1
|
Schiavello M, Bosco O, Vizio B, Sciarrillo A, Pensa A, Pivetta E, Morello F, Risso D, Montrucchio G, Mariano F, Lupia E. Profiling of miRNAs Contained in Circulating Extracellular Vesicles and Associated with Sepsis Development in Burn Patients: A Proof-of-Concept Study. Int J Mol Sci 2025; 26:1844. [PMID: 40076471 PMCID: PMC11899136 DOI: 10.3390/ijms26051844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Sepsis is the leading cause of mortality in patients with burn injuries and it may represent, in these patients, a real diagnostic challenge. Here we studied the profile of miRNAs contained in extracellular vesicles (EVs) (EV-miRNAs) isolated from plasma from burn patients complicated by sepsis at admission and 7 days later. We enrolled 28 burn patients, 18 with (Burn Septic Patients-BSPs) and 10 without (Burn non-Septic Patients-BnSPs) sepsis. Ten healthy subjects (HSs) were used as additional controls. After EV isolation by charge precipitation and miRNA extraction, we proceeded with a two-phase approach. Through a first screening phase, we identified 178 miRNAs differentially expressed in BSPs compared to HSs. Among these, by a validation phase based on qRT-PCR, we found that miR-483-5p, miR-193a-5p, and miR-188-3p were increased in the BSPs compared to the BnSPs and HSs. Upon ROC analysis, all three miRNAs showed a good accuracy in differentiating BSPs from BnSPs, especially miR-483-5p (AUC = 0.955, p-value = 0.001). Moreover, we found 173 miRNAs differentially expressed in BSPs after 7 days from enrollment compared to T0, among whose miR-1-3p, miR-34a-3p, and miR-193a-5p decreased in BSPs after 7 days, in parallel with a decrease in SOFA scores. Finally, the other two miRNAs, miR-34a-3p and miR-193a-5p, positively correlated with the SOFA score. In conclusion, we identified several miRNAs-namely miR-483-5p, miR-193a-5p, and miR-188-3p-with potential clinical utility as diagnostic biomarkers in a heterogeneous population of burn patients at high risk of developing sepsis. Moreover, we found some miRNAs (miR-1-3p, miR-34a-3p, and miR-193a-5p) that vary according to the course of sepsis and others (miR-34a-3p and miR-193a-5p) that are associated with its clinical severity.
Collapse
Affiliation(s)
- Martina Schiavello
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Ornella Bosco
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Barbara Vizio
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Alberto Sciarrillo
- Plastic Surgery and Burn Center, Department of General and Specialized Surgery, City of Health and Science, CTO Hospital, 10126 Turin, Italy; (A.S.); (A.P.); (D.R.)
| | - Anna Pensa
- Plastic Surgery and Burn Center, Department of General and Specialized Surgery, City of Health and Science, CTO Hospital, 10126 Turin, Italy; (A.S.); (A.P.); (D.R.)
| | - Emanuele Pivetta
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Fulvio Morello
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Daniela Risso
- Plastic Surgery and Burn Center, Department of General and Specialized Surgery, City of Health and Science, CTO Hospital, 10126 Turin, Italy; (A.S.); (A.P.); (D.R.)
| | - Giuseppe Montrucchio
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| | - Filippo Mariano
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
- Nephrology, Dialysis and Transplantation Unit, City of Health and Science, CTO Hospital, 10126 Turin, Italy
| | - Enrico Lupia
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (M.S.); (O.B.); (B.V.); (E.P.); (F.M.); (F.M.); (E.L.)
| |
Collapse
|
2
|
Chen W, Kongsomros S, Thorman A, Esfandiari L, Morrow AL, Chutipongtanate S, Newburg DS. Extracellular vesicles and preterm infant diseases. Front Pediatr 2025; 13:1550115. [PMID: 40034714 PMCID: PMC11873092 DOI: 10.3389/fped.2025.1550115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
With the continuous improvement in perinatal care, the number of viable preterm infants is gradually increasing, along with the rise in preterm-related diseases such as necrotizing enterocolitis, bronchopulmonary dysplasia, perinatal brain injury, retinopathy of prematurity, and sepsis. Due to the unique pathophysiology of preterm infants, diagnosing and treating these diseases has become particularly challenging, significantly affecting their survival rate and long-term quality of life. Extracellular vesicles (EVs), as key mediators of intercellular communication, play an important regulatory role in the pathophysiology of these diseases. Because of their biological characteristics, EVs could serve as biomarkers and potential therapeutic agents for preterm-related diseases. This review summarizes the biological properties of EVs, their relationship with preterm-related diseases, and their prospects for diagnosis and treatment. EVs face unique challenges and opportunities for clinical applications.
