1
|
Pandey A, Goswami A, Jithin B, Shukla S. Autophagy: The convergence point of aging and cancer. Biochem Biophys Rep 2025; 42:101986. [PMID: 40224538 PMCID: PMC11986642 DOI: 10.1016/j.bbrep.2025.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy, a dynamic intracellular degradation system, is critical for cellular renovation and maintaining equilibrium. By eliminating damaged components and recycling essential molecules, autophagy safeguards cellular integrity and function. The versatility of the autophagy process across various biological functions enable cells to adapt and maintain homeostasis under unfavourable conditions. Disruptions in autophagy can shift a cell from a healthy state to a disease state or, conversely, support a return to health. This review delves into the multifaceted role of autophagy during aging and age-related diseases such as cancer, highlighting its significance as a unifying target with promising therapeutic implications. Cancer development is a dynamic process characterized by the acquisition of diverse survival capabilities for proliferating at different stages. This progression unfolds over time, with cancer cells exploiting autophagy to overcome encountered stress conditions during tumor development. Notably, there are several common pathways that utilize the autophagy process during aging and cancer development. This highlights the importance of autophagy as a crucial therapeutic target, holding the potential to not only impede the growth of tumor but also enhance the patient's longevity. This review aims to simplify the intricate relationship between cancer and aging, with a particular focus on the role of autophagy.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| | | | | | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Wei C, He J, Li Y, Luo Y, Song L, Han K, Zhang J, Su S, Wang D. Multi-omics identify ribosome related causal genes methylation, splicing, and expression in prostate cancer. Discov Oncol 2025; 16:740. [PMID: 40354008 PMCID: PMC12069195 DOI: 10.1007/s12672-025-02584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Understanding the molecular underpinnings of prostate cancer remains a critical challenge in oncology. Ribosomes, essential cellular organelles responsible for protein synthesis, have emerged as potential regulators in cancer development. Previous studies suggest that dysfunction in ribosomal processes may contribute significantly to prostate cancer progression. We used summary-data-based Mendelian randomization (SMR) and colocalization analysis, as well as single-cell analysis, to investigate the association between ribosome-related genes and prostate cancer by integrating multi-omics. METHOD In this study, we employed a multi-omics approach integrating genomics and transcriptomics data to investigate the role of ribosome-related genes in prostate cancer. Summary-level data for prostate cancer were obtained from The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome and FinnGen studies. SMR analyses were performed to assess the relevance of ribosomal gene-related molecular signatures to prostate cancer. We further performed colocalization analysis to assess whether the identified signal pairs shared causal genetic variants. Genes were then validated with single-cell sequencing analysis. RESULTS We identified significant causal effects of ribosome gene methylation on prostate cancer. After integrating the multi-omics data of mQTL, sQTL and eQTL, we identified two ribosomal genes, NSUN4 and MPHOSPH6. Methylation and splicing at different sites on the NSUN4 gene showed increased and decreased risks for prostate cancer, indicating complex gene regulation mechanisms. For instance, NSUN4 methylation site of cg10215817 was genetically associated with the increased prostate cancer risk (OR 1.20, 95% CI 1.10,1.30), while NSUN4 methylation site of cg00937489 was genetically associated with the decreased prostate cancer risk (OR 0.84, 95% CI 0.74,0.94); NSUN4 chr1:46341497:46344801 splicing (OR 1.11, 95% CI 1.05-1.17) were positively associated with prostate cancer risk, while NSUN4 chr1:46340919:46344801 splicing (OR 0.95, 95% CI 0.92-0.97) were negatively associated with prostate cancer risk. Expression analysis indicated significant associations between prostate cancer risk and increased expression levels of NSUN4 (OR 1.06, 95% CI 1.03-1.09; PPH4 = 0.79) and MPHOSPH6 (OR 1.07, 95% CI 1.04-1.10; PPH4 = 0.70). In-depth single-cell analysis showed that NSUN4 highly expresses in epithelial cells, while MPHOSPH6 highly expresses in myeloid cells. CONCLUSION The study found that ribosome NSUN4 and MPHOSPH6 genes were associated with prostate cancer risk. This integrative multi-omics study underscores the significance of ribosome-related genes in prostate cancer etiology. By elucidating the molecular mechanisms underlying ribosome dysfunction, our research identifies potential therapeutic targets for mitigating disease progression. These findings not only enhance our understanding of prostate cancer biology but also pave the way for personalized therapeutic strategies targeting ribosomal pathways to improve clinical outcomes.
Collapse
Affiliation(s)
- Chengcheng Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingke He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangdong Song
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Han
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jindong Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shuai Su
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Delin Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Zhang J, Liu C, Luo W, Sun B. Role of SIRT7 in Prostate Cancer Progression: New Insight Into Potential Therapeutic Target. Cancer Med 2025; 14:e70786. [PMID: 40165597 PMCID: PMC11959159 DOI: 10.1002/cam4.70786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide, and understanding its molecular mechanisms is crucial for developing effective treatment strategies. SIRT7, a NAD+-dependent histone deacetylase, has emerged as a key regulator in PCa progression due to its roles in chromatin remodeling, DNA repair, and transcriptional regulation. Analysis of 492 PCa samples from The Cancer Genome Atlas (TCGA) via cBioPortal revealed that high SIRT7 expression is associated with poor prognosis in PCa patients. Mechanistically, SIRT7 deacetylates histone H3 at lysine 18 (H3K18Ac), a marker associated with aggressive tumors, suppressing tumor suppressor genes and promoting cancer cell proliferation and survival. Epithelial-mesenchymal transition (EMT) is a cellular biological process in which epithelial cells undergo specific molecular and morphological changes to transform into cells with characteristics of mesenchymal cells. SIRT7 also regulates EMT, and inhibiting SIRT7 in PCa cell lines reduces cell migration and invasion, highlighting its potential as a therapeutic target. In summary, the clinical significance of SIRT7 expression in PCa requires further research to elucidate its mechanisms. Developing specific inhibitors targeting SIRT7's deacetylase activity is a promising therapeutic strategy. SIRT7 plays a crucial role in regulating biological processes such as cell proliferation, cell cycle, and apoptosis in PCa through its epigenetic control of gene expression and maintenance of genomic stability. Therefore, SIRT7 may be a potential therapeutic target for PCa, and its expression could have prognostic value for PCa patients, providing important guidance for clinical monitoring and diagnosis by physicians.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Chenxin Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| |
Collapse
|
4
|
