1
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
2
|
Xu Q, Wang R, Sui K, Xu Y, Zhou Y, He Y, Hu Z, Wang Q, Xie X, Wang X, Yang S, Zeng L, Zhong JF, Wang Z, Song Q, Zhang X. Enhance the therapeutic efficacy of human umbilical cord-derived mesenchymal stem cells in prevention of acute graft-versus-host disease through CRISPLD2 modulation. Stem Cell Res Ther 2025; 16:222. [PMID: 40312744 PMCID: PMC12044869 DOI: 10.1186/s13287-025-04321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) remains a major life-threatening complication of allogeneic haematopoietic cell transplantation (allo-HSCT), often limiting the therapeutic efficacy of allo-HSCT. Recent studies have suggested that mesenchymal stem cells (MSCs) may be beneficial for the treatment of aGVHD. However, the therapeutic potential of MSCs is often negatively impacted by their heterogeneity. METHODS To investigate MSCs heterogeneity, we conducted single-cell transcriptomic analysis of human umbilical cord-derived MSCs (HUC-MSCs) and identified key feature genes that distinguish MSCs subpopulations. The function of the newly discovered biomarker CRISPLD2 was also explored. We engineered human umbilical cord-derived MSCs (HUC-MSCs) to overexpress the CRISPLD2 gene using lentiviral vectors. The downstream regulatory effects of CRISPLD2 overexpression were assessed through bulk RNA sequencing. Additionally, we evaluated its impact on cellular senescence using Western blotting and β-galactosidase (SA-β-gal) staining. The immunoregulatory capability of HUC-MSCs was tested through coculture experiments with T cells and liver organoids in vitro. Mitochondrial function was analysed via flow cytometry and electron microscopy. The in vivo therapeutic effects of HUC-MSCs on aGVHD were evaluated using an aGVHD murine model. The graft-versus-leukaemia (GVL) effect was measured via the inoculation of luciferase-positive A20 cells, and tumour growth was monitored via bioluminescence imaging. RESULTS Our findings indicated that the CRISPLD2 gene is heterogeneously expressed in HUC-MSCs subsets characterized by stemness and immunosuppressive properties. Transcriptomic analysis revealed that CRISPLD2 overexpression suppressed calcium ion binding and G protein-coupled receptor signalling. In vitro studies demonstrated a marked increase in IL-10 secretion, which enhanced T-cell suppression in CRISPLD2-modified HUC-MSCs. The in vivo results demonstrated that transfusion of CRISPLD2-overexpressing HUC-MSCs ameliorated aGVHD while maintaining GVL activity. Mechanistically, CRISPLD2 overexpression overcomes the mitochondrial damage mediated by extracellular ATP and LPS in HUC-MSCs by inhibiting P2Y11 receptor signalling, thereby preserving their stemness and IL-10-mediated immunosuppressive functions. CONCLUSIONS Our study revealed that CRISPLD2 is a novel marker for identifying HUC-MSCs subpopulation with enhanced immunosuppressive functions. CRISPLD2 overexpression enhances the immunosuppressive function of HUC-MSCs by inhibiting P2Y11 receptor signalling. Targeting CRISPLD2 is a promising strategy to improve the therapeutic efficacy of HUC-MSCs in aGVHD while maintaining GVL activity.
Collapse
Affiliation(s)
- Qing Xu
- School of Life Sciences, Chongqing University, Chongqing, 405200, China
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ke Sui
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ya Zhou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Yuxuan He
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Qi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xiaodong Xie
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiang F Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
3
|
Smallbone P, Kebriaei P, Mendt M, Shpall EJ, Olson AL, Fingrut WB. Mesenchymal stem cells in hematology: Therapeutic initiatives and future directions. Best Pract Res Clin Haematol 2025; 38:101613. [PMID: 40274341 DOI: 10.1016/j.beha.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the landscape of hematology has undergone rapid transformation, driven by innovative therapeutic strategies harnessing the properties of novel cellular therapies. Mesenchymal stem cells (MSCs) represent one of these promising therapies, with potential applications across a range of hematologic conditions. These cells are notable for their immunomodulatory properties, key role in supporting the hematopoietic micro-environment and capacity for multi-directional differentiation. This review will focus on the biologic mechanisms underlying MSC therapeutic use, current avenues of clinical investigation, and potential challenges and future directions for MSC derived therapies.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren B Fingrut
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Lin G, Tao M, Sun H, Deng X, Zhang L, Sun G, Zhou Y, Xu G. HGF-DPSCs ameliorate asthma by regulating CCR1 + Th2 cells responses in mice pulmonary mucosa. Cytotherapy 2025:S1465-3249(25)00063-5. [PMID: 40072405 DOI: 10.1016/j.jcyt.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Asthma, a prevalent allergic disease affecting approximately 300 million individuals globally, remains a significant public health challenge. Mesenchymal stromal cells (MSCs) and hepatocyte growth factor (HGF), both recognized for their immunomodulatory properties, hold therapeutic potential for asthma. However, their precise mechanisms remain underexplored. The current study aimed to engineer human HGF overexpressing human dental pulp stromal cells (HGF-DPSCs) and evaluate their efficacy in asthma management while elucidating underlying mechanisms. The results showed that the constructed HGF-DPSCs overexpressed HGF both in vitro and in vivo. Also, compared with DPSCs, they demonstrated a more pronounced distribution within lung tissue. In house dust mite (HDM)-induced asthma, HGF-DPSCs showed a more significant inhibitory effect on airway hyperresponsiveness (AHR), inflammatory infiltration, and CD4+ T-cell recruitment compared with DPSCs. Immunofluorescence analysis revealed a spatial overlap between HGF-DPSCs and pulmonary epithelial cells. Protein array analysis identified the chemokine Ckβ8-1 as a pivotal factor in the interaction between HGF-DPSCs and bronchial epithelial Beas-2B cells. Subsequent mechanistic investigations demonstrated that administration of HGF-DPSCs markedly reduced both the expression of Ckβ8-1 protein and the proportion of CD4+CCR1+ T lymphocytes in the lungs of asthmatic mice. Furthermore, transwell migration assays incorporating a CKβ8-1 antagonist revealed a significant inhibition of CD4+ T-cell migration. Flow cytometry analysis indicated that CD4+CCR1+ T cells from the lungs of asthmatic mice exhibit a pronounced Th2 phenotype, characterized by high expression levels of IL-4, IL-5, and IL-13 cytokines. In conclusion, HGF-DPSCs ameliorate HDM-induced asthma by suppressing CCR1+ Th2 cell responses via modulation of the Ckβ8-1/CCR1 axis, highlighting their potential as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Geng Lin
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Mengyu Tao
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Letong Zhang
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Guixiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Zhou
- Beijing SH Bio-tech Company, Beijing, China.
| | - Guogang Xu
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Valencia J, Yáñez RM, Muntión S, Fernández-García M, Martín-Rufino JD, Zapata AG, Bueren JA, Vicente Á, Sánchez-Guijo F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front Immunol 2025; 16:1473788. [PMID: 40034706 PMCID: PMC11872697 DOI: 10.3389/fimmu.2025.1473788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed. Methods We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus. Results Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus. Conclusions Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Collapse
Affiliation(s)
- Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M. Yáñez
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sandra Muntión
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| | - María Fernández-García
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorge Diego Martín-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Agustín G. Zapata
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Juan A. Bueren
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Fermín Sánchez-Guijo
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| |
Collapse
|
6
|
Lu W, Allickson J. Mesenchymal stromal cell therapy: Progress to date and future outlook. Mol Ther 2025:S1525-0016(25)00093-0. [PMID: 39916329 DOI: 10.1016/j.ymthe.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
In clinical trials, mesenchymal stromal/stem cells (MSCs) have consistently demonstrated safety. However, demonstration of efficacy has been inconsistent and many MSC trials have failed to meet their efficacy endpoint. This disappointing reality is reflected by the limited number MSC therapies approved by regulatory agencies, despite the large number of MSC trials registered on clinicaltrials.gov. Notably, there has been a recent approval of an MSC therapy for pediatric graft-vs.-host disease in the United States, marking the first MSC therapy approved by the U.S. Food and Drug Administration. This review provides a background of the history and potential therapeutic value of MSCs, an overview of MSC products with regulatory approval, and a summary of registered MSC trials. It concludes with a discussion on current and ongoing challenges and questions surrounding MSC therapy that remains to be resolved before becoming available for routine clinical use outside of clinical trials.