Collapse
Affiliation(s)
- Wenqain Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Supasek Kongsomros
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexander Thorman
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati College of Engineering, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ardythe L. Morrow
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David S. Newburg
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
4
|
Mikulski D, Nowicki M, Dróżdż I, Perdas E, Strzałka P, Kościelny K, Misiewicz M, Stawiski K, Wierzbowska A, Fendler W. MicroRNAs predict early complications of autologous hematopoietic stem cell transplantation. Biomark Res 2024; 12:42. [PMID: 38650024 PMCID: PMC11036737 DOI: 10.1186/s40364-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) remains the most prevalent type of stem cell transplantation. In our study, we investigated the changes in circulating miRNAs in AHSCT recipients and their potential to predict early procedure-related complications. We collected serum samples from 77 patients, including 54 with multiple myeloma, at four key time points: before AHSCT, on the day of transplantation (day 0), and at days + 7 and + 14 post-transplantation. Through serum miRNA-seq analysis, we identified altered expression patterns and miRNAs associated with the AHSCT procedure. Validation using qPCR confirmed deviations in the levels of miRNAs at the beginning of the procedure in patients who subsequently developed bacteremia: hsa-miR-223-3p and hsa-miR-15b-5p exhibited decreased expression, while hsa-miR-126-5p had increased level. Then, a neural network model was constructed to use miRNA levels for the prediction of bacteremia. The model achieved an accuracy of 93.33% (95%CI: 68.05-99.83%), with a sensitivity of 100% (95%CI: 67.81-100.00%) and specificity of 90.91% (95%CI: 58.72-99.77%) in predicting bacteremia with mean of 6.5 ± 3.2 days before occurrence. In addition, we showed unique patterns of miRNA expression in patients experiencing platelet engraftment delay which involved the downregulation of hsa-let-7f-5p and upregulation of hsa-miR-96-5p; and neutrophil engraftment delay which was associated with decreased levels of hsa-miR-125a-5p and hsa-miR-15b-5p. Our findings highlight the significant alterations in serum miRNA levels during AHSCT and suggest the clinical utility of miRNA expression patterns as potential biomarkers that could be harnessed to improve patient outcomes, particularly by predicting the risk of bacteremia during AHSCT.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Hollis R, Aziz M, Jacob A, Wang P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells 2024; 13:545. [PMID: 38534389 PMCID: PMC10968915 DOI: 10.3390/cells13060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Micro-ribonucleic acids (miRNAs) are small sequences of genetic materials that are primarily transcribed from the intronic regions of deoxyribonucleic acid (DNAs), and they are pivotal in regulating messenger RNA (mRNA) expression. miRNAs were first discovered to regulate mRNAs of the same cell in which they were transcribed. Recent studies have unveiled their ability to traverse cells, either encapsulated in vesicles or freely bound to proteins, influencing distant recipient cells. Activities of extracellular miRNAs have been observed during acute inflammation in clinically relevant pathologies, such as sepsis, shock, trauma, and ischemia/reperfusion (I/R) injuries. This review comprehensively explores the activity of miRNAs during acute inflammation as well as the mechanisms of their extracellular transport and activity. Evaluating the potential of extracellular miRNAs as diagnostic biomarkers and therapeutic targets in acute inflammation represents a critical aspect of this review. Finally, this review concludes with novel concepts of miRNA activity in the context of alleviating inflammation, delivering potential future directions to advance the field of miRNA therapeutics.
Collapse
Affiliation(s)
- Russell Hollis
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
6
|
Khan MJ, Singh P, Jha P, Nayek A, Malik MZ, Bagler G, Kumar B, Ponnusamy K, Ali S, Chopra M, Dohare R, Singh IK, Syed MA. Investigating the link between miR-34a-5p and TLR6 signaling in sepsis-induced ARDS. 3 Biotech 2023; 13:282. [PMID: 37496978 PMCID: PMC10366072 DOI: 10.1007/s13205-023-03700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are lung complications diagnosed by impaired gaseous exchanges leading to mortality. From the diverse etiologies, sepsis is a prominent contributor to ALI/ARDS. In the present study, we retrieved sepsis-induced ARDS mRNA expression profile and identified 883 differentially expressed genes (DEGs). Next, we established an ARDS-specific weighted gene co-expression network (WGCN) and picked the blue module as our hub module based on highly correlated network properties. Later we subjected all hub module DEGs to form an ARDS-specific 3-node feed-forward loop (FFL) whose highest-order subnetwork motif revealed one TF (STAT6), one miRNA (miR-34a-5p), and one mRNA (TLR6). Thereafter, we screened a natural product library and identified three lead molecules that showed promising binding affinity against TLR6. We then performed molecular dynamics simulations to evaluate the stability and binding free energy of the TLR6-lead molecule complexes. Our results suggest these lead molecules may be potential therapeutic candidates for treating sepsis-induced ALI/ARDS. In-silico studies on clinical datasets for sepsis-induced ARDS indicate a possible positive interaction between miR-34a and TLR6 and an antagonizing effect on STAT6 to promote inflammation. Also, the translational study on septic mice lungs by IHC staining reveals a hike in the expression of TLR6. We report here that miR-34a actively augments the effect of sepsis on lung epithelial cell apoptosis. This study suggests that miR-34a promotes TLR6 to heighten inflammation in sepsis-induced ALI/ARDS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03700-1.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Arnab Nayek
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, 15462 Kuwait City, Kuwait
| | - Ganesh Bagler
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020 India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, 110036 India
| | - Kalaiarasan Ponnusamy
- Biotechnology and Viral Hepatitis Division, National Centre for Disease Control, Sham Nath Marg, New Delhi, 110054 India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, 110062 India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
7
|
Zhang J, Tian W, Wang F, Liu J, Huang J, Duangmano S, Liu H, Liu M, Zhang Z, Jiang X. Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury. Cell Cycle 2023; 22:1694-1712. [PMID: 37415386 PMCID: PMC10446815 DOI: 10.1080/15384101.2023.2230018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome. MicroRNAs (miRNA) are conserved, endogenous, short non-coding RNAs composed of 18-25 nucleotides that serve as potential markers for many diseases and are involved in various biological processes, including cell proliferation, apoptosis, and differentiation. In this review, we provide a brief overview of miRNA expression in ALI/ARDS and summarize recent research on the mechanism and pathways by which miRNAs respond to macrophage polarization, inflammation, and apoptosis. The characteristics of each pathway are also summarized to provide a comprehensive understanding of the role of miRNAs in regulating macrophage polarization during ALI/ARDS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanyi Tian
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiao Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, China
| |
Collapse
|
8
|
Abstract
ABSTRACT Sepsis and trauma remain the leading causes of morbidity and mortality. Our understanding of the molecular pathogenesis in the development of multiple organ dysfunction in sepsis and trauma has evolved as more focus is on secondary injury from innate immunity, inflammation, and the potential role of endogenous danger molecules. Studies of the past several decades have generated evidence for extracellular RNAs (exRNAs) as biologically active mediators in health and disease. Here, we review studies on plasma exRNA profiling in mice and humans with sepsis and trauma, the role and mode of action by exRNAs, such as ex-micro(mi)RNAs, in host innate immune response, and their potential implications in various organ injury during sepsis and trauma.
