luciferase reporter assay, and RNA stability assay will be used to assess YTHDF2's role in H. pylori -mediated SRA1 upregulation through m 6 A modification. RESULTS After H. pylori infection, SRA1 expression rises in mRNA and protein, boosting gastric mucosal and gastric cancer cell proliferation and migration, while YTHDF2 has an opposing impact. We demonstrate that H. pylori increases the m 6 A level of the SRA1 mRNA 3' untranslated regions by inhibiting the m 6 A reader protein YTHDF2, upregulates SRA1 expression, and activates the nuclear factor (NF)-κB pathway, thereby inducing malignant transformation in gastric mucosal epithelial cells and gastric cancer cells. CONCLUSION Our findings confirm that H. pylori upregulates SRA1 via m 6 A modification to enhance the malignant progression of gastric cancer, and provide important insights into the activation of the NF-κB pathway, which triggers the onset and progression of gastric cancer. This implies that SRA1 could be a promising therapeutic target for preventing gastric cancer.
Collapse
Affiliation(s)
- Di Wang
- Department of Epidemiology, College of Public Health
| | - Tong-Yan An
- Department of Epidemiology, College of Public Health
| | - Quan-Man Hu
- Department of Epidemiology, College of Public Health
| | - Yan-Qiao Hua
- Department of Epidemiology, College of Public Health
| | - Peng Ni
- Department of Epidemiology, College of Public Health
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | |
Collapse
|
3
|
Han Y, Sun J, Yao M, Miao L, Li M. Biological roles of enhancer RNA m6A modification and its implications in cancer. Cell Commun Signal 2025; 23:254. [PMID: 40448182 DOI: 10.1186/s12964-025-02254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
Enhancers, as distal cis-regulatory elements in the genome, have a pivotal influence on orchestrating precise gene expression. Enhancer RNAs (eRNAs), transcribed from active enhancer regions, are increasingly recognized as key regulators of transcription. N6-methyladenosine (m6A), the most plentiful internal modification in eukaryotic mRNAs, has garnered significant research interest in recent years. With advancements in high-throughput sequencing technologies, it has been established that m6A modifications are also present on eRNAs. An accumulative body of evidence demonstrates that aberrant enhancers, eRNAs, and m6A modifications are intimately connected with carcinoma onset, progression, invasion, metastasis, treatment response, drug resistance, and prognosis. However, the underlying molecular mechanisms governing m6A modification of eRNAs in cancer remain elusive. Here, we review and synthesize current understanding of the regulatory roles of enhancers, eRNAs, and m6A modifications in cancer. Furthermore, we investigate the possible roles of eRNAs m6A modification in tumorigenesis based on existing literature, offering novel perspectives and directions for future research on epigenetic regulatory mechanisms in cancer cells.
Collapse
Affiliation(s)
- Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China
| | - Jingqi Sun
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Mengjia Li
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
4
|
Xiao S, Duan S, Caligiuri MA, Ma S, Yu J. YTHDF2: a key RNA reader and antitumor target. Trends Immunol 2025:S1471-4906(25)00095-X. [PMID: 40399203 DOI: 10.1016/j.it.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
N6-methyladenosine (m6A) is a key mRNA modification influencing mRNA stability and translation. YTHDF2, a major m6A 'reader', was initially recognized for promoting mRNA decay but is now also known to enhance translation by binding to methylated mRNAs. YTHDF2 maintains the function of immune suppressive cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), while also supporting cytotoxic immune cells, including natural killer (NK) and CD8+ T cells. Additionally, YTHDF2 acts as a tumor-intrinsic regulator orchestrating tumor immune evasion. Its multifaceted roles in tumor immunity make YTHDF2 a promising yet challenging therapeutic target. This review explores the complex roles and mechanisms of YTHDF2 in cancers, immune regulation, and tumor immune evasion and highlights emerging therapeutic strategies that target YTHDF2.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Songqi Duan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA; Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; The Clemons Family Center for Transformative Cancer Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Qin F, Li F, Zhao W, Zhang S, Shen J, Yang X. M6A Methyltransferase METTL3 Modulates Traumatic Brain Injury by Targeting Ferroptosis. FRONT BIOSCI-LANDMRK 2025; 30:31304. [PMID: 40302332 DOI: 10.31083/fbl31304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a disease caused by external forces that damage brain structure and function. After TBI, iron accumulation and reactive oxygen species (ROS) increase lipid peroxidation, promoting ferroptosis. Methyltransferase-like 3 (METTL3) inhibits ferroptosis by modulating related signaling pathways. This study investigates the effects of METTL3 on neuronal ferroptosis in TBI, offering new insights and potential therapies. METHODS TBI mouse and neuron cell models were established and treated with METTL3 overexpression. The Morris Water Maze (MWM) test evaluated cognitive function. Histological staining of brain tissues was conducted to assess brain injury, nuclear pyknosis, and iron accumulation. The activation of neurons, microglia, and astrocytes were detected using immunofluorescence staining. Neuron cell proliferation was measured using the Cell Counting Kit 8 (CCK-8). Quantitative PCR (qPCR) and western blot detected the mRNA and protein expression. Ferroptosis was assessed by measuring the accumulation of iron, malondialdehyde (MDA), superoxide dismutase (SOD), and ROS. The quantification of the N6-methyladenosine (m6A) RNA methylation levels in cells was quantified using the m6A-ELISA assay. Methylated RNA immunoprecipitation (MeRIP) assays were conducted to analyze the m6A modification on GPX4 mRNA. The interaction between YTHDF2 and GPX4 mRNA was measured using RNA pulldown and RNA immunoprecipitation (RIP) assays. RESULTS METTL3 expression was downregulated in TBI-injured brain tissues. Overexpression of METTL3 improved cognitive function and brain recovery while simultaneously reducing ferroptosis and neuroinflammation. METTL3 overexpression upregulated GPX4 expression both in vitro and in vivo. Further studies indicated that m6A reader protein YTHDF2 binds to GPX4 mRNA, consequently mediating the METTL3-regulated m6A enrichment and RNA stability of GPX4. Knockdown of GPX4 and treatment with ferroptosis inducer abolished the protective effects of METTL3 on neurons. CONCLUSION METTL3 exhibits anti-ferroptosis properties and promotes brain injury recovery after TBI by regulating the m6A modification and RNA stability of GPX4.
Collapse
Affiliation(s)
- Fei Qin
- Department of Neurosurgery, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Fan Li
- Department of Neurosurgery, Heji Hospital Affiliated to Changzhi Medical College, 046011 Changzhi, Shanxi, China
| | - Wenxiao Zhao
- Department of Neurosurgery, Gaoping People's Hospital, 048400 Gaoping, Shanxi, China
| | - Suqin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jiang Shen
- Department of Neurosurgery, Gaoping People's Hospital, 048400 Gaoping, Shanxi, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
6
|
Pang B, Wu Y, An S, Chang Y, Yan H, Lin H, Zhao Z, Wu F, Chang Q, Jia W, Jiang T, Wang Y, Chai R. Ara-C suppresses H3 K27-altered spinal cord diffuse midline glioma growth and enhances immune checkpoint blockade sensitivity. SCIENCE ADVANCES 2025; 11:eadu3956. [PMID: 40238864 PMCID: PMC12002095 DOI: 10.1126/sciadv.adu3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
H3 K27-altered spinal cord diffuse midline glioma (H3-SCDMG) poses therapeutic challenges. Analysis of 73 clinical samples revealed heightened proliferation in H3-SCDMG versus wild-type tumors, suggesting therapeutic vulnerabilities. Drug screening identified cytarabine (Ara-C) as highly effective in inhibiting proliferation in H3 K27M cell models, recently established patient-derived cells, and patient-derived xenograft models. Mechanistically, Ara-C can suppress tumor growth through DNA damage, cell-cycle arrest, and apoptosis. An investigator-initiated clinical trial involving four patients showed benefits in three cases. In addition, a subset of cells exhibited senescence and senescence-associated secretory phenotype post-Ara-C treatment, accompanied by several immune checkpoint ligands' up-regulation and more immune cell infiltration. Combining Ara-C with dual Programmed cell death protein 1 (PD-1) and TIGIT blockade emerged as a promising strategy to disrupt immune evasion by senescent cells, enhancing antitumor responses. These findings highlight Ara-C's potential as a monotherapy and in synergy with immunotherapy for H3-SCDMG, offering potential strategies for clinical management.