Collapse
Affiliation(s)
- Wen Lu
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Julie Allickson
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Ulu BU, Hindilerden IY, Yigenoglu TN, Tiryaki TO, Erkurt MA, Korkmaz G, Namdaroglu S, Aksoy E, Korkmaz S, Seyhan M, Yilmaz S, Besisik SK, Dal MS, Ulas T, Altuntas F. Are mesenchymal stem cells still effective in acute GvHD management? Transfus Apher Sci 2025; 64:104051. [PMID: 39721135 DOI: 10.1016/j.transci.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Graft-versus-host disease (GvHD) is a common and serious complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT), significantly impacting transplant efficacy. In the treatment of GvHD, numerous therapeutic approaches have been explored, with mesenchymal stem cells (MSCs) emerging as a prominent immunomodulatory option. We aimed to evaluate efficacy and outcomes of using MSCs for steroid refractory acute GVHD (SR-aGvHD) management. MATERIALS AND METHODS We retrospectively analyzed data from 36 patients' who received MSCs for treatment of SR-aGvHD following allo-HSCT between 2018 and 2024 from nine transplantation centers in Türkiye. The product consisted of umbilical cord-derived allogeneic MSCs, which were administered intravenously. RESULTS Our cohort was at the median age of 39 years (range: 19-61 years), with aGvHD diagnosed at a median of two months after allo-HSCT. More than half of the patients (58.3 %) classified as high-grade aGvHD according to the Minnesota risk scoring. Cord blood-derived MSCs were administered at a median dose of 3.45 (range: 0.8-5) million MSCs/kg, with a median of 3th (range: 2-5) line treatment. The rate of responses exceeding partial response (PR) was approximately 20 % at the first month, increasing to 24 % at the second month. The six-month survival rate was 33 %, with 46 % of mortality attributed to sepsis and 12.5 % related to GvHD. Multivariate analysis indicated that increasing age (≥35 years) and lower platelet counts (≤75 x109/L) were associated with higher mortality (p < 0.05). CONCLUSION MSC therapy has shown promising potential in improving response rates in aGvHD treatment, with efficacy enhanced by younger age and higher platelet counts.
Collapse
Affiliation(s)
- Bahar Uncu Ulu
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey.
| | - Ipek Yonal Hindilerden
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Tugce Nur Yigenoglu
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Tarik Onur Tiryaki
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Mehmet Ali Erkurt
- Inonu University, Faculty of Medicine, Department of Hematology, Malatya, Turkey
| | - Gulten Korkmaz
- Ankara Bilkent City Hospital, Department of Hematology and Bone Marrow Transplantation Unit, Ankara, Turkey
| | - Sinem Namdaroglu
- Dokuz Eylul University, Faculty of Medicine, Department of Hematology, Izmir, Turkey
| | - Elif Aksoy
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Clinic of Hematology, Istanbul, Turkey
| | - Serdal Korkmaz
- University of Health Sciences, Kayseri Medical Faculty, Department of Hematology and Bone Marrow Transplantation Unit, Kayseri, Turkey
| | - Mert Seyhan
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Seda Yilmaz
- University of Health Sciences, Konya Medical Faculty, Department of Hematology and Bone Marrow Transplantation Unit, Konya, Turkey
| | - Sevgi Kalayoglu Besisik
- Istanbul University Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Mehmet Sinan Dal
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Turgay Ulas
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey
| | - Fevzi Altuntas
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology & Apheresis Unit, Ankara, Turkey; Ankara Yildirim Beyazit University, School of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| |
Collapse
|
8
|
Wang D, Huo R, Ye L. Identification of lethality-related m7G methylation modification patterns and the regulatory features of immune microenvironment in sepsis. Heliyon 2025; 11:e40870. [PMID: 39758389 PMCID: PMC11699318 DOI: 10.1016/j.heliyon.2024.e40870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
Objectives N7-methylguanosine (m7G) modification is closely related to the occurrence of human diseases, but its roles in sepsis remain unclear. This study aimed to explore the patterns of lethality-related m7G regulatory factor-mediated RNA methylation modification and immune microenvironment regulatory features in sepsis. Methods Three sepsis-related datasets (E-MTAB-4421 and E-MTAB-4451 as training sets and GSE185263 as a validation set) were collected, and differentially expressed m7G-related genes were analyzed between survivors and non-survivors. Lethality-related m7G signature genes were then screened using machine learning methods, followed by the construction of a survival recognition model. Additionally, differences in immune cell distribution were determined and differentially expressed genes (DEGs) between different subtypes were analyzed. Weighted gene co-expression network analysis (WGCNA) was used to select important modules and related hub genes. Results In total, 10 differentially expressed m7G-related genes were identified between the survivors and non-survivors, and after further analysis, EIF4G3, EIF4E3, NSUN2, NUDT4, and GEMIN5 were identified as the optimal lethality-related m7G genes. A survival status diagnostic model was then constructed with a combined AUC of 0.678. Fifteen types of immune cells were significantly different between survivors and non-survivors. Sepsis samples were classified into two subtypes, with 22 types of immune cells showing significant differences. Subsequently, 1707 DEGs were identified between the two subtypes, which were significantly enriched in 91 GO terms and 16 KEGG pathways. Finally, the green module with |correlation| > 0.3 was found to be closely related to the subtypes and survival status; further, the top10 hub genes were obtained. Conclusion The constructed survival status diagnostic model based on the five lethality-related m7G signature genes may help predict the survival status of patients, and the 10 hub genes obtained may be potential therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, 030000, Taiyuan, China
| | - Rujie Huo
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, 030000, Taiyuan, China
| | - Lu Ye
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, 030000, Taiyuan, China
| |
Collapse
|
9
|
Klabukov I, Shatveryan G, Bagmet N, Aleshina O, Ivanova E, Savina V, Gilmutdinova I, Atiakshin D, Ignatyuk M, Baranovskii D, Shegay P, Kaprin A, Eremin I, Chardarov N. Local Application of Minimally Manipulated Autologous Stromal Vascular Fraction (SVF) Reduces Inflammation and Improves Bilio-Biliary Anastomosis Integrity. Int J Mol Sci 2024; 26:222. [PMID: 39796076 PMCID: PMC11720677 DOI: 10.3390/ijms26010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes. The stromal vascular fraction (SVF), a heterogeneous cell population derived from adipose tissue, has demonstrated promise in regenerative medicine due to its rich content of stem cells, endothelial progenitor cells, and growth factors. The objective of this study was to evaluate the potential of locally administered autologous SVF to enhance the healing of BBAs. Bilio-biliary anastomosis was performed on a swine model (female Landrace pigs). Six swine were divided into two groups: the treatment group (n = 3) received a local application of autologous SVF around the anastomosis site immediately following BBA formation, while the control group (n = 3) received saline. The primary outcomes were assessed over an eight-week period post-surgery, and included anastomosis healing, stricture formation, and bile leakage. Histological analysis was performed to evaluate fibrosis, angiogenesis, and inflammation. Immunohistochemistry was conducted to assess healing-related markers (CD34, α-SMA) and the immunological microenvironment (CD3, CD10, tryptase). The SVF-treated group exhibited significantly enhanced healing of the BBA. Histological examination revealed increased angiogenesis and reduced fibrosis in the SVF group. Immunohistochemical staining demonstrated higher vascular density in the anastomosed area of the SVF-treated group (390 vs. 210 vessels per 1 mm2, p = 0.0027), as well as a decrease in wall thickness (1.9 vs. 1.0 mm, p = 0.0014). There were no statistically significant differences in mast cell presence (p = 0.40). Immunohistochemical staining confirmed the overexpression of markers associated with tissue repair. Local injections of autologous SVF at the site of BBA have been demonstrated to significantly enhance healing and promote tissue regeneration. These findings suggest that SVF could be a valuable adjunctive therapy in BBA surgery, potentially improving surgical outcomes. However, further investigation is needed to explore the clinical applicability and long-term benefits of this novel approach in clinical practice as a minimally manipulated cell application.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
| | - Garnik Shatveryan
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Nikolay Bagmet
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Olga Aleshina
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Elena Ivanova
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Victoria Savina
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Ilmira Gilmutdinova
- National Medical Research Center for Rehabilitation and Balneology of the Ministry of Health of the Russian Federation, Novyy Arbat Str. 2, 121099 Moscow, Russia
| | - Dmitry Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
- Department of Biomedicine, University Hospital Basel, Basel University, 4001 Basel, Switzerland
- Research and Educational Resource Center for Cellular Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ilya Eremin
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Nikita Chardarov
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| |
Collapse
|
10
|
Chen B, Chen Z, He M, Zhang L, Yang L, Wei L. Recent advances in the role of mesenchymal stem cells as modulators in autoinflammatory diseases. Front Immunol 2024; 15:1525380. [PMID: 39759531 PMCID: PMC11695405 DOI: 10.3389/fimmu.2024.1525380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Mesenchymal stem cells (MSCs), recognized for their self-renewal and multi-lineage differentiation capabilities, have garnered considerable wide attention since their discovery in bone marrow. Recent studies have underscored the potential of MSCs in immune regulation, particularly in the context of autoimmune diseases, which arise from immune system imbalances and necessitate long-term treatment. Traditional immunosuppressive drugs, while effective, can lead to drug tolerance and adverse effects, including a heightened risk of infections and malignancies. Consequently, adjuvant therapy incorporating MSCs has emerged as a promising new treatment strategy, leveraging their immunomodulatory properties. This paper reviews the immunomodulatory mechanisms of MSCs and their application in autoimmune diseases, highlighting their potential to regulate immune responses and reduce inflammation. The immunomodulatory mechanisms of MSCs are primarily mediated through direct cell contact and paracrine activity with immune cells. This review lays the groundwork for the broader clinical application of MSCs in the future and underscores their significant scientific value and application prospects. Further research is expected to enhance the efficacy and safety of MSCs-based treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Baiyu Chen
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Zhilei Chen
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Mengfei He
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Lijie Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Lingling Wei
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
11
|
Jiang E, Qian K, Wang L, Yang D, Shao Y, Hu L, Li Y, Yao C, Han M, Hou X, Liu D. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells versus placebo added to second-line therapy in patients with steroid-refractory acute graft-versus-host disease: a multicentre, randomized, double-blind, phase 2 trial. BMC Med 2024; 22:555. [PMID: 39587570 PMCID: PMC11590523 DOI: 10.1186/s12916-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Failure of systemic corticosteroid therapy is common in patients with newly diagnosed acute graft-versus-host disease (aGVHD) above grade II. Mesenchymal stem cells (MSCs) have been used as a tolerable and potentially effective second-line therapy for steroid-refractory aGVHD (SR-aGVHD); however, well-designed, prospective, controlled studies are lacking. METHODS This multicentre, randomized, double-blind, placebo-controlled, exploratory phase 2 study enrolled patients with SR-aGVHD above grade II from 7 centres. Patients were randomized 1:1 to receive umbilical cord-derived MSCs or placebo added to one centre's choice of second-line agents (except for ruxolitinib). The agents were infused twice weekly. Patients with complete response (CR), no response (NR), or progression of disease (PD) at d28 received 8 infusions, and those with partial response (PR) received the above infusions for another 4 weeks. The per-protocol population consisted of patients who received ≥ 8 infusions. The primary endpoint was the overall response rate (ORR, CR + PR) at d28, analyzed in the per-protocol and intention-to-treat populations. RESULTS Seventy-eight patients (median age 38, range 13-62) were enrolled: 40 in the MSC group and 38 in the control. Patients in the MSC group received a median of 8 doses, with a median response time of 14 days. In intention-to-treat analysis, ORR at d28 was 60% for MSC group and 50% for control group (p = 0.375). The 2-year cumulative incidence of moderate to severe cGVHD was marginally lower in the MSC group than in the control (13.8% vs. 39.8%, p = 0.067). The 2-year failure-free survival was similar between the MSC and control groups (52.5% vs. 44.4%, p = 0.43). In per-protocol analysis (n = 62), ORR at d28 was significantly greater in the MSC group than in the control group (71.9% vs. 46.7%, p = 0.043). Among patients with gut involvement, ORR at d28 was significantly greater in the MSC group than in the control (66.7% vs. 33.3%, p = 0.031). The adverse events incidences were similar between groups. CONCLUSIONS In this exploratory study, there was no superior ORR at d28 demonstrated in the MSC group compared with the control. However, MSCs showed a gradual treatment effect at a median of 2 weeks. Patients who completed 8 infusions may benefit from adding MSCs to one conventional second-line agent, especially those with gut involvement. MSCs was well tolerated in patients with SR-aGVHD. TRIAL REGISTRATION chictr.org.cn ChiCTR2000035740.