Hu Z, Tang M, Huang Y, Cai B, Sun X, Chen G, Huang A, Li X, Shah AR, Jiang L, Li Q, Xu X, Lu W, Mao Z, Wan X. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner. Nat Commun 2025; 16:2989. [PMID: 40148340 PMCID: PMC11950185 DOI: 10.1038/s41467-025-58317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The prognosis of metastatic endometrial carcinoma (EC), one of the most common gynecological malignancies worldwide, remains poor, and the underlying driver of metastases is poorly understood. Dysregulation in estrogen-related signaling and inactivation of tumor suppressor PTEN are two essential risk factors of EC. However, whether and how they are interconnected during EC development remains unclear. Here, we demonstrate that the deacetylase SIRT7 is upregulated in EC patients and mouse models, facilitating EC progression in vitro and in vivo. Mechanistically, in an estrogen-dependent fashion, SIRT7 mediates PTEN deacetylation at K260, promoting PTEN ubiquitination by the E3 ligase NEDD4L, accelerating PTEN degradation and, consequently, expediting EC metastasis. Additionally, SIRT7 expression strongly correlates with poor survival in EC patients with wild-type PTEN, though no significant correlation is observed in PTEN mutation patients. These results lay the foundation for the study of targeting estrogen-SIRT7-PTEN axis, to restore PTEN abundance, offering potential avenues for EC therapy.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yujia Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bailian Cai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Huang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmacy, Changsha Medical University, Changsha, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Wu Y, Cheng S, Zhang T, Wang L, Li T, Zheng Y, Yang G, Wu X, Luo C, Chen T, Ou L. A novel lncRNA FLJ promotes castration resistance in prostate cancer through AR mediated autophagy. J Transl Med 2025; 23:255. [PMID: 40033417 PMCID: PMC11874752 DOI: 10.1186/s12967-025-06294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Progression to castration resistance is the leading cause of death in prostate cancer patients. Long non-coding RNAs (lncRNAs) have recently become a focal point in the regulation of cancer development. However, few lncRNAs associated with castration-resistant prostate cancer (CRPC) have been reported. METHODS Firstly, we explore the CRPC associated lncRNAs by RNA sequencing and validated using quantitative polymerase chain reaction (qRT-PCR) and RNA fluorescence in situ hybridization (RNA-FISH). The clinical significance of FLJ was evaluated in a collected cancer cohort. Functional loss assays were performed to assess the effects of FLJ on CRPC cells both in vitro and in vivo. The regulatory mechanism of FLJ was investigated using immunohistochemistry (IHC), qRT-PCR, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) assays. RESULTS FLJ is highly expressed in CRPC and is associated with higher stages and Gleason scores in prostate cancer. FLJ is strongly positively correlated with androgen receptor (AR), which acts as a transcription factor and directly binds to the FLJ promoter region to enhance its transcription. Knockdown of FLJ inhibits CRPC cell proliferation and increases sensitivity to castration and enzalutamide (ENZA) in vitro. Mechanistically, FLJ promotes castration resistance in prostate cancer cells by inhibiting AR nuclear import and cytoplasmic protein degradation, thereby activating the androgen-independent AR signaling pathway. Importantly, in vivo experiments showed that FLJ knockdown inhibited tumor growth and enhanced the therapeutic effect of ENZA. CONCLUSIONS This study identifies a novel regulatory mechanism by which lncRNA FLJ promotes CRPC progression. Sustained AR activation in CRPC acts as a transcription factor to upregulate FLJ expression. FLJ circumvents the traditional androgen-dependent survival mechanism by inhibiting AR nuclear entry and cytoplasmic protein degradation, thereby activating the AR signaling pathway. Targeting the FLJ-AR signaling axis may represent a novel therapeutic strategy for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Clinical Laboratory, Chongqing University Fuling Hospital, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Shaojie Cheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Ou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Halasa M, Afshan S, Wawruszak A, Borkowska A, Brodaczewska K, Przybyszewska-Podstawka A, Kalafut J, Baran M, Rivero-Müller A, Stepulak A, Nees M. Loss of Sirtuin 7 impairs cell motility and proliferation and enhances S-phase cell arrest after 5-fluorouracil treatment in head and neck cancer. Sci Rep 2025; 15:2123. [PMID: 39820554 PMCID: PMC11739472 DOI: 10.1038/s41598-024-83349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
Sirtuin 7 (SIRT7), a member of the sirtuin family of NAD+-dependent deacetylases, plays a vital role in cancer, exhibiting context-dependent functions across various malignancies. Our study investigates the role of SIRT7 depletion in head and neck squamous cell carcinoma (HNSCC) progression. In vitro and 3D organotypic models demonstrated that SIRT7 knock-out attenuates cancer cell viability, proliferation, and motility as well as induces downregulation of migration- and epithelial-mesenchymal transition (EMT)-related gene expression. Moreover, the SIRT7 loss results in slower organoid formation and less invasive organoid morphology, validated by vimentin downregulation. The SIRT7 loss potentiates S-phase arrest in cell cycle progression after 5-FU treatment and elevates the ratio of dead cells. Additionally, SIRT7 deletion reduces the expression of G1 phase-associated proteins, Cyclin D and CDK4. Altogether, our study highlights SIRT7 as a promising therapeutic target in HNSCC, enhancing the effectiveness of treatment modalities such as combinational treatment.
Collapse
Affiliation(s)
- Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland.
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland.
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Syeda Afshan
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, National Research Institute, Szaserow 128, Warsaw, 04-141, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, National Research Institute, Szaserow 128, Warsaw, 04-141, Poland
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland
| |
Collapse
|
7
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
8
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
9
|
Cao Y, Wang S, Ma J, Long M, Ma X, Yang X, Ji Y, Tang X, Liu J, Lin C, Yang Y, Du P. Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells. Cell Death Dis 2024; 15:931. [PMID: 39719443 DOI: 10.1038/s41419-024-07321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored. Immunohistochemistry (IHC) and Western Blot (WB) analyses were used to assess the expression levels of SIRT7/EZH2 and RND3 in bladder cancer tissues, normal ureteral epithelial cells, and bladder cancer cell lines. Furthermore, the impact of various treatments on of UMUC3 cell proliferation and CDDP sensitivity was assessed using CCK-8 assays, plate cloning assays, and flow cytometry analysis. Additionally, the levels of H3K18ac and H3K27me3 at the promoter region of the RND3 gene, the binding abilities of SIRT7 and EZH2, and the succinylation level of the EZH2 protein were examined using ChIP-qPCR assays, CO-IP assays, and IP assays, respectively. Moreover, in vivo experiments were conducted using a bladder cancer mouse model created by subcutaneously injecting UMUC3 cells into Balb/c nude mice. According to the results, SIRT7 correlated with the sensitivity of bladder cancer cells to both the platinum-based chemotherapy and CDDP. Specifically, SIRT7 could bind to the RND3 promoter, downregulating H3K18ac and RND3, ultimately leading to an increased CDDP sensitivity in UMUC3 cells. Furthermore, EZH2 siRNA could decrease H3K27me3 levels in the RND3 promoter, upregulating RND3. Overall, in the promoter region of the RND3 gene, SIRT7 upregulated H3K27me3 and EZH2 downregulated H3K18ac, leading to a decline in RND3 expression and CDDP sensitivity in bladder cancer cells. Additionally, SIRT7 reduced the succinylation of the EZH2 protein resulting in an EZH2-mediated RND3 downregulation. Therefore, targeting SIRT7 and EZH2 could be a viable approach to enhancing CDDP efficacy in bladder cancer treatment.
