1
|
Luo Y, Ye Y, Saibaidoula Y, Zhang Y, Chen Y. Multifaceted investigations of PSMB8 provides insights into prognostic prediction and immunological target in thyroid carcinoma. PLoS One 2025; 20:e0323013. [PMID: 40334200 PMCID: PMC12058196 DOI: 10.1371/journal.pone.0323013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
The Proteasome 20S subunit beta 8 (PSMB8) is an integral element of the immunoproteasome complex, playing a pivotal role in antigen processing. Despite its significance, the contributory role of PSMB8 in oncogenesis, particularly in thyroid carcinoma (THCA), has not been well-characterized. To address this gap in knowledge, our study endeavored to delineate the potential associations between PSMB8 and THCA. Transcriptomic profiles and clinical data of patients with THCA were retrieved from The Cancer Genome Atlas (TCGA) database to facilitate comprehensive analysis. Complementary resources from additional online databases were utilized to augment the study. Logistic regression analysis was employed to elucidate the relationship between PSMB8 and various clinicopathological parameters. Uni/multivariate Cox regression analyses were conducted to ascertain the independent prognostic factors for THCA patient outcomes. Quantitative polymerase chain reaction (qPCR) and western blot assays were employed to verify the expression level of PSMB8 in vitro. Our study demonstrated that PSMB8 was significantly upregulated in THCA, with its overexpression correlating with lymph node metastasis, extrathyroidal extension, and favorable prognosis. Immunohistochemistry substantiated a higher PSMB8 protein presence in THCA tissue compared to the normal, supporting its potential role as a moderately accurate diagnostic biomarker. Logistic regression analysis identified PSMB8 as a significant indicator of the N1 stage, classical histological subtype, and extrathyroidal extension. Age, T stage, and PSMB8 were further determined as independent prognostic factors for THCA. Functional investigations linked PSMB8 to immune processes, evidenced by its association with increased immune cell infiltration and higher stromal/immune scores, as well as a positive co-expression with several immune checkpoints. A constructed predicted competing endogenous RNA (ceRNA) network implicated PSMB8 in complex post-transcriptional regulation. Finally, in vitro assays confirmed the upregulation of PSMB8, underscoring its relevance in THCA and as a target for future research. Our work has preliminarily appraised PSMB8 as a biomarker with certain prognostic and diagnostic significance, and as a potential target for immunotherapy in THCA.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Xinhua Hospital, Shenzhen, Guangdong Province, China
| | - Yilina Saibaidoula
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
2
|
Feng B, Gao T, Chen L, Xing Y. ARMC10 Drives Glioblastoma Progression Through Activating Notch Pathway. Mol Carcinog 2025; 64:883-896. [PMID: 39987562 DOI: 10.1002/mc.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.
Collapse
Affiliation(s)
- Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Chen
- Department of Neurosurgery, HeJiang County Traditional Chinese Medicine Hospital, Luzhou, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Tang Z, Xue Z, Liu X, Zhang Y, Zhao J, Liu J, Zhang L, Guo Q, Feng B, Wang J, Zhang D, Li X. Inhibition of hypoxic exosomal miR-423-3p decreases glioma progression by restricting autophagy in astrocytes. Cell Death Dis 2025; 16:265. [PMID: 40199864 PMCID: PMC11978802 DOI: 10.1038/s41419-025-07576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
The tumor microenvironment (TME) of gliomas comprises glioma cells and surrounding cells, such as astrocytes, macrophages, T cells, and neurons. In the TME, glioma cells can activate normal human astrocytes (NHAs) through the secretion of exosomes and the activation of astrocytes can further improve the progression of glioma, leading to a poor prognosis for patients. However, the molecular mechanisms underlying NHAs activation by gliomas remain largely unknown. It this study, glioma-derived exosomes (GDEs) play an important role in the modulation of autophagy and activation of NHAs. Compared with normoxic GDEs, hypoxic glioma-derived exosomes (H-GDEs) further improved autophagy and activation of astrocytes, which strongly promoted the progression of glioma cells. In an miRNA array between two types of exosomes from gliomas, miR-423-3p was highly expressed in H-GDEs and played an important role in autophagy, resulting in the activation of NHAs. The mechanism by which hypoxic glioma cells react with NHAs to create an immunosuppressive microenvironment was identified and 15d-PGJ2 was established as an effective inhibitor of miR-423-3p to suppress NHAs activation. These findings provide new insights into the diagnosis and treatment of gliomas by targeting autophagy and miR-423-3p expression.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Lin Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Bowen Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
| |
Collapse
|
4
|
Wang X, Lai J, Wang D, Wei K, Yang J. Immunophenotyping of colon cancer for identification of potential antigens for colon cancer vaccines. Front Oncol 2025; 15:1403256. [PMID: 40260289 PMCID: PMC12009704 DOI: 10.3389/fonc.2025.1403256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Background Colon cancer is a prevalent malignancy that significantly threatens human health. In recent years, mRNA cancer vaccines have demonstrated considerable potential and distinct advantages in colon cancer treatment. Thus, This study identifies CUL7, ENO2, and MPP2 as potential antigens for colon cancer mRNA vaccines. Through multi-omics analysis, we classify COAD into three immune subtypes (C1-C3) with distinct molecular and clinical features. Methods Data from TCGA and GEO databases were analyzed using bioinformatics tools. Prognostic indices were calculated with GEPIA2, and TIMER assessed antigen-presenting cell infiltration. Survival analysis was performed using Kaplan-Meier curves and Cox proportional hazards models. Immune subtypes were classified via non-negative matrix factorization (NMF) clustering, with k=3 determined by cophenetic correlation (0.92) and silhouette width (average = 0.85). Drug sensitivity, immune cell infiltration, and gene set variation were analyzed using R packages such as "pRRophetic," CIBERSORT, and GSVA. Functional enrichment analysis was performed with GO, KEGG, and GSEA. Experimental validation included immunohistochemistry and RT-PCR to confirm gene expression. Results Analysis of TCGA-COAD data revealed copy number variants in 16,354 genes, with CUL7, ENO2, and MPP2 showing significant antigen-presenting cell infiltration and associations with overall survival (OS) and relapse-free survival (RFS). Based on molecular mechanisms, cellular features, and clinical characteristics, colon cancer was categorized into three immune subtypes (C1, C2, and C3) distinct from Thorsson's pan-cancer subtypes (C1-C6) in pathway enrichment, with the C2 subtype exhibited significantly longer overall survival (OS) than C1 and C3 (median OS: C2 = 68 months vs. C1 = 42 months, C3 = 37 months; log-rank P < 0.001). The distribution of these immune subtypes showed disparities in immune patterns, and a correlation between key components and immune cells was observed. Prognostic correlation analysis indicated that the gray and turquoise modules were closely linked to colorectal cancer prognosis. Additionally, RT-PCR confirmed the association of CUL7, ENO2, and MPP2 expression levels with colon cancer. Conclusions CUL7, ENO2, and MPP2 were identified as potential antigens for colon cancer mRNA vaccines, with MPP2 showing particular immunological relevance. This study provides a foundation for mRNA vaccine development and patient stratification for vaccination in colon cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
- The Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingjiang Lai
- The Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dawei Wang
- The Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Keyi Wei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhang Y, Luo N, Li X, Zeng C, Chen X, Peng X, Zhang Y, Hu G. The prognostic model of low-grade glioma based on m6A-associated immune genes and functional study of FBXO4 in the tumor microenvironment. PeerJ 2025; 13:e19194. [PMID: 40130175 PMCID: PMC11932111 DOI: 10.7717/peerj.19194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Background m6A plays a dual role in regulating the expression of oncogenes and tumor suppressor genes, and is crucial in tumorigenesis and progression. The immune system is closely involved in tumorigenesis and development, playing a key role in tumor therapy and resistance. However, research on m6A-related immune markers in low-grade gliomas is still limited and requires further investigation. Methods All data was obtained from the Chinese Glioma Genome Atlas database and The Cancer Genome Atlas. The construction of the prognostic model and the online application of the dynamic nomogram relied on univariate Cox analysis, LASSO regression, and multivariate Cox analysis. Two different clustering analyses were performed on all samples, resulting in high, medium, and low expression groups of m6A regulatory and immune genes, followed by an analysis of the correlations between these scores. Finally, the biological role of FBXO4 in glioma cells was determined through quantitative reverse transcription polymerase chain reaction, cell proliferation assays, and cell migration experiments. Results The prognostic model for low-grade glioma demonstrated strong performance, with an AUC over 0.9 in the training group. In the internal validation group, AUC values ranged from 0.831 to 0.894, while in the external validation group, the AUC ranged from 0.623 to 0.813. Additionally, the online application of the dynamic nomogram allowed for relatively accurate predictions of LGG patients' survival time. Further analysis revealed that the high-expression groups of m6A regulatory genes and m6A-related immune genes exhibited higher levels of immune cells and stromal cells, lower tumor purity, and poorer survival rates. GSEA enrichment analysis suggested that these findings might be related to the activation of multiple signaling pathways. This may explain the lower survival rates observed in this group. Furthermore, the m6A score was significantly associated with moderate to high expression of immune genes and high expression of m6A regulatory genes, and it showed a positive correlation with most immune cell types. Finally, in vitro experiments confirmed that silencing FBXO4 significantly inhibited proliferation and migration in glioma cell lines, further supporting the biological relevance of our model. Conclusion Based on multi-dimensional clustering analysis and experimental validation, the prognostic model developed in this study can effectively assess the prognosis of LGG patients and their relationship with the immune microenvironment. Furthermore, the correlation analysis between m6A scores and the tumor microenvironment provides a foundation for further exploration of the disease's pathophysiology. Additionally, we suggest that FBXO4 may serve as an important biomarker for the diagnosis and prognosis of LGG.