Collapse
Affiliation(s)
- Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilin Wu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - SongYuan An
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuzhou Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Han Lin
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Qing Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ruichao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
7
|
Wang X, Li J, Zhang C, Guan X, Li X, Jia W, Chen A. Old players and new insights: unraveling the role of RNA-binding proteins in brain tumors. Theranostics 2025; 15:5238-5257. [PMID: 40303323 PMCID: PMC12036871 DOI: 10.7150/thno.113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
The human genome harbors >1,600 evolutionarily conserved RNA-binding proteins (RBPs), with extensive multi-omics investigations documenting their pervasive dysregulation in malignancies ranging from glioblastoma to melanoma. These RBPs are integral to the complex regulatory networks governing hallmark cancer processes. Recent studies have investigated the multifaceted contributions of RBPs to tumorigenesis, tumor metabolism, the tumor-immune microenvironment, and resistance to therapy. This complexity is further compounded by the intricate regulation of RNA function at various levels by RBPs, as well as the post-translational modifications of RBPs, which improve their functional capacity. Moreover, numerous RBP-based therapeutics have emerged, each underpinned by distinct molecular mechanisms that extend from genomic analysis to the interference of RBPs' function. This review aims to provide a comprehensive overview of the recent progress in the meticulous roles of RBPs in brain tumors and to explore potential therapeutic interventions targeting these RBPs, complemented by a discussion of innovative techniques emerging in this research field. Advances in deciphering RNA-RBP interactomes and refining targeted therapeutic strategies are revealing the transformative potential of RBP-centric approaches in brain tumor treatment, establishing them as pivotal agents for overcoming current clinical challenges.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Jiang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| |
Collapse
|
8
|
Shao X, Sun M, Wang R, Leng M, Diao H, Li X, Wang D, Wu K, Wang L, Lv W, Rong X, Zhang Y. The impact of YTHDF2-mediated NCOA4 methylation on myocardial ferroptosis. Apoptosis 2025:10.1007/s10495-025-02106-z. [PMID: 40167954 DOI: 10.1007/s10495-025-02106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
The N6-Methyladenosine (m6A) modification is prevalent across various RNA species, including messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), and has garnered significant interest due to its potential implications in cardiovascular disease. Despite extensive research, the precise relationship between m6A and myocardial infarction (MI) remains inadequately understood. The human YTH domain family 2 (YTHDF2) protein has emerged as a critical factor in this context, selectively recognizing m6A-modified RNAs and modulating their degradation. Our investigation revealed that the knockdown of YTHDF2 markedly enhanced ferroptosis in vitro, whereas the overexpression of YTHDF2 exhibited a significant protective effect. Mechanistically, it was elucidated that YTHDF2 suppresses the expression of nuclear receptor coactivator 4 (NCOA4) via m6A methylation. Furthermore, the inhibition of cardiomyocyte ferroptosis by YTHDF2 is contingent upon its regulation of NCOA4. Additionally, the enzyme methyltransferase-like 3 (METTL3) was identified as a pivotal factor in the m6A-mediated degradation of NCOA4 mRNA. Taken together, our results highlight the significant role of YTHDF2-mediated NCOA4 m6A methylation in the regulation of myocardial infarction and myocardial ferroptosis, suggesting that YTHDF2 may be a promising target for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mengxian Sun
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Ruonan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Mingyang Leng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Hongtao Diao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Xu Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Dongwei Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Kaili Wu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Liang Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Wen Lv
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China.
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou, 510006, China.
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Zhang L, Chen C, Feng J, Zhang H, Nguyen LXT, Chen Z. The role of YTHDF2 in anti-tumor immunity. CELL INVESTIGATION 2025; 1:100008. [PMID: 40092843 PMCID: PMC11908620 DOI: 10.1016/j.clnves.2025.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
RNA N 6-methyladenosine (m6A) modification has been identified as the most abundant RNA modification and plays crucial roles in both physiological and pathological processes. YTHDF2 was the first identified reader protein that can recognize m6A modification and recent studies also revealed its ability to bind 5-methylcytidine (m5C) modification. YTHDF2 shows a dual binding capacity to both m6A and m5C, which leads to opposite mRNA outcomes. Multiple studies have highlighted the critical roles of YTHDF2 in tumor development and tumor microenvironment. Emerging findings showed that YTHDF2 plays critical roles in immune regulation, impacting T cell, B cell, NK cell, macrophage, innate/adaptive anti-tumor immune responses, and T-cell based immunotherapy. Inhibitors have been developed to target YTHDF2, which showed potential efficacy in tumor treatment. Herein, we reviewed the molecular mechanism of YTHDF2 and its roles in tumors, immune cells, and tumor microenvironment.
Collapse
Affiliation(s)
- Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou 510180, China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Department of Hematology, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Li P, Fang X, Huang D. Exploring m6A modifications in gastric cancer: from molecular mechanisms to clinical applications. Eur J Med Res 2025; 30:98. [PMID: 39940056 PMCID: PMC11823136 DOI: 10.1186/s40001-025-02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
The significance of m6A modifications in several biological processes has been increasingly recognized, particularly in the context of cancer. For instance, m6A modifications in gastric cancer (GC) have been significantly implicated in tumor progression, metastasis, and treatment resistance. GC is characterized by the differential expression of m6A regulators. High expression writers such as METTL3 and WTAP are associated with poor prognosis and aggressive clinical features. Conversely, low expression of METTL14 is linked to worse clinical outcomes, whereas elevated levels of demethylases, such as FTO and ALKBH5, correlate with better survival rates. These m6A regulators influence several cellular biological functions, including proliferation, invasion, migration, glycolysis, and chemotherapy resistance, thereby affecting tumor growth and therapeutic outcomes. The assessment of m6A modification patterns and the expression profiles of m6A-related genes hold substantial potential for improving the clinical diagnosis and treatment of GC. In this review, we provide an updated and comprehensive summary of the role of m6A modifications in GC, emphasizing their molecular mechanisms, clinical significance, and translational applications in developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiangjie Fang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
11
|
Santamarina-Ojeda P, Fernández AF, Fraga MF. Epitranscriptomics in the Glioma Context: A Brief Overview. Cancers (Basel) 2025; 17:578. [PMID: 40002173 PMCID: PMC11853273 DOI: 10.3390/cancers17040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Epitranscriptomics, the study of chemical modifications in RNA, has emerged as a crucial field in cellular regulation, adding another layer to the established landscape of DNA- and histone-based epigenetics. A wide range of RNA modifications, including N6-methyladenosine, pseudouridine, and inosine, have been identified across nearly all RNA species, influencing essential processes such as transcription, splicing, RNA stability, and translation. In the context of brain tumors, particularly gliomas, specific epitranscriptomic signatures have been reported to play a role in tumorigenesis. Despite growing evidence, the biological implications of various RNA modifications remain poorly understood. This review offers an examination of the main RNA modifications, the interplay between modified and unmodified molecules, how they could contribute to glioma-like phenotypes, and the therapeutic impact of targeting these mechanisms.
Collapse
Affiliation(s)
- Pablo Santamarina-Ojeda
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Agustín F. Fernández
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mario F. Fraga
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
12
|
Zhou H, Hu Y, Qin G, Kong J, Hong X, Guo C, Zou J, Feng L. The Signature of Serum Modified Nucleosides in Uveitis. Invest Ophthalmol Vis Sci 2025; 66:68. [PMID: 40014362 PMCID: PMC11875031 DOI: 10.1167/iovs.66.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 02/28/2025] Open
Abstract
Purpose This study aims to evaluate the metabolism of serum-modified nucleosides in uveitis by using liquid chromatography-tandem mass spectrometry (LC-MS) and to develop potential diagnostic biomarkers for uveitis. Methods Forty-two patients with different subtypes of uveitis (idiopathic uveitis, Vogt-Koyanagi-Harada [VKH] disease, and ankylosing spondylitis [AS]) and 32 healthy controls were recruited in this retrospective case-control study. The concentrations of 23 modified nucleosides in patient serum were quantified by LC-MS. The data was statistically analyzed with SPSS and GraphPad Prism. Results The data revealed that 13 out of 23 modified nucleosides (m6A, m1A, m6Am, Cm, ac4C, Gm, m1G, m2G, m2,2G, Um, m3U, m5U, and m5Um) effectively showed quantifiable chromatographic peaks. The statistical results indicated that there were extremely significant differences for m2G, Gm, Cm, and m1G between healthy controls and uveitis patients. The differences for Gm, m6A,and m5U were able to further assort idiopathic uveitis and uveitis with systemic inflammation including VKH and AS. Interestingly, each specific subtype of uveitis is characterized by its signature combination of serum-modified nucleotides comparing with healthy controls. Conclusions This study revealed that the metabolism of serum-modified nucleosides in uveitis patients display significant differences from healthy controls. The signature combination of serum modified nucleotides for each subtype of uveitis may be applied for the potential diagnosis of uveitis.