Collapse
Affiliation(s)
- Yudong Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shuo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinchao Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mengping Long
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiuli Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiao Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yongpeng Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingxing Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jia Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chen Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yong Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Peng Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
10
|
Ding M, He M, Li D, Ding S, Dong C, Zhao H, Song H, Hong K, Zhu H. A Marine-Derived Small Molecule Inhibits Prostate Cancer Growth by Promoting Endoplasmic Reticulum Stress Induced Apoptosis and Autophagy. Phytother Res 2024; 38:6004-6022. [PMID: 39474779 DOI: 10.1002/ptr.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 12/13/2024]
Abstract
MHO7 (6-epi-ophiobolin G), a novel component extracted from a mangrove fungus, exhibits significant anticancer effects against breast cancer. However, the precise mechanism underlying the anticancer effects of MHO7 in prostate cancer (PCa) is yet to be fully elucidated. Therefore, this study was undertaken to assess the effect of MHO7 on PCa cells and elucidate its underlying mechanism. A series of in vitro experiments were conducted, including Cell Counting Kit-8, and plate clone formation assays, flow cytometry analysis, electron microscopy, immunofluorescence staining, western blotting, and molecular dynamics simulation. Additionally, in vivo tumor xenograft models were employed. Our findings revealed that MHO7 could induce cellular autophagy at low concentration (2 μM) and apoptosis at relatively high concentration (4 and 8 μM), leading to significant PCa cell growth inhibition. Furthermore, MHO7 triggered endoplasmic reticulum (ER) stress, which subsequently stimulated autophagy and apoptosis via IRE1α/XBP-1s signaling pathway activation. Notably, IRE1α knockdown markedly reduced MHO7-induced autophagy and apoptosis. Moreover, MHO7 targeted the IRE1α protein, thereby enhancing its stability. MHO7 also exhibited substantial anticancer activity in tumor xenograft models. Our study revealed that MHO7 holds considerable potential as an anticancer agent against PCa, attributable to its activation of ER stress-induced autophagy and apoptosis at different concentrations, facilitated by the upregulation of IRE1α expression.
Collapse
Affiliation(s)
- Mao Ding
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shuaishuai Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chenjia Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huajie Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
12
|
Ding C, Liu B, Yu T, Wang Z, Peng J, Gu Y, Li Z. SIRT7 protects against liver fibrosis by suppressing stellate cell activation via TGF-β/SMAD2/3 pathway. Biomed Pharmacother 2024; 180:117477. [PMID: 39316972 DOI: 10.1016/j.biopha.2024.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND SIRT7 is a class III HDACs deacetylase which plays critical roles in various biological processes. Aberrant SIRT7 expression is associated with tumorigenesis and disease progression while role of SIRT7 in hepatic fibrosis remain elusive. METHODS SIRT7 expression was examined in fibrotic liver sample via WB and IHC. Myeloid cell-specific knockout (SIRT7MKO) mice were generated by crossing SIRT7flox/flox mice with LysM-Cre mice. Primary hepatic stellate cells (HSCs) was isolated to examine stellate cells activation. SIRT7 and SMAD2/3 interaction were analyzed by immunoprecipitation. SB525334 was used to prevent SMAD2/3 phosphorylation. RESULTS SIRT7 expression was decreased during chronic liver disease progression but was increased in liver cancer. IHC staining indicated that SIRT7 was primarily expressed in non-parenchymal cells in both fibrotic and cirrhotic liver. Knockout SIRT7 in myeloid cells resulted in significant elevation of serum ALT and liver fibrosis, but mildly affected hepatic inflammation after CCl4 treatment. We further observed significant elevation of elevation of stellate cell activation and SMAD2/3 activation in SIRT7MKO mice. By using primary HSCs and stellate cell line, we confirmed that SIRT7 interacted with SMAD2/3, induced its deacetylation and was critical in regulation of SMAD2/3 activation and stellate cell activation upon TGF-β stimulation. Pharmacological inhibition of SMAD2/3 reversed the hyperactivation of SIRT7MKO HSCs after TGF-β stimulation, and abolished stellate cell activation and liver fibrosis in SIRT7MKO mice. CONCLUSION Our findings revealed previously unidentified role of SIRT7 in regulating HSCs activation via modulating TGF-β/SMAD2/3 signaling pathway. Targeting SIRT7 might offer novel therapeutic option against liver fibrosis.
Collapse
Affiliation(s)
- Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
13
|
Abstract
Sirtuin 7 (SIRT7) is a member of the sirtuin family and has emerged as a key player in numerous cellular processes. It exhibits various enzymatic activities and is predominantly localized in the nucleolus, playing a role in ribosomal RNA expression, DNA damage repair, stress response and chromatin compaction. Recent studies have revealed its involvement in diseases such as cancer, cardiovascular and bone diseases, and obesity. In cancer, SIRT7 has been found to be overexpressed in multiple types of cancer, including breast cancer, clear cell renal cell carcinoma, lung adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and gastric cancer, among others. In general, cancer cells exploit SIRT7 to enhance cell growth and metabolism through ribosome biogenesis, adapt to stress conditions and exert epigenetic control over cancer-related genes. The aim of this review is to provide an in-depth understanding of the role of SIRT7 in cancer carcinogenesis, evolution and progression by elucidating the underlying molecular mechanisms. Emphasis is placed on unveiling the intricate molecular pathways through which SIRT7 exerts its effects on cancer cells. In addition, this review discusses the feasibility and challenges associated with the development of drugs that can modulate SIRT7 activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Gustavo A. Madero, 07480, Mexico City, Mexico.
| |
Collapse
|
14
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
15
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
16
|
Du J, Yi X, Guo S, Wang H, Shi Q, Zhang J, Tian Y, Wang H, Zhang H, Zhang B, Gao T, Li C, Guo W, Yang Y. SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Biochem Biophys Res Commun 2024; 722:150161. [PMID: 38797153 DOI: 10.1016/j.bbrc.2024.150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.
Collapse
Affiliation(s)
- Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China; Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, Guangdong, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
18
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
19
|
Zhou Y, Shan R, Xie W, Zhou Q, Yin Q, Su Y, Xiao J, Luo P, Yao X, Fang J, Wen F, Shen E, Weng J. Role of autophagy-related genes in liver cancer prognosis. Genomics 2024; 116:110852. [PMID: 38703969 DOI: 10.1016/j.ygeno.2024.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.
Collapse
Affiliation(s)
- Yuling Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Rong Shan
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Wangti Xie
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Qinghua Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Yuqi Su
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Jia Xiao
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Pan Luo
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Xiang Yao
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Jianlong Fang
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Fang Wen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China
| | - Erdong Shen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China.
| | - Jie Weng
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, PR China.
| |
Collapse
|
20
|
Gu Y, Ding C, Yu T, Liu B, Tang W, Wang Z, Tang X, Liang G, Peng J, Zhang X, Li Z. SIRT7 promotes Hippo/YAP activation and cancer cell proliferation in hepatocellular carcinoma via suppressing MST1. Cancer Sci 2024; 115:1209-1223. [PMID: 38288904 PMCID: PMC11006999 DOI: 10.1111/cas.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Wenbin Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiaohui Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| |
Collapse
|
21
|
Xu B, Cai X, Cai G, Huang G. SIRT7: A potential prognostic marker and therapeutic target in gallbladder cancer. Pathol Res Pract 2024; 256:155233. [PMID: 38452583 DOI: 10.1016/j.prp.2024.155233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy with limited treatment options and poor prognosis. In this study, we aimed to investigate the role of SIRT7, a member of the sirtuin family, in GBC and its potential as a prognostic marker and therapeutic target. Through immunohistochemistry analysis of GBC tissue samples, we observed elevated levels of SIRT7, which were correlated with worse clinicopathological parameters and shorter overall survival in GBC patients. Additionally, through cellular and animal experiments, we have discovered that interfering with SIRT7 can effectively suppress the proliferation, migration, and invasive capabilities of GBC cells. Conversely, overexpressing SIRT7 yields the opposite outcome. Furthermore, interference with SIRT7 triggers cell cycle arrest and enhances apoptosis in GBC cells. Mechanistically, we found that SIRT7 inhibition led to reduced activation of the NF-κB signaling pathway, suggesting its involvement in modulating GBC cell behavior. Our findings shed light on the oncogenic role of SIRT7 in GBC and highlight its potential as a promising prognostic marker and therapeutic target. Further research is warranted to explore the therapeutic implications of targeting SIRT7 in GBC treatment.