Collapse
Affiliation(s)
- Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Yang L, Gui J, Sheng Y, Liu J, Wang C, Fang Z, Huang L, Tu Z, Zhu X, Huang K. Identification of TAP2 as a novel immune target in human cancers: insights from integrated bioinformatics and experimental approaches. Eur J Med Res 2025; 30:163. [PMID: 40075453 PMCID: PMC11905508 DOI: 10.1186/s40001-025-02360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Transporter 2, ATP binding cassette (ABC) subfamily B member (TAP2), encodes a protein within the ABC transporter superfamily. TAP2 plays a role in the progression of cancers, such as cervical, breast, and lung cancers. However, the relationship between TAP2 and cancer prognosis, immune cell infiltration, tumor microenvironment, and immunotherapy remains unexplored. Therefore, this study aims to investigate the effect of TAP2 expression on its role in predicting tumor prognosis and immunotherapy efficacy. METHODS Bioinformatics analyses such as Gene Set Enrichment Analysis, single-cell, and Connectivity Map analyses were used to comprehensively assess TAP2-related genomic alterations, prognostic value, enrichment pathways, single-cell expression patterns, and potential targeting inhibitors. In addition, molecular docking techniques were used to simulate drug binding to TAP2. WB and RT-qPCR were used to detect differences in TAP2 expression in glioma cell lines. The U251MG cell line was established with TAP2 overexpression. The effects of elevated TAP2 expression on GBM cell function was evaluated using various assays, including the Transwell migration, scratch, and clonal formation assays. RESULTS TAP2 exhibited aberrantly expression in tumor tissues with genomic alterations. TAP2 significantly correlates with poor prognosis across various cancers. It was also involved in immune-related pathways, immune infiltration, and immune checkpoint regulation, thereby influencing the tumor microenvironment and immune response to cancer. TAP2 was identified as a potential predictor of immunotherapy response and screened for potential targeted inhibitors for future therapeutic interventions. CONCLUSIONS Our findings suggest that TAP2 may serve as a promising prognostic marker and immune target in human cancers, warranting further investigation into its role in tumor immunity.
Collapse
MESH Headings
- Humans
- Computational Biology/methods
- Prognosis
- Tumor Microenvironment/immunology
- Gene Expression Regulation, Neoplastic
- Neoplasms/immunology
- Neoplasms/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Molecular Docking Simulation
- Immunotherapy/methods
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3
Collapse
Affiliation(s)
- Lufei Yang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiawei Gui
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Junzhe Liu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chong Wang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhansheng Fang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Le Huang
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Zewei Tu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xingen Zhu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Tilgen Yasasever C, Duranyıldız D, Bademler S, Oğuz Soydinç H. Do Salivary Cullin7 Gene Expression and Protein Levels Provide Advantages over Plasma Levels in Diagnosing Breast Cancer? Curr Issues Mol Biol 2024; 47:19. [PMID: 39852134 PMCID: PMC11764087 DOI: 10.3390/cimb47010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
In addition to the tumor suppressor role of Cullin 7 (Cul7), one of the proteins belonging to the Cullin (Cul) family, studies have also suggested that Cul7 may act as an oncogene under certain conditions. The role of the Cul7 molecule in breast cancer is still unclear, and understanding its function could have significant implications for identifying novel therapeutic targets or improving diagnostic strategies in breast cancer management. In this study, the levels of the Cul7 molecule in plasma and noninvasive material saliva were investigated, and its possibility as a marker for breast cancer was discussed. Protein levels of blood and saliva samples taken from breast cancer patients and a healthy control group were measured by the ELISA (Enzyme-Linked Immunosorbent Assay) method. Gene expression levels between the two groups were analyzed by the qPCR (quantitative Polymerase Chain Reaction) method. In our study, Cul7 mRNA and protein expression levels were examined in 60 breast cancer patients and 20 healthy female controls, and a statistically insignificant difference was found between the patient and control groups in both plasma and saliva samples (p > 0.05). No correlation was found between the clinical characteristics of the patients and plasma and saliva Cul7 gene expression and protein levels (p > 0.05). Considering the possibility of Cul7 being a biomarker at the protein and mRNA levels, plasma is thought to be a better study material for Cul7. Our findings suggest that in the context of a study on salivary material, the expression of Cul7 at the mRNA level may have better potential utility as a biomarker.
Collapse
Affiliation(s)
- Ceren Tilgen Yasasever
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey; (D.D.); (H.O.S.)
| | - Derya Duranyıldız
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey; (D.D.); (H.O.S.)
| | - Süleyman Bademler
- Department of General Surgery, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey;
| | - Hilal Oğuz Soydinç
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Turkey; (D.D.); (H.O.S.)
| |
Collapse
|
8
|
Gao S, Fan H, Wang T, Chen J. Identification of psoriasis-associated immune marker G3BP2 through single-cell RNA sequencing and meta analysis. Immunology 2024; 173:730-747. [PMID: 39267394 DOI: 10.1111/imm.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 09/17/2024] Open
Abstract
Psoriasis is a chronic skin disease with an increasing prevalence each year. However, the mechanisms underlying its onset and progression remain unclear, and effective therapeutic targets are lacking. Therefore, we employs an innovative approach by combining single-cell RNA sequencing (scRNA-seq) with meta-analysis. This not only elucidates the potential mechanisms of psoriasis at the cellular level but also identifies immunoregulatory marker genes that play a statistically significant role in driving psoriasis progression through comprehensive analysis of multiple datasets. Skin tissue samples from 12 psoriasis patients underwent scRNA-seq, followed by quality control, filtering, PCA dimensionality reduction, and tSNE clustering analysis to identify T cell subtypes and differentially expressed genes (DEGs) in psoriatic skin tissue. Next, three psoriasis datasets were standardised and merged to identify differentially expressed genes (DEGs). Subsequently, weighted gene co-expression network analysis (WGCNA) was applied for clustering analysis of gene co-expression network modules and to assess the correlation between these modules and DEGs. Least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic (ROC) curve analyses were conducted to select disease-specific genes and evaluate their diagnostic value. Single-cell data revealed nine cell types in psoriatic skin tissue, with seven T cell subtypes identified. Intersection analysis identified ADAM8 and G3BP2 as key genes. Through the integration of scRNA-seq and Meta analysis, we identified the immunoregulatory marker gene G3BP2, which is associated with the onset and progression of psoriasis and holds clinical significance. G3BP2 is speculated to promote the development of psoriasis by increasing the proportion of CD8+ T cells.
Collapse
Affiliation(s)
- Shuangshuang Gao
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Huayu Fan
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinguang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
9
|
Xuan R, Hu T, Cai L, Zhao B, Han E, Xia Z. CARD16 restores tumorigenesis and restraints apoptosis in glioma cells Via FOXO1/TRAIL axis. Cell Death Dis 2024; 15:804. [PMID: 39516471 PMCID: PMC11549220 DOI: 10.1038/s41419-024-07196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A hallmark of glioma cells, particularly glioblastoma multiforme (GBM) cells, is their resistance to apoptosis. Accumulating evidences has demonstrated that CARD16, a caspase recruitment domain (CARD) only protein, enhances both anti-apoptotic and tumorigenic properties. Nevertheless, there is a limited understanding of the expression and functional role of CARD16 in glioma. This study seeks to investigate, through in silico analysis and clinical specimens, the role of CARD16 as a potential tumor promoter in glioma. Functional assays and molecular studies revealed that CARD16 promotes tumorigenesis and suppresses apoptosis in glioma cells. Moreover, knockdown of CARD16 enhances the expression of the FOXO1/TRAIL axis in GBM cells. Additionally, FOXO1 downregulation in CARD16 knockdown GBM cells restores proliferation and reduces apoptosis. Further investigation demonstrated that elevated P21 expression inhibits CDK2-mediated FOXO1 phosphorylation and ubiquitination in CARD16-knockdown GBM cells. Collectively, these findings suggest that CARD16 is a tumor-promoting molecular in glioma via downregulating FOXO1/TRAIL axis, and suppressing TRAIL-induced apoptosis. The CARD16 gene presents significant potential for prognostic prediction and advances in innovative apoptotic therapeutics.
Collapse
Affiliation(s)
- Ruoheng Xuan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Hu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingshan Cai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beichuan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Erqiao Han
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhibo Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Lin WW, Zhao WJ, Ou GY. Molecular subtypes based on immunologic and epithelial-mesenchymal transition gene sets reveal tumor immune microenvironment characteristics and implications for immunotherapy of patients with glioma. Heliyon 2024; 10:e36986. [PMID: 39319121 PMCID: PMC11419884 DOI: 10.1016/j.heliyon.2024.e36986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
The tumor immune microenvironment (TIME) significantly influences cancer progression and treatment. This study sought to uncover novel TIME-related glioma biomarkers to advance antitumor immunotherapies by integrating data from sequencing of bulk RNA as well as scRNA. Immunologic and epithelial-mesenchymal transition (EMT) characteristics were used to classify glioma patients into two immune subtypes (ISs) and two EMT subtypes (ESs). Patients in IS1 and ES1, characterized by high immune infiltration and low stemness scores, exhibited poor clinical outcomes and limited responsiveness to immunotherapy. A new risk signature was developed using 16 genes and validated in independent glioma cohorts. Among these, HAVCR2, IL18, LAGLS9, and PTPN6 emerged as hub genes, with IL18 identified as a potential independent indicator. The upregulation of IL18 in high-grade gliomas and U-251 MG cells aligned with bioinformatics analysis. These insights deepen the understanding of TIME-related mechanisms in glioma and highlight potential therapeutic targets, offering a theoretical foundation for effective antitumor immunotherapies in glioma.