Collapse
Affiliation(s)
- Williams Brittney
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rosemary Kozar
- Shock Trauma Center and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chao Wei
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Ye R, Lin Q, Xiao W, Mao L, Zhang P, Zhou L, Wu X, Jiang N, Zhang X, Zhang Y, Ma D, Huang J, Wang X, Deng L. miR-150-5p in neutrophil-derived extracellular vesicles associated with sepsis-induced cardiomyopathy in septic patients. Cell Death Dis 2023; 9:19. [PMID: 36681676 PMCID: PMC9867758 DOI: 10.1038/s41420-023-01328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Early diagnosis and potential therapeutic targets of sepsis-induced cardiomyopathy (SIC) remain challenges clinically. Circulating extracellular vesicles from immune cells carrying crucial injurious mediators, including miRNAs in sepsis. However, the impacts of neutrophil-derived extracellular vesicles and their miRNAs in the SIC development are unknown. OBJECTIVES The present study focused on the in-depth miRNA expression profiles of neutrophil-derived extracellular vesicles and explored the potential molecular biomarkers during the process of SIC. METHODS Neutrophil-derived extracellular vesicles were isolated from the blood samples in three sepsis patients with or without cardiomyopathy on day 1 and day 3 after ICU admission in comparison with three healthy controls. miRNAs were determined by RNA sequencing. The closely related differentially expressed miRNAs with SIC were further validated through qRT-PCR in the other cohorts of sepsis patients with (30 patients) or without cardiomyopathy (20 patients) and the association between miRNAs and the occurrence or disease severity of septic cardiomyopathy were stratified with logistic regression analysis. RESULTS Sixty-eight miRNAs from neutrophil-derived extracellular vesicles were changed significantly between healthy controls and without septic cardiomyopathy patients (61 miRNAs upregulated and seven downregulated). Thirty-eight miRNAs were differentially expressed in the septic cardiomyopathy patients. 27 common differentially expressed miRNAs were found in both groups with similar kinetics (23 miRNAs upregulated and four downregulated). The enriched cellular signaling pathway mediated by miRNAs from sepsis to septic cardiomyopathy was the HIF-1 signaling system modulated septic inflammation. Using multivariate logistic regression analysis, miR-150-5p coupled with NT-pro BNP, LVEF, and SOFA score (AUC = 0.941) were found to be the independent predictors of septic cardiomyopathy. CONCLUSION miRNAs derived from neutrophil-derived extracellular vesicles play an important role in septic disease severity development towards cardiomyopathy. miR-150-5p may be a predictor of sepsis severity development but warrants further study.
Collapse
Affiliation(s)
- Rongzong Ye
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Qiuyun Lin
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Wenkai Xiao
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Lixia Mao
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Pengfei Zhang
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Lingshan Zhou
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Xiaoxia Wu
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Nannan Jiang
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Xihe Zhang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Zhanjiang, 524400 China ,grid.410560.60000 0004 1760 3078Affiliated Lianjiang People’s Hospital, Guangdong Medical University, Zhanjiang, 524400 China ,Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023 China
| | - Yinhua Zhang
- grid.31501.360000 0004 0470 5905Department of Physiology & Biomedical Sciences, Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.459480.40000 0004 1758 0638University Hospital Research Centre, Yanbian University Hospital, Yanji, Jilin Province 133000 China
| | - Daqing Ma
- grid.7445.20000 0001 2113 8111Division of Anesthetics, Pain, Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK ,grid.439369.20000 0004 0392 0021Chelsea and Westminster, Hospital, London, UK
| | - Jiahao Huang
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| | - Xiaoyan Wang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Zhanjiang, 524400 China ,grid.410560.60000 0004 1760 3078Affiliated Lianjiang People’s Hospital, Guangdong Medical University, Zhanjiang, 524400 China ,Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023 China
| | - Liehua Deng
- grid.410560.60000 0004 1760 3078Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000 China
| |
Collapse
|
10
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
11
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
12
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, Hu TY, Wan MH. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9:61. [PMID: 36316787 PMCID: PMC9623953 DOI: 10.1186/s40779-022-00417-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Christopher J Lyon
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Hospital (Airport) of Sichuan University, Chengdu, 610299, China.
| |
Collapse
|
13
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
14
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
15
|
Alkharfy K, Ahmad A, Jan B, Raish M, Rehman M. Thymoquinone modulates the expression of sepsis‑related microRNAs in a CLP model. Exp Ther Med 2022; 23:395. [PMID: 35495595 PMCID: PMC9047025 DOI: 10.3892/etm.2022.11322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome common in critical care settings. In the present study, the therapeutic effect of thymoquinone (TQ) on the expression of sepsis-related microRNAs (miRNAs/miRs), levels of inflammatory markers, organ dysfunction and mortality were investigated in a cecal ligation and puncture (CLP) rat model. A single dose of TQ (1 mg/kg) was administered to animals 24 h after CLP and the mortality rate was assessed up to 7 days following the induction of sepsis. In addition, blood samples were collected at different time points and the expression levels of miRNAs (i.e. miR-16, miR-21, miR-27a and miR-34a) were examined, along with the levels of inflammatory cytokines (i.e. TNF-α, IL-1α, IL-2, IL-6 and IL-10) and sepsis markers (i.e. C-reactive protein, endothelial cell-specific molecule-1, VEGF, procalcitonin and D-dimer). Liver, kidney and lung tissues were also collected for further histological examination. Treatment with TQ significantly downregulated the miRNA expression levels, as well as the levels of inflammatory cytokines and early-stage sepsis biomarkers by 30-70% at 12-36 h (P<0.05). Furthermore, CLP model rats treated with TQ exhibited an ~80% increase in survival rate compared with that in the untreated CLP group. In addition, TQ induced the preservation of organ function and structure. In conclusion, the present study demonstrated a promising therapeutic effect of TQ against the sequelae of sepsis.