Collapse
Affiliation(s)
- Erlie Jiang
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China
| | - Kun Qian
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Lu Wang
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China
| | - Yangliu Shao
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Liangding Hu
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Yuhang Li
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China
| | - Chen Yao
- Peking University Clinical Research Institute, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300041, China.
| | - Xiaoqiang Hou
- Platinumlife Biotechnology (Beijing) Co., Ltd, Beijing Economic-Technological Development Area, 8 Ruihe Road, Beijing, 100176, China.
| | - Daihong Liu
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China.
- Department of Hematology, theFifth Medical Center of ChineseFengtai District, PLA General Hospital, 8 East Street, Beijing, 100071, China.
| |
Collapse
|
12
|
[Chinese expert consensus on the diagnosis and treatment of chronic graft-versus-host disease (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:713-726. [PMID: 39307718 PMCID: PMC11535560 DOI: 10.3760/cma.j.cn121090-20240611-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 12/06/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) is a common and severe complication following allogeneic hematopoietic stem cell transplantation, which significantly impacts patients' survival and quality of life. In recent years, notable progress has been made in the diagnosis, prevention, and treatment of cGVHD, driven by the emergence of novel therapies such as targeted drugs and the advancement of clinical research. This consensus, based on the latest developments in cGVHD research and growing data from evidence-based medicine, has been revised and updated from the "Chinese consensus on the diagnosis and management of chronic graft-versus-host disease (2021)" to better guide clinical practice.
Collapse
|
13
|
Kim NH, Hamadani M, Abedin S. New investigational drugs for steroid-refractory acute graft-versus-host disease: a review of the literature. Expert Opin Investig Drugs 2024; 33:791-799. [PMID: 38973782 PMCID: PMC11305901 DOI: 10.1080/13543784.2024.2377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a formidable obstacle in the field of allogeneic hematopoietic cell transplantation (allo-HCT), significantly contributing to patient morbidity and mortality. The current therapeutic landscape for SR-aGVHD is limited, often yielding suboptimal results, thereby emphasizing the urgent need for innovative and effective treatments. AREAS COVERED In light of the pivotal REACH2 trial, ruxolitinib phosphate, a Janus kinase inhibitor, has gained prominence as the standard treatment for SR-aGVHD. Nevertheless, a considerable number of patients either do not respond to or cannot tolerate this therapy. This review delves into emerging treatments for SR-aGVHD, including mesenchymal stromal cells (MSCs), fecal microbiota transplantation (FMT), CD3/CD7 blockade, neihulizumab, begelomab, tocilizumab, and vedolizumab. While some of these agents have shown encouraging results in early-phase trials, issues such as treatment-related toxicities and inconsistent responses in larger studies highlight the necessity for ongoing research. EXPERT OPINION Current trials exploring new agents and combination therapies offer hope for fulfilling the unmet clinical needs in SR-aGVHD, potentially leading to more effective and precise treatment strategies.
Collapse
Affiliation(s)
- Na Hyun Kim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sameem Abedin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| |
Collapse
|
14
|
Gao Z, Fan Z, Liu Z, Ye X, Zeng Y, Xuan L, Huang F, Lin R, Sun J, Liu Q, Xu N. Vedolizumab plus basiliximab as second-line therapy for steroid-refractory lower gastrointestinal acute graft-versus-host disease. Front Immunol 2024; 15:1408211. [PMID: 39021571 PMCID: PMC11252588 DOI: 10.3389/fimmu.2024.1408211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background Steroid-resistant (SR) lower gastrointestinal (LGI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The role of vedolizumab in the treatment of SR-LGI acute GVHD (aGVHD) remains uncertain. We aimed to assess the efficacy and safety of vedolizumab combined with basiliximab as second-line therapy for SR-LGI-aGVHD. Methods This study aimed to explore the efficacy of vedolizumab combined with basiliximab for SR-LGI-aGVHD. The primary endpoint was the overall response (OR) on day 28. Secondary and safety endpoints included durable OR at day 56, overall survival (OS), chronic GVHD (cGVHD), non-relapse mortality (NRM), failure-free survival (FFS), and adverse events. Results Twenty-eight patients with SR-LGI-aGVHD were included. The median time to start of combination therapy after SR-LGI-aGVHD diagnosis was 7 (range, 4-16) days. The overall response rate (ORR) at 28 days was 75.0% (95% CI: 54.8%-88.6%), and 18 achieved a complete response (CR) (64.3%, 95% CI: 44.1%-80.7%). The durable OR at day 56 was 64.3% (95% CI: 44.1%-80.7%). The 100-day, 6-month, and 12-month OS rates for the entire cohort of patients were 60.7% (95% CI: 45.1%-81.8%), 60.7% (95% CI: 45.1%-81.8%), and 47.6% (95% CI: 31.4%-72.1%), respectively. The median failure-free survival was 276 days; (95% CI: 50-not evaluable) 12-month NRM was 42.9% (95% CI: 24.1%-60.3%). The 1-year cumulative incidence of cGVHD was 35.7%. Within 180 days after study treatments, the most common grade 3 and 4 adverse events were infections. Nine (32.1%) patients developed cytomegalovirus (CMV) reactivation complicated with bacterial infections (25.0%, CMV infection; 7.1%, CMV viremia). Epstein-Barr virus (EBV) reactivation occurred in five patients (17.9%, 95% CI: 6.8%-37.6%). Only three patients (10.7%, 95% CI: 2.8%-29.4%) in our study developed pseudomembranous colitis. Conclusions Vedolizumab plus basiliximab demonstrated efficacy in severe SR-LGI-aGVHD and was well-tolerated. Vedolizumab plus basiliximab may be considered a potential treatment option for patients with LGI-aGVHD.
Collapse
Affiliation(s)
- Zicheng Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Ye
- Department of Hematology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Huang R, Zhang X. Umbilical Cord-Derived Mesenchymal Stromal Cells For Prevention of Chronic Graft-vs-Host Disease-Reply. JAMA Oncol 2024; 10:987-988. [PMID: 38814587 DOI: 10.1001/jamaoncol.2024.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
- Jinfeng Laboratory,Chongqing, China
| |
Collapse
|
16
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
[Chinese expert consensus on the diagnosis and treatment of acute graft-versus-host disease after hematopoietic stem cell transplantation (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:525-533. [PMID: 39134482 PMCID: PMC11310805 DOI: 10.3760/cma.j.cn121090-20240608-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 12/06/2024]
Abstract
Despite the continuous improvement in the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), acute graft-versus-host disease (GVHD) remains a major complication and cause of death. In recent years, with the emergence of new drugs for the prevention and treatment of acute GVHD and the update of a series of clinical studies, there have been varying degrees of changes in the routine prevention and treatment regimens for acute GVHD. Based on the main research achievements and the accumulation of clinical experience in this field in recent years, this consensus further updates the "The Consensus on Allogeneic Hematopoietic Stem Cell Transplantation for Hematological Diseases in China-Acute Graft-Versus-Host Disease (2020) .