Collapse
Affiliation(s)
- Wen-Wen Lin
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Wei-Jiang Zhao
- Cell biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Guan-Yong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Guo D, Sun Y, Wu J, Ding L, Jiang Y, Xue Y, Ma Y, Sun F. Photoreceptor-targeted extracellular vesicles-mediated delivery of Cul7 siRNA for retinal degeneration therapy. Theranostics 2024; 14:4916-4932. [PMID: 39267786 PMCID: PMC11388070 DOI: 10.7150/thno.99484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Photoreceptor loss is a primary pathological feature of retinal degeneration (RD) with limited treatment strategies. RNA interference (RNAi) has emerged as a promising method of gene therapy in regenerative medicine. However, the transfer of RNAi therapeutics to photoreceptors and the deficiency of effective therapeutic targets are still major challenges in the treatment of RD. Methods: In this study, photoreceptor-derived extracellular vesicles (PEVs) conjugated with photoreceptor-binding peptide MH42 (PEVsMH42) were prepared using the anchoring peptide CP05. Transcriptome sequencing was applied to investigate the potential therapeutic target of RD. We then engineered PEVsMH42 with specific small-interfering RNAs (siRNAs) through electroporation and evaluated their therapeutic efficacy in N-methyl-N-nitrosourea (MNU)-induced RD mice and Pde6βrd1/rd1 mutant mice. Results: PEVsMH42 were selectively accumulated in photoreceptors after intravitreal injection. Cullin-7 (Cul7) was identified as a novel therapeutic target of RD. Taking advantage of the established PEVsMH42, siRNAs targeting Cul7 (siCul7) were efficiently delivered to photoreceptors and consequently blocked the expression of Cul7. Moreover, suppression of Cul7 effectively protected photoreceptors to alleviate RD both in MNU-induced mouse model and Pde6βrd1/rd1 mutant mouse model. Mechanistically, PEVsMH42 loaded with siCul7 (PEVsMH42-siCul7)-induced Cul7 downregulation was responsible for preventing Cul7-mediated glutathione peroxidase 4 (Gpx4) ubiquitination and degradation, resulting in the inhibition of photoreceptor ferroptosis. Conclusions: In summary, PEVsMH42-siCul7 attenuate photoreceptor ferroptosis to treat RD by inhibiting Cul7-induced ubiquitination of Gpx4. Our study develops a PEVs-based platform for photoreceptor-targeted delivery and highlights the potential of PEVsMH42-siCul7 as effective therapeutics for RD.
Collapse
Affiliation(s)
- Dong Guo
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Yuntong Sun
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Junqi Wu
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Linchao Ding
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yiwen Jiang
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yadong Xue
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yongjun Ma
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Fengtian Sun
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| |
Collapse
|
12
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
13
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
14
|
Han C, Liu S, Ji Y, Hu Y, Zhang J. CDCA3 is a potential biomarker for glioma malignancy and targeted therapy. Medicine (Baltimore) 2024; 103:e38066. [PMID: 38728485 PMCID: PMC11081570 DOI: 10.1097/md.0000000000038066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
CDCA3, a cell cycle regulator gene that plays a catalytic role in many tumors, was initially identified as a regulator of cell cycle progression, specifically facilitating the transition from the G2 phase to mitosis. However, its role in glioma remains unknown. In this study, bioinformatics analyses (TCGA, CGGA, Rembrandt) shed light on the upregulation and prognostic value of CDCA3 in gliomas. It can also be included in a column chart as a parameter predicting 3- and 5-year survival risk (C index = 0.86). According to Gene Set Enrichment Analysis and gene ontology analysis, the biological processes of CDCA3 are mainly concentrated in the biological activities related to cell cycle such as DNA replication and nuclear division. CDCA3 is closely associated with many classic glioma biomarkers (CDK4, CDK6), and inhibitors of CDK4 and CDK6 have been shown to be effective in tumor therapy. We have demonstrated that high expression of CDCA3 indicates a higher malignancy and poorer prognosis in gliomas.
Collapse
Affiliation(s)
- Chengxi Han
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Shuo Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yunfeng Ji
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jingwen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
15
|
Gu Y, Ding C, Yu T, Liu B, Tang W, Wang Z, Tang X, Liang G, Peng J, Zhang X, Li Z. SIRT7 promotes Hippo/YAP activation and cancer cell proliferation in hepatocellular carcinoma via suppressing MST1. Cancer Sci 2024; 115:1209-1223. [PMID: 38288904 PMCID: PMC11006999 DOI: 10.1111/cas.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Wenbin Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiaohui Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| |
Collapse
|
16
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
17
|
Zhang P, Liu Z, Wang YY, Luo HJ, Yang CZ, Shen H, Wu HT, Li JH, Zhao HX, Ran QS. SUMF1 overexpression promotes tumorous cell growth and migration and is correlated with the immune status of patients with glioma. Aging (Albany NY) 2024; 16:4699-4722. [PMID: 38460946 PMCID: PMC10968700 DOI: 10.18632/aging.205626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/27/2023] [Indexed: 03/11/2024]
Abstract
BACKGROUND Glioma is a prevalent type of malignant tumor. To date, there is a lack of literature reports that have examined the association between sulfatase modifying factor 1 (SUMF1) and glioma. METHODS The levels of SUMF1 were examined, and their relationships with the diagnosis, prognosis, and immune microenvironment of patients with glioma were investigated. Cox and Lasso regression analysis were employed to construct nomograms and risk models associated with SUMF1. The functions and mechanisms of SUMF1 were explored and verified using gene ontology, cell counting kit-8, wound healing, western blotting, and transwell experiments. RESULTS SUMF1 expression tended to increase in glioma tissues. SUMF1 overexpression was linked to the diagnosis of cancer, survival events, isocitrate dehydrogenase status, age, and histological subtype and was positively correlated with poor prognosis in patients with glioma. SUMF1 overexpression was an independent risk factor for poor prognosis. SUMF1-related nomograms and high-risk scores could predict the outcome of patients with glioma. SUMF1 co-expressed genes were involved in cytokine, T-cell activation, and lymphocyte proliferation. Inhibiting the expression of SUMF1 could deter the proliferation, migration, and invasion of glioma cells through epithelial mesenchymal transition. SUMF1 overexpression was significantly associated with the stromal score, immune cells (such as macrophages, neutrophils, activated dendritic cells), estimate score, immune score, and the expression of the programmed cell death 1, cytotoxic T-lymphocyte associated protein 4, CD79A and other immune cell marker. CONCLUSION SUMF1 overexpression was found to be correlated with adverse prognosis, cancer detection, and immune status in patients with glioma. Inhibiting the expression of SUMF1 was observed to deter the proliferation, migration, and invasion of cancer cells. The nomograms and risk models associated with SUMF1 could predict the prognosis of patients with glioma.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Yu Wang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hui-Jiu Luo
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Chao-Zhi Yang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Shen
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hai-Tao Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ju-Hang Li
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hong-Xin Zhao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qi-Shan Ran
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
18
|
Xu J, Wei C, Wang C, Li F, Wang Z, Xiong J, Zhou Y, Li S, Liu X, Yang G, Han L, Zhang J, Zhang S. TIMP1/CHI3L1 facilitates glioma progression and immunosuppression via NF-κB activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167041. [PMID: 38290591 DOI: 10.1016/j.bbadis.2024.167041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Gliomas are highly heterogeneous brain tumours that are resistant to therapies. The molecular signatures of gliomas play a high-ranking role in tumour prognosis and treatment. In addition, patients with gliomas with a mesenchymal phenotype manifest overpowering immunosuppression and sophisticated resistance to treatment. Thus, studies on gene/protein coexpression networks and hub genes in gliomas holds promise in determining effective treatment strategies. Therefore, in this study, we aimed to. Using average linkage hierarchical clustering, 13 modules and 224 hub genes were described. Top ten hub genes (CLIC1, EMP3, TIMP1, CCDC109B, CASP4, MSN, ANXA2P2, CHI3L1, TAGLN2, S100A11), selected from the most meaningful module, were associated with poor prognosis. String analysis, co-immunoprecipitation and immunofluorescence revealed a significant correlation between TIMP1 and CHI3L1. Furthermore, we found, both in vivo and in vitro, that TIMP1 promoted gliomagenesis via CHI3L1 overexpression as well as NF-κB activation. TIMP1 expression correlated with tumour immune infiltration and immune checkpoint-related gene expression. In addition, TIMP1 resulted in immunosuppressive macrophage polarization. In summary, TIMP1/CHI3L1 might be perceived as a diagnostic marker and an immunotherapy target for gliomas.