Collapse
Affiliation(s)
- Khalid Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basit Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Ou Y, An R, Wang H, Chen L, Shen Y, Cai W, Zhu W. Oxidative stress-related circulating miRNA-27a is a potential biomarker for diagnosis and prognosis in patients with sepsis. BMC Immunol 2022; 23:14. [PMID: 35337261 PMCID: PMC8957193 DOI: 10.1186/s12865-022-00489-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Oxidative stress plays a critical role on the processes of sepsis, and several microRNAs have been identified that may regulate the occurrence of oxidative stress. However, the relation between oxidative stress-related microRNA 27a (miR-27a) and sepsis is unknown. The present study aimed to determine the value of circulating miR-27a for the diagnosis and prognosis of sepsis. Methods This retrospective study included 23 patients with sepsis and 25 without sepsis treated at the emergency intensive care unit (EICU) or our institution between January 2019 and January 2020. Levels of circulating miR-27a and levels of oxidative stress-related indicators were measured and compared between sepsis and non-sepsis patients. Receiver operating characteristic (ROC) curve analysis was used to determine diagnostic efficiency of miR-27a. Results Circulating miR-27a levels in sepsis patients were higher than those in non-sepsis patients (p < 0.05), and levels were significantly higher in patients that died than those that lived (p < 0.05). In patients with sepsis, circulating miR-27a level was positively correlated with serum malondialdehyde (MDA) level (rs = 0.529, p = 0.007), and negatively correlated with serum glutathione peroxidase (GSH-Px) level (rs = − 0.477, p = 0.016). No significant correlation was observed between circulating miR-27a and serum superoxide dismutase (SOD) in sepsis patients (rs = − 0.340, p = 0.096). The area under the ROC curve (AUC) of miR-27a level for prediction of sepsis was 0.717 (p = 0.009) and for 28-day mortality was 0.739 (p = 0.003). Conclusions This study showed that circulating miR-27a level is correlated with oxidative stress and mortality in patients with sepsis, and may serve as a potential non-invasive molecular biomarker.
Collapse
Affiliation(s)
- Yingwei Ou
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Rongcheng An
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Haochu Wang
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Lue Chen
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yong Shen
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Wenwei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Wei Zhu
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Petejova N, Martinek A, Zadrazil J, Klementa V, Pribylova L, Bris R, Kanova M, Sigutova R, Kacirova I, Svagera Z, Bace E, Stejskal D. Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents. BMC Nephrol 2022; 23:111. [PMID: 35305556 PMCID: PMC8933949 DOI: 10.1186/s12882-022-02726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Through regulation of signaling pathways, microRNAs (miRNAs) can be involved in sepsis and associated organ dysfunction. The aims of this study were to track the 7-day time course of blood miRNAs in patients with sepsis treated with vancomycin, gentamicin, or a non-nephrotoxic antibiotic and miRNA associations with neutrophil gelatinase-associated lipokalin (NGAL), creatinine, procalcitonin, interleukin-6, and acute kidney injury (AKI) stage. Methods Of 46 adult patients, 7 were on vancomycin, 20 on gentamicin, and 19 on another antibiotic. Blood samples were collected on days 1, 4, and 7 of treatment, and miRNAs were identified using quantitative reverse transcription PCR. Results The results showed no relationship between miRNA levels and biochemical variables on day 1. By day 7 of gentamicin treatment miR-15a-5p provided good discrimination between AKI and non-AKI (area under curve, 0.828). In patients taking vancomycin, miR-155-5p and miR-192-5p positively correlated with creatinine and NGAL values, and miR-192-5p and miR-423-5p positively correlated with procalcitonin and interleukin-6 in patients treated with a non-nephrotoxic antibiotic. In patients together we found positive correlation between miR-155-5p and miR-423-5p and all biochemical markers. Conclusion The results suggest that these four miRNAs may serve as diagnostic or therapeutic tool in sepsis, renal injury and nephrotoxic treatment. Trial registration ClinicalTrials.gov, ID: NCT04991376. Registered on 27 July 2021.
Collapse
|
18
|
Tong Y, Zhou Z, Tang J, Feng Q. MiR-29b-3p Inhibits the Inflammation Injury in Human Umbilical Vein Endothelial Cells by Regulating SEC23A. Biochem Genet 2022; 60:2000-2014. [PMID: 35190931 DOI: 10.1007/s10528-022-10194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
This study aims to investigate the effects of miR-29b-3p on the inflammation injury of human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS) and explore the underlying mechanisms. The effects of different concentrations of LPS (0, 1, 5 and 10 μg/mL) on inflammation injury in HUVECs are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses to determine the optimal stimulus concentration. After stimulating HUVECs with 10 μg/mL LPS, the expression levels of miR-29b-3p are detected, and the effects of miR-29b-3p on inflammation injury are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-29b-3p. Rescue experiments have verified the roles of miR-29b-3p and the target gene in inflammation injury. We found that pro-inflammatory factor was increased, apoptosis was promoted, and cell proliferation was inhibited after the treatment of LPS in HUVECs. Overexpression of miR-29b-3p inhibited LPS-induced inflammatory response and apoptosis while promoting proliferation in HUVECs. Besides, bioinformatics analysis indicated that SEC23A was the target gene of miR-29b-3p and the confirmatory experiments showed that SEC23A was negatively correlated with miR-29b-3p and positively correlated with LPS concentration. Rescue experiments revealed that overexpression of SEC23A partially enhanced the inflammation injury effects in LPS-induced HUVECs with overexpression of miR-29b-3p. Hence, miR-29b-3p repressed inflammatory response, cell apoptosis and promoted cell proliferation in LPS-induced HUVECs by targeting SEC23A, providing a potential target for treating sepsis.