Collapse
|
18
|
An ZY, Zhang XH. Embracing the age of artificial intelligence: paradigm shifts, opportunities, and challenges in the treatment of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1302-1304. [PMID: 38811443 DOI: 10.1007/s11427-023-2511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 05/31/2024]
Affiliation(s)
- Zhuo-Yu An
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.
| |
Collapse
|
19
|
Wang C, Xie T, Li X, Lu X, Xiao C, Liu P, Xu F, Zhang B. Effect of in vivo culture conditions on the proliferation and differentiation of rat adipose-derived stromal cells. Mech Ageing Dev 2024; 219:111935. [PMID: 38614143 DOI: 10.1016/j.mad.2024.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Adipose-derived stromal cells (ADSCs) are promising stem cell sources for tissue engineering and cell-based therapy. However, long-term in vitro expansion of ADSCs impedes stemness maintenance, which is partly attributed to deprivation of their original microenvironment. Incompetent cells limit the therapeutic effects of ADSC-based clinical strategies. Therefore, reconstructing a more physiologically and physically relevant niche is an ideal strategy to address this issue and therefore facilitates the extensive application of ADSCs. Here, we transplanted separated ADSCs into local subcutaneous adipose tissues of nude mice as an in vivo cell culture model. We found that transplanted ADSCs maintained their primitive morphology and showed improved proliferation and delayed senescence compared to those of cells cultured in an incubator. Significantly increased expression of stemness-related markers and multilineage differentiation abilities were further observed in in vivo cultured ADSCs. Finally, sequencing revealed that genes whose expression differed between ADSCs obtained under in vivo and in vitro conditions were mainly located in the extracellular matrix and extracellular space and that these genes participate in regulating transcription and protein synthesis. Moreover, we found that an Egr1 signaling pathway might exert a crucial impact on controlling stemness properties. Our findings might collectively pave the way for ADSC-based applications.
Collapse
Affiliation(s)
- Chao Wang
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaoming Li
- Department of Military Traffic Injury Prevention, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xue Lu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Changxue Xiao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China
| | - Ping Liu
- State Key Lab of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Pediatric Metabolism and Inflammation Diseases, Chongqing 400016, China.
| | - Bo Zhang
- State Key Lab of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
20
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
21
|
Li W, Wang Y, Cheng F, Qi X, An Y, Zhao C. [Research advances of mesenchymal stem cell in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:442-447;452. [PMID: 38686485 PMCID: PMC11387317 DOI: 10.13201/j.issn.2096-7993.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/02/2024]
Abstract
Allergic rhinitis is a chronic nasal mucosal inflammation characterized by upper airway hyperresponsiveness, involving a variety of immune cells and inflammatory mediators. Drugs, immunotherapy, and surgical operation are the principal treatments at present. The study found that mesenchymal stem cells have the ability of immune regulation and have a promising clinical application in the treatment of allergic rhinitis. In this review, the action mechanism of mesenchymal stem cells, the immunomodulatory effect of mesenchymal stem cells on the key cells of allergic rhinitis, and the challenges of clinical application are reviewed, to provide new directions for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Wenjin Li
- Second School of Clinical Medicine,Shanxi Medical University,Taiyuan,030001,China
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Yanjie Wang
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Fengli Cheng
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Xueping Qi
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Yunfang An
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Changqing Zhao
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| |
Collapse
|
22
|
Chen Y, Xu Y, Chi Y, Sun T, Gao Y, Dou X, Han Z, Xue F, Li H, Liu W, Liu X, Dong H, Fu R, Ju M, Dai X, Wang W, Ma Y, Song Z, Gu J, Gong W, Yang R, Zhang L. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells in the treatment of refractory immune thrombocytopenia: a prospective, single arm, phase I trial. Signal Transduct Target Ther 2024; 9:102. [PMID: 38653983 PMCID: PMC11039759 DOI: 10.1038/s41392-024-01793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Patients with refractory immune thrombocytopenia (ITP) frequently encounter substantial bleeding risks and demonstrate limited responsiveness to existing therapies. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) present a promising alternative, capitalizing on their low immunogenicity and potent immunomodulatory effects for treating diverse autoimmune disorders. This prospective phase I trial enrolled eighteen eligible patients to explore the safety and efficacy of UC-MSCs in treating refractory ITP. The research design included administering UC-MSCs at escalating doses of 0.5 × 106 cells/kg, 1.0 × 106 cells/kg, and 2.0 × 106 cells/kg weekly for four consecutive weeks across three cohorts during the dose-escalation phase, followed by a dose of 2.0 × 106 cells/kg weekly for the dose-expansion phase. Adverse events, platelet counts, and changes in peripheral blood immunity were monitored and recorded throughout the administration and follow-up period. Ultimately, 12 (with an addition of three patients in the 2.0 × 106 cells/kg group due to dose-limiting toxicity) and six patients were enrolled in the dose-escalation and dose-expansion phase, respectively. Thirteen patients (13/18, 72.2%) experienced one or more treatment emergent adverse events. Serious adverse events occurred in four patients (4/18, 22.2%), including gastrointestinal hemorrhage (2/4), profuse menstruation (1/4), and acute myocardial infarction (1/4). The response rates were 41.7% in the dose-escalation phase (5/12, two received 1.0 × 106 cells/kg per week, and three received 2.0 × 106 cells/kg per week) and 50.0% (3/6) in the dose-expansion phase. The overall response rate was 44.4% (8/18) among all enrolled patients. To sum up, UC-MSCs are effective and well tolerated in treating refractory ITP (ClinicalTrials.gov ID: NCT04014166).
Collapse
Affiliation(s)
- Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanmei Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xueqing Dou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jundong Gu
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Wei Gong
- National Engineering Research Centre of Cell Products, Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
23
|
Yu M, Sui K, Wang Z, Zhang X. MSCsDB: a database of single-cell transcriptomic profiles and in-depth comprehensive analyses of human mesenchymal stem cells. Exp Hematol Oncol 2024; 13:29. [PMID: 38449024 PMCID: PMC10919002 DOI: 10.1186/s40164-024-00496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) possess multipotent properties that make them promising candidates for immunomodulation and regenerative medicine. However, MSC heterogeneity poses challenges to their research reproducibility and clinical application. The emergence of single-cell RNA sequencing (scRNA-seq) technology has enabled a thorough examination of MSC heterogeneity, underscoring the necessity for a specialized platform to systematically analyze the published datasets derived from MSC scRNA-seq experiments. However, large-scale integration and in-depth exploration of MSC scRNA-seq datasets to comprehensively depict their developmental patterns, relationships, and knowledge are still lacking. Here, we present MSCsDB ( http://mscsdb.jflab.ac.cn:18088/index/ ), an interactive database that has been constructed using high-quality scRNA-seq datasets from all published sources on MSCs. MSCsDB provides a one-stop interactive query for regulon activities, gene ontology enrichment, signature gene visualization and transcription factor regulon analysis. Additionally, the dedicated module within MSCsDB was developed to facilitate the evaluation of MSC quality, thereby promoting the standardization of MSC subtype usage. Notably, MSCsDB enables users to analyze their MSCs scRNA-seq data directly, yielding visually appealing outputs of exceptional quality that can be conveniently downloaded via email. Furthermore, MSCsDB integrates the current comprehensive MSC atlas taxonomy, which includes 470,000 cells and 5 tissues from 26 subjects, as publicly available references. These references provide molecular characterization and phenotypic prediction for annotating MSC subsets. In summary, MSCsDB serves as a user-friendly and contemporary data repository for human MSCs, offering a dedicated platform that enables users to effectively conduct comprehensive analyses on their individual MSCs scRNA-seq data.