Collapse
Affiliation(s)
- Haoze Zhou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangming Qin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfeng Kong
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China
| | - Lei Feng
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Dong F, Yin H, Zheng Z. Hypoxia-Inducible Factor-1α Regulates BNIP3-Dependent Mitophagy and Mediates Metabolic Reprogramming Through Histone Lysine Lactylation Modification to Affect Glioma Proliferation and Invasion. J Biochem Mol Toxicol 2025; 39:e70069. [PMID: 39829390 DOI: 10.1002/jbt.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion. METHODS Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control. Cellular hexokinase 2, lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 enzyme activities, glucose uptake, and levels of lactic acid and adenosine triphosphate (ATP), and HIF-1α, glycolysis-related proteins, mitophagy-related proteins, histone H3 lysine 18 lactylation (H3K18la) and YTHDF2 were determined by ELISA, 2-NBDG, kits, and Western blot. Extracellular acidification rate (ECAR), and cell proliferation, invasion, apoptosis and mitophagy were evaluated by extracellular flux analysis, CCK-8, Transwell, flow cytometry, and immunofluorescence staining. H3K18la-YTHDF2 relationship and YTHDF2-BNIP3 interaction were assessed by ChIP and Co-IP assays. RESULTS Hypoxia-induced highly-expressed HIF-1α in glioma cells increased glycolysis-related protein levels, glycolytic enzyme activities, glucose uptake, lactic acid production, ATP level and ECAR, thereby promoting metabolic reprogramming, invasion and proliferation. HIF-1α mediated metabolic reprogramming, proliferation and invasion through BNIP3-dependent mitophagy, which were partly negated by mitophagy inhibition. HIF-1α induced histone Kla modification to upregulate YTHDF2. YTHDF2 downregulation impeded YTHDF2-BNIP3 interaction and inhibited HIF-1α-induced BNIP3-dependent mitophagy, curbing glioma cell metabolic reprogramming, proliferation and invasion. CONCLUSIONS Hypoxia-induced high HIF-1α expression upregulated YTHDF2 through hH3K18la modification, enhanced YTHDF2-BNIP3 interaction, and regulated BNIP3-dependent mitophagy-mediated metabolic reprogramming to affect glioma proliferation and invasion.
Collapse
Affiliation(s)
- Feng Dong
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haichang Yin
- Laboratory of Animal Immunology, Qiqihar University, Qiqihar, China
| | - Zhixing Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Jiang X, Tan H. Mechanism of METTL3 in the proliferation, invasion, and migration of intrahepatic cholangiocarcinoma cells via m6A modification. Exp Cell Res 2025; 444:114353. [PMID: 39608479 DOI: 10.1016/j.yexcr.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary invasive malignant tumor. This study was conducted to explore the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in ICC cells and provide novel targets for ICC treatment. Levels of METTL3/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)/Nedd4 family interacting protein 1 (NDFIP1) in cells were determined. Cell viability, proliferation, invasion, and migration were evaluated. The enrichments of METTL3, YTHDF2, and m6A on NDFIP1 mRNA were analyzed. The mRNA stability was determined. Inhibition of YTHDF2 or NDFIP1 was combined with si-METTL3 to confirm the mechanism. The role of METTL3 in vivo was verified. METTL3 was overexpressed in ICC cells. METTL3 silencing suppressed ICC cell malignant behaviors, which were reversed by METTL3 overexpression. METTL3 increased m6A modification on NDFIP1 mRNA, facilitated YTHDF2 recognition of m6A, and promoted NDFIP1 mRNA degradation, thereby suppressing NDFIP1 expression. YTHDF2 inhibition increased NDFIP1 mRNA levels. NDFIP1 downregulation partially reversed the inhibitory effects of si-METTL3 on ICC cell behaviors, while NDFIP1 overexpression partially reversed the promotive effects of METTL3 on ICC cell behaviors. METTL3 downregulation suppressed ICC growth by increasing NDFIP1 expression. In conclusion, METTL3 aggravates ICC cell proliferation, invasion, and migration by promoting the degradation of NDFIP1 mRNA in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Hui Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China; Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
15
|
Wang Y, Liu J, Wang Y. YTHDF2 contributes to psoriasis by promoting proliferation and inflammatory response through regulation of the Wnt signaling pathway. Int Immunopharmacol 2025; 144:113690. [PMID: 39608173 DOI: 10.1016/j.intimp.2024.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
YT521-B homology domain family 2 (YTHDF2), a pivotal m6A-binding protein, is now understood to significantly influence a diverse array of biological functions, including cell migration, proliferation, differentiation, and inflammatory responses. Additionally, YTHDF2 participates in mRNA decay and pre-rRNA processing. This study explored the specific role of YTHDF2 in the pathogenesis of psoriasis and its underlying mechanisms. Our preliminary findings revealed upregulation of YTHDF2 expression in psoriasis. Subsequent silencing of YTHDF2 in a psoriatic cell model resulted in a marked decrease in mRNA expression of IL-17A, S100A8, and S100A9, accompanied by a reduction in cell proliferation. Conversely, overexpression of YTHDF2 led to the opposite effects. Treatment with DC-Y27-13, a YTHDF2 inhibitor, demonstrated a therapeutic effect in psoriasis mice. Next, mRNA sequencing analysis identified significant enrichment of differentially expressed genes within the Wnt signaling pathway. Further investigation revealed that deletion of YTHDF2 increased the half-life and expression of Dickkopf homolog 3 (DKK3), a potent inhibitor of the Wnt signaling pathway. Consequently, the inhibition of Wnt signaling attenuated the inflammatory response and inhibited cell proliferation.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jing Liu
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Dermatology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; General Practice Department, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
16
|
Xue Q, Ma K, Yang F, Liu H, Cao W, Liu P, Zhu Z, Zheng H. Foot-and-mouth disease virus 2B protein antagonizes STING-induced antiviral activity by targeting YTHDF2. FASEB J 2024; 38:e70224. [PMID: 39641410 DOI: 10.1096/fj.202402209r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Foot-and-mouth disease virus (FMDV) infection modulates the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) pathways to inhibit the innate immune responses in the host. However, the mechanism by which FMDV antagonizes the DNA-induced signaling pathway remains to be clarified. In this study, we determined that FMDV infection inhibited stimulator of interferon genes (STING) at the levels of both mRNA and protein expression, and FMDV 2B and 3Cpro proteins promoted STING decline. FMDV 3Cpro induced the decrease in STING depending on its protease activity. FMDV 2B reduced STING expression by disrupting its mRNA level. Mechanistically, 2B inhibited the mRNA of STING by recruiting YTH m6A RNA-binding protein 2 (YTHDF2) to bind to STING mRNA, repressing the generation of FMDV-induced type-I interferon and facilitating virus replication. This effect was triggered by residue 105 of 2B. The 2B K105A mutant FMDV was successfully rescued, and further studies showed that the pathogenicity was attenuated by mutation at site K105 of FMDV 2B. YTHDF2 also promoted FMDV replication through interferon-dependent and interferon-independent pathways. Moreover, YTHDF2-deficient mice showed stronger resistance to FMDV infection. Our study reveals a potential mechanism for FMDV 2B negatively modulating innate immunity at transcriptional levels, promoting the understanding of immune evasion and YTHDF2 function in the FMDV infection process.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
17
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
18
|
Pan C, Zhang M, Xiao X, Li T, Liu Z, Wang Y, Xie L, Mai Y, Wu Z, Zhang J, Zhang L. Brainstem Gliomas With Isocitrate Dehydrogenase Mutation: Natural History, Clinical-Radiological Features, Management Strategy, and Long-Term Outcome. Neurosurgery 2024; 95:1407-1417. [PMID: 38860769 DOI: 10.1227/neu.0000000000003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/08/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to investigate the clinical, radiological, pathological features, treatment options, and outcomes of isocitrate dehydrogenase (IDH)-mutant brainstem gliomas (BSG-IDH mut ). METHODS A retrospective analysis of 22 patients diagnosed with BSG-IDH mut and treated at our institution from January 2011 to January 2017 was performed. Their clinical, radiological data, and long-term outcomes were collected and analyzed. RESULTS The median age of patients was 38.5 years, with a male predominance (63.6%). All patients had IDH1 and TP53 mutations, with noncanonical IDH mutations in 59.1% of cases, 06-methylguanine-DNA methyltransferase promoter methylation in 55.6%, and alpha-thalassemia mental retardation X-linked loss in 63.2%, respectively. Tumors were primarily located in the pontine-medullary oblongata (54.5%) and frequently involved the pontine brachium (50%). Most tumors exhibited ill-defined boundaries (68.2%), no T2-FLAIR mismatch (100%), and no contrast enhancement (86.3%). Two radiological growth patterns were also identified: focal and extensively infiltrative, which were associated with the treatment strategy when tumor recurred. Seven patients (31.8%) received surgery only and 15 (68.2%) surgery plus other therapy. The median overall survival was 124.8 months, with 1-year, 2-year, 5-year, and 10-year survival rates of 81.8%, 68.2%, 54.5%, and 13.6%, respectively. Six patients experienced tumor recurrence, and all retained their radiological growth patterns, with 2 transformed into central nervous system World Health Organization grade 4. CONCLUSION BSG-IDH mut represents a unique subgroup of brainstem gliomas with distinctive features and more favorable prognosis compared with other brainstem gliomas. Further research is required to better understand the molecular mechanisms and optimize treatment strategies for this rare and complex disease.