Collapse
Affiliation(s)
- Jianye Xu
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Cong Wang
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Fanjian Li
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Zhitao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Xiao Liu
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Guili Yang
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
19
|
Wu Z, Wei N. METTL3-mediated HOTAIRM1 promotes vasculogenic mimicry icontributionsn glioma via regulating IGFBP2 expression. J Transl Med 2023; 21:855. [PMID: 38012763 PMCID: PMC10680348 DOI: 10.1186/s12967-023-04624-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND HOTAIRM1 is revealed to facilitate the malignant progression of glioma. Vasculogenic mimicry (VM) is critically involved in glioma progression. Nevertheless, the molecular mechanism of HOTAIRM1 in regulating glioma VM formation remains elusive. Thus, we attempted to clarify the role and mechanism of HOTAIRM1 in VM formation in glioma. METHODS qRT-PCR and western blot assays were used to evaluate the gene and protein expression levels of HOTAIRM1 in glioma patient tissue samples and cell lines. The role of HOTAIRM1 in glioma cell progression and VM formation was explored using a series of function gain-and-loss experiments. RNA-binding protein immunoprecipitation (RIP), RNA pull-down, and mechanism experiments were conducted to assess the interaction between HOTAIRM1/METTL3/IGFBP2 axis. Furthermore, rescue assays were conducted to explore the regulatory function of HOTAIRM1/METTL3/IGFBP2 in glioma cell cellular processes and VM formation. RESULTS We found that HOTAIRM1 presented up-regulation in glioma tissues and cells and overexpression of HOTAIRM1 facilitated glioma cell proliferation, migration, invasion, and VM formation. Furthermore, overexpression of HOTAIRM1 promoted glioma tumor growth and VM formation capacity in tumor xenograft mouse model. Moreover, HOTAIRM1 was demonstrated to interact with IGFBP2 and positively regulated IGFBP2 expression. IGFBP2 was found to promote glioma cell malignancy and VM formation. Mechanistically, METTL3 was highly expressed in glioma tissues and cells and was bound with HOTAIRM1 which stabilized HOTAIRM1 expression. Rescue assays demonstrated that METTL3 silencing counteracted the impact of HOTAIRM1 on glioma cell malignancy and VM formation capacity. CONCLUSION HOTAIRM1, post-transcriptionally stabilized by METTL3, promotes VM formation in glioma via up-regulating IGFBP2 expression, which provides a new direction for glioma therapy.
Collapse
Affiliation(s)
- Zhangyi Wu
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Nan Wei
- Department of Oncology, Zhejiang Hospital, No. 12 Lingyin Road, Xihu District, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
20
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
21
|
Wang Y, Liu F, Wu J, Zhang MQ, Chai JL, Cao C. G protein inhibitory α subunit 2 is a molecular oncotarget of human glioma. Int J Biol Sci 2023; 19:865-879. [PMID: 36778118 PMCID: PMC9909998 DOI: 10.7150/ijbs.79355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Identification of novel therapeutic oncotargets for human glioma is extremely important. Here we tested expression, potential functions and underlying mechanisms of G protein inhibitory α subunit 2 (Gαi2) in glioma. Bioinformatics analyses revealed that Gαi2 expression is significantly elevated in human glioma, correlating with poor patients' survival, higher tumor grade and wild-type IDH status. Moreover, increased Gαi2 expression was also in local glioma tissues and different glioma cells. In primary and immortalized (A172) glioma cells, Gαi2 shRNA or knockout (KO, by Cas9-sgRNA) potently suppressed viability, proliferation, and mobility, and induced apoptosis. Ectopic Gαi2 overexpression, using a lentiviral construct, further augmented malignant behaviors in glioma cells. p65 phosphorylation, NFκB activity and expression of NFκB pathway genes were decreased in Gαi2-depleted primary glioma cells, but increased following Gαi2 overexpression. There was an increased binding between Gαi2 promoter and Sp1 (specificity protein 1) transcription factor in glioma tissues and different glioma cells. In primary glioma cells Gαi2 expression was significantly reduced following Sp1 silencing, KO or inhibition. In vivo studies revealed that Gαi2 shRNA-expressing AAV intratumoral injection hindered growth of subcutaneous glioma xenografts in nude mice. Moreover, Gαi2 KO inhibited intracranial glioma xenograft in nude mice. Gαi2 depletion, NFκB inhibition and apoptosis induction were observed in subcutaneous and intracranial glioma xenografts with Gαi2 depletion. Together, overexpressed Gαi2 is important for glioma cell growth possibly by promoting NFκB cascade activation.
Collapse
Affiliation(s)
- Yin Wang
- Institute of Neuroscience, Soochow University, Institute for Excellence in Clinical Medicine of Kunshan First People's Hospital and Soochow University, Suzhou, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fang Liu
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jiang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-qing Zhang
- Institute of Neuroscience, Soochow University, Institute for Excellence in Clinical Medicine of Kunshan First People's Hospital and Soochow University, Suzhou, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-long Chai
- Institute of Neuroscience, Soochow University, Institute for Excellence in Clinical Medicine of Kunshan First People's Hospital and Soochow University, Suzhou, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Institute for Excellence in Clinical Medicine of Kunshan First People's Hospital and Soochow University, Suzhou, China
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Systematic Analysis of a Pyroptosis-Related Signature to Predict the Prognosis and Immune Microenvironment of Lower-Grade Glioma. Cells 2022; 11:cells11243980. [PMID: 36552744 PMCID: PMC9776729 DOI: 10.3390/cells11243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Current treatments for lower-grade glioma (LGG) do not effectively improve life expectancy rates, and this is a major global health concern. Improving our knowledge of this disease will ultimately help to improve prevention, accurate prognosis, and treatment strategies. Pyroptosis is an inflammatory form of regulated cell death, which plays an important role in tumor progression and occurrence. There is still a lack of effective markers to evaluate the prognosis of LGG patients. We collected paraffin-embedded tissue samples and prognostic information from 85 patients with low-grade gliomas and fabricated them into a tissue microarray. Combining data from public databases, we explored the relationship between pyroptosis-related genes (PRGs) and the prognoses of patients with LGG and investigated their correlations with the tumor microenvironment (TME) by means of machine learning, single-cell, immunohistochemical, nomogram, GSEA, and Cox regression analyses. We developed a six-gene PRG-based prognostic model, and the results have identified CASP4 as an effective marker for LGG prognosis predictions. Furthermore, the effects on immune cell infiltration may also provide guidance for future immunotherapy strategies.
Collapse
|
24
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
25
|
Gao Z, Xu J, Fan Y, Zhang Z, Wang H, Qian M, Zhang P, Deng L, Shen J, Xue H, Zhao R, Zhou T, Guo X, Li G. ARPC1B promotes mesenchymal phenotype maintenance and radiotherapy resistance by blocking TRIM21-mediated degradation of IFI16 and HuR in glioma stem cells. J Exp Clin Cancer Res 2022; 41:323. [PMID: 36380368 PMCID: PMC9667586 DOI: 10.1186/s13046-022-02526-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Intratumoral heterogeneity is the primary challenge in the treatment of glioblastoma (GBM). The presence of glioma stem cells (GSCs) and their conversion between different molecular phenotypes contribute to the complexity of heterogeneity, culminating in preferential resistance to radiotherapy. ARP2/3 (actin-related protein-2/3) complexes (ARPs) are associated with cancer migration, invasion and differentiation, while the implications of ARPs in the phenotype and resistance to radiotherapy of GSCs remain unclear. Methods We screened the expression of ARPs in TCGA-GBM and CGGA-GBM databases. Tumor sphere formation assays and limiting dilution assays were applied to assess the implications of ARPC1B in tumorigenesis. Apoptosis, comet, γ-H2AX immunofluorescence (IF), and cell cycle distribution assays were used to evaluate the effect of ARPC1B on radiotherapy resistance. Immunoprecipitation (IP) and mass spectrometry analysis were used to detect ARPC1B-interacting proteins. Immune blot assays were performed to evaluate protein ubiquitination, and deletion mutant constructs were designed to determine the binding sites of protein interactions. The Spearman correlation algorithm was performed to screen for drugs that indicated cell sensitivity by the expression of ARPC1B. An intracranial xenograft GSC mouse model was used to investigate the role of ARPC1B in vivo. Results We concluded that ARPC1B was significantly upregulated in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of ARPC1B in MES-GSCs reduced tumorigenicity and resistance to IR treatment, whereas overexpression of ARPC1B in PN-GSCs exhibited the opposite effects. Mechanistically, ARPC1B interacted with IFI16 and HuR to maintain protein stability. In detail, the Pyrin of IFI16 and RRM2 of HuR were implicated in binding to ARPC1B, which counteracted TRIM21-mediated degradation of ubiquitination to IFI16 and HuR. Additionally, the function of ARPC1B was dependent on IFI16-induced activation of NF-κB pathway and HuR-induced activation of STAT3 pathway. Finally, we screened AZD6738, an ataxia telangiectasia mutated and rad3-related (ATR) inhibitor, based on the expression of ARPC1B. In addition to ARPC1B expression reflecting cellular sensitivity to AZD6738, the combination of AZD6738 and radiotherapy exhibited potent antitumor effects both in vitro and in vivo. Conclusion ARPC1B promoted MES phenotype maintenance and radiotherapy resistance by inhibiting TRIM21-mediated degradation of IFI16 and HuR, thereby activating the NF-κB and STAT3 signaling pathways, respectively. AZD6738, identified based on ARPC1B expression, exhibited excellent anti-GSC activity in combination with radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02526-8.