Collapse
Affiliation(s)
- Miao Yu
- Medical Center of Hematology; State Key Laboratory of Trauma and Chemical Poisoning;Chongqing Key Laboratory of Hematology and Microenvironment, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Ke Sui
- Medical Center of Hematology; State Key Laboratory of Trauma and Chemical Poisoning;Chongqing Key Laboratory of Hematology and Microenvironment, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Zheng Wang
- Medical Center of Hematology; State Key Laboratory of Trauma and Chemical Poisoning;Chongqing Key Laboratory of Hematology and Microenvironment, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Bio-Med Informatics Research Center and Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology; State Key Laboratory of Trauma and Chemical Poisoning;Chongqing Key Laboratory of Hematology and Microenvironment, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
24
|
Fu H, Sun X, Lin R, Wang Y, Xuan L, Yao H, Zhang Y, Mo X, Lv M, Zheng F, Kong J, Wang F, Yan C, Han T, Chen H, Chen Y, Tang F, Sun Y, Chen Y, Xu L, Liu K, Zhang X, Liu Q, Huang X, Zhang X. Mesenchymal stromal cells plus basiliximab improve the response of steroid-refractory acute graft-versus-host disease as a second-line therapy: a multicentre, randomized, controlled trial. BMC Med 2024; 22:85. [PMID: 38413930 PMCID: PMC10900595 DOI: 10.1186/s12916-024-03275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND For patients with steroid-refractory acute graft-versus-host disease (SR-aGVHD), effective second-line regimens are urgently needed. Mesenchymal stromal cells (MSCs) have been used as salvage regimens for SR-aGVHD in the past. However, clinical trials and an overall understanding of the molecular mechanisms of MSCs combined with basiliximab for SR-aGVHD are limited, especially in haploidentical haemopoietic stem cell transplantation (HID HSCT). METHODS The primary endpoint of this multicentre, randomized, controlled trial was the 4-week complete response (CR) rate of SR-aGVHD. A total of 130 patients with SR-aGVHD were assigned in a 1:1 randomization schedule to the MSC group (receiving basiliximab plus MSCs) or control group (receiving basiliximab alone) (NCT04738981). RESULTS Most enrolled patients (96.2%) received HID HSCT. The 4-week CR rate of SR-aGVHD in the MSC group was obviously better than that in the control group (83.1% vs. 55.4%, P = 0.001). However, for the overall response rates at week 4, the two groups were comparable. More patients in the control group used ≥ 6 doses of basiliximab (4.6% vs. 20%, P = 0.008). We collected blood samples from 19 consecutive patients and evaluated MSC-derived immunosuppressive cytokines, including HO1, GAL1, GAL9, TNFIA6, PGE2, PDL1, TGF-β and HGF. Compared to the levels before MSC infusion, the HO1 (P = 0.0072) and TGF-β (P = 0.0243) levels increased significantly 1 day after MSC infusion. At 7 days after MSC infusion, the levels of HO1, GAL1, TNFIA6 and TGF-β tended to increase; however, the differences were not statistically significant. Although the 52-week cumulative incidence of cGVHD in the MSC group was comparable to that in the control group, fewer patients in the MSC group developed cGVHD involving ≥3 organs (14.3% vs. 43.6%, P = 0.006). MSCs were well tolerated, no infusion-related adverse events (AEs) occurred and other AEs were also comparable between the two groups. However, patients with malignant haematological diseases in the MSC group had a higher 52-week disease-free survival rate than those in the control group (84.8% vs. 65.9%, P = 0.031). CONCLUSIONS For SR-aGVHD after allo-HSCT, especially HID HSCT, the combination of MSCs and basiliximab as the second-line therapy led to significantly better 4-week CR rates than basiliximab alone. The addition of MSCs not only did not increase toxicity but also provided a survival benefit.
Collapse
Affiliation(s)
- Haixia Fu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xueyan Sun
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Ren Lin
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Li Xuan
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Han Yao
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Fengmei Zheng
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Feifei Tang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Haematologic Disease, Beijing, China
| | - Xi Zhang
- Medical Center of Haematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Qifa Liu
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China.
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China.
- National Clinical Research Center for Haematologic Disease, Beijing, China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Collaborative Innovation Center of Haematology, Peking University, Beijing, China.
- Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation, Beijing, China.
- National Clinical Research Center for Haematologic Disease, Beijing, China.
| |
Collapse
|
25
|
Wang W, Li H, Guo Y, Zhang L, Jiang W, Zheng N, Peng S, Guan X, Fan G, Shen L. Immunological dynamic characteristics in acute myeloid leukemia predict the long-term outcomes and graft-versus host-disease occurrences post-transplantation. Clin Exp Immunol 2024; 215:148-159. [PMID: 37971356 PMCID: PMC10847816 DOI: 10.1093/cei/uxad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/16/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
To investigate the relationship between immune dynamic and graft-versus-host-disease (GVHD) risk, 111 initial diagnostic acute myeloid leukemia patients were reviewed. The flow cytometry data of 12 major lymphocyte subsets in bone marrow (BM) from 60 transplant patients at four different time points were analyzed. Additionally, 90 immune subsets in peripheral blood (PB) of 11 post-transplantation on day 100 were reviewed. Our results demonstrated that transplant patients had longer OS compared to non-transplant patients (P < 0.001). Among transplant patients, those who developed GVHD showed longer OS than those without GVHD (P < 0.05). URD donors and CMV-negative status donors were associated with improved OS in transplant patients (P < 0.05). Importantly, we observed a decreased Th/Tc ratio in BM at initial diagnostic in patients with GVHD compared to those without GVHD (P = 0.034). Receiver operating characteristic analysis indicated that a low Th/Tc ratio predicted an increased risk of GVHD with a sensitivity of 44.44% and specificity of 87.50%. Moreover, an increased T/NK ratio in BM of post-induction chemotherapy was found to be associated with GVHD, with a sensitivity of 75.76% and specificity of 65.22%. Additionally, we observed a decreased percentage of NK1 (CD56-CD16+NK) in PB on day 100 post-transplantation in the GVHD group (P < 0.05). These three indicators exhibit promising potential as specific and useful biomarkers for predicting GVHD. These findings provide valuable insights for the early identification and management of GVHD risk, thereby facilitating the possibility of improving patient outcomes.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Haibo Li
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Hematology/Flow Cytometry lab, Department of Pathology, University of California Irvine Medical Center, Orange, CA, 92868, USA
| | - Yukun Guo
- Casey Eye Institution, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lihua Zhang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Wenli Jiang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Naisheng Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Se Peng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, 519015, China
| | - Xiaolin Guan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University of Medicine School, Shanghai, 200092, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200070, China
| |
Collapse
|
26
|
Li L, Hua S, You L, Zhong T. Secretome Derived from Mesenchymal Stem/Stromal Cells: A Promising Strategy for Diabetes and its Complications. Curr Stem Cell Res Ther 2024; 19:1328-1350. [PMID: 37711134 DOI: 10.2174/1574888x19666230913154544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Diabetes is a complex metabolic disease with a high global prevalence. The health and quality of life of patients with diabetes are threatened by many complications, including diabetic foot ulcers, diabetic kidney diseases, diabetic retinopathy, and diabetic peripheral neuropathy. The application of mesenchymal stem/stromal cells (MSCs) in cell therapies has been recognized as a potential treatment for diabetes and its complications. MSCs were originally thought to exert biological effects exclusively by differentiating and replacing specific impaired cells. However, the paracrine function of factors secreted by MSCs may exert additional protective effects. MSCs secrete multiple compounds, including proteins, such as growth factors, chemokines, and other cytokines; nucleic acids, such as miRNAs; and lipids, extracellular vesicles (EVs), and exosomes (Exos). Collectively, these secreted compounds are called the MSC secretome, and usage of these chemicals in cell-free therapies may provide stronger effects with greater safety and convenience. Recent studies have demonstrated positive effects of the MSC secretome, including improved insulin sensitivity, reduced inflammation, decreased endoplasmic reticulum stress, enhanced M2 polarization of macrophages, and increased angiogenesis and autophagy; however, the mechanisms leading to these effects are not fully understood. This review summarizes the current research regarding the secretome derived from MSCs, including efforts to quantify effectiveness and uncover potential molecular mechanisms in the treatment of diabetes and related disorders. In addition, limitations and challenges are also discussed so as to facilitate applications of the MSC secretome as a cell-free therapy for diabetes and its complications.
Collapse
Affiliation(s)
- Ling Li
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Tianying Zhong
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
27
|
Jiang XY, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Sun YQ, Mo XD, Huang XJ. Basiliximab Treatment for Patients With Steroid-Refractory Acute Graft-Versus-Host Disease Following Matched Sibling Donor Hematopoietic Stem Cell Transplantation. Cell Transplant 2024; 33:9636897241257568. [PMID: 38832653 DOI: 10.1177/09636897241257568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Basiliximab is an important treatment for steroid-refractory acute graft-versus-host disease (SR-aGVHD). We performed this retrospective study to evaluate the efficacy and safety of basiliximab treatment in SR-aGVHD patients following matched sibling donor hematopoietic stem cell transplantation (MSD-HSCT) (n = 63). Overall response rate (ORR) was 63.5% and 54% at any time and at day 28 after basiliximab treatment. Grade III-IV aGVHD before basiliximab treatment predicted a poor ORR after basiliximab treatment. The rates of virus, bacteria, and fungi infections were 54%, 23.8%, and 3.1%, respectively. With a median follow-up of 730 (range, 67-3,042) days, the 1-year probability of overall survival and disease-free survival after basiliximab treatment were 58.6% (95% confidence interval [CI] = 47.6%-72.2%) and 55.4% (95% CI = 44.3%-69.2%), respectively. The 3-year cumulative incidence of relapse and non-relapse mortality after basiliximab treatment were 18.9% (95% CI = 8.3%-29.5%) and 33.8% (95% CI = 21.8%-45.7%), respectively. Comorbidities burden before allo-HSCT, severity of aGVHD and liver aGVHD before basiliximab treatment showed negative influences on survival. Thus, basiliximab was safe and effective treatment for SR-aGVHD following MSD-HSCT.