Collapse
Affiliation(s)
- Changcun Pan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Mingxin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Tian Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Zhiming Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Yujin Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Yiying Mai
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing , China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Beijing , China
- Beijing Key Laboratory of Brain Tumor, Beijing , China
| |
Collapse
|
19
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
20
|
Jing H, Song J, Sun J, Su S, Hu J, Zhang H, Bi Y, Wu B. METTL3 governs thymocyte development and thymic involution by regulating ferroptosis. NATURE AGING 2024; 4:1813-1827. [PMID: 39443728 DOI: 10.1038/s43587-024-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Given its central role in immune aging, it is important to identify the regulators of thymic involution. While conventional programmed cell death has a fundamental role in thymocyte development, how cell death pathways contribute to thymic involution are unclear. In this study, we found that CD4+CD8+ double-positive (DP) thymocytes acquired the characteristics of senescence in aged mice undergoing thymic involution, while expression of the m6A methyltransferase-like protein 3 (METTL3), which is enriched in DP cells from young mice, decreased with aging. By conditionally deleting METTL3 in T cells, we revealed a critical role for METTL3 in DP cell survival and in restraining the features of aging in DP thymocytes by preventing ferroptosis signaling through glutathione peroxidase 4. Mechanistically, glutathione peroxidase 4 was maintained by METTL3 at the translational level, independently of its methyltransferase activity. Furthermore, we found that pharmacological inhibition of ferroptosis promoted DP cell survival and attenuated the features of aging in DP thymocytes. These findings uncover a role for METTL3-regulated ferroptosis in thymic involution and identify strategies to restore thymic function.
Collapse
Affiliation(s)
- Huiru Jing
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiayu Song
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Sun
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaojun Su
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanmin Bi
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Bing Wu
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Song L, Liu H, Yang W, Yin H, Wang J, Guo M, Yang Z. Biological functions of the m6A reader YTHDF2 and its role in central nervous system disorders. Biochem Pharmacol 2024; 230:116576. [PMID: 39424201 DOI: 10.1016/j.bcp.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification in eukaryotic cells, characterized by its reversible nature. YTH structural domain family protein 2 (YTHDF2), a key reader of m6A, plays a crucial role in identifying and binding m6A-containing RNAs, thereby influencing RNA metabolism through various functional mechanisms. The upstream and downstream targets of YTHDF2 are critical in the pathogenesis of various central nervous system (CNS) diseases, affecting disease development by regulating signaling pathways and gene expression. This paper provides an overview of current research on the role of YTHDF2 in CNS diseases and investigates the regulatory mechanisms by which YTHDF2 influences the development of these conditions. This exploration aims to improve understanding of disease pathogenesis and offer novel insights for the targeted prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Huimin Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Weiyu Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Jiayi Wang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Maojuan Guo
- Department of Pathology, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
22
|
Yu X, Zhang Y, Wang J, Wang X, Chen X, Yin K, Zhu X. Leonurine improves atherosclerosis by activating foam cell autophagy and metabolic remodeling via METTL3-mediated AKT1S1 mRNA stability modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155939. [PMID: 39214016 DOI: 10.1016/j.phymed.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is the most prevalent cardiovascular disease and remains the major contributor to death and mortality globally. Leonurine (LEO) is a unique alkaloid compound with protective effects on the cardiovascular system. However, the exact mechanisms underlying its cardiovascular-protecting action are still not fully elucidated. The methyltransferase 3 (METTL3), the catalytic core of the N6-methyladenosine modification (m6A) methyltransferase complex, has been shown to inhibit autophagy and exacerbate the process of AS via regulation of m6A modification of mRNA. PURPOSE We aimed to determine whether the inhibited effect of LEO on AS is related to METTL3-mediated AKT1S1 stability. METHODS The apolipoprotein E (ApoE) knockout mice was subjected to a high-fat diet (HFD), and THP-1 derived macrophages was exposed to oxidized low-density lipoprotein (ox-LDL), to establish the animal and cellular models of AS, respectively. RESULTS We found that LEO effectively improved AS and reduced the plaque area and inflammation via diminishing macrophage lipid accumulation and remodeling the lipid metabolism profile. LEO activated ox-LDL-induced macrophage autophagy, enhancing lipid metabolism decrease, according to the lipidomic and molecular biology analyses. Additionally, LEO caused a marked increase in autophagy marker levels in mouse models with advanced AS. Furthermore, we found that LEO reactivated autophagy and reversed lipid accumulation by suppressing METTL3 expression. The m6A-seq from ox-LDL-induced macrophages showed that a total of five autophagy-related mRNA transcripts (AKT1S1, AKT1, RB1CC1, CFLAR, and MTMR4) were altered, and AKT1S1 was significantly upregulated by LEO. Mechanistically, LEO-mediated regulation of METTL3 decreased AKT1S1 expression by attenuating its mRNA stability. Silencing AKT1S1 inhibited LEO-METTL3 axis-mediated autophagy and enhanced lipid accumulation in ox-LDL-induced macrophages. CONCLUSION The study first revealed that LEO exerts anti-atherosclerotic effect by activating METTL3-mediated macrophage autophagy in vivo and in vitro. The mechanism of LEO was further found to be the enhancement of METTL3-mediated AKT1S1 stability to activate autophagy thereby reducing lipid accumulation. This study provides a new perspective of natural medicines on the treatment of AS via an epigenetic manner.
Collapse
Affiliation(s)
- Xinyuan Yu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xiaodan Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Xiao Zhu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
23
|
Chen Y, Bian S, Zhang J, Luan Y, Yin B, Dai W, Wang H, Chen X, Dong Y, Cai Y, Dong R, Yu L, Shu M. HSV-1-induced N6-methyladenosine reprogramming via ICP0-mediated suppression of METTL14 potentiates oncolytic activity in glioma. Cell Rep 2024; 43:114756. [PMID: 39325621 DOI: 10.1016/j.celrep.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiamei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiheng Cai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruitao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liubing Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
24
|
Xu S, Xing J, Zheng L, Su H, Zou Y, Niu Y, Di H. Azithromycin regulates Mettl3-mediated NF-κB pathway to enhance M2 polarization of RAW264.7 macrophages and attenuate LPS-triggered cytotoxicity of MLE-12 alveolar cells. Int Immunopharmacol 2024; 137:112426. [PMID: 38878491 DOI: 10.1016/j.intimp.2024.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Azithromycin (AZM) has been proposed as a potential therapeutic drug in acute pulmonary injury due to its immunomodulatory and anti-inflammatory properties. However, its therapeutic mechanism remains not fully understood. METHODS LPS was used to stimulate MLE-12 cells and RAW264.7 macrophages. Analyses of viability and apoptosis were performed by CCK-8 assay and flow cytometry, respectively. Protein analysis was performed by immunoblotting, and mRNA expression was tested by quantitative PCR. The secretion levels of TNF-α and IL-6 were detected by ELISA. MDA, GSH, ROS and Fe2+ contents were analyzed using assay kits. RESULTS Administration of AZM or depletion of methyltransferase-like 3 (Mettl3) could attenuate LPS-triggered apoptosis, inflammation and ferroptosis in MLE-12 alveolar cells, as well as enhance M2 polarization of LPS-stimulated RAW264.7 macrophages. In LPS-exposed MLE-12 and RAW264.7 cells, AZM reduced Mettl3 protein expression and inactivated the NF-κB signaling through downregulation of Mettl3. Furthermore, Mettl3 restoration abated AZM-mediated anti-apoptosis, anti-inflammation and anti-ferroptosis effects in LPS-exposed MLE-12 cells and reversed AZM-mediated M2 polarization enhancement of LPS-exposed RAW264.7 macrophages. CONCLUSION Our study indicates that AZM can promote M2 polarization of LPS-exposed RAW264.7 macrophages and attenuate LPS-triggered injury of MLE-12 alveolar cells by inactivating the Mettl3-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Shuna Xu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Xing
- Department of Medical Affairs, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zheng
- Department of Respiratory and Critical Care Medicine, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Su
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunhong Zou
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanxin Niu
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huifeng Di
- Department of Pharmacy, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
25
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
26
|
Wang J, Shen Y, Zhang Y, Lin D, Wang Q, Sun X, Wei D, Shen B, Chen J, Ji Y, Fulton D, Yu Y, Chen F, Hu L. Smooth Muscle Ythdf2 Abrogation Ameliorates Pulmonary Vascular Remodeling by Regulating Myadm Transcript Stability. Hypertension 2024; 81:1785-1798. [PMID: 38832511 DOI: 10.1161/hypertensionaha.124.22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The N6-methyladenosine (m6A) modification of RNA and its regulators have important roles in the pathogenesis of pulmonary hypertension (PH). Ythdf2 (YTH N6-methyladenosine RNA binding protein 2) is best known for its role in degrading m6A-modified mRNAs such as Hmox1 mRNA, which leads to alternative activation of macrophages in PH. Recent studies have also linked Ythdf2 to the proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its specific roles in PASMCs and downstream targets during the development of PH remain unclear. METHODS The expression and biological function of Ythdf2 in PASMCs were investigated in human and experimental models of PH. Smooth muscle cell-specific Ythdf2-deficient mice were used to assess the roles of Ythdf2 in PASMCs in vivo. Proteomic analysis, m6A sequencing, and RNA immunoprecipitation analysis were used to screen for potential downstream targets. RESULTS Ythdf2 was significantly upregulated in human and rodent PH-PASMCs, and smooth muscle cell-specific Ythdf2 deficiency ameliorated PASMC proliferation, right ventricular hypertrophy, pulmonary vascular remodeling, and PH development. Higher expression of Ythdf2 promoted PASMC proliferation and PH by paradoxically stabilizing Myadm mRNA in an m6A-dependent manner. Loss of Ythdf2 decreased the expression of Myadm in PASMCs and pulmonary arteries, both in vitro and in vivo. Additionally, silencing Myadm inhibited the Ythdf2-dependent hyperproliferation of PASMCs by upregulating the cell cycle kinase inhibitor p21. CONCLUSIONS We have identified a novel mechanism where the increased expression of Ythdf2 stimulates PH-PASMC proliferation through an m6A/Myadm/p21 pathway. Strategies targeting Ythdf2 in PASMCs might be useful additions to the therapeutic approach to PH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Vascular Remodeling/physiology
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Jie Wang
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
| | - Yueyao Shen
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Yuhui Zhang
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Donghai Lin
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Qiang Wang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Xiaoxuan Sun
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine (B.S.), Nanjing Medical University, China
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (Y.J.), Nanjing Medical University, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University (D.F., F.C.)