Collapse
Affiliation(s)
- Bo Xu
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaojing Cai
- Department of Pharmacy, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guohao Cai
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, China
| | - Guoyu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Division of General Thoracic Surgery, Michael E. DeBakey Department of General Surgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: a novel molecular target for personalized cancer treatment? Oncogene 2024; 43:993-1006. [PMID: 38383727 PMCID: PMC10978493 DOI: 10.1038/s41388-024-02976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
| |
Collapse
|
23
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
24
|
Zhang D, Zhao K, Han T, Zhang X, Xu X, Liu Z, Ren X, Zhang X, Lu Z, Qin C. Bisphenol A promote the cell proliferation and invasion ability of prostate cancer cells via regulating the androgen receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115818. [PMID: 38091676 DOI: 10.1016/j.ecoenv.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
A synthetic organic substance called bisphenol A (BPA) is used to make polyester, epoxy resin, polyacrylate, and polycarbonate plastic. BPA exposure on a regular basis has increased the risk of developing cancer. Recent research has shown that there is a strong link between BPA exposure and a number of malignancies. We want to investigate any connections between BPA and prostate cancer in this work. The scores of bisphenols in the prostate cancer cohort were obtained using the ssGSEA algorithm. The analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment was used to investigate probable pathways that are closely related to the genes tied to BPA. The BPA-based risk model was built using regression analysis. Additionally, the molecular docking method was employed to assess BPA's capacity to attach to important genes. Finally, we were able to successfully get the BPA cohort ratings for prostate cancer patients. Additionally, the KEGG enrichment study showed that of the malignancies linked to BPA, prostate cancer is the most highly enriched. In a group of men with prostate cancer, the BPA-related prognostic prediction model exhibits good predictive value. The BPA demonstrated strong and efficient binding to the androgen receptor, according to the molecular docking studies. According to cell proliferation and invasion experiments, exposing prostate cancer cells to BPA at a dosage of 10-7 uM could greatly enhance their ability to proliferate and invade.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Kai Zhao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Tian Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xi Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xinchi Xu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zhanpeng Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiaohan Ren
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xu Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zhongwen Lu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
25
|
Bolding JE, Nielsen AL, Jensen I, Hansen TN, Ryberg LA, Jameson ST, Harris P, Peters GHJ, Denu JM, Rogers JM, Olsen CA. Substrates and Cyclic Peptide Inhibitors of the Oligonucleotide-Activated Sirtuin 7. Angew Chem Int Ed Engl 2023; 62:e202314597. [PMID: 37873919 DOI: 10.1002/anie.202314597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
The sirtuins are NAD+ -dependent lysine deacylases, comprising seven isoforms (SIRT1-7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.
Collapse
Affiliation(s)
- Julie E Bolding
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
- Current address: Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iben Jensen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Line A Ryberg
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Samuel T Jameson
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Current address: Department of Chemistry, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joseph M Rogers
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| |
Collapse
|
26
|
Yu J, Yuan S, Song J, Yu S. USP39 interacts with SIRT7 to promote cervical squamous cell carcinoma by modulating autophagy and oxidative stress via FOXM1. J Transl Med 2023; 21:807. [PMID: 37957720 PMCID: PMC10641974 DOI: 10.1186/s12967-023-04623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Sirtuin 7 (SIRT7) is an oncogene that promotes tumor progression in various malignancies, however, its role and regulatory mechanism in cervical squamous cell carcinoma (CSCC) is unknown. Herein, we attempted to investigate the functional role and molecular mechanism of SIRT7 underlying CSCC progression. METHODS SIRT7 expression was evaluated in CSCC cells using various assays. We then used a series of function gain-and-loss experiments to determine the role of SIRT7 in CSCC progression. Furthermore, mechanism experiments were conducted to assess the interaction between SIRT7/USP39/FOXM1 in CSCC cells. Additionally, rescue assays were conducted to explore the regulatory function of USP39/FOXM1 in CSCC cellular processes. RESULTS SIRT7 was highly expressed in CSCC patient tissues and cell lines. SIRT7 deficiency showed significant repression on the proliferation, and autophagy of CSCC cells in vitro and tumorigenesis in vivo. Similarly, apoptosis and ROS production in CSCC cells were accelerated after the SIRT7 knockdown. Moreover, SIRT7 and USP39 were found colocalized in the cell nucleus. Interestingly, SIRT7 was revealed to deacetylate USP39 to promote its protein stability in CSCC cells. USP39 protein was also verified to be upregulated in CSCC tissues and cells. USP39 silencing showed suppressive effects on CSCC cell growth. Mechanistically, USP39 was revealed to upregulate SIRT7 by promoting the transcriptional activity of FOXM1. Rescue assays also indicated that SIRT7 promoted autophagy and inhibited ROS production in CSCC cells by regulating USP39/FOXM1. CONCLUSION The SIRT7/USP39/FOXM1 positive feedback network regulates autophagy and oxidative stress in CSCC, thus providing a new direction for CSCC-targeted therapy.
Collapse
Affiliation(s)
- Juanpeng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shuai Yuan
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Jinglin Song
- Department of Obstetrics and Gynecology, Langao County Hospital of Traditional Chinese Medicine, Ankang, 725400, Shaanxi, China
| | - Shengsheng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
27
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Wang Y, Li Y, Ding H, Li D, Shen W, Zhang X. The Current State of Research on Sirtuin-Mediated Autophagy in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:382. [PMID: 37754811 PMCID: PMC10531599 DOI: 10.3390/jcdd10090382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.
Collapse
Affiliation(s)
- Yuqin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Dan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Wanxi Shen
- Qinghai Provincial People’s Hospital, Qinghai University, Xining 810007, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| |
Collapse
|
29
|
Liu H, Zhang J, Yan X, An D, Lei H. The Anti-atherosclerosis Mechanism of Ziziphora clinopodioides Lam. Based On Network Pharmacology. Cell Biochem Biophys 2023; 81:515-532. [PMID: 37523140 DOI: 10.1007/s12013-023-01151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
We investigated the mechanisms underlying the effects of Ziziphora clinopodioides Lam. (ZCL) on atherosclerosis (AS) using network pharmacology and in vitro validation.We collected the active components of ZCL and predicted their targets in AS. We constructed the protein-protein interaction, compound-target, and target-compound-pathway networks, and performed GO and KEGG analyses. Molecular docking of the active components and key targets was constructed with Autodock and Pymol software. Validation was performed with qRT-PCR, ELISA, and Western blot.We obtained 80 components of ZCL. The network analysis identified that 14 components and 37 genes were involved in AS. Then, 10 key nodes in the PPI network were identified as the key targets of ZCL because of their importance in network topology. The binding energy of 8 components (Cynaroside, α-Spinasterol, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin) to 4 targets (MMP9, TP53, AKT1, SRC) was strong and <-1 kJ/mol. In addition, 13 of the 14 components were flavonoids and thus total flavonoids of Ziziphora clinopodioides Lam. (ZCF) were used for in vitro validation. We found that ZCF reduced eNOS, P22phox, gp91phox, and PCSK9 at mRNA and protein levels, as well as the levels of IL-1β, TNF-α, and IL-6 proteins in vitro (P < 0.05).We successfully predicted the active components, targets, and mechanisms of ZCL in treating AS using network pharmacology. We confirmed that ZCF may play a role in AS by modulating oxidative stress, lipid metabolism, and inflammatory response via Cynaroside, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin.