Collapse
Affiliation(s)
- Xin-Ya Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Hui Zhang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Lan-Ping Xu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Chen-Hua Yan
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Huan Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Hong Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Wei Han
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Feng-Rong Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Jing-Zhi Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yu-Qian Sun
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Dong Mo
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Liu J, Fan Z, Xu N, Ye J, Chen Y, Shao R, Sun Y, Wu Q, Liu Q, Jin H. Ruxolitinib versus basiliximab for steroid-refractory acute graft-versus-host disease: a retrospective study. Ann Hematol 2023; 102:2865-2877. [PMID: 37474631 DOI: 10.1007/s00277-023-05361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic hematopoietic stem cell transplantation; not all patients respond to standard glucocorticoids treatment. This study retrospectively evaluated the effects of ruxolitinib compared with basiliximab for steroid-refractory aGVHD (SR-aGVHD). One hundred and twenty-nine patients were enrolled, 81 in ruxolitinib and 48 in basiliximab group. The overall response (OR) at day 28 was higher in ruxolitinib group (72.8% vs. 54.2%, P = 0.031), as with complete response (CR) (58.0% vs. 35.4%, P = 0.013). Ruxolitinib led to significantly lower 1-year cumulative incidence of chronic GVHD (cGVHD) (29.6% vs. 43.8%, P = 0.021). Besides, ruxolitinib showed higher 1-year overall survival (OS) and 1-year cumulative incidence of failure-free survival (FFS) (OS: 72.8% vs. 50.0%, P = 0.008; FFS: 58.9% vs. 39.6%, P = 0.014). The 1-year cumulative incidence of non-relapse mortality (NRM) was lower in ruxolitinib group (16.1% vs. 37.5%, P = 0.005), and the 1-year relapse was not different. The 1-year cumulative incidence of cytomegalovirus (CMV) viremia, CMV-associated diseases and Epstein-Barr virus (EBV)-associated diseases was similar between the two groups, but EBV viremia was significantly lower in ruxolitinib group (6.2% vs. 29.2%, P < 0.001). Subgroup analyses revealed that OR and survival were similar in ruxolitinib 5 mg twice daily (bid) and 10 mg bid groups. However, ruxolitinib 10 mg bid treatment markedly reduced 1-year cumulative incidence of cGVHD compared with 5 mg bid (21.1% vs. 50.0%, P = 0.016). Our study demonstrated that ruxolitinib was superior to basiliximab in SR-aGVHD treatment and cGVHD prophylaxis, therefore should be recommended.
Collapse
Affiliation(s)
- Jiapei Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiming Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Zhang X, He J, Zhao K, Liu S, Xuan L, Chen S, Xue R, Lin R, Xu J, Zhang Y, Xiang AP, Jin H, Liu Q. Mesenchymal stromal cells ameliorate chronic GVHD by boosting thymic regeneration in a CCR9-dependent manner in mice. Blood Adv 2023; 7:5359-5373. [PMID: 37363876 PMCID: PMC10509672 DOI: 10.1182/bloodadvances.2022009646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Mature donor T cells within the graft contribute to severe damage of thymic epithelial cells (TECs), which are known as key mediators in the continuum of acute GVHD (aGVHD) and cGVHD pathology. Mesenchymal stromal cells (MSCs) are reportedly effective in the prevention and treatment of cGVHD. In our previous pilot clinical trial in patients with refractory aGVHD, the incidence and severity of cGVHD were decreased, along with an increase in levels of blood signal joint T-cell receptor excision DNA circles after MSCs treatment, which indicated an improvement in thymus function of patients with GVHD, but the mechanisms leading to these effects remain unknown. Here, we show in a murine GVHD model that MSCs promoted the quantity and maturity of TECs as well as elevated the proportion of Aire-positive medullary TECs, improving both CD4+CD8+ double-positive thymocytes and thymic regulatory T cells, balancing the CD4:CD8 ratio in the blood. In addition, CCL25-CCR9 signaling axis was found to play an important role in guiding MSC homing to the thymus. These studies reveal mechanisms through which MSCs ameliorate cGVHD by boosting thymic regeneration and offer innovative strategies for improving thymus function in patients with GVHD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiabao He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
30
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
31
|
Yao Q, Chen W, Yu Y, Gao F, Zhou J, Wu J, Pan Q, Yang J, Zhou L, Yu J, Cao H, Li L. Human Placental Mesenchymal Stem Cells Relieve Primary Sclerosing Cholangitis via Upregulation of TGR5 in Mdr2 -/- Mice and Human Intrahepatic Cholangiocyte Organoid Models. RESEARCH (WASHINGTON, D.C.) 2023; 6:0207. [PMID: 37600495 PMCID: PMC10433880 DOI: 10.34133/research.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a biliary disease accompanied by chronic inflammation of the liver and biliary stricture. Mesenchymal stem cells (MSCs) are used to treat liver diseases because of their immune regulation and regeneration-promoting functions. This study was performed to explore the therapeutic potential of human placental MSCs (hP-MSCs) in PSC through the Takeda G protein-coupled receptor 5 (TGR5) receptor pathway. Liver tissues were collected from patients with PSC and healthy donors (n = 4) for RNA sequencing and intrahepatic cholangiocyte organoid construction. hP-MSCs were injected via the tail vein into Mdr2-/-, bile duct ligation (BDL), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse models or co-cultured with organoids to confirm their therapeutic effect on biliary cholangitis. Changes in bile acid metabolic profile were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Compared with healthy controls, liver tissues and intrahepatic cholangiocyte organoids from PSC patients were characterized by inflammation and cholestasis, and marked downregulation of bile acid receptor TGR5 expression. hP-MSC treatment apparently reduced the inflammation, cholestasis, and fibrosis in Mdr2-/-, BDL, and DDC model mice. By activating the phosphatidylinositol 3 kinase/extracellular signal-regulated protein kinase pathway, hP-MSC treatment promoted the proliferation of cholangiocytes, and affected the transcription of downstream nuclear factor κB through regulation of the binding of TGR5 and Pellino3, thereby affecting the cholangiocyte inflammatory phenotype.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Lingling Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
32
|
Lin T, Yang Y, Chen X. A review of the application of mesenchymal stem cells in the field of hematopoietic stem cell transplantation. Eur J Med Res 2023; 28:268. [PMID: 37550742 PMCID: PMC10405442 DOI: 10.1186/s40001-023-01244-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment for many malignant hematological diseases. Mesenchymal stem cells (MSCs) are nonhematopoietic stem cells with strong self-renewal ability and multidirectional differentiation potential. They have the characteristics of hematopoietic support, immune regulation, tissue repair and regeneration, and homing. Recent studies have shown that HSCT combined with MSC infusion can promote the implantation of hematopoietic stem cells and enhance the reconstruction of hematopoietic function. Researchers have also found that MSCs have good preventive and therapeutic effects on acute and chronic graft-versus-host disease (GVHD), but there is still a lack of validation in large-sample randomized controlled trials. When using MSCs clinically, it is necessary to consider their dose, source, application time, application frequency and other relevant factors, but the specific impact of the above factors on the efficacy of MSCs still needs further clinical trial research. This review introduces the clinical roles of MSCs and summarizes the most recent progress concerning the use of MSCs in the field of HSCT, providing references for the later application of the combination of MSCs and HSCT in hematological diseases.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunfan Yang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
34
|
Luo C, Huang X, Wei L, Wu G, Huang Y, Ding Y, Huang Z, Chen J, Li X, Zou Y, Xu S. Second-line therapy for patients with steroid-refractory aGVHD: systematic review and meta-analysis of randomized controlled trials. Front Immunol 2023; 14:1211171. [PMID: 37409129 PMCID: PMC10318925 DOI: 10.3389/fimmu.2023.1211171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Steroids-refractory (SR) acute graft-versus-host disease (aGVHD) is a life-threatening condition in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the optimal second-line therapy still has not been established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) to compare the efficacy and safety of different second-line therapy regimens. Methods Literature search in MEDLINE, Embase, Cochrane Library and China Biology Medicine databases were performed to retrieve RCTs comparing the efficacy and safety of different therapy regimens for patients with SR aGVHD. Meta-analysis was conducted with Review Manager version 5.3. The primary outcome is the overall response rate (ORR) at day 28. Pooled relative risk (RR) and 95% confidence interval (CI) were calculated with the Mantel-Haenszel method. Results Eight eligible RCTs were included, involving 1127 patients with SR aGVHD and a broad range of second-line therapy regimens. Meta-analysis of 3 trials investigating the effects of adding mesenchymal stroma cells (MSCs) to other second-line therapy regimens suggested that the addition of MSCs is associated with significantly improvement in ORR at day 28 (RR = 1.15, 95% CI = 1.01-1.32, P = 0.04), especially in patients with severe (grade III-IV or grade C-D) aGVHD (RR = 1.26, 95% CI = 1.04-1.52, P = 0.02) and patients with multiorgan involved (RR = 1.27, 95% CI = 1.05-1.55, P = 0.01). No significant difference was observed betwwen the MSCs group and control group in consideration of overall survival and serious adverse events. Treatment outcomes of the other trials were comprehensively reviewed, ruxolitinib showed significantly higher ORR and complete response rate at day 28, higher durable overall response at day 56 and longer failure-free survival in comparison with other regimens; inolimomab shows similar 1-year therapy success rate but superior long-term overall survial in comparison with anti-thymocyte globulin, other comparisons did not show significant differences in efficacy. Conclusions Adding MSCs to other second-line therapy regimens is associated with significantly improved ORR, ruxolitinib showed significantly better efficacy outcomes in comparison with other regimens in patients with SR aGVHD. Further well-designed RCTs and integrated studies are required to determine the optimal treatment. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022342487.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Ling Wei