Collapse
|
26
|
Li B, Yang C, Zhu Z, Chen H, Qi B. Hypoxic glioma-derived extracellular vesicles harboring MicroRNA-10b-5p enhance M2 polarization of macrophages to promote the development of glioma. CNS Neurosci Ther 2022; 28:1733-1747. [PMID: 36052751 PMCID: PMC9532931 DOI: 10.1111/cns.13905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/16/2022] [Accepted: 06/19/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction The delivery of biomolecules by tumor cell‐secreted extracellular vesicles (EVs) is linked to the development of glioma. Here, the present study was implemented to explore the functional significance of hypoxic glioma cell‐derived EVs carrying microRNA‐10b‐5 (miR‐10b‐5p) on glioma with the involvement of polarization of M2 macrophages. Methods EVs were isolated from hypoxia‐stimulated glioma cells, and their role in polarization of M2 macrophages was studied by co‐culturing with macrophages. miR‐10b‐5p expression in glioma tissues, glioma‐derived EVs, and macrophages co‐cultured with EVs was characterized. Interaction among miR‐10b‐5p, NEDD4L, and PIK3CA was analyzed. The macrophages or glioma cells were transfected with overexpressing plasmid or shRNA to study the effects of miR‐10b‐5p/NEDD4L/PIK3CA on M2 macrophage polarization, and glioma cell proliferation, migration, and invasion in vitro and in vivo. Results Promotive role of hypoxia‐stimulated glioma‐derived EVs in macrophage M2 polarization was confirmed. Elevation of miR‐10b‐5p occurred in glioma tissues, glioma‐derived EVs and macrophages co‐cultured with EVs, and stimulated M2 polarization of macrophages. NEDD4L was a target gene of miR‐10b‐5p. Overexpression of NEDD4L could inhibit PI3K/AKT pathway through increase in ubiquitination and degradation of PIK3CA. Hypoxic glioma‐derived EVs harboring upregulated miR‐10b‐5p triggered an M2 phenotype in macrophages as well as enhanced aggressive tumor biology of glioma cells via inhibition of PIK3CA/PI3K/AKT pathway by targeting NEDD4L. Conclusions In summary, miR‐10b‐5p delivered by hypoxic glioma‐derived EVs accelerated macrophages M2 polarization to promote the progression of glioma via NEDD4L/PIK3CA/PI3K/AKT axis.
Collapse
Affiliation(s)
- Bingzhen Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Cheng Yang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Zhanpeng Zhu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Hao Chen
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Bin Qi
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
27
|
Foroumadi R, Rashedi S, Asgarian S, Mardani M, Keykhaei M, Farrokhpour H, Javanshir S, Sarallah R, Rezaei N. Circular RNA MYLK as a prognostic biomarker in patients with cancers: A systematic review and meta-analysis. Cancer Rep (Hoboken) 2022; 5:e1653. [PMID: 35701309 PMCID: PMC9458501 DOI: 10.1002/cnr2.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) myosin light chain kinase (circMYLK) has recently received increasing attention in cancer biology. Several studies have suggested that circMYLK expression is linked to prognosis and clinicopathological characteristics of various malignancies. AIMS This study was carried out to systematically review the impact of circMYLK on the progression of multiple cancers and assess the significance of circMYLK in the prognosis and clinicopathological features of the patients. METHODS PubMed, Web of Science, and Embase were systematically searched until July 2, 2021. For qualitative synthesis, the signaling pathways of circMYLK in the progression of different cancers were summarized. Regarding the meta-analysis, overall survival (OS) and eight clinicopathological characteristics of patients with cancers were addressed. Odds ratios (ORs) and hazard ratios (HRs) were calculated to assess the association of circMYLK with prognostic and clinicopathological features. RESULTS Twelve studies investigating the role of circMYLK in cancer progression met the inclusion criteria. Among these, seven studies investigated the prognostic significance of circMYLK, and nine studies ascertained the clinicopathological importance of circMYLK in patients with various malignancies. CircMYLK acts as a tumor promoter circRNA, leading to migration, proliferation, invasion, and metastasis of neoplastic cells and inhibiting their apoptosis through interaction with several miRNAs and corresponding downstream signaling pathways. Overexpression of circMYLK was correlated with poor OS (HR = 1.75; 95% confidence interval [CI] 1.52-2.02) and larger tumor size (OR = 2.90; 95% CI 1.03-8.15), higher T stage (OR = 2.49; 95% CI 1.20-5.18), lymph node metastasis (OR = 2.55; 95% CI 1.41-4.62), and higher TNM stage (OR = 4.62; 95% CI 2.99-7.14). CONCLUSIONS CircMYLK is involved in the progression of numerous cancers via different signaling pathways. This circRNA can serve as a promising prognostic biomarker for several types of malignancies. Furthermore, high expression of circMYLK is associated with advanced clinicopathological characteristics in various tumors.
Collapse
Affiliation(s)
- Roham Foroumadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Sina Rashedi
- School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Sara Asgarian
- School of MedicineIran University of Medical SciencesTehranIran
| | - Mahta Mardani
- School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | | | - Hossein Farrokhpour
- School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Salar Javanshir
- School of MedicineTehran Medical Sciences Branch, Islamic Azad UniversityTehranIran
| | - Rojin Sarallah
- School of MedicineTehran Medical Sciences Branch, Islamic Azad UniversityTehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022; 13:939523. [PMID: 36091049 PMCID: PMC9452727 DOI: 10.3389/fimmu.2022.939523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most prominent and aggressive primary brain tumor in adults. Anoikis is a specific form of programmed cell death that plays a key role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance.MethodsThe non-negative matrix factorization algorithm was used for effective dimension reduction for integrated datasets. Differences in the tumor microenvironment (TME), stemness indices, and clinical characteristics between the two clusters were analyzed. Difference analysis, weighted gene coexpression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator regression were leveraged to screen prognosis-related genes and construct a risk score model. Immunohistochemistry was performed to evaluate the expression of representative genes in clinical specimens. The relationship between the risk score and the TME, stemness, clinical traits, and immunotherapy response was assessed in GBM and pancancer.ResultsTwo definite clusters were identified on the basis of anoikis-related gene expression. Patients with GBM assigned to C1 were characterized by shortened overall survival, higher suppressive immune infiltration levels, and lower stemness indices. We further constructed a risk scoring model to quantify the regulatory patterns of anoikis-related genes. The higher risk score group was characterized by a poor prognosis, the infiltration of suppressive immune cells and a differentiated phenotype, whereas the lower risk score group exhibited the opposite effects. In addition, patients in the lower risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH) mutations and a more sensitive response to immunotherapy. Drug sensitivity analysis was performed, revealing that the higher risk group may benefit more from drugs targeting the PI3K/mTOR signaling pathway.ConclusionWe revealed potential relationships between anoikis-related genes and clinical features, TME, stemness, IDH mutation, and immunotherapy and elucidated their therapeutic value.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Yongquan Zhao
- Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China
| | - Yan Wei
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chenyang Tan
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Chengwei Wang,
| |
Collapse
|
29
|
Wang J, Yang Y, Du B. Clinical Characterization and Prognostic Value of TPM4 and Its Correlation with Epithelial–Mesenchymal Transition in Glioma. Brain Sci 2022; 12:brainsci12091120. [PMID: 36138856 PMCID: PMC9497136 DOI: 10.3390/brainsci12091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022] Open
Abstract
Tropomyosin 4 (TPM4) has been reported as an oncogenic gene across different malignancies. However, the role of TPM4 in glioma remains unclear. This study aimed to determine the clinical characterization and prognostic value of TPM4 in gliomas. Transcriptome expression and clinical information were collected from the CGGA and TCGA datasets, which included 998 glioma patients. ScRNA-seq data were obtained from CGGA. R software was utilized for statistical analyses. There was a positive correlation between TPM4 and WHO grades. IDH-wildtype and mesenchymal subtype gliomas were accompanied by TPM4 upregulation. GO and GSEA analysis suggested that TPM4 was profoundly associated with epithelial-to-mesenchymal transition (EMT). Subsequent GSVA revealed a robust correlation between TPM4 and three signaling pathways of EMT (hypoxia, TGF-β, PI3K/AKT). Furthermore, TPM4 showed a synergistic effect with mesenchymal biomarkers, particularly with N-cadherin, Slug, Snail, TWIST1, and vimentin. ScRNA-seq analysis suggested that higher TPM4 was mainly attributed to tumor cells and macrophages and associated with tumor cell progression and macrophage polarization. Finally, high TPM4 was significantly associated with unfavorable outcomes. In conclusion, our findings indicate that TPM4 is significantly correlated with more malignant characteristics of gliomas, potentially through involvement in EMT. TPM4 could predict worse survival for patients with glioma.