| | - Yanfang Yu
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, China (D.W., J.C., F.C.)
- Vascular Biology Center, Medical College of Georgia at Augusta University (D.F., F.C.)
| | - Li Hu
- Department of Forensic Medicine (J.W., Y.S., Y.Z., D.L., Y.Y., F.C., L.H.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (J.W., F.C., L.H.), Nanjing Medical University, China
| |
Collapse
|
27
|
Xiao B, Zhu Y, Liu M, Chen M, Huang C, Xu D, Wang F, Sun S, Huang J, Sun N, Yang F. miR-340-3p-modified bone marrow mesenchymal stem cell-derived exosomes inhibit ferroptosis through METTL3-mediated m 6A modification of HMOX1 to promote recovery of injured rat uterus. Stem Cell Res Ther 2024; 15:224. [PMID: 39075530 PMCID: PMC11287883 DOI: 10.1186/s13287-024-03846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Ferroptosis is associated with the pathological progression of hemorrhagic injury and ischemia-reperfusion injury. According to our previous study, exosomes formed through bone marrow mesenchymal stem cells modified with miR-340-3p (MB-exos) can restore damaged endometrium. However, the involvement of ferroptosis in endometrial injury and the effect of MB-exos on ferroptosis remain elusive. METHODS The endometrial injury rat model was developed. Exosomes were obtained from the supernatants of bone marrow mesenchymal stromal cells (BMSCs) and miR-340/BMSCs through differential centrifugation. We conducted RNA-seq analysis on endometrial tissues obtained from the PBS and MB-exos groups. Ferroptosis was induced in endometrial stromal cells (ESCs) by treating them with erastin or RSL3, followed by treatment with B-exos or MB-exos. We assessed the endometrial total m6A modification level after injury and subsequent treatment with B-exos or MB-exos by methylation quantification assay. We performed meRIP-qPCR to analyze m6A modification-regulated endogenous mRNAs. RESULTS We reveal that MB-exos facilitate the injured endometrium to recover by suppressing ferroptosis in endometrial stromal cells. The injured endometrium showed significantly upregulated N6-methyladenosine (m6A) modification levels; these levels were attenuated by MB-exos through downregulation of the methylase METTL3. Intriguingly, METTL3 downregulation appears to repress ferroptosis by stabilizing HMOX1 mRNA, thereby potentially elucidating the mechanism through which MB-exos inhibit ferroptosis in ESCs. We identified YTHDF2 as a critical m6A reader protein that contributes to HMOX1 mRNA degradation. YTHDF2 facilitates HMOX1 mRNA degradation by identifying the m6A binding site in the 3'-untranslated regions of HMOX1. In a rat model, treatment with MB-exos ameliorated endometrial injury-induced fibrosis by inhibiting ferroptosis in ESCs. Moreover, METTL3 short hairpin RNA-mediated inhibition of m6A modification enhanced the inhibitory effect of MB-exos on ferroptosis in endometrial injury. CONCLUSIONS Thus, these observations provide new insights regarding the molecular mechanisms responsible for endometrial recovery promotion by MB-exos and highlight m6A modification-dependent ferroptosis inhibition as a prospective therapeutic target to attenuate endometrial injury.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Yiqing Zhu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meng Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meiting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Chao Huang
- Department of Anatomy, Institute of Biomedical Engineering, Naval Medical University, Shanghai, 200433, China
| | - Dabing Xu
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Shuhan Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Ningxia Sun
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
28
|
Lai W, Yu J, Wen D. Diagnosis and Molecular Characterization of Potential RNA Binding Protein Involved in the Pathogenesis of Liver Ischemia Reperfusion Injury. J Inflamm Res 2024; 17:4881-4893. [PMID: 39070133 PMCID: PMC11278829 DOI: 10.2147/jir.s468828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Liver ischemia-reperfusion is one of the common complications after liver surgery. Uncontrolled liver ischemia-reperfusion will lead to many serious consequences such as surgical failure. It is an urgent clinical problem to search for diagnostic markers and explore its potential pathogenesis. METHODS In this study, we focus on 1411 candidate RNA binding protein. Through several GEO (Gene Expression Omnibus) online datasets, we construct a diagnostic model and perform interactive validation. We evaluate the efficacy of the prognostic model. Using bioinformatics methods, we predicted the relevant signaling pathways of liver ischemia-reperfusion and key genes. We also evaluated the association of RNA binding protein with immune cell infiltration. Single cell sequencing datasets were used to explore the expression profiles of key genes at the single cell level. Machine learning algorithm is used to predict key gene RNA binding domains. RESULTS ROC (Receiver Operating Characteristic) and DCA (Decision Curve Analysis) curves showed that the above diagnostic model had good and stable diagnostic efficacy and clinical practicability. We identified three key genes (BTG2, CCNL1 and DNAJB1) in liver ischemia-reperfusion. DNAJB1, BTG2 and CCNL1 are mainly expressed in immune cells such as macrophages and T cells, and are closely related to inflammatory pathways such as TNF-α, highlighting their importance in hepatic ischemia reperfusion. We identified RNA-binding domains of the above three genes. We found that the expression of DNAJB1, CCNL1 and BTG2 in the ischemia-reperfusion group were significantly higher than those in the sham operation group. CONCLUSION Our study revealed the importance of the candidate RNA binding protein in liver ischemia reperfusion injury and provided new insights into the therapeutic of hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Weiju Lai
- Central Laboratory, Chongqing FuLing Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Jiajian Yu
- Department of Hepatobiliary, Chongqing Fuling Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Diguang Wen
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
29
|
Liu H, Xue Q, Yang F, Cao W, Liu P, Liu X, Zhu Z, Zheng H. Foot-and-mouth disease virus VP1 degrades YTHDF2 through autophagy to regulate IRF3 activity for viral replication. Autophagy 2024; 20:1597-1615. [PMID: 38516932 PMCID: PMC11210904 DOI: 10.1080/15548627.2024.2330105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024] Open
Abstract
Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host's antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-β promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-β:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
30
|
Lin Q, Chen W, Tan J, Qian S, Su H, Zhao L, Yuan L, Ruan J, Huang X, Zhou H. Association of RAN and RANBP2 Gene Polymorphisms With Glioma Susceptibility in Chinese Children. Cancer Rep (Hoboken) 2024; 7:e2136. [PMID: 39041645 PMCID: PMC11264102 DOI: 10.1002/cnr2.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Glioma is the most prevalent pediatric central nervous system malignancy. RAN, member RAS oncogene family (RAN), is a key signaling molecule that regulates the polymerization of microtubules during mitosis. RAN binding protein 2 (RANBP2) is involved in DNA replication, mitosis, metabolism, and tumorigenesis. The effects of RAN and RANBP2 gene polymorphisms on glioma susceptibility in Chinese children are currently unknown. AIMS This study aimed to evaluate the association between RAN and RANBP2 gene polymorphisms and glioma susceptibility in Chinese children. METHODS AND RESULTS We recruited 191 patients with glioma and 248 children without cancer for this case-control study. Polymerase chain reaction-based TaqMan was applied to gene sequencing and typing. Logistic regression model-calculated odds ratio and 95% confidence interval were used to verify whether the gene polymorphisms (RAN rs56109543 C>T, rs7132224 A>G, rs14035 C>T, and RANBP2 rs2462788 C>T) influence glioma susceptibility. Based on age, gender, tumor subtype, and clinical stage, stratified analyses of risk and protective genotypes were conducted. p values for mutant genotype analyses were all >0.05, indicating no significant correlation between these gene polymorphisms and glioma risk. CONCLUSION RAN and RANBP2 gene polymorphisms were not found to be statistically significantly associated with glioma susceptibility in Chinese children. Other potential functional gene polymorphism loci of RAN and RANBP2 will need to be evaluated in the search for novel glioma biomarkers.