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Yaqun Ding
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Xi Li
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yunding Zou
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Tumor Immunotherapy, Chongqing Science & Technology Commission, Chongqing, China
| |
Collapse
|
35
|
Lu D, Lu J, Liu Q, Zhang Q. Emerging role of the RNA-editing enzyme ADAR1 in stem cell fate and function. Biomark Res 2023; 11:61. [PMID: 37280687 DOI: 10.1186/s40364-023-00503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells are critical for organism development and the maintenance of tissue homeostasis. Recent studies focusing on RNA editing have indicated how this mark controls stem cell fate and function in both normal and malignant states. RNA editing is mainly mediated by adenosine deaminase acting on RNA 1 (ADAR1). The RNA editing enzyme ADAR1 converts adenosine in a double-stranded RNA (dsRNA) substrate into inosine. ADAR1 is a multifunctional protein that regulate physiological processes including embryonic development, cell differentiation, and immune regulation, and even apply to the development of gene editing technologies. In this review, we summarize the structure and function of ADAR1 with a focus on how it can mediate distinct functions in stem cell self-renewal and differentiation. Targeting ADAR1 has emerged as a potential novel therapeutic strategy in both normal and dysregulated stem cell contexts.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianxi Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
36
|
Kadri N, Amu S, Iacobaeus E, Boberg E, Le Blanc K. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease. Cell Mol Immunol 2023; 20:613-625. [PMID: 37165014 DOI: 10.1038/s41423-023-01022-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023] Open
Abstract
Graft versus host disease (GvHD) is the clinical condition in which bone marrow-derived mesenchymal stromal cells (MSCs) have been most frequently studied. In this review, we summarize the experience from clinical trials that have paved the way to translation. While MSC-based therapy has shown an exceptional safety profile, identifying potency assays and disease biomarkers that reliably predict the capacity of a specific MSC batch to alleviate GvHD has been difficult. As GvHD diagnosis and staging are based solely on clinical criteria, individual patients recruited in the same clinical trial may have vastly different underlying biology, obscuring trial outcomes and making it difficult to determine the benefit of MSCs in subgroups of patients. An accumulating body of evidence indicates the importance of considering not only the cell product but also patient-specific biomarkers and/or immune characteristics in determining MSC responsiveness. A mode of action where intravascular MSC destruction is followed by monocyte-efferocytosis-mediated skewing of the immune repertoire in a permissive inflammatory environment would both explain why cell engraftment is irrelevant for MSC efficacy and stress the importance of biologic differences between responding and nonresponding patients. We recommend a combined analysis of clinical outcomes and both biomarkers of disease activity and MSC potency assays to identify patients with GvHD who are likely to benefit from MSC therapy.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvie Amu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell Therapies and Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Jin H, Zhang Y, Yu S, Du X, Xu N, Shao R, Lin D, Chen Y, Xiao J, Sun Z, Deng L, Liang X, Zhang H, Guo Z, Dai M, Shi P, Huang F, Fan Z, Yin Z, Xuan L, Lin R, Jiang X, Yu G, Liu Q. Venetoclax Combined with Azacitidine and Homoharringtonine in Relapsed/Refractory AML: A Multicenter, Phase 2 Trial. J Hematol Oncol 2023; 16:42. [PMID: 37120593 PMCID: PMC10149010 DOI: 10.1186/s13045-023-01437-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Relapsed or refractory acute myeloid leukemia (R/R AML) has a dismal prognosis. The aim of this study was to investigate the activity and tolerability of venetoclax combined with azacitidine plus homoharringtonine (VAH) regimen for R/R AML. METHODS This phase 2 trial was done at ten hospitals in China. Eligible patients were R/R AML (aged 18-65 years) with an Eastern Cooperative Oncology Group performance status of 0-2. Patients received venetoclax (100 mg on day 1, 200 mg on day 2, and 400 mg on days 3-14) and azacitidine (75 mg/m2 on days 1-7) and homoharringtonine (1 mg/m2 on days 1-7). The primary endpoint was composite complete remission rate [CRc, complete response (CR) plus complete response with incomplete blood count recovery (CRi)] after 2 cycles of treatment. The secondary endpoints include safety and survival. RESULTS Between May 27, 2020, and June 16, 2021, we enrolled 96 patients with R/R AML, including 37 primary refractory AML and 59 relapsed AML (16 relapsed after chemotherapy and 43 after allo-HSCT). The CRc rate was 70.8% (95% CI 60.8-79.2). In the patients with CRc, measurable residual disease (MRD)-negative was attained in 58.8% of CRc patients. Accordingly, overall response rate (ORR, CRc plus partial remission (PR)) was 78.1% (95% CI 68.6-85.4). At a median follow-up of 14.7 months (95% CI 6.6-22.8) for all patients, median overall survival (OS) was 22.1 months (95% CI 12.7-Not estimated), and event-free survival (EFS) was 14.3 months (95% CI 7.0-Not estimated). The 1-year OS was 61.5% (95% CI 51.0-70.4), and EFS was 51.0% (95% CI 40.7-60.5). The most common grade 3-4 adverse events were febrile neutropenia (37.4%), sepsis (11.4%), and pneumonia (21.9%). CONCLUSIONS VAH is a promising and well-tolerated regimen in R/R AML, with high CRc and encouraging survival. Further randomized studies are needed to be explored. Trial registration clinicaltrials.gov identifier: NCT04424147.
Collapse
Affiliation(s)
- Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lan Deng
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinquan Liang
- Department of Hematology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangzhou, China.
| |
Collapse
|
38
|
Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, Zhong D, Chen R, Ma G, Wang Y. Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplant 2023; 32:9636897231180128. [PMID: 37318186 DOI: 10.1177/09636897231180128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Asthma is a complex and heterogeneous disease characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. Most asthmatic patients are well-established using standard treatment strategies and advanced biologicals. However, a small group of patients who do not respond to biological treatments or are not effectively controlled by available treatment strategies remain a clinical challenge. Therefore, new therapies are urgently needed for poorly controlled asthma. Mesenchymal stem/stromal cells (MSCs) have shown therapeutic potential in relieving airway inflammation and repairing impaired immune balance in preclinical trials owing to their immunomodulatory abilities. Noteworthy, MSCs exerted a therapeutic effect on steroid-resistant asthma with rare side effects in asthmatic models. Nevertheless, adverse factors such as limited obtained number, nutrient and oxygen deprivation in vitro, and cell senescence or apoptosis affected the survival rate and homing efficiency of MSCs, thus limiting the efficacy of MSCs in asthma. In this review, we elaborate on the roles and underlying mechanisms of MSCs in the treatment of asthma from the perspective of their source, immunogenicity, homing, differentiation, and immunomodulatory capacity and summarize strategies to improve their therapeutic effect.
Collapse
Affiliation(s)
- Si Huang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yiyang Li
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqing Zeng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Ning Chang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Xiangfan Zhen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dan Zhong
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
39
|
Huang F, Zeng X, Fan Z, Xu N, Yu S, Xuan L, Liu H, Jin H, Lin R, Shi P, Zhao K, Li X, Wei X, Xu J, Wang Z, Sun J, Chai Y, Liu Q. Haplo-Peripheral Blood Stem Cell Plus Cord Blood Grafts for Hematologic Malignancies Might Lead to Lower Relapse Compared with Haplo-Peripheral Blood Stem Cell Plus Bone Marrow Grafts. Transplant Cell Ther 2022; 28:849.e1-849.e8. [PMID: 36049734 DOI: 10.1016/j.jtct.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
To compare the outcomes between peripheral blood stem cell (PBSC)+cord blood and PBSC+bone marrow (BM) grafts in the setting of haploidentical donor (HID) transplantation, 110 patients were enrolled in this retrospective study, including 54 recipients of haplo-PBSC+cord transplants and 56 recipients of haplo-PBSC+BM transplants. Chimerism analyses revealed that by day 30 post-transplantation, 94.3% of surviving patients in the haplo-PBSC+cord group had achieved full haploidentical chimerism and 5.7% had <10% cord chimerism, whereas 100% of surviving patients in the haplo-PBSC+BM group had achieved full donor chimerism. The cumulative incidence of platelet engraftment at 30 days was 92.6% in the haplo-PBSC+cord group versus 89.3% in the haplo-PBSC+BM group (P =.024), that of grade II-IV acute graft-versus-host disease (GVHD) at 100 days was 31.5% versus 48.2% (P =.060), and 1-year relapse was 13.0% versus 25.0% (P =.027), nonrelapse mortality was 9.3% versus 12.5% (P =.76), disease-free survival (DFS) was 77.7% versus 62.5% (P =.028), and overall survival (OS) was 81.4% versus 69.6% (P =.046). Multivariate analysis identified haplo-PBSC+cord transplantation as a protective factor for relapse (hazard ratio [HR], .31; P =.007), DFS (HR, .40; P =.007), and OS (HR, .44; P =.016). Overall, haplo-PBSC+cord transplantation led to faster platelet engraftment, lower relapse, and superior DFS and OS compared with haplo-PBSC+BM transplantation and thus might be a better transplant mode in the setting of HID transplantation.