Collapse
Affiliation(s)
- Jin Wang
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University), Shenzhen 518020, China
| | - Ying Yang
- Department of Pediatrics, Futian Women and Children Health Institute, Shenzhen 518045, China
| | - Bo Du
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University), Shenzhen 518020, China
- Correspondence: ; Tel.: +86-159-1414-1979
| |
Collapse
|
30
|
Jia W, Zhu H, Zhao M, Zhou Q, Yin W, Liu W, Wang L, Xiao Z, Jiang X, Dai J, Ren C. Potential mechanisms underlying the promoting effects of 3D collagen scaffold culture on stemness and drug resistance of glioma cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166522. [PMID: 35981653 DOI: 10.1016/j.bbadis.2022.166522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND 3D collagen scaffold culture is a good tool to study glioma metastasis and recurrence in vitro. METHODS The effect of 3D collagen culture on the colony formation, the sphere formation, and drug sensitivity of glioma cells was observed by soft-agar colony formation assays, sphere formation assays, and CCK-8 assays, respectively. 3D-glioma-drug genes were identified by previous results and online databases. Gene enrichment and PPI analyses were performed by R software and Metacsape. Hub 3D-glioma-drug genes were screened by STRING and Cytoscape. TCGA and CGGA databases and R software were used to analyze the distribution of hub genes in glioma and their effects on the prognosis. Western Blot was used to verify the effect of 3D collagen culture on the expression of hub genes. miRNAs targeting hub genes were predicted by ENCORI. RESULTS 3D collagen scaffold culture promoted colony formation, sphere formation, and drug resistance of glioma cells. There were 77 3D-glioma-drug genes screened, and the pathways enriched in the protein interaction network mainly included responses to stressors, DNA damage and repair, and drug metabolism. Hub 3D-glioma-drug genes were AKT1, ATM, CASP3, CCND1, EGFR, PARP1, and TP53. These genes and predicted miRNAs were expressed differentially in glioma samples and partially affected the prognosis of patients with glioma. These findings suggested these hub genes and miRNAs may play a key role in the effects generated by the 3D culture model and become new markers for glioma diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Jia
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Medical College of Jishou University, Jishou City, Hunan 416000, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410000, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410000, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
31
|
Lin Z, Huang W, Xie Z, Yi Y, Li Z. Expression, Clinical Significance, Immune Infiltration, and Regulation Network of miR-3940-5p in Lung Adenocarcinoma Based on Bioinformatic Analysis and Experimental Validation. Int J Gen Med 2022; 15:6451-6464. [PMID: 35966511 PMCID: PMC9365057 DOI: 10.2147/ijgm.s375761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Based on bioinformatics analysis and experimental validation, we investigated the expression, clinical significance, immune infiltration, and potential signaling pathways of miR-3940-5p in lung adenocarcinoma (LUAD). Methods 521 LUAD tissue samples and 46 normal lung tissue samples from The Cancer Genome Atlas (TCGA) database. We evaluated the relationship between clinical features and miR-3940-5p expression using Kruskal–Wallis, Wilcoxon sign-rank, and logistic regression, explored the relationship between miR-3940-5p expression and the prognosis of LUAD patients using Kaplan–Meier survival curve analysis. Several databases were used to identify miRNA targets. MiR-3940-5p target genes were analyzed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The significant role of miR-3940-5p in function was evaluated using immune infiltration analysis. LUAD cell lines were tested for miR-3940-5p expression using QRT-PCR. Results There was a significant association between high miR-3940-5p expression in LUAD and T stage (P=0.005), pathologic stage (P=0.047), race (White vs Asian & Black or African American) (P=0.041), residual tumor (P=0.043), and anatomic neoplasm subdivision2 (P=0.030). MiR-3940-5p expression predicted poor overall survival (HR: 1.35; 95% CI: 1.01–1.81; P=0.045), disease-specific survival (HR: 1.53; 95% CI: 1.05–2.23; P=0.026), and progression-free survival (HR: 1.35; 95% CI: 1.03–1.77; P=0.032). BAP1, BBS1, CCR2, KCNE3, PEBP1, and RABL2A were all associated with poor OS in LUAD patients with low miR-3940-5p expression levels. According to GO and KEGG analyses, miR-3940-5p may play a role in LUAD development by regulating pathways such as measles, PI3K-Akt signaling pathway, and p53 signaling pathway. There was a correlation between the expression level of miR-3940-5p and immune infiltration. LUAD cell lines showed significantly higher levels of miR-3940-5p than Beas-2B cells. Conclusion A high expression of miR-3940-5p is significantly associated with a poor prognosis in patients with LUAD, suggesting that it could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, People's Republic of China
| | - Wenhai Huang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, People's Republic of China
| | - Zehua Xie
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, People's Republic of China
| | - Yongsheng Yi
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, People's Republic of China
| | - Zumei Li
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, People's Republic of China
| |
Collapse
|
32
|
Bouron A, Fauvarque MO. Genome-wide analysis of genes encoding core components of the ubiquitin system during cerebral cortex development. Mol Brain 2022; 15:72. [PMID: 35974412 PMCID: PMC9380329 DOI: 10.1186/s13041-022-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination involves three types of enzymes (E1, E2, and E3) that sequentially attach ubiquitin (Ub) to target proteins. This posttranslational modification controls key cellular processes, such as the degradation, endocytosis, subcellular localization and activity of proteins. Ubiquitination, which can be reversed by deubiquitinating enzymes (DUBs), plays important roles during brain development. Furthermore, deregulation of the Ub system is linked to the pathogenesis of various diseases, including neurodegenerative disorders. We used a publicly available RNA-seq database to perform an extensive genome-wide gene expression analysis of the core components of the ubiquitination machinery, covering Ub genes as well as E1, E2, E3 and DUB genes. The ubiquitination network was governed by only Uba1 and Ube2m, the predominant E1 and E2 genes, respectively; their expression was positively regulated during cortical formation. The principal genes encoding HECT (homologous to the E6-AP carboxyl terminus), RBR (RING-in-between-RING), and RING (really interesting new gene) E3 Ub ligases were also highly regulated. Pja1, Dtx3 (RING ligases) and Stub1 (U-box RING) were the most highly expressed E3 Ub ligase genes and displayed distinct developmental expression patterns. Moreover, more than 80 DUB genes were expressed during corticogenesis, with two prominent genes, Uch-l1 and Usp22, showing highly upregulated expression. Several components of the Ub system overexpressed in cancers were also highly expressed in the cerebral cortex under conditions not related to tumour formation or progression. Altogether, this work provides an in-depth overview of transcriptomic changes during embryonic formation of the cerebral cortex. The data also offer new insight into the characterization of the Ub system and may contribute to a better understanding of its involvement in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UMR 1292, 38000, Grenoble, France. .,Genetics and Chemogenomics Lab, Building C3, CEA, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | | |
Collapse
|
33
|
Guanxinping Tablets Inhibit ET-1-Induced Proliferation and Migration of MOVAS by Suppressing Activated PI3K/Akt/NF- κB Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9485463. [PMID: 35685734 PMCID: PMC9173997 DOI: 10.1155/2022/9485463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Background/Aim Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of atherosclerosis (AS). Therefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important means for the prevention and inhibition of AS. The clinical effects of Guanxinping (GXP) tablets and preliminary clinical research on the topic have proved that GXP can effectively treat coronary heart disease, but its underlying mechanism remains unclear. This study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle (MOVAS) cells and to explore the underlying mechanism. Methods MOVAS cells were divided into two major groups: physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time, atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group. Results In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells. Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6), IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. There was no significant difference between the high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion Our findings revealed that GXP was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.
Collapse
|
34
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Hu X, Zhu H, Chen B, He X, Shen Y, Zhang X, Xu Y, Xu X. The oncogenic role of tubulin alpha-1c chain in human tumours. BMC Cancer 2022; 22:498. [PMID: 35513790 PMCID: PMC9074327 DOI: 10.1186/s12885-022-09595-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Tubulin alpha-1c chain (TUBA1C), a subtype of α-tubulin, has been shown to be involved in cell proliferation and cell cycle progression in several cancers and to influence cancer development and prognosis. However, a pancancer analysis of TUBA1C to reveal its immunological and prognostic roles has not been performed. In this study, we first downloaded raw data on TUBA1C expression in cancers from The Cancer Genome Atlas (TCGA) database and multiple other databases and analysed these data with R software to investigate the prognostic and immunological value of TUBA1C in cancers. Immunohistochemical analysis was performed in gliomas to further validate our findings. Overall, TUBA1C was overexpressed in most cancers, and overexpression of TUBA1C was linked to poor prognosis and higher tumour grade in patients. In addition, TUBA1C expression was associated with tumour mutation burden (TMB), microsatellite instability (MSI), the tumour microenvironment (TME) and the infiltration of immune cells. TUBA1C was also coexpressed with most immune-related genes and influenced immune-related pathways. Immunohistochemical analysis showed that TUBA1C expression was highest in glioblastoma (GBM) tissues, second highest in low-grade glioma (LGG) tissues and lowest in normal tissues. Our study indicated that TUBA1C might be a biomarker for predicting the immune status and prognosis of cancers, offering new ideas for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Biao Chen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
36
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Xu J, Gao Z, Liu K, Fan Y, Zhang Z, Xue H, Guo X, Zhang P, Deng L, Wang S, Wang H, Wang Q, Zhao R, Li G. The Non-N 6-Methyladenosine Epitranscriptome Patterns and Characteristics of Tumor Microenvironment Infiltration and Mesenchymal Transition in Glioblastoma. Front Immunol 2022; 12:809808. [PMID: 35154083 PMCID: PMC8825368 DOI: 10.3389/fimmu.2021.809808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background An increasing number of RNA modification types other than N6-methyladenosine (m6A) modification have been detected. Nonetheless, the probable functions of RNA modifications beyond m6A in the tumor microenvironment (TME), mesenchymal (MES) transition, immunotherapy, and drug sensitivity remain unclear. Methods We analyzed the characteristics of 32 non-m6A RNA modification regulators in 539 glioblastoma (GBM) patients and the TME cell infiltration and MES transition patterns. Using principal component analysis, a non-m6A epitranscriptome regulator score (RM score) model was established. We estimated the association between RM score and clinical characteristics, TME status, GBM subtypes, and drug and immunotherapy response. Results Three definite non-m6A RNA modification patterns associated with diverse biological pathways and clinical characteristics were identified. The high RM score group was characterized by a poor prognosis, enhanced immune infiltration, and MES subtype. Further analysis indicated that the high RM score group had a lower tumor mutation burden as well as a weaker response to immunotherapy. The higher RM score group may benefit more from drugs targeting the EGFR and WNT signaling pathways. Conclusion Our study exposed the potential relationship of non-m6A RNA modification regulators with clinical features, TME status, and GBM subtype and clarified its therapeutic value.