Collapse
Affiliation(s)
- Yiqing Tong
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China.
| | - Qiming Feng
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
19
|
Qiu G, Fan J, Zheng G, He J, Lin F, Ge M, Huang L, Wang J, Xia J, Huang R, Shu Q, Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci 2022; 9:814240. [PMID: 35187084 PMCID: PMC8847446 DOI: 10.3389/fmolb.2022.814240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis.Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR.Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function.Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.
Collapse
Affiliation(s)
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Menghua Ge
- Shaoxing Second Hospital, Shaoxing, China
| | | | - Jiangmei Wang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xia
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| | - Jianguo Xu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| |
Collapse
|
20
|
De Melo P, Pineros Alvarez AR, Ye X, Blackman A, Alves-Filho JC, Medeiros AI, Rathmell J, Pua H, Serezani CH. Macrophage-Derived MicroRNA-21 Drives Overwhelming Glycolytic and Inflammatory Response during Sepsis via Repression of the PGE 2/IL-10 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:902-912. [PMID: 34301845 PMCID: PMC8323968 DOI: 10.4049/jimmunol.2001251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Myeloid cells are critical for systemic inflammation, microbial control, and organ damage during sepsis. MicroRNAs are small noncoding RNAs that can dictate the outcome of sepsis. The role of myeloid-based expression of microRNA-21 (miR-21) in sepsis is inconclusive. In this study, we show that sepsis enhanced miR-21 expression in both peritoneal macrophages and neutrophils from septic C57BL/6J mice, and the deletion of miR-21 locus in myeloid cells (miR-21Δmyel mice) enhanced animal survival, decreased bacterial growth, decreased systemic inflammation, and decreased organ damage. Resistance to sepsis was associated with a reduction of aerobic glycolysis and increased levels of the anti-inflammatory mediators PGE2 and IL-10 in miR-21Δmyel in vivo and in vitro. Using blocking Abs and pharmacological tools, we discovered that increased survival and decreased systemic inflammation in septic miR-21Δmyel mice is dependent on PGE2/IL-10-mediated inhibition of glycolysis. Together, these findings demonstrate that expression of miR-21 in myeloid cells orchestrates the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm during sepsis.
Collapse
Affiliation(s)
- Paulo De Melo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jeffrey Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - Heather Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - C Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
22
|
MicroRNA-155: Regulation of Immune Cells in Sepsis. Mediators Inflamm 2021; 2021:8874854. [PMID: 33505221 PMCID: PMC7810547 DOI: 10.1155/2021/8874854] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expression at the posttranscriptional level. miR-155 is encoded by the miR-155 host gene (miR155HG), also known as the noncoding B cell integration cluster (BIC). MicroRNAs are widely expressed in various hematopoietic cells and are involved in regulating the immune system. In this review, we summarized how miR-155 modulates specific immune cells and the regulatory role of miR-155 in sepsis. miR-155 is expressed by different populations of innate and adaptive immune cells and is involved in the regulation of development, proliferation, and function in these cells. Sepsis is associated with uncontrollable inflammatory responses, accompanied by unacceptably high mortality. Due to the inadequacy of diagnostic markers as well as treatment strategies, treating sepsis can be a huge challenge. So far, a large number of experiments have shown that the expression of miR-155 is increased at an early stage of sepsis and that this increase is positively correlated with disease progression and severity. In addition, by blocking the proinflammatory effects of miR-155, it can effectively improve sepsis-related organ injury, providing novel insights to identify potential biomarkers and therapeutic targets for sepsis. However, since most of the current research is limited to animal experiments, further clinical research is required to determine the function of miR-155 and its mechanism related to sepsis.
Collapse
|
23
|
Sun J, Sun X, Chen J, Liao X, He Y, Wang J, Chen R, Hu S, Qiu C. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway. Stem Cell Res Ther 2021; 12:14. [PMID: 33413595 PMCID: PMC7791667 DOI: 10.1186/s13287-020-02068-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exosomal microRNAs (miRs) derived from mesenchymal stem cells (MSCs) have been shown to play roles in the pathophysiological processes of sepsis. Moreover, miR-27b is highly enriched in MSC-derived exosomes. Herein, we aimed to investigate the potential role and downstream molecular mechanism of exosomal miR-27b in sepsis. Methods Inflammation was induced in bone marrow-derived macrophages (BMDMs) by lipopolysaccharide (LPS), and mice were made septic by cecal ligation and puncture (CLP). The expression pattern of miR-27b in MSC-derived exosomes was characterized using RT-qPCR, and its downstream gene was predicted by in silico analysis. The binding affinity between miR-27b, Jumonji D3 (JMJD3), or nuclear factor κB (NF-κB) was characterized to identify the underlying mechanism. We induced miR-27b overexpression or downregulation, along with silencing of JMJD3 or NF-κB to examine their effects on sepsis. The production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 was detected by ELISA. Results miR-27b was highly expressed in MSC-derived exosomes. Mechanistic investigations showed that miR-27b targeted JMJD3. miR-27b decreased expression of pro-inflammatory genes by inhibiting the recruitment of JMJD3 and NF-κB at gene promoter region. Through this, MSC-derived exosomal miR-27b diminished production of pro-inflammatory cytokines in LPS-treated BMDMs and septic mice, which could be rescued by upregulation of JMJD3 and NF-κB. Besides, in vitro findings were reproduced by in vivo findings. Conclusion These data demonstrated that exosomal miR-27b derived from MSCs inhibited the development of sepsis by downregulating JMJD3 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Sun
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China.,Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xuan Sun
- Hematology Department, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xin Liao
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Yixuan He
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Jinsong Wang
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Rui Chen
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Sean Hu
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China. .,Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China.
| | - Chen Qiu
- Respiratory and Critical Care Medicine Department, Shenzhen People's Hospital, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China.