Collapse
Affiliation(s)
- Qianru Lin
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Wei Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child HealthGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiating Tan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Sifan Qian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Huarong Su
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Liang Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
31
|
Luo D, Tang H, Tan L, Zhang L, Wang L, Cheng Q, Lei X, Wu J. lncRNA JPX Promotes Tumor Progression by Interacting with and Destabilizing YTHDF2 in Cutaneous Melanoma. Mol Cancer Res 2024; 22:524-537. [PMID: 38441563 DOI: 10.1158/1541-7786.mcr-23-0701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 06/05/2024]
Abstract
Aberrant long noncoding RNAs just proximal to Xist (lncRNA JPX) expression levels have been detected in multiple tumors. However, whether JPX is involved in melanoma progression remains unclear. Our study showed that JPX expression is significantly increased in melanoma tissues and cell lines. To clarify the effect of JPX on cutaneous melanoma, we successfully generated JPX-overexpressing or JPX-knockdown A375 and A2058 cells. CCK-8, colony formation EdU, Transwell, and cell-cycle phase assays were performed, and subcutaneously implanted tumor models were used to determine the function of JPX in cutaneous melanoma. The results showed that JPX knockdown reduced the proliferation and migration of malignant melanoma cells both in vitro and in vivo. To further elucidate the molecular mechanism of JPX-induced cutaneous melanoma deterioration, we performed RNA pull-down, RNA immunoprecipitation, coimmunoprecipitation, Western blot, and RNA-sequence analyses. JPX can directly interact with YTHDF2 and impede the protection of YTHDF2 from ubiquitin-specific protease 10 (USP10), which promotes its deubiquitination. Thus, JPX decreases protein stability and promotes the degradation of YTHDF2, thereby stabilizing BMP2 mRNA and activating AKT phosphorylation. Overall, our study revealed a novel effect of JPX on YTHDF2 ubiquitination, suggesting the possibility of blocking the JPX/USP10/YTHDF2/BMP2 axis as a prospective therapeutic approach for cutaneous melanoma. IMPLICATIONS This study highlights the ubiquitination effect of USP10 and JPX on YTHDF2 in cutaneous melanoma, and proposes that the JPX/USP10/YTHDF2/BMP2 axis may be a prospective therapeutic target for cutaneous melanoma.
Collapse
Affiliation(s)
- Dan Luo
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hui Tang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liuchang Tan
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Long Zhang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Wang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qionghui Cheng
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinjin Wu
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Pang P, Si W, Wu H, Ju J, Liu K, Wang C, Jia Y, Diao H, Zeng L, Jiang W, Yang Y, Xiong Y, Kong X, Zhang Z, Zhang F, Song J, Wang N, Yang B, Bian Y. YTHDF2 Promotes Cardiac Ferroptosis via Degradation of SLC7A11 in Cardiac Ischemia-Reperfusion Injury. Antioxid Redox Signal 2024; 40:889-905. [PMID: 37548549 DOI: 10.1089/ars.2023.0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Affiliation(s)
- Ping Pang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Si
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunlei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linghua Zeng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Xiong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Kong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Wang H, Chen W, Wang Y, Gao Y, Zhang Z, Mi S, Wang L, Xue M. SUB1 promotes colorectal cancer metastasis by activating NF-κB signaling via UBR5-mediated ubiquitination of UBXN1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1199-1211. [PMID: 38240906 DOI: 10.1007/s11427-023-2429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 06/07/2024]
Abstract
Metastasis accounts for the major cause of colorectal cancer (CRC) related mortality due to the lack of effective treatments. In this study, we integrated the single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data and identified the transcriptional coactivator SUB1 homolog (Sac-Saccharomyces cerevisiae)/PC4 (positive cofactor 4) associated with CRC metastasis. Elevated SUB1 expression was correlated with advanced tumor stage and poor survival in CRC. In vivo and vitro assays showed that SUB1 depletion could inhibit the invasive and metastatic abilities of CRC cells. SUB1 activated NF-κB signaling and its transcriptional target genes CXCL1 and CXCL3 to drive CRC metastasis. Mechanistically, SUB1 integrated with the E3 ubiquitin-protein ligase UBR5 and increased its protein level in CRC cells. Subsequently, the increased UBR5 mainly mediated Lys11-linked polyubiquitination and degradation of NF-κB negative regulator UBXN1, thus to activate the NF-κB signaling. Overall, our study demonstrated that SUB1 promoted CRC progression by modulating UBR5/UBXN1 and activating NF-κB signaling, providing a new therapeutic strategy for treating metastatic CRC through targeting SUB1.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Yanting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zizhen Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Jiao K, Xu G, Liu Y, Yang Z, Xiang L, Chen Z, Xu C, Zuo Y, Wu Z, Zheng N, Xu W, Zhang L, Liu Y. UBXN1 promotes liver tumorigenesis by regulating mitochondrial homeostasis. J Transl Med 2024; 22:485. [PMID: 38773518 PMCID: PMC11110256 DOI: 10.1186/s12967-024-05208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.
Collapse
Affiliation(s)
- Kun Jiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - You Zuo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibai Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningqian Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
35
|
Zhang Y, Zhu Y, Zhang Y, Liu Z, Zhao X. YTHDF1 promotes the viability and self‑renewal of glioma stem cells by enhancing LINC00900 stability. Int J Oncol 2024; 64:53. [PMID: 38551160 PMCID: PMC11015915 DOI: 10.3892/ijo.2024.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
YTHDF1, an N6‑methyladenosine (m6A)‑binding protein, is significantly upregulated in glioma tissues. The present study investigated the molecular mechanism underlying the regulatory effects of YTHDF1 on the viability, invasion and self‑renewal of glioma stem cells (GSCs). Glioma and normal brain tissues were collected, and reverse transcription‑quantitative PCR and western blotting were used to measure the gene and protein expression levels, respectively. Methylated RNA immunoprecipitation‑PCR was used to assess the m6A modification level of the target gene. Subsequently GSCs were induced, and YTHDF1 and LINC00900 gene regulation was carried out using lentiviral infection. The viability, invasion and self‑renewal of GSCs were assessed by Cell Counting Kit‑8, Transwell and sphere formation assays, respectively. Binding between YTHDF1 and LINC00900 was verified by RNA immunoprecipitation and RNA pull‑down assays. The targeted binding of microRNA (miR)‑1205 to the LINC00900/STAT3 3'‑UTR was verified using a luciferase reporter assay. The results revealed that YTHDF1 and LINC00900 expression levels were significantly upregulated in glioma tissues, and a high m6A modification level in LINC00900 transcripts was detected in glioma tissues. Overexpression of YTHDF1 promoted GSC viability, invasion and self‑renewal, whereas knockdown of YTHDF1 had the opposite effects. In addition, YTHDF1 maintained the stability of LINC00900 and upregulated its expression through binding to it, thereby promoting GSC viability, invasion and self‑renewal. Furthermore, LINC00900 promoted GSC viability, invasion, self‑renewal and tumor growth by regulating the miR‑1205/STAT3 axis. In conclusion, YTHDF1 promotes GSC viability and self‑renewal by regulating the LINC00900/miR‑1205/STAT3 axis.