Collapse
Affiliation(s)
- Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Chai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Spyrou N, Levine JE, Ferrara JL. Acute GVHD: New approaches to clinical trial monitoring. Best Pract Res Clin Haematol 2022; 35:101400. [DOI: 10.1016/j.beha.2022.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Vos J, Tejeda-Mora H, Merino A, Wu L, Woud WW, Demmers JAA, van IJcken WFJ, Reinders MEJ, Hoogduijn MJ. Bio-distribution and longevity of mesenchymal stromal cell derived membrane particles. J Control Release 2022; 350:642-651. [PMID: 36063958 DOI: 10.1016/j.jconrel.2022.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Vesicle-based medicines hold great promise for therapy development but essential knowledge on the bio-distribution and longevity of vesicles after administration is lacking. We generated vesicles from the membranes of human mesenchymal stromal cells (MSC) and we demonstrated earlier that these so-called membrane particles (MP) mediate immunomodulatory and regenerative responses in target cells. In the present study we examined the bio-distribution and longevity of MP after intravenous administration in mice. While most vesicle tracking methods are based on imaging techniques, which require labeling of vesicles and can only detect dense accumulations of vesicles, we used proteomics analysis to detect the presence of MP-derived proteins in multiple organs and tissues. MP proteins were mainly present in plasma and leukocytes at 1 h after injection, indicating that MP - in contrast to whole MSC - do not accumulate in the lungs upon first passage but remain in circulation. After 24 h, MP proteins were still present in plasma but were most abundant in the liver. RNA sequencing of livers demonstrated that MP impact liver function and in particular induce metabolic pathways. These data provide a clear view of the bio-distribution and longevity of MP, which is likely extrapolatable to other types of vesicles, and demonstrate that MP circulate for up to 24 h and may be a tool for targeting the liver.
Collapse
Affiliation(s)
- J Vos
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - H Tejeda-Mora
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - A Merino
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - L Wu
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - W W Woud
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - J A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - W F J van IJcken
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M E J Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M J Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Novel and Promising Strategies for Therapy of Post-Transplant Chronic GVHD. Pharmaceuticals (Basel) 2022; 15:ph15091100. [PMID: 36145321 PMCID: PMC9503665 DOI: 10.3390/ph15091100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the achievements that have increased viability after the transplantation of allogeneic hematopoietic stem cells (aHSCT), chronic graft-versus-host disease (cGVHD) remains the main cause of late complications and post-transplant deaths. At the moment, therapy alternatives demonstrate limited effectiveness in steroid-refractory illness; in addition, we have no reliable data on the mechanism of this condition. The lack of drugs of choice for the treatment of GVHD underscores the significance of the design of new therapies. Improved understanding of the mechanism of chronic GVHD has secured new therapy goals, and organized diagnostic recommendations and the development of medical tests have ensured a general language and routes for studies in this field. These factors, combined with the rapid development of pharmacology, have helped speed up the search of medicines and medical studies regarding chronic GVHD. At present, we can hope for success in curing this formidable complication. This review summarizes the latest clinical developments in new treatments for chronic GVHD.
Collapse
|
43
|
Ma C, Han L, Wu J, Tang F, Deng Q, He T, Wu Z, Ma C, Huang W, Huang R, Pan G. MSCs cell fates in murine acute liver injury and chronic liver fibrosis induced by carbon tetrachloride. Drug Metab Dispos 2022; 50:DMD-AR-2022-000958. [PMID: 35882404 DOI: 10.1124/dmd.122.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has shown potential benefits in multiple diseases. However, their clinic performance is not as satisfactory as expected. This study aimed to provide an alternative explanation by comparing MSCs' fates in different liver diseases. The distribution and therapeutic effects of hMSCs were investigated in acute liver injury (ALI) and chronic liver fibrosis (CLF) mice models, respectively. The two models were induced by single or repeated injection of carbon tetrachloride (CCl4) separately. The increase of hMSCs exposure in the liver (AUCliver 0-72 h) were more significant in ALI than in CLF (177.1% vs. 96.2%). In the ALI model, the hMSCs exposures in the lung (AUClung 0-72 h) increased by nearly 50% while decreased by 60.7% in CLF. The efficacy satellite study indicated that hMSCs could significantly ameliorate liver injury in ALI, but its effects in CLF were limited. In the ALI, suppressed Natural Killer (NK) cell activities were observed, while NK cell activities were increased in CLF. The depletion of NK cells could increase hMSCs exposure in mice. For mice MSC (mMSCs), their cell fates in ALI were very similar to hMSCs in ALI: mMSCs' exposure in the liver and lung increased in ALI. In conclusion, our study revealed the distinct cell pharmacokinetic patterns of MSCs in ALI and CLF mice, which might be at least partially attributed to the different NK cell activities in the two liver diseases. This finding provided a novel insight into the varied MSCs' therapeutic efficacy in the clinic. Significance Statement Currently, there is little knowledge about the PK behavior of cell products like MSCs. This study was the first time investigating the influence of liver diseases on cell fates and efficacies of MSCs and the underneath rationale. The exposure was distinct between two representative liver disease models, which directly linked with the therapeutic performance that MSCs achieved. The difference could be attributed to the NK cells-mediated MSCs clearance.
Collapse
Affiliation(s)
- Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jiajun Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Feng Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Ting He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,School of Pharmaceutical Sciences, Nanjing Tech University, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica; Nanjing University of Chinese Medicine, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, China
| | - Wei Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| |
Collapse
|
44
|
Su Y, Sun X, Liu X, Qu Q, Yang L, Chen Q, Liu F, Li Y, Wang Q, Huang B, Huang XH, Zhang XJ. hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype. J Hematol Oncol 2022; 15:99. [PMID: 35864538 PMCID: PMC9306027 DOI: 10.1186/s13045-022-01315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Both extracellular vesicles from mesenchymal stromal cell-derived human umbilical cords (hUC-EVs) and arsenic trioxides (ATOs) have been demonstrated to treat acute graft-versus-host disease (aGVHD) via immunomodulation. Apart from immunomodulation, hUC-EVs have a unique function of drug delivery, which has been proposed to enhance their efficacy. In this study, we first prepared ATO-loaded hUC-EVs (hUC-EVs-ATO) to investigate the therapeutic effect and potential mechanisms of hUC-EVs-ATO in a mouse model of aGVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Methods An aGVHD model was established to observe the therapeutic effects of hUC-EVs-ATO on aGVHD. Target organs were harvested for histopathological analysis on day 14 after transplantation. The effects of hUC-EVs-ATO on alloreactive CD4+ were evaluated by flow cytometry in vivo and in vitro. Flow cytometry, RT-PCR, immunofluorescence colocalization analysis and Western blot (Wb) analysis were performed to examine macrophage polarization after hUC-EV-ATO treatment. The cytokines in serum were measured by a cytometric bead array (CBA). TEM, confocal microscopy and Wb were performed to observe the level of autophagy in macrophages. A graft-versus-lymphoma (GVL) mouse model was established to observe the role of hUC-EVs-ATO in the GVL effect. Results The clinical manifestations and histological scores of aGVHD in the hUC-EVs-ATO group were significantly reduced compared with those in the ATO and hUC-EVs groups. The mice receiving hUC-EVs-ATO lived longer than the control mice. Notably, hUC-EVs-ATO interfering with alloreactive CD4+ T cells differentiation were observed in aGVHD mice but not in an in vitro culture system. Additional studies showed that depletion of macrophages blocked the therapeutic effects of hUC-EVs-ATO on aGVHD. Mechanistically, hUC-EVs-ATO induced autophagic flux by inhibiting mammalian target of rapamycin (mTOR) activity to repolarize M1 to M2 macrophages. Additionally, using a murine model of GVL effects, hUC-EVs-ATO were found not only to reduce the severity of aGVHD but also to preserve the GVL effects. Taken together, hUC-EVs-ATO may be promising candidates for aGVHD treatment. Conclusions hUC-EVs-ATO enhanced the alleviation of aGVHD severity in mice compared with ATO and hUC-EVs without weakening GVL activity. hUC-EVs-ATO promoted M1 to M2 polarization via the mTOR-autophagy pathway. hUC-EVs-ATO could be a potential therapeutic approach in aGVHD after allo-HSCT. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01315-2.
Collapse
Affiliation(s)
- Yan Su
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xueyan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qingyuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Liping Yang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Fengqi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Qianfei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Hui Huang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| | - Xiao-Jun Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
45
|
Yu H, Huang Y, Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res Rev 2022; 80:101684. [PMID: 35809775 DOI: 10.1016/j.arr.2022.101684] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA), as a common orthopedic disease with cartilage injury as its main pathological feature, has a complex pathogenesis and existing medical technology remains unable to reverse the progress of cartilage degeneration caused thereby. In recent years, mesenchymal stem cells (MSCs) and their secreted exosomes have become a focus of research into cartilage regeneration. MSCs have the potential to differentiate into a variety of cells. Under specific conditions, they can be promoted to differentiate into chondrocytes and maintain the function and stability of chondrocytes. Exosomes secreted by MSCs, as an intercellular messenger, can treat OA in a variety of ways through bioactive factors carried therewith, such as protein, lipid, mRNA, and miRNA. This study reviewed the application of MSCs and their exosomes from different sources in the prevention of OA, which provides a new idea for the treatment of OA.
Collapse
Affiliation(s)
- Hongxia Yu
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yuling Huang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|