Collapse
Affiliation(s)
- Hongbing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Jianxin Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Xuehua Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
30
|
Hu Z, Zhao Y, Mang Y, Zhu J, Yu L, Li L, Ran J. MiR-21-5p promotes sorafenib resistance and hepatocellular carcinoma progression by regulating SIRT7 ubiquitination through USP24. Life Sci 2023; 325:121773. [PMID: 37187452 DOI: 10.1016/j.lfs.2023.121773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE To validate the mechanism by which miR-21-5p mediates autophagy in drug-resistant cells in hepatocellular carcinoma (HCC), aggravating sorafenib resistance and progression of HCC. METHODS HCC cells were treated with sorafenib to establish sorafenib-resistant cells, and nude mice were subcutaneously injected with hepatoma cells to establish animal models. RT-qPCR was used to determine the level of miR-21-5p, and Western blotting was used to determine the level of related proteins. Cell apoptosis, cell migration, the level of LC3 were accessed. Immunohistochemical staining was used for detection of Ki-67 and LC3. A dual-luciferase reporter assay certified that miR-21-5p targets USP42, and a co-immunoprecipitation assay validated the mutual effect between USP24 and SIRT7. RESULTS miR-21-5p and USP42 were highly expressed in HCC tissue and cells. Inhibition of miR-21-5p or knockdown of USP42 inhibited cell proliferation and cell migration, upregulated the level of E-cadherin, and downregulated the level of vimentin, fibronectin and N-cadherin. Overexpression of miR-21-5p reversed the knockdown of USP42. Inhibition of miR-21-5p downregulated the ubiquitination level of SIRT7, downregulated the levels of LC3II/I ratio and Beclin1, and upregulated the expression of p62. The tumor size in the miR-21-5p inhibitor group was smaller, and Ki-67 and LC3 in tumor tissue were reduced, while the overexpression of USP42 reversed the effect of the miR-21-5p inhibitor. CONCLUSION miR-21-5p promotes deterioration and sorafenib resistance in hepatocellular carcinoma by upregulating autophagy levels. Knockdown of miR-21-5p inhibits the development of sorafenib-resistant tumors by USP24-mediated SIRT7 ubiquitination.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yingpeng Zhao
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuanyi Mang
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiashun Zhu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lu Yu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
31
|
Sun M, Shen Y, Jia G, Deng Z, Shi F, Jing Y, Xia S. Activation of the HNRNPA2B1/ miR-93-5p/FRMD6 axis facilitates prostate cancer progression in an m6A-dependent manner. J Cancer 2023; 14:1242-1256. [PMID: 37215455 PMCID: PMC10197942 DOI: 10.7150/jca.83863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
It is becoming increasingly clear that N6-methyladenosine (m6A) plays a key role in post-transcriptional modification of eukaryotic RNAs in cancer. The regulatory mechanism of m6A modifications in prostate cancer is still not completely elucidated. Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), an m6A reader, has been revealed to function as an oncogenic RNA-binding protein. However, its contribution to prostate cancer progression remains poorly understood. Here, we found that HNRNPA2B1 was highly overexpressed and correlated with a poor prognosis in prostate cancer. In vitro and in vivo functional experiments demonstrated that HNRNPA2B1 knockout impaired proliferation and metastasis of prostate cancer. Mechanistic studies indicated that HNRNPA2B1 interacted with primary miRNA-93 and promoted its processing by recruiting DiGeorge syndrome critical region gene 8 (DGCR8), a key subunit of the Microprocessor complex, in an METTL3-dependent mechanism, while HNRNPA2B1 knockout significantly restored miR-93-5p levels. HNRNPA2B1/miR-93-5p downregulated FERM domain-containing protein 6 (FRMD6), a cancer suppressor, and enhanced proliferation and metastasis in prostate cancer. In conclusion, our findings identified a novel oncogenic axis, HNRNPA2B1/miR-93-5p/FRMD6, that stimulates prostate cancer progression via an m6A-dependent manner.
Collapse
Affiliation(s)
- Menghao Sun
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanhao Shen
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Gaozhen Jia
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Deng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Shi
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Jing
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Shujie Xia
- Clinical Medical Center of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, Zhang B, Wu L, Shi Q, Gao T, Guo W, Li C. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther 2023; 8:107. [PMID: 36918544 PMCID: PMC10015075 DOI: 10.1038/s41392-023-01314-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer, originating from the malignant transformation of melanocyte. While the development of targeted therapy and immunotherapy has gained revolutionary advances in potentiating the therapeutic effect, the prognosis of patients with melanoma is still suboptimal. During tumor progression, melanoma frequently encounters stress from both endogenous and exogenous sources in tumor microenvironment. SIRT7 is a nuclear-localized deacetylase of which the activity is highly dependent on intracellular nicotinamide adenine dinucleotide (NAD+), with versatile biological functions in maintaining cell homeostasis. Nevertheless, whether SIRT7 regulates tumor cell biology and tumor immunology in melanoma under stressful tumor microenvironment remains elusive. Herein, we reported that SIRT7 orchestrates melanoma progression by simultaneously promoting tumor cell survival and immune evasion via the activation of unfolded protein response. We first identified that SIRT7 expression was the most significantly increased one in sirtuins family upon stress. Then, we proved that the deficiency of SIRT7 potentiated tumor cell death under stress in vitro and suppressed melanoma growth in vivo. Mechanistically, SIRT7 selectively activated the IRE1α-XBP1 axis to potentiate the pro-survival ERK signal pathway and the secretion of tumor-promoting cytokines. SIRT7 directly de-acetylated SMAD4 to antagonize the TGF-β-SMAD4 signal, which relieved the transcriptional repression on IRE1α and induced the activation of the IRE1α-XBP1 axis. Moreover, SIRT7 up-regulation eradicated anti-tumor immunity by promoting PD-L1 expression via the IRE1α-XBP1 axis. Additionally, the synergized therapeutic effect of SIRT7 suppression and anti-PD-1 immune checkpoint blockade was also investigated. Taken together, SIRT7 can be employed as a promising target to restrain tumor growth and increase the effect of melanoma immunotherapy.