| |
Collapse
|
24
|
Identification and Validation of Potential miRNAs, as Biomarkers for Sepsis and Associated Lung Injury: A Network-Based Approach. Genes (Basel) 2020; 11:genes11111327. [PMID: 33182754 PMCID: PMC7696689 DOI: 10.3390/genes11111327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a dysregulated immune response disease affecting millions worldwide. Delayed diagnosis, poor prognosis, and disease heterogeneity make its treatment ineffective. miRNAs are imposingly involved in personalized medicine such as therapeutics, due to their high sensitivity and accuracy. Our study aimed to reveal the biomarkers that may be involved in the dysregulated immune response in sepsis and lung injury using a computational approach and in vivo validation studies. A sepsis miRNA Gene Expression Omnibus (GEO) dataset based on the former analysis of blood samples was used to identify differentially expressed miRNAs (DEMs) and associated hub genes. Sepsis-associated genes from the Comparative Toxicogenomics Database (CTD) that overlapped with identified DEM targets were utilized for network construction. In total, 317 genes were found to be regulated by 10 DEMs (three upregulated, namely miR-4634, miR-4638-5p, and miR-4769-5p, and seven downregulated, namely miR-4299, miR-451a, miR181a-2-3p, miR-16-5p, miR-5704, miR-144-3p, and miR-1290). Overall hub genes (HIP1, GJC1, MDM4, IL6R, and ERC1) and for miR-16-5p (SYNRG, TNRC6B, and LAMTOR3) were identified based on centrality measures (degree, betweenness, and closeness). In vivo validation of miRNAs in lung tissue showed significantly downregulated expression of miR-16-5p corroborating with our computational findings, whereas expression of miR-181a-2-3p and miR-451a were found to be upregulated in contrast to the computational approach. In conclusion, the differential expression pattern of miRNAs and hub genes reported in this study may help to unravel many unexplored regulatory pathways, leading to the identification of critical molecular targets for increased prognosis, diagnosis, and drug efficacy in sepsis and associated organ injuries.
Collapse
|
25
|
Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: an overview. Braz J Infect Dis 2020; 24:552-560. [PMID: 33169675 PMCID: PMC9392098 DOI: 10.1016/j.bjid.2020.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
|
26
|
Maucher D, Schmidt B, Kuhlmann K, Schumann J. Polyunsaturated Fatty Acids of Both the Omega-3 and the Omega-6 Family Abrogate the Cytokine-Induced Upregulation of miR-29a-3p by Endothelial Cells. Molecules 2020; 25:molecules25194466. [PMID: 33003296 PMCID: PMC7583866 DOI: 10.3390/molecules25194466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
Cellular processes fundamentally depend on protein expression control. At this, protein expression is regulated on the transcriptional and the post-transcriptional level. PUFAs are already known to affect gene transcription. The present study was conducted to answer the question whether PUFAs are also able to impact on the miRNA-mediated post-transcriptional fine-tuning of mRNA copy numbers. To this end, cellular miRNA profiles were screened by means of next-generation sequencing and NanoString analysis to compare PUFA-enriched to unsupplemented endothelial cells exposed to an inflammatory milieu. Validation took place by droplet digital PCR, allowing for an absolute quantification of RNA copy numbers. The analyses revealed that the stimulation-induced upregulation of miR-29a-3p is blocked by PUFA enrichment of endothelial cells. What is more, mRNA copy numbers of miR-29a-3p targets, namely the coagulation factors PAI-1, TF, and vWF, as well as the proinflammatory cytokines IL-1β, IL-6, and IL-8, were reduced in PUFA-enriched endothelial cells compared to unsupplemented cells, counteracting the stimulatory effect of an inflammatory environment. These data hint toward a new mechanism of action by which PUFAs modulate the functionality of endothelial cells. Apparently, the inflammation-modulating properties of PUFAs are also mediated at the post-transcriptional level.
Collapse
Affiliation(s)
| | | | | | - Julia Schumann
- Correspondence: ; Tel.: +49-345-5571776; Fax: +49-345-5571781
| |
Collapse
|
27
|
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:51-74. [PMID: 32506014 PMCID: PMC7272511 DOI: 10.1016/j.omtn.2020.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is characterized as an uncontrolled host response to infection, and it represents a serious health challenge, causing excess mortality and morbidity worldwide. The discovery of sepsis-related epigenetic and molecular mechanisms could result in improved diagnostic and therapeutic approaches, leading to a reduced overall risk for affected patients. Accumulating data show that microRNAs, non-coding RNAs, and exosomes could all be considered as novel diagnostic markers for sepsis patients. These biomarkers have been demonstrated to be involved in regulation of sepsis pathophysiology. However, epigenetic modifications have not yet been widely reported in actual clinical settings, and further investigation is required to determine their importance in intensive care patients. Further studies should be carried out to explore tissue-specific or organ-specific epigenetic RNA-based biomarkers and their therapeutic potential in sepsis patients.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Fadaei
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Wu Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Zingarelli B, Fan H. miR-145a Regulation of Pericyte Dysfunction in a Murine Model of Sepsis. J Infect Dis 2020; 222:1037-1045. [PMID: 32285112 PMCID: PMC7430167 DOI: 10.1093/infdis/jiaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening systemic disease with severe microvascular dysfunction. Pericytes preserve vascular homeostasis. To our knowledge, the potential roles of microRNAs in sepsis-induced pericyte dysfunction have not been explored. METHODS We determined lung pericyte expression of miR-145a in cecal ligation and puncture (CLP)-induced sepsis. Mouse lung pericytes were isolated and transfected with a miR-145a mimic, followed by stimulation with lipopolysaccharide (LPS). We measured inflammatory cytokine levels. To assess the functions of miR-145a in vivo, we generated a pericyte-specific miR-145a-knockout mouse and determined sepsis-induced organ injury, lung and renal vascular leakage, and mouse survival rates. We used RNA sequencing and Western blotting to analyze the signaling pathways regulated by miR-145a. RESULTS CLP led to decreased miR-145a expression in lung pericytes. The miR-145a mimic inhibited LPS-induced increases in cytokines. In CLP-induced sepsis, pericytes lacking miR-145a exhibited increased lung and kidney vascular leakage and reduced survival rates. We found that miR-145a could suppress LPS-induced NF-κB activation. In addition, we confirmed that the transcription factor Friend leukemia virus integration 1 (Fli-1) is a target of miR-145a and that Fli-1 activates NF-κB signaling. CONCLUSION Our results demonstrated that pericyte miR-145a mediates sepsis-associated microvascular dysfunction, potentially by means of Fli-1-mediated modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Yan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