Collapse
Affiliation(s)
- Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Kaining Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
38
|
Lin K, Shen SH, Lu F, Zheng P, Wu S, Liao J, Jiang X, Zeng G, Wei D. CRISPR screening of E3 ubiquitin ligases reveals Ring Finger Protein 185 as a novel tumor suppressor in glioblastoma repressed by promoter hypermethylation and miR-587. J Transl Med 2022; 20:96. [PMID: 35183197 PMCID: PMC8858481 DOI: 10.1186/s12967-022-03284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor. E3 ligases play important functions in glioma pathogenesis. CRISPR system offers a powerful platform for genome manipulation, while the screen of E3 ligases in GBM still remains to be explored. Here, we first constructed an E3 ligase small guide RNA (sgRNAs) library for glioma cells growth screening. After four passages, 299 significantly enriched or lost genes (SELGs) were compared with the initial state. Then the clinical significance of SELGs were validated and analyzed with TCGA glioblastoma and CGGA datasets. As RNF185 showed lost signal, decreased expression and favorable prognostic significance, we chose RNF185 for functional analysis. In vitro overexpressed cellular phenotype showed that RNF185 was a tumor suppressor in two glioma cell lines. Finally, the molecular mechanism of decreased RNF185 expression was investigated and increased miR-587 expression and DNA hypermethylation was evaluated. This study would provide a link between the molecular basis and glioblastoma pathogenesis, and a novel perspective for glioblastoma treatment.
Collapse
|
39
|
Yao Q, He YL, Wang N, Dong SS, Tu He Ta Mi Shi ME, Feng X, Chen H, Pang LJ, Zou H, Zhou WH, Li F, Qi Y. Identification of Potential Genomic Alterations and the circRNA-miRNA-mRNA Regulatory Network in Primary and Recurrent Synovial Sarcomas. Front Mol Biosci 2021; 8:707151. [PMID: 34485383 PMCID: PMC8414803 DOI: 10.3389/fmolb.2021.707151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Synovial sarcoma (SS) is one of the most invasive soft tissue sarcomas, prone to recurrence and metastasis, and the efficacy of surgical treatment and chemotherapy for SS remains poor. Therefore, the diagnosis and treatment of SS remain a significant challenge. This study aimed to analyze the mutated genes of primary SS (PSS) and recurrent SS (RSS), discover whether these sarcomas exhibit some potential mutated genes, and then predict associated microRNAs (miRNA) and circular RNAs (circRNA) by analyzing the mutated genes. We focused on the regulation mechanism of the circRNA-miRNA-mutated hub gene in PSS and RSS. Methods: We performed a comprehensive genomic analysis of four pairs of formalin-fixed paraffin-embedded samples of PSS and RSS, using Illumina human exon microarrays. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) function, and pathway enrichment of the mutated genes were analyzed, and the protein-protein interaction (PPI) network was forecast using String software 11.0. The hub genes were then obtained using the Molecular Complex Detection (MCODE) plug-in for Cytoscape 3.7.2 and were used to analyze overall survival (OS) using the Gene Expression Profiling Interactive Analysis (GEPIA) database. The corresponding miRNAs were obtained from the miRDB 5.0 and TargetScan 7.2 databases. The corresponding circRNAs of the hub genes were found through the miRNAs from these databases: Circbank, CircInteractome, and StarBase v2.0. Thereafter we set up a competing endogenous RNA (ceRNA) network with circRNA-miRNA and miRNA-messenger RNA (mRNA) pairs. Results: Using the chi-squared test, 391 mutated genes were screened using a significance level of p-values < 0.01 from the four pairs of PSS and RSS samples. A GO pathway analysis of 391 mutated genes demonstrated that differential expression mRNAs (DEmRNAs) might be bound up with the “positive regulation of neurogenesis,” “cell growth,” “axon part,” “cell−substrate junction,” or “protein phosphatase binding” of SS. The PPI network was constructed using 391 mutated genes, and 53 hub genes were identified (p < 0.05). Eight variant hub genes were discovered to be statistically significant using the OS analysis (p < 0.05). The circRNA-miRNA-mRNA (ceRNA) network was constructed, and it identified two circRNAs (hsa_circ_0070557 and hsa_circ_0070558), 10 miRNAs (hsa-let-7a-3p, hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-let-7f-2-3p, hsa-mir-1244, hsa-mir-1197, hsa-mir-124-3p, hsa-mir-1249-5p, hsa-mir-1253, and hsa-mir-1271-5p) and five hub genes (CENPE, ENPP3, GPR18, MDC1, and PLOD2). Conclusion: This study screened novel biological markers and investigated the differentiated circRNA-miRNA-mutated hub gene axis, which may play a pivotal role in the nosogenesis of PSS and RSS. Some circRNAs may be deemed new diagnostic or therapeutic targets that could be conducive to the future clinical treatment of SS.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Yong-Lai He
- Department of Pathology, Certral People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Shuang-Shuang Dong
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Mei Er Tu He Ta Mi Shi
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Xiao Feng
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Hao Chen
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China
| | - Wen-Hu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Certral People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
40
|
He L, Yang H, Zhu XL, Zhang Y, Lv K. Knockdown of long non-coding RNA SLC8A1-AS1 attenuates cell invasion and migration in glioma via suppression of Wnt/β-catenin signaling pathways. Brain Res Bull 2021; 176:112-120. [PMID: 34474120 DOI: 10.1016/j.brainresbull.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/03/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
As the most common aggressive malignant tumor in the central nervous system, glioma is still an insurmountable disease in the neural system. The mechanism of carcinogenesis in glioma remains largely unclear. In the present study, we identified a dysregulated long non-coding RNA (lncRNA) solute carrier family 8 member A1 antisense RNA 1 (SLC8A1-AS1) associated with glioma based on The Cancer Genome Atlas (TCGA) data. A validation experiment was conducted to confirm a high expression level of lncRNA SLC8A1-AS1 in glioma tissues. Down-regulation of lncRNA SLC8A1-AS1 suppressed the proliferation, colony formation, migration, and invasion of glioma cells in vitro and in vivo. Moreover, lncRNA SLC8A1-AS1 silencing decreased the activity of the Wnt/β-catenin pathway and suppressed the epithelial to mesenchymal transition (EMT) in glioma cells. These findings collectively provide novel insights into the function and mechanism of lncRNA SLC8A1-AS1 in the pathogenesis of glioma and highlight its potential as a therapeutic target for glioma intervention.
Collapse
Affiliation(s)
- Ling He
- Department of Blood Transfusion of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Hui Yang
- Key Laboratory of Noncoding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, Anhui Province, 241001, China; Central Laboratory of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Xiao-Long Zhu
- Key Laboratory of Noncoding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, Anhui Province, 241001, China; Central Laboratory of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Yan Zhang
- Key Laboratory of Noncoding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, Anhui Province, 241001, China.
| | - Kun Lv
- Key Laboratory of Noncoding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, Anhui Province, 241001, China; Central Laboratory of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China.