Collapse
Affiliation(s)
- Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
33
|
METTL3 boosts glycolysis and cardiac fibroblast proliferation by increasing AR methylation. Int J Biol Macromol 2022; 223:899-915. [PMID: 36370857 DOI: 10.1016/j.ijbiomac.2022.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Dysregulated glycolysis has been noted in several pathological processes characterized by supporting cell proliferation. Nonetheless, the role of glycolysis reprogramming is not well appreciated in cardiac fibrosis which is accompanied by increased fibroblasts proliferation. In this study, we investigated the cause and consequence of glycolysis reprogramming in cardiac fibrosis, using clinical samples, animal models, and cultured cells. Herein, we report that methyltransferase-like 3 (METTL3) facilitates glycolysis and cardiac fibroblasts proliferation, leading to cardiac fibrosis. The augmentation of glycolysis, an essential event during cardiac fibroblasts proliferation, is dependent on an increased expression of METTL3. A knockdown of METTL3 suppressed glycolysis, and inhibited cardiac fibroblast proliferation and cardiac fibrosis. Mechanistically, METTL3 epigenetically repressed androgen receptor (AR) expression in an m6A-YTHDF2- dependent manner, by targeting the specific AR m6A site. AR could interact with the glycolysis marker HIF-1α, and down-regulation of AR activates HIF-1α signaling, resulting in enhanced glycolysis and cardiac fibroblast proliferation. In contrast, the overexpression of AR significantly reduced the HIF-1α axis, decreased expression of glycolytic enzymes HK3, inhibited glycolysis, and repressed cardiac fibroblasts proliferation. Notably, increased METTL3 and YTHDF2 levels, decreased AR expression, increased HIF-1α and Postn expression and augmented glycolysis, and increased cardiac fibrosis were detected in human atrial fibrillation heart tissues. Our results found a novel mechanism by which METTL3-catalyzed m6A modification in cardiac fibrosis, wherein it facilitated glycolysis and cardiac fibroblasts proliferation by increasing AR methylation in an m6A-YTHDF2- dependent manner and provided new insights strategies to intervene cardiac fibrosis.
Collapse
|
34
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
36
|
Wang Q, Wang XX, Xie JF, Yao TT, Xu LL, Wang LS, Yu Y, Xu LC. Cypermethrin inhibits proliferation of Sertoli cells through AR involving DAB2IP/PI3K/AKT signaling pathway in vitro. Toxicol Res (Camb) 2022; 11:583-591. [DOI: 10.1093/toxres/tfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cypermethrin (CP) exhibits anti-androgenic effects through antagonism on androgen receptor (AR) activation. This study was to identify whether AR-mediated disabled 2 interacting protein (DAB2IP)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was involved in CP-induced mouse Sertoli cells (TM4) proliferation disorder. Real-Time Cell Analysis-iCELLigence system was to measure cell proliferation. Bioinformatic analyses were performed to identify AR-regulated genes. Quantitative Real-Time PCR and western blot were to detect the genes and proteins levels in AR-mediated DAB2IP/PI3K/AKT pathway. Results showed CP suppressed TM4 proliferation and the expression of AR. Activation of AR restored the inhibition efficacy of CP on TM4 proliferation. AR regulated DAB2IP expression and phosphorylation levels of PI3K and AKT in CP-exposed TM4 cells. In addition, knockdown of DAB2IP alleviated the inhibition efficacy of CP on cell proliferation and phosphorylation of PI3K and AKT. Taken together, AR was a modulator in CP-induced inhibition of Sertoli cells proliferation by negatively regulating DAB2IP/PI3K/AKT signaling pathway. The study may provide a new insight for the mechanisms of male reproductive toxicity induced by CP.
Collapse
Affiliation(s)
- Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Xu-Xu Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Jia-Fei Xie
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Ting-Ting Yao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Lin-Lin Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University , 209 Tong-Shan Road, Xuzhou, Jiangsu 221004 , China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University , Xuzhou, Jiangsu 221004 , China
| |
Collapse
|
37
|
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L, Chu H, Wang X, Zhang W. Long non-coding RNA-PCGEM1 contributes to prostate cancer progression by sponging microRNA miR-129-5p to enhance chromatin licensing and DNA replication factor 1 expression. Bioengineered 2022; 13:9411-9424. [PMID: 35412947 PMCID: PMC9162030 DOI: 10.1080/21655979.2022.2059936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
PCGEM1 facilitates prostate cancer (PCa) progression. This study aimed to elucidate the mechanism of action of PCGEM1 in PCa. The expression of PCGEM1, microRNA miR-129-5p, chromatin licensing, and DNA replication factor 1 (CDT1) was detected by quantitative reverse transcription-PCR (qRT-PCR). A series of function experiments including cell counting kit-8 (CCK-8), caspase-3 activity, and cell cycle assays were performed to evaluate the influence of PCGEM1, miR-129-5p, and CDT1 on the biological processes of PCa cells. CyclinD1, cyclin dependent kinase 4 (CDK4), Bax, and Bcl-2 protein levels were measured by western blotting. Subcellular isolation revealed the distribution of PCa cells. The connections between PCGEM1, miR-129-5p, and CDT1 were evaluated by luciferase, RIP assay, and Pearson correlation analysis. Both PCGEM1 and CDT1 were upregulated in PCa, while miR-129-5p was downregulated and negatively correlated with PCGEM1 and CDT1. Downregulation of PCGEM1 or CDT1 inhibited the viability, promoted apoptosis and cycle arrest of PCa cells in vitro, and controlled tumor growth in vivo. PCGEM1 plays a crucial role in the progression of PCa by sponging miR-129-5p as a ceRNA of CDT1. PCGEM1 is a CDT1-dependent PCa promoter site that absorbs miR-129-5p.
Collapse
Affiliation(s)
- Qiao Fu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Fangfang Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Jun Yang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Sun
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Zhi Hu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Lv Xu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Hao Chu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Xiao Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Zhang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| |
Collapse
|
38
|
Comprehensive Landscape of HOXA2, HOXA9, and HOXA10 as Potential Biomarkers for Predicting Progression and Prognosis in Prostate Cancer. J Immunol Res 2022; 2022:5740971. [PMID: 35372588 PMCID: PMC8970952 DOI: 10.1155/2022/5740971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is recognized as a common malignancy in male patients. The homeobox A cluster (HOXA) family members have been confirmed to be implicated in the development of several types of tumors. However, the expression pattern and prognostic values of HOXA genes in PCa have not been investigated. In this study, we analyzed TCGA datasets and identified six HOXA family members which showed a dysregulated expression in PCa specimens compared with nontumor specimens. We also explored the potential mechanisms involved in the dysregulation of HOXA family members in PCa, and the results of Pearson's correlation revealed that most HOXA members were negatively related to the methylation degree. Moreover, we explored the prognostic values of HOXA family members and identified six survival-related HOXA members. Importantly, HOXA2, HOXA9, and HOXA10 were identified as critical PCa-related genes which were abnormally expressed in PCa and associated with clinical outcomes of PCa patients. Then, we explored the association between the above three genes and immune cell infiltration. We observed that the levels of HOXA2, HOXA9, and HOXA10 were associated with the levels of immune infiltration of several kinds of immune cells. Overall, our findings identified the potential values of the HOXA family for outcome prediction in PCa, which might facilitate personalized counselling and treatment in PCa.