Collapse
Affiliation(s)
- Yuanhai Zhang
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Yi Zhu
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
| | - Zixiang Liu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
| | - Xudong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226019, P.R. China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, P.R. China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214002, P.R. China
- Wuxi Neurosurgical Institute, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
36
|
Yu P, Xu T, Ma W, Fang X, Bao Y, Xu C, Huang J, Sun Y, Li G. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-β-catenin pathway. J Exp Clin Cancer Res 2024; 43:116. [PMID: 38637831 PMCID: PMC11025288 DOI: 10.1186/s13046-024-03038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-β-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3β mRNA of the Wnt-β-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS Our results demonstrate the PRMT6-YTHDF2-Wnt-β-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Tutu Xu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning, China
| | - Xiang Fang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
- Department of Neurosurgery, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Bao
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chengran Xu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Jinhai Huang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Yongqing Sun
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Guangyu Li
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
37
|
Yao F, Zhong F, Jiang J, Cheng Y, Xu S, Liu J, Lin J, Zhang J, Li S, Li M, Xu Y, Huang B, Wang X. The m 6A regulator KIAA1429 stabilizes RAB27B mRNA and promotes the progression of chronic myeloid leukemia and resistance to targeted therapy. Genes Dis 2024; 11:993-1008. [PMID: 37692484 PMCID: PMC10491918 DOI: 10.1016/j.gendis.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a common adult leukemia. Both the acute phase of the disease and the adverse effects of anti-cancer treatments can lead to a poor prognosis. The N6-methyladenine (m6A) modification plays an important regulatory role in various physiological and pathological processes. KIAA1429 is a known m6A regulator, but the biological role of KIAA1429 in CML is unclear. In this study, we observed that the m6A levels and KIAA1429 expression were significantly up-regulated in patients with blast phase CML. Notably, KIAA1429 regulated the total level of RNA m6A modification in the CML cells and promoted the malignant biological behaviors of CML cells, including proliferation, migration, and imatinib resistance. Inhibiting KIAA1429 in CML cells reduced the stability of RAB27B mRNA through the m6A/YTHDF1 axis, consequently inhibiting CML proliferation and drug efflux, ultimately increasing the sensitivity of CML cells to imatinib. Moreover, the knockdown of RAB27B also inhibited the proliferation and drug resistance of CML cells and promoted their apoptosis. Rucaparib, a recently developed anti-cancer agent, suppressed the expression of KIAA1429 and CML cell proliferation and promoted cell apoptosis. Rucaparib also inhibited the tumorigenesis of CML cells in vivo. The combined use of rucaparib and imatinib enhanced the sensitivity of CML cells to imatinib. Our study provides evidence that elevated KIAA1429 expression in the blast phase of CML enhances the stability of RAB27B mRNA through the m6A/YTHDF1 axis to up-regulate RAB27B expression, thereby promoting CML progression. Rucaparib exerts inhibitory effects on KIAA1429 expression and thus reduces CML progression.
Collapse
Affiliation(s)
| | | | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuqi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Meiyong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
38
|
Yang H, Xie C, Wu YF, Cheng Y, Zhu DS, Guan YT. N 6-Methyladenosine (m 6A) Methylation Is Associated with the Immune Microenvironments in Acute Intracerebral Hemorrhage (ICH). Mol Neurobiol 2024; 61:1781-1793. [PMID: 37776495 DOI: 10.1007/s12035-023-03643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Researchers have recently found that N6-methyladenosine (m6A) is a type of internal posttranscriptional modification that is essential in mammalian mRNA. However, the features of m6A RNA methylation in acute intracerebral hemorrhage (ICH) remain unknown. To explore differential methylations and to discover their functions in acute ICH patients, we recruited three acute ICH patients, three healthy controls, and an additional three patients and healthy controls for validation. The m6A methylation levels in blood samples from the two groups were determined by ultrahigh-performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-QQQ-MS). Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was employed to identify differences in m6A modification, and the differentially expressed m6A-modified genes were confirmed by MeRIP-qPCR. We found no significant differences in the total m6A levels between the two groups but observed differential methylation peaks. Compared with the control group, the coding genes showing increased methylation following acute ICH were mostly involved in processes connected with osteoclast differentiation, the neurotrophin signaling pathway, and the spliceosome, whereas genes with reduced m6A modification levels after acute ICH were found to be involved in the B-cell and T-cell receptor signaling pathways. These results reveal that differentially m6A-modified genes may influence the immune microenvironments in acute ICH.
Collapse
Affiliation(s)
- Hong Yang
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Wu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Cheng
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - De-Sheng Zhu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Neurology, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Chen Z, Wang W, Hu S, Sun H, Chen C, Zhang Z, Sun X, Jia B, Hu J, Wang C, Liu Y, Sun Z. YTHDF2-mediated circYAP1 drives immune escape and cancer progression through activating YAP1/TCF4-PD-L1 axis. iScience 2024; 27:108779. [PMID: 38292420 PMCID: PMC10825049 DOI: 10.1016/j.isci.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Immune escape is identified as one of the reasons for the poor prognosis of colorectal cancer (CRC) patients. Circular RNAs are considered to promote tumor progression by mediating tumor immune escape. We discovered that higher expression of circYAP1 was associated with a worse prognosis of CRC patients. Functional experiments in vitro and in vivo showed that circYAP1 upregulation inhibited the cytotoxicity of CD8+ T cells by upregulating programmed death ligand-1 (PD-L1). Mechanistically, we found that circYAP1 directly binds to the YAP1 protein to prevent its phosphorylation, enhancing proportion of YAP1 protein in the nucleus, and that YAP1 interacts with TCF4 to target the PD-L1 promoter and initiate PD-L1 transcription in CRC cells. Taken together, circYAP1 promotes CRC immune escape and tumor progression by activating the YAP1/TCF4-PD-L1 axis and may provide a new strategy for combination immunotherapy of CRC patients.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinzhi Sun
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bin Jia
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
40
|
Yang E, Fan X, Ye H, Sun X, Ji Q, Ding Q, Zhong S, Zhao S, Xuan C, Fang M, Ding X, Cao J. Exploring the role of ubiquitin regulatory X domain family proteins in cancers: bioinformatics insights, mechanisms, and implications for therapy. J Transl Med 2024; 22:157. [PMID: 38365777 PMCID: PMC10870615 DOI: 10.1186/s12967-024-04890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.
Collapse
Affiliation(s)
- Enyu Yang
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaowei Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haihan Ye
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyang Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong , 999077, Special Administrative Region, China
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shulian Zhong
- Zhejiang Sci-Tech University Hospital, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuo Zhao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Xuan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
41
|
Xie GS, Richard HT. m 6A mRNA Modifications in Glioblastoma: Emerging Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:727. [PMID: 38398118 PMCID: PMC10886660 DOI: 10.3390/cancers16040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor, is highly invasive and neurologically destructive. The mean survival for glioblastoma patients is approximately 15 months and there is no effective therapy to significantly increase survival times to date. The development of effective therapy including mechanism-based therapies is urgently needed. At a molecular biology level, N6-methyladenine (m6A) mRNA modification is the most abundant posttranscriptional RNA modification in mammals. Recent studies have shown that m6A mRNA modifications affect cell survival, cell proliferation, invasion, and immune evasion of glioblastoma. In addition, m6A mRNA modifications are critical for glioblastoma stem cells, which could initiate the tumor and lead to therapy resistance. These findings implicate the function of m6A mRNA modification in tumorigenesis and progression, implicating its value in prognosis and therapies of human glioblastoma. This review focuses on the potential clinical significance of m6A mRNA modifications in prognostic and therapeutics of glioblastoma. With the identification of small-molecule compounds that activate or inhibit components of m6A mRNA modifications, a promising novel approach for glioblastoma therapy is emerging.
Collapse
Affiliation(s)
- Gloria S. Xie
- Martel College, Rice University, Houston, TX 77005, USA;
| | - Hope T. Richard
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23219, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
42
|
Pan A, Xue Y, Ruan X, Dong W, Wang D, Liu Y, Liu L, Lin Y, E T, Lin H, Xu H, Liu X, Wang P. m5C modification of LINC00324 promotes angiogenesis in glioma through CBX3/VEGFR2 pathway. Int J Biol Macromol 2024; 257:128409. [PMID: 38016610 DOI: 10.1016/j.ijbiomac.2023.128409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Angiogenesis plays a major role in tumor initiation, progression, and metastasis. This is why finding antiangiogenic targets is essential in the treatment of gliomas. In this study, NSUN2 and LINC00324 were significantly upregulated in conditionally cultured glioblastoma endothelial cells (GECs). Knockdown of NSUN2 or LINC00324 inhibits GECs angiogenesis. NSUN2 increased the stability of LINC00324 by m5C modification and upregulated LINC00324 expression. LINC00324 competes with the 3'UTR of CBX3 mRNA to bind to AUH protein, reducing the degradation of CBX3 mRNA. In addition, CBX3 directly binds to the promoter region of VEGFR2, enhances VEGFR2 transcription, and promotes GECs angiogenesis. These findings demonstrated NSUN2/LINC00324/CBX3 axis plays a crucial role in regulating glioma angiogenesis, which provides new strategies for glioma therapy.