| |
Collapse
|
41
|
Lu H, Xu J, Xie B, Hu Y, Luo H, Chen Y, Song X. The multi-target mechanism of Cyclosporin A in the treatment of vitiligo based on network pharmacology. Dermatol Ther 2021; 34:e15023. [PMID: 34089287 DOI: 10.1111/dth.15023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/02/2021] [Indexed: 02/01/2023]
Abstract
Network pharmacology is an emerging discipline that designs drugs based on systems biology theory and biological system network analysis. Here, we applied network pharmacology to analyze the multi-target mechanism of Cyclosporin A in the treatment of vitiligo First, we predicted the targets of Cyclosporin A. Second, we obtained the genes related to vitiligo from the database. Third, we constructed the PPI network of the mutual genes between Cyclosporin A and vitiligo and used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze. Finally, we verified the prediction of potential targets through a docking study with Cyclosporin A. We found that there were 15 shared target genes between Cyclosporin A and vitiligo. We analyzed these 15 genes by Cytoscape and obtained a network diagram of 885 nodes. Through screening and molecular docking, PRKDC, CUL7, CUL1, HSPA8, HSPA4, and SIRT7 were the most likely multi-target mechanism of Cyclosporin A in the treatment of vitiligo. In our study, Cyclosporin A might not only affect the repair of DNA strands by targeting PRKDC, but also affected the innate and adaptive immune function of vitiligo patients by the targets of CUL1, CUL7, and HSP70. In addition, Cyclosporin A might promote the repigmentation of vitiligo by adjusting the expression of SIRT7.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, The Third People's Hospital of Hangzhou, Zhejiang, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, The Third People's Hospital of Hangzhou, Zhejiang, Hangzhou, China
| |
Collapse
|
42
|
Xia S, Wu J, Zhou W, Zhang M, Zhao K, Liu J, Tian D, Liao J. SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells. Cell Death Dis 2021; 12:570. [PMID: 34108444 PMCID: PMC8190073 DOI: 10.1038/s41419-021-03853-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The main reason for poor prognosis in hepatocellular carcinoma (HCC) patients is high metastasis and recurrence. Cancer progression depends on a tumor-supportive microenvironment. Therefore, illustrating the mechanisms of tumor immunity in underlying HCC metastasis is essential. Here, we report a novel role of solute carrier family 7 member 2 (SLC7A2), a member of the solute carrier family, in HCC metastasis. The reduction of SLC7A2 was an independent and significant risk factor for the survival of HCC patients. Upregulation of SLC7A2 decreased HCC invasion and metastasis, whereas downregulation of SLC7A2 promoted HCC invasion and metastasis. We further found that deficient SLC7A2 medicated the upregulation of CXCL1 through PI3K/Akt/NF-kκB pathway to recruit myeloid-derived suppressor cells (MDSCs), exerting tumor immunosuppressive effect. Moreover, we found that G9a-mediated di-methylation of H3K9 (H3K9me2) silenced the expression of SLC7A2 to suppress HCC metastasis and immune escape. In conclusion, G9a-mediated silencing of SLC7A2 exerts unexpected functions in cancer metastasis by fostering a tumor-supportive microenvironment through CXCL1 secretion and MDSCs recruitment. Thus, SLC7A2 may provide new mechanistic insight into the cancer-promoting property of MDSCs.
Collapse
Affiliation(s)
- Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jingwen Wu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
43
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
44
|
Xu J, Zhang J, Zhang Z, Gao Z, Qi Y, Qiu W, Pan Z, Guo Q, Li B, Zhao S, Guo X, Qian M, Chen Z, Wang S, Gao X, Zhang S, Wang H, Guo X, Zhang P, Zhao R, Xue H, Li G. Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death Dis 2021; 12:373. [PMID: 33828078 PMCID: PMC8026615 DOI: 10.1038/s41419-021-03664-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Exosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.
Collapse
Affiliation(s)
- Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Jian Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.,Department of Neurosurgery, Dezhou People's Hospital, Dezhou, 253000, Shandong, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| |
Collapse
|
45
|
BDKRB2 is a novel EMT-related biomarker and predicts poor survival in glioma. Aging (Albany NY) 2021; 13:7499-7516. [PMID: 33686021 PMCID: PMC7993731 DOI: 10.18632/aging.202614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Bradykinin receptor B2 (BDKRB2) has been reported as an oncogene in several malignancies. In glioma, the role of BDKRB2 remains unknown. This study aimed at investigating its clinical significance and biological function in glioma at the transcriptional level. We selected 301 glioma patients with microarray data from CGGA database and 697 with RNAseq data from TCGA database. Transcriptome and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. BDKRB2 expression showed a positive correlation with the WHO grade of glioma. BDKRB2 was increased in IDH wildtype and mesenchymal subtype of glioma. Gene ontology analysis demonstrated that BDKRB2 was profoundly associated with extracellular matrix organization in glioma. GSEA analysis revealed that BDKRB2 was particularly correlated with epithelial-to-mesenchymal transition (EMT). GSVA analysis showed that BDKRB2 was significantly paralleled with several EMT signaling pathways, including PI3K/AKT, hypoxia, and TGF-β. Moreover, BDKRB2 expression was significantly correlated with key biomarkers of EMT, especially with N-cadherin, snail, slug, vimentin, TWIST1, and TWIST2. Finally, higher BDKRB2 indicated significantly shorter survival for glioma patients. In conclusion, BDKRB2 was associated with more aggressive phenotypes of gliomas. Furthermore, BDKRB2 was involved in the EMT process and could serve as an independent prognosticator in glioma.
Collapse
|
46
|
Zhang H, He J, Dai Z, Wang Z, Liang X, He F, Xia Z, Feng S, Cao H, Zhang L, Cheng Q. PDIA5 is Correlated With Immune Infiltration and Predicts Poor Prognosis in Gliomas. Front Immunol 2021; 12:628966. [PMID: 33664747 PMCID: PMC7921737 DOI: 10.3389/fimmu.2021.628966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common and lethal primary malignant tumor of the brain. Routine treatment including surgical resection, chemotherapy, and radiotherapy produced limited therapeutic effect, while immunotherapy targeting the glioma microenvironment has offered a novel therapeutic option. PDIA5 protein is the member of PDI family, which is highly expressed in glioma and participates in glioma progression. Based on large-scale bioinformatics analysis, we discovered that PDIA5 expression level is upregulated in aggressive gliomas, with high PDIA5 expression predicting poor clinical outcomes. We also observed positive correlation between PDIA5 and immune infiltrating cells, immune related pathways, inflammatory activities, and other immune checkpoint members. Patients with high PDIA5 high-expression benefited from immunotherapies. Additionally, immunohistochemistry revealed that PDIA5 and macrophage biomarker CD68 were upregulated in high-grade gliomas, and patients with low PDIA5 level experienced favorable outcomes among 33 glioma patients. Single cell RNA sequencing exhibited that PDIA5 was in high level presenting in neoplastic cells and macrophages. Cell transfection and co-culture of glioma cells and macrophages revealed that PDIA5 in tumor cells mediated macrophages exhausting. Altogether, our findings indicate that PDIA5 overexpression is associated with immune infiltration in gliomas, and may be a promising therapeutic target for glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Yang Y, Wang J, Xu S, Shi F, Shan A. Calumenin contributes to epithelial-mesenchymal transition and predicts poor survival in glioma. Transl Neurosci 2021; 12:67-75. [PMID: 33623713 PMCID: PMC7885298 DOI: 10.1515/tnsci-2021-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 01/20/2023] Open
Abstract
Background Calumenin (CALU) has been reported to be associated with invasiveness and metastasis in some malignancies. However, in glioma, the role of CALU remains unclear. Methods Clinical and transcriptome data of 998 glioma patients, including 301 from CGGA and 697 from TCGA dataset, were included. R language was used to perform statistical analyses. Results CALU expression was significantly upregulated in more malignant gliomas, including higher grade, IDH wildtype, mesenchymal, and classical subtype. Gene Ontology analysis revealed that CALU-correlated genes were mainly enriched in cell/biological adhesion, response to wounding, and extracellular matrix/structure organization, all of which were strongly correlated with the epithelial-mesenchymal transition (EMT) phenotype. GSEA further validated the profound involvement of CALU in EMT. Subsequent GSVA suggested that CALU was particularly correlated with three EMT signaling pathways, including TGFβ, PI3K/AKT, and hypoxia pathway. Furthermore, CALU played synergistically with EMT key markers, including N-cadherin, vimentin, snail, slug, and TWIST1. Survival and Cox regression analysis showed that higher CALU predicted worse survival, and the prognostic value was independent of WHO grade and age. Conclusions CALU was correlated with more malignant phenotypes in glioma. Moreover, CALU seemed to serve as a pro-EMT molecular target and could contribute to predict prognosis independently in glioma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Futian Women and Children Health Institute, Shenzhen 518045, China
| | - Jin Wang
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shihai Xu
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Fei Shi
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
48
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
49
|
Yang Y, Wang J, Xu S, Lv W, Shi F, Shan A. IKBIP is a novel EMT-related biomarker and predicts poor survival in glioma. Transl Neurosci 2021; 12:9-19. [PMID: 33552590 PMCID: PMC7821420 DOI: 10.1515/tnsci-2021-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Background In cancer, kappa B-interacting protein (IKBIP) has rarely been reported. This study aimed at investigating its expression pattern and biological function in brain glioma at the transcriptional level. Methods We selected 301 glioma patients with microarray data from CGGA database and 697 glioma patients with RNAseq data from TCGA database. Transcriptional data and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. Results We found that IKBIP expression showed positive correlation with WHO grade of glioma. IKBIP was increased in isocitrate dehydrogenase (IDH) wild type and mesenchymal molecular subtype of glioma. Gene ontology analysis demonstrated that IKBIP was profoundly associated with extracellular matrix organization, cell–substrate adhesion and response to wounding in both pan-glioma and glioblastoma. Subsequent gene set enrichment analysis revealed that IKBIP was particularly correlated with epithelial-to-mesenchymal transition (EMT). To further elucidate the relationship between IKBIP and EMT, we performed gene set variation analysis to screen the EMT-related signaling pathways and found that IKBIP expression was significantly associated with PI3K/AKT, hypoxia and TGF-β pathway. Moreover, IKBIP expression was found to be synergistic with key biomarkers of EMT, especially with N-cadherin, vimentin, snail, slug and TWIST1. Finally, higher IKBIP indicated significantly shorter survival for glioma patients. Conclusions IKBIP was associated with more aggressive phenotypes of gliomas. Furthermore, IKBIP was significantly involved in EMT and could serve as an independent prognosticator in glioma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Futian Women and Children Health Institute, Shenzhen 518045, China
| | - Jin Wang
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shihai Xu
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Wen Lv
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Fei Shi
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|