Collapse
|
39
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Zhang W, Qian Y, Jin X, Wang Y, Mu L, Jiang Z. SIRT7 is a Prognostic Biomarker in Kidney Renal Clear Cell Carcinoma That is Correlated with Immune Cell Infiltration. Int J Gen Med 2022; 15:3167-3182. [PMID: 35342301 PMCID: PMC8942347 DOI: 10.2147/ijgm.s353610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background SIRT7 has been shown to be expressed in many cancer types, including clear cell renal cell carcinoma (KIRC), but its functional role in this oncogenic context remains to be firmly defined. This study was designed to explore correlations between SIRT7 and KIRC characteristics using the TCGA database. Methods Relationships between SIRT7 expression and KIRC patient clinicopathological characteristics were assessed through Kruskal-Wallis tests, Wilcoxon signed-rank tests, and logistic regression analyses. Area under the ROC curve (AUC) values were used to assess the prognostic value of SIRT7 as a means of classifying clear cell renal cell carcinoma patients. The functional role of SIRT7 in this cancer type was assessed through GO/KEGG enrichment analyses and immune cell infiltration analyses. Results In KIRC patients, higher levels of SIRT7 expression were associated with Race, M stage, T stage (all P < 0.05). SIRT7 offered significant diagnostic value in ROC curve analyses (AUC = 0.912), and elevated SIRT7 levels were linked to worse patient overall survival (OS; P < 0.001). The expression of SIRT7 was independently related with KIRC patient OS (HR: 1.827; 95% CI: 1.346-2.481; P<0.001). In GO/KEGG analyses, SIRT7 was found to be associated with ubiquitin-mediated proteolysis and nucleotide excision repair. Higher SIRT7 expression was related to the enhanced infiltration of certain immune cells. Conclusion Increased SIRT7 expression was associated with a worse KIRC patient prognosis, and immune infiltrates, suggesting it may offer value as a prognostic biomarker for this cancer type.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| | - Yue Qian
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| | - Xue Jin
- Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| | - Yixian Wang
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| | - Lili Mu
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| | - Zhixia Jiang
- Guizhou Nursing Vocational College, Guiyang, People’s Republic of China
| |
Collapse
|
41
|
Colloca A, Balestrieri A, Anastasio C, Balestrieri ML, D’Onofrio N. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063212. [PMID: 35328633 PMCID: PMC8949044 DOI: 10.3390/ijms23063212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.
Collapse
Affiliation(s)
- Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, U.O.C. Food Control and Food Safety, 80055 Portici, Italy;
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
- Correspondence: ; Tel.: +39-081-566-5865
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| |
Collapse
|
42
|
Hong X, Mao L, Xu L, Hu Q, Jia R. Prostate-specific membrane antigen modulates the progression of prostate cancer by regulating the synthesis of arginine and proline and the expression of androgen receptors and Fos proto-oncogenes. Bioengineered 2022; 13:995-1012. [PMID: 34974814 PMCID: PMC8805960 DOI: 10.1080/21655979.2021.2016086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The expression of prostate-specific membrane antigen (PSMA) is strikingly upregulated during oncogenesis and prostate cancer (PCa) progression, but the functions of this antigen in PCa remain unclear. Here, we constructed PSMA-knockdown LNCaP and 22rv1 cell lines and performed metabonomic and transcriptomic analyses to determine the effects of PSMA on PCa metabolism and transcription. The metabolism of arginine and proline was detected using specific kits. The mRNA and protein expression levels of the identified differentially expressed genes were quantified by RT-qPCR and Western blotting. The proliferation of each cell line was evaluated through CCK-8, EdU and colony formation assays. The migration and invasion abilities of each cell line were detected using wound healing and transwell assays, respectively. PSMA knockdown led to metabolic disorder and abnormal transcription in PCa and resulted in inhibition of the proliferation and metastasis of PCa cells in vitro and in vivo. The depletion of PSMA also promoted the biosynthesis of arginine and proline, inhibited the expression of AR and PSA, and induced the expression of c-Fos and FosB. PSMA plays an important role in the metabolism, proliferation and metastasis of human PCa and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Wu MH, Hui SC, Chen YS, Chiou HL, Lin CY, Lee CH, Hsieh YH. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:2206-2216. [PMID: 34272796 DOI: 10.1002/tox.23334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Prostate cancer (PCa), an extremely common malignancy in males, is the most prevalent disease in several countries. Norcantharidin (NCTD) has antiproliferation, antimetastasis, apoptosis, and autophagy effects in various tumor cells. Nevertheless, the antitumor effect of NCTD combined with paclitaxel (PTX), a chemotherapeutic drug, in PCa remains unknown. The cell growth, proliferative rate, cell cycle distribution, and cell death were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, colony formation assay, PI staining, and Annexin V/PI staining by flow cytomertry, whereas the mitochondrial membrane potential (MMP) and endoplasmic reticulum (ER) stress was evaluated using the MitoPotential assay and ER-ID red assay. We also evaluated the protein and mRNA expression of SIRTs by Western blotting and qRTPCR assay. Overexpression effectivity was measured by DNA transfection assay. Our study showed that cell viability and proliferative PC3 and DU145 rates were effectively inhibited after NCTD-PTX combination. We also found that NCTD-PTX combination treatment significantly enhance G2/M phase arrest, induction of cell death and ER stress, loss of MMP, and ER- or apoptotic-related protein expression. Furthermore, NCTD-PTX combination treatment was significantly decreasing the protein and mRNA expression of SIRT7 in PCa cells. Combination therapy effectively reduced cell viability, ER stress-mediated apoptosis and p-eIF2α/ATF4/CHOP/cleaved-PARP expression inhibition in SIRT7 overexpression of PCa cells. These results indicate that NCTD combined with PTX induces ER stress-mediated apoptosis of PCa cells by regulating the SIRT7 expression axis. Moreover, combination therapy may become a potential therapeutic strategy against human PCa.