29
|
Xu M, Wang D, Wang H, Zhang X, Liang T, Dai J, Li M, Zhang J, Zhang K, Xu D, Yu X. COVID-19 diagnostic testing: Technology perspective. Clin Transl Med 2020; 10:e158. [PMID: 32898340 PMCID: PMC7443140 DOI: 10.1002/ctm2.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The corona virus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 18 million people were infected with a total of 0.7 million deaths in ∼188 countries. Controlling the spread of SARS-CoV-2 is therefore inherently dependent on identifying and isolating infected individuals, especially since COVID-19 can result in little to no symptoms. Here, we provide a comprehensive review of the different primary technologies used to test for COVID-19 infection, discuss the advantages and disadvantages of each technology, and highlight the studies that have employed them. We also describe technologies that have the potential to accelerate SARS-CoV-2 detection in the future, including digital PCR, CRISPR, and microarray. Finally, remaining challenges in COVID-19 diagnostic testing are discussed, including (a) the lack of universal standards for diagnostic testing; (b) the identification of appropriate sample collection site(s); (c) the difficulty in performing large population screening; and (d) the limited understanding of SARS-COV-2 viral invasion, replication, and transmission.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Dan Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Hongye Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiaomei Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Te Liang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiayu Dai
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Meng Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Jiahui Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Kai Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
30
|
Xie K, Kong S, Li F, Zhang Y, Wang J, Zhao W. Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Pediatric Sepsis. Med Sci Monit 2020; 26:e923881. [PMID: 32575108 PMCID: PMC7331480 DOI: 10.12659/msm.923881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sepsis is an extremely common health issue with a considerable mortality rate in children. Our understanding about the pathogenic mechanisms of sepsis is limited. The aim of this study was to identify the differential expression genes (DEGs) in pediatric sepsis through comprehensive analysis, and to provide specific insights for the clinical sepsis therapies in children. MATERIAL AND METHODS Three pediatric gene expression profiles (GSE25504, GSE26378, GSE26440) were downloaded from the Gene Expression Omnibus (GEO) database. The difference expression genes (DEGs) between pediatric sepsis and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. RESULTS Totally, 160 overlapping upward genes and 61 downward genes were identified. In addition, 5 KEGG pathways, including hematopoietic cell lineage, Staphylococcus aureus infection, starch and sucrose metabolism, osteoclast differentiation, and tumor necrosis factor (TNF) signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the protein-protein interaction (PPI) network and CytoHubba, 9 hub genes including ITGAM, TLR8, IL1ß, MMP9, MPO, FPR2, ELANE, SPI1, and C3AR1 were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including has-miR-204-5p, has-miR-211-5p, has-miR-590-5p, and has-miR-21-5p, were predicted as possibly the key miRNAs. CONCLUSIONS Our findings will contribute to identification of potential biomarkers and novel strategies for pediatric sepsis treatment.
Collapse
Affiliation(s)
- Kexin Xie
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Shan Kong
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Fuxing Li
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Yulin Zhang
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China (mainland)
| | - Weidong Zhao
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| |
Collapse
|
31
|
Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M. Exosomes in Sepsis and Inflammatory Tissue Injury. Curr Pharm Des 2020; 25:4486-4495. [PMID: 31738129 DOI: 10.2174/1381612825666191116125525] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Sepsis is the leading cause of death in medical intensive care units, and thus represents a serious healthcare problem worldwide. Sepsis is often caused by the aberrant host responses to infection, which induce dysregulated inflammation that leads to life-threatening multiple organ failures. Mediators such as proinflammatory cytokines that drive the sepsis pathogenesis have been extensively studied. Exosomes, biological lipid bilayer nanoparticles secreted via the endosomal pathway of cells, have recently emerged as important cargos that carry multiple mediators critical for the pathogenesis of sepsis-associated organ dysfunctions. Here we will review current knowledge on the exosomes in sepsis and relevant inflammatory tissue injuries.
Collapse
Affiliation(s)
- Eun J Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Phyoe K Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| |
Collapse
|
32
|
Goodwin AJ, Li P, Halushka PV, Cook JA, Sumal AS, Fan H. Circulating miRNA 887 is differentially expressed in ARDS and modulates endothelial function. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1261-L1269. [PMID: 32321279 DOI: 10.1152/ajplung.00494.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aman S Sumal
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
33
|
Crimi E, Cirri S, Benincasa G, Napoli C. Epigenetics Mechanisms in Multiorgan Dysfunction Syndrome. Anesth Analg 2020; 129:1422-1432. [PMID: 31397699 DOI: 10.1213/ane.0000000000004331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms including deoxyribonucleic acid (DNA) methylation, histone modifications (eg, histone acetylation), and microribonucleic acids (miRNAs) have gained much scientific interest in the last decade as regulators of genes expression and cellular function. Epigenetic control is involved in the modulation of inflammation and immunity, and its dysregulation can contribute to cell damage and organ dysfunction. There is growing evidence that epigenetic changes can contribute to the development of multiorgan dysfunction syndrome (MODS), a leading cause of mortality in the intensive care unit (ICU). DNA hypermethylation, histone deacetylation, and miRNA dysregulation can influence cytokine and immune cell expression and promote endothelial dysfunction, apoptosis, and end-organ injury, contributing to the development of MODS after a critical injury. Epigenetics processes, particularly miRNAs, are emerging as potential biomarkers of severity of disease, organ damage, and prognostic factors in critical illness. Targeting epigenetics modifications can represent a novel therapeutic approach in critical care. Inhibitors of histone deacetylases (HDCAIs) with anti-inflammatory and antiapoptotic activities represent the first class of drugs that reverse epigenetics modifications with human application. Further studies are required to acquire a complete knowledge of epigenetics processes, full understanding of their individual variability, to expand their use as accurate and reliable biomarkers and as safe target to prevent or attenuate MODS in critical disease.