Collapse
Affiliation(s)
- Aini Pan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hailing Xu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China..
| |
Collapse
|
43
|
Li Y, Lou S, Zhang J, Zhao S, Lou G. m 6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway. J Transl Med 2024; 22:113. [PMID: 38281945 PMCID: PMC10823642 DOI: 10.1186/s12967-024-04929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ovarian cancer poses a serious threat to women's health. Due to the difficulty of early detection, most patients are diagnosed with advanced-stage disease or peritoneal metastasis. We found that LncRNA MEG3 is a novel tumor suppressor, but its role in tumor occurrence and development is still unclear. METHODS We investigated the expression level of MEG3 in pan-cancer through bioinformatics analysis, especially in gynecological tumors. Function assays were used to detect the effect of MEG3 on the malignant phenotype of ovarian cancer. RIP, RNA pull-down, MeRIP-qPCR, actinomycin D test were carried out to explore the m6A methylation-mediated regulation on MEG3. Luciferase reporter gene assay, PCR and Western blot were implemented to reveal the potential mechanism of MEG3. We further confirmed the influence of MEG3 on tumor growth in vivo by orthotopic xenograft models and IHC assay. RESULTS In this study, we discovered that MEG3 was downregulated in various cancers, with the most apparent downregulation in ovarian cancer. MEG3 inhibited the proliferation, migration, and invasion of ovarian cancer cells. Overexpression of MEG3 suppressed the degradation of VASH1 by negatively regulating miR-885-5p, inhibiting the ovarian cancer malignant phenotype. Furthermore, we demonstrated that MEG3 was regulated at the posttranscriptional level. YTHDF2 facilitated MEG3 decay by recognizing METTL3‑mediated m6A modification. Compared with those injected with vector control cells, mice injected with MEG3 knockdown cells showed larger tumor volumes and faster growth rates. CONCLUSION We demonstrated that MEG3 is influenced by METTL3/YTHDF2 methylation and restrains ovarian cancer proliferation and metastasis by binding miR-885-5p to increase VASH1 expression. MEG3 is expected to become a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, 150007, Heilongjiang, China
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shenghan Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jian Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shilu Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
44
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
45
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
46
|
Wen T, Li T, Xu Y, Zhang Y, Pan H, Wang Y. The role of m6A epigenetic modifications in tumor coding and non-coding RNA processing. Cell Commun Signal 2023; 21:355. [PMID: 38102645 PMCID: PMC10722709 DOI: 10.1186/s12964-023-01385-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Epigenetic modifications of RNA significantly contribute to the regulatory processes in tumors and have, thus, received considerable attention. The m6A modification, known as N6-methyladenosine, is the predominant epigenetic alteration found in both eukaryotic mRNAs and ncRNAs. MAIN BODY m6A methylation modifications are dynamically reversible and are catalyzed, removed, and recognized by the complex of m6A methyltransferase (MTases), m6A demethylase, and m6A methyl recognition proteins (MRPs). Published evidence suggests that dysregulated m6A modification results in abnormal biological behavior of mature mRNA, leading to a variety of abnormal physiological processes, with profound implications for tumor development in particular. CONCLUSION Abnormal RNA processing due to dysregulation of m6A modification plays an important role in tumor pathogenesis and potential mechanisms of action. In this review, we comprehensively explored the mechanisms by which m6A modification regulates mRNA and ncRNA processing, focusing on their roles in tumors, and aiming to understand the important regulatory function of m6A modification, a key RNA epigenetic modification, in tumor cells, with a view to providing theoretical support for tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Tongxuan Wen
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Tong Li
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Hai Pan
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| |
Collapse
|
47
|
Li C, Li B, Wang H, Qu L, Liu H, Weng C, Han J, Li Y. Role of N6-methyladenosine methylation in glioma: recent insights and future directions. Cell Mol Biol Lett 2023; 28:103. [PMID: 38072944 PMCID: PMC10712162 DOI: 10.1186/s11658-023-00514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Glioma is the most pervasive intracranial tumor in the central nervous system (CNS), with glioblastoma (GBM) being the most malignant type having a highly heterogeneous cancer cell population. There is a significantly high mortality rate in GBM patients. Molecular biomarkers related to GBM malignancy may have prognostic values in predicting survival outcomes and therapeutic responses, especially in patients with high-grade gliomas. In particular, N6-methyladenine (m6A) mRNA modification is the most abundant form of post-transcriptional RNA modification in mammals and is involved in regulating mRNA translation and degradation. Cumulative findings indicate that m6A methylation plays a crucial part in neurogenesis and glioma pathogenesis. In this review, we summarize recent advances regarding the functional significance of m6A modification and its regulatory factors in glioma occurrence and progression. Significant advancement of m6A methylation-associated regulators as potential therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Bowen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Wang
- Department of Acupuncture, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, 277000, Shandong, China
| | - Linglong Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Suzhou Research Institute of Shandong University, Suzhou 215123, China.
| |
Collapse
|
48
|
Zhou Y, Zhou X, Ben Q, Liu N, Wang J, Zhai Y, Bao Y, Zhou L. GATA6-AS1 suppresses epithelial-mesenchymal transition of pancreatic cancer under hypoxia through regulating SNAI1 mRNA stability. J Transl Med 2023; 21:882. [PMID: 38057853 PMCID: PMC10698911 DOI: 10.1186/s12967-023-04757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a hypoxic microenvironment, a high rate of heterogeneity as well as a high likelihood of recurrence. Mounting evidence has affirmed that long non-coding RNAs (lncRNAs) participate in the carcinogenesis of PDAC cells. In this study, we revealed significantly decreased expression of GATA6-AS1 in PDAC based on the GEO dataset and our cohorts, and showed that low GATA6-AS1 expression was linked to unfavorable clinicopathologic characteristics as well as a poor prognosis. Gain- and loss-of-function studies demonstrated that GATA6-AS1 suppressed the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process of PDAC cells under hypoxia. In vivo data confirm the suppressive roles of GATA6-AS1/SNAI1 in tumor growth and lung metastasis of PDAC. Mechanistically, hypoxia-driven E26 transformation-specific sequence-1 (ETS1), as an upstream modulatory mechanism, was essential for the downregulation of GATA6-AS1 in PDAC cells. GATA6-AS1 inhibited the expression of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) eraser, and repressed SNAI1 mRNA stability in an m6A-dependent manner. Our data suggested that GATA6-AS1 can inhibit PDAC cell proliferation, invasion, migration, EMT process and metastasis under hypoxia, and disrupting the GATA6-AS1/FTO/SNAI1 axis might be a viable therapeutic approach for refractory hypoxic pancreatic cancers.
Collapse
Affiliation(s)
- Yunhui Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Xinyi Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Qiwen Ben
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ningning Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Jiahui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Yongpeng Zhai
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Yichen Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Lin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Liu S, Xiang D. New understandings of the genetic regulatory relationship between non-coding RNAs and m 6A modification. Front Genet 2023; 14:1270983. [PMID: 38125749 PMCID: PMC10731383 DOI: 10.3389/fgene.2023.1270983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most frequent epigenetic modifications of RNA in eukaryotes is N6 methyladenosine (m6A), which is mostly present in messenger RNAs. Through the influence of several RNA processing stages, m6A modification is a crucial approach for controlling gene expression, especially in cancer progression. It is universally acknowledged that numerous non-coding RNAs (ncRNAs), such as microRNAs, circular RNAs, long non-coding RNAs, and piRNAs, are also significantly affected by m6A modification, and the complex genetic regulatory relationship between m6A and ncRNAs plays a pivotal role in the development of cancer. The connection between m6A modifications and ncRNAs offers an opportunity to explore the oncogene potential regulatory mechanisms and suggests that m6A modifications and ncRNAs could be vital biomarkers for multiple cancers. In this review, we discuss the mechanisms of interaction between m6A methylation and ncRNAs in cancer, and we also summarize diagnostic and prognostic biomarkers for clinical cancer detection. Furthermore, our article includes some methodologies for identifying m6A sites when assessing biomarker potential.
Collapse
Affiliation(s)
- Songtao Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dayong Xiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Jiang T, Xiao Y, Zhou J, Luo Z, Yu L, Liao Q, Liu S, Qi X, Zhang H, Hou M, Miao W, Batsaikhan B, Damba T, Liang Y, Li Y, Zhou L. Arbutin alleviates fatty liver by inhibiting ferroptosis via FTO/SLC7A11 pathway. Redox Biol 2023; 68:102963. [PMID: 37984229 PMCID: PMC10694775 DOI: 10.1016/j.redox.2023.102963] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a potentially serious disease that affects 30 % of the global population and poses a significant risk to human health. However, to date, no safe, effective and appropriate treatment modalities are available. In recent years, ferroptosis has emerged as a significant mode of cell death and has been found to play a key regulatory role in the development of NAFLD. In this study, we found that arbutin (ARB), a natural antioxidant derived from Arctostaphylos uva-ursi (L.), inhibits the onset of ferroptosis and ameliorates high-fat diet-induced NAFLD in vivo and in vitro. Using reverse docking, we identified the demethylase fat mass and obesity-related protein (FTO) as a potential target of ARB. Subsequent mechanistic studies revealed that ARB plays a role in controlling methylation of the SLC7A11 gene through inhibition of FTO. In addition, we demonstrated that SLC7A11 could alleviate the development of NAFLD in vivo and in vitro. Our findings identify the FTO/SLC7A11 axis as a potential therapeutic target for the treatment of NAFLD. Specifically, we show that ARB alleviates NAFLD by acting on the FTO/SLC7A11 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yao Xiao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jinfeng Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qichao Liao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyi Qi
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Zhang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Menglong Hou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - WeiWei Miao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|