Collapse
Affiliation(s)
- Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua, Taiwan
| | - Su-Chun Hui
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, China Medical University Children's Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
44
|
Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers (Basel) 2021; 13:4700. [PMID: 34572928 PMCID: PMC8468501 DOI: 10.3390/cancers13184700] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland;
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| |
Collapse
|
45
|
Liu T, Li Z, Tian F. Quercetin inhibited the proliferation and invasion of hepatoblastoma cells through facilitating SIRT6-medicated FZD4 silence. Hum Exp Toxicol 2021; 40:S96-S107. [PMID: 34219513 DOI: 10.1177/09603271211030558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatoblastoma (HB) is a malignant liver tumor that occurs during childhood. The histone deacetylase SIRT6 functions as a tumor suppressor in diverse cancers. Quercetin, as activators and antioxidants of sirtuins, exhibits remarkable anticancer activity in many tumors. However, whether quercetin ameliorates HB is still unclear. In our study, we found that SIRT6 was downregulated in HB tissues and cell lines. Overexpression of SIRT6 observably suppressed cell proliferation and invasion, promoted cell apoptosis. Mechanistically, SIRT6 suppressed frizzled 4 (FZD4) transcription by deacetylating histone H3K9. Upregulation of SIRT6 reduced the protein levels of FZD4 and H3K9ac. Additionally, quercetin treatment could enhance the expression of SIRT6, repress FZD4 level, cell viability and invasion, and promote apoptosis. Overexpression of FZD4 signally reversed quercetin-treated the promotion effect on cell apoptosis, and the inhibition effects on FZD4 expression, cell viability, invasion and Wnt/β-catenin pathway related proteins. In addition, LiCl, an agonist of Wnt/β-catenin pathway, could recover the inhibition effects of quercetin on Wnt/β-catenin pathway related proteins, cell viability and invasion, and promotion effect on cell apoptosis. In vivo mouse xenograft tumor growth assay revealed that quercetin markedly suppressed tumor growth. In conclusion, these results demonstrated that the molecular mechanism of quercetin suppressing HB cell proliferation and invasion, promoting apoptosis was to promote the deacetylation of SIRT6 on FZD4 and inhibit the activation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- T Liu
- The Second Ward of General Surgery Department, Xi'an Children's Hospital, Xi'an, People's Republic of China
| | - Z Li
- The Second Ward of General Surgery Department, Xi'an Children's Hospital, Xi'an, People's Republic of China
| | - F Tian
- The Second Ward of General Surgery Department, Xi'an Children's Hospital, Xi'an, People's Republic of China
| |
Collapse
|
46
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
47
|
Son SM, Park SJ, Fernandez-Estevez M, Rubinsztein DC. Autophagy regulation by acetylation-implications for neurodegenerative diseases. Exp Mol Med 2021; 53:30-41. [PMID: 33483607 PMCID: PMC8080689 DOI: 10.1038/s12276-021-00556-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/30/2023] Open
Abstract
Posttranslational modifications of proteins, such as acetylation, are essential for the regulation of diverse physiological processes, including metabolism, development and aging. Autophagy is an evolutionarily conserved catabolic process that involves the highly regulated sequestration of intracytoplasmic contents in double-membrane vesicles called autophagosomes, which are subsequently degraded after fusing with lysosomes. The roles and mechanisms of acetylation in autophagy control have emerged only in the last few years. In this review, we describe key molecular mechanisms by which previously identified acetyltransferases and deacetylases regulate autophagy. We highlight how p300 acetyltransferase controls mTORC1 activity to regulate autophagy under starvation and refeeding conditions in many cell types. Finally, we discuss how altered acetylation may impact various neurodegenerative diseases in which many of the causative proteins are autophagy substrates. These studies highlight some of the complexities that may need to be considered by anyone aiming to perturb acetylation under these conditions.
Collapse
Affiliation(s)
- Sung Min Son
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - So Jung Park
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Marian Fernandez-Estevez
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - David C. Rubinsztein
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Qu J, Li M, Li D, Xin Y, Li J, Lei S, Wu W, Liu X. Stimulation of Sigma-1 Receptor Protects against Cardiac Fibrosis by Alleviating IRE1 Pathway and Autophagy Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8836818. [PMID: 33488945 PMCID: PMC7801073 DOI: 10.1155/2021/8836818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023]
Abstract
Sigma-1 receptor (Sig1R), a chaperone in the endoplasmic reticulum (ER) membrane, has been implicated in cardiac hypertrophy; however, its role in cardiac fibroblast activation has not been established. This study investigated the possible association between Sig1R and this activation by subjecting mice to sham, transverse aortic constriction (TAC), and TAC plus fluvoxamine (an agonist of Sig1R) treatments. Cardiac function and fibrosis were evaluated four weeks later by echocardiography and histological staining. In an in vitro study, neonatal rat cardiac fibroblasts were treated with fluvoxamine or NE-100 (an antagonist of Sig1R) in the presence or absence of transforming growth factor beta1 (TGF-β1). Fibrotic markers, ER stress pathways, and autophagy were then investigated by qPCR, western blotting, immunofluorescence, confocal microscopy, and transmission electron microscopy. Fluvoxamine treatment reduced cardiac fibrosis, preserved cardiac function, and attenuated cardiac fibroblast activation. Inhibition of the IRE1/XBP1 pathway, a branch of ER stress, by a specific inhibitor of IRE1 endonuclease activity, attenuated the pathological process. Fluvoxamine stimulation of Sig1R restored autophagic flux in cardiac fibroblasts, indicating that Sig1R appears to play a protective role in the activation of cardiac fibroblasts by inhibiting the IRE1 pathway and restoring autophagic flux. Sig1R may therefore represent a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Qu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Dongxu Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanguo Xin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Zhang Y, Zhao J, Ding M, Su Y, Cui D, Jiang C, Zhao S, Jia G, Wang X, Ruan Y, Jing Y, Xia S, Han B. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:282. [PMID: 33317606 PMCID: PMC7734763 DOI: 10.1186/s13046-020-01761-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Background Androgen deprivation therapy (ADT) is the backbone of therapy for advanced prostate cancer (PCa). Despite the good initial response, castration resistance and metastatic progression will inevitably occur. Cancer-associated fibroblasts (CAFs) may be implicated in promoting metastasis of PCa after ADT. Our aim is to investigate the role and mechanism of CAFs-derived exosomes involving in metastasis of PCa after ADT. Methods PCa cells were co-cultured with exosomes derived from 10 nM dihydrotestosterone (DHT)-treated (simulating the high androgen level of prostate cancer microenvironment) or ethanol (ETOH) -treated (simulating the castration level of prostate cancer microenvironment after ADT) CAFs, and their migration and invasion differences under castration condition were examined both in vitro and in vivo. The miRNA profiles of exosomes derived from DHT-treated CAFs and matched ETOH-treated CAFs were analysed via next generation sequencing. The transfer of exosomal miR-146a-5p from CAFs to PCa cells was identified by fluorescent microscopy. The function and direct target gene of exosomal miR-146a-5p in PCa cells were confirmed through Transwell assays, luciferase reporter, and western blot. Results Compared with DHT-treated CAFs, exosomes derived from ETOH-treated CAFs dramatically increased migration and invasion of PCa cells under castration condition. MiR-146a-5p level in exosomes from ETOH-treated CAFs was significantly reduced. The loss of miR-146a-5p may strengthen the epithelial-mesenchymal transition (EMT) to accelerate cancer cells metastasis by modulating epidermal growth factor receptor (EGFR)/ERK pathway. Conclusions CAFs-derived exosomal miR-146a-5p confers metastasis in PCa cells under ADT through the EGFR/ERK pathway and it may present a new treatment for PCa.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Mao Ding
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yiming Su
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Sheng Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Gaozhen Jia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xiaohai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China. .,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China. .,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
50
|
Flerin NC, Cappellesso F, Pretto S, Mazzone M. Metabolic traits ruling the specificity of the immune response in different cancer types. Curr Opin Biotechnol 2020; 68:124-143. [PMID: 33248423 DOI: 10.1016/j.copbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy aims to augment the response of the patient's own immune system against cancer cells. Despite effective for some patients and some cancer types, the therapeutic efficacy of this treatment is limited by the composition of the tumor microenvironment (TME), which is not well-suited for the fitness of anti-tumoral immune cells. However, the TME differs between cancer types and tissues, thus complicating the possibility of the development of therapies that would be effective in a large range of patients. A possible scenario is that each type of cancer cell, granted by its own mutations and reminiscent of the functions of the tissue of origin, has a specific metabolism that will impinge on the metabolic composition of the TME, which in turn specifically affects T cell fitness. Therefore, targeting cancer or T cell metabolism could increase the efficacy and specificity of existing immunotherapies, improving disease outcome and minimizing adverse reactions.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, B3000, Belgium.
| |
Collapse
|