Collapse
Affiliation(s)
- Ettore Crimi
- From the University of Central Florida, College of Medicine, Orlando, Florida.,Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, Florida
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation SDN, Naples, Italy
| |
Collapse
|
34
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
35
|
miR-10a in Peripheral Blood Mononuclear Cells Is a Biomarker for Sepsis and Has Anti-Inflammatory Function. Mediators Inflamm 2020; 2020:4370983. [PMID: 32214905 PMCID: PMC7077053 DOI: 10.1155/2020/4370983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Recent literature has reported the use of circulating microRNAs (miRNAs) as biomarkers for sepsis. Immune cells play an essential role in the pathophysiology of sepsis. The aim of this prospective study was to identify miRNAs in peripheral blood mononuclear cells (PBMC) that could differentiate between sepsis and infection based on Sepsis-3 definition. Methods A total of 62 patients (41 with sepsis and 21 with infection suffering from pneumonia but without sepsis) and 20 healthy controls were enrolled into the study. PBMC at admission were examined for a panel of 4 miRNAs (miR-10a, miR-17, miR-27a, and miR-125b), which have been documented to participate in inflammatory response in immune cells, via qRT-PCR. Data were validated in a mouse model of sepsis induced via cecal ligation and puncture (CLP) and THP-1 monocytes. Results miR-10a levels in PBMC at admission were significantly lower in sepsis patients compared with patients with infection and healthy controls. miR-10a levels were negatively correlated with disease severity scores as well as levels for c-reactive protein and procalcitonin. In addition, low miR-10a expression had a diagnostic value for sepsis and a prognostic value for 28-day mortality in receiving operating characteristic analysis. Compared with infection patients and healthy controls, PBMC from sepsis patients also had higher levels of mitogen-activated kinase kinase kinase 7 (MAP3K7), a known target protein of miR-10a and an activator of the NF-κB pathway. In the mouse model of CLP-induced sepsis, miR-10a levels in PBMC were significantly decreased as early as 8 h after CLP. Overexpression of miR-10a in THP-1 cells significantly reduced the expression of MAP3K7 and proinflammatory cytokines including IL-6, TNF-α, and MCP-1. Conclusions PBMC miR-10a levels are decreased in sepsis and negatively correlated with the disease severity. Levels of miR-10a could distinguish between sepsis and infection and predict 28-day mortality. miR-10a plays an anti-inflammatory role in the pathogenesis of sepsis.
Collapse
|
36
|
Shah D, Das P, Alam MA, Mahajan N, Romero F, Shahid M, Singh H, Bhandari V. MicroRNA-34a Promotes Endothelial Dysfunction and Mitochondrial-mediated Apoptosis in Murine Models of Acute Lung Injury. Am J Respir Cell Mol Biol 2019; 60:465-477. [PMID: 30512967 DOI: 10.1165/rcmb.2018-0194oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent evidence has shown that microRNAs (miRs) are involved in endothelial dysfunction and vascular injury in lung-related diseases. However, the potential role of miR-34a in the regulation of pulmonary endothelial dysfunction, vascular injury, and endothelial cells (ECs) apoptosis in acute lung injury (ALI)/acute lung respiratory distress syndrome is largely unknown. Here, we show that miR-34a-5p was upregulated in whole lungs, isolated ECs from lungs, and ECs stimulated with various insults (LPS and hyperoxia). Overexpression of miR-34a-5p in ECs exacerbated endothelial dysfunction, inflammation, and vascular injury, whereas the suppression of miR-34a-5p expression in ECs and miR-34a-null mutant mice showed protection against LPS- and hyperoxia-induced ALI. Furthermore, we observed that miR-34a-mediated endothelial dysfunction is associated with decreased miR-34a direct-target protein, sirtuin-1, and increased p53 expression in whole lungs and ECs. Mechanistically, we show that miR-34a leads to translocation of p53 and Bax to the mitochondrial compartment with disruption of mitochondrial membrane potential to release cytochrome C into the cytosol, initiating a cascade of mitochondrial-mediated apoptosis in lungs. Collectively, these data show that downregulating miR-34a expression or modulating its target proteins may improve endothelial dysfunction and attenuate ALI.
Collapse
Affiliation(s)
- Dilip Shah
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mohammad Afaque Alam
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Nidhi Mahajan
- 2 Department of Biochemistry, Panjab University, India
| | - Freddy Romero
- 3 Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mohd Shahid
- 4 Department of Pharmaceutical Sciences, Chicago State University College of Pharmacy, Chicago, Illinois; and
| | - Harpreet Singh
- 5 Department of Physiology and Cell Biology, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vineet Bhandari
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Hirschberger S, Hübner M, Strauß G, Effinger D, Bauer M, Weis S, Giamarellos-Bourboulis EJ, Kreth S. Identification of suitable controls for miRNA quantification in T-cells and whole blood cells in sepsis. Sci Rep 2019; 9:15735. [PMID: 31672997 PMCID: PMC6823537 DOI: 10.1038/s41598-019-51782-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Complex immune dysregulation is a hallmark of sepsis. The occurring phases of immunosuppression and hyperinflammation require rapid detection and close monitoring. Reliable tools to monitor patient’s immune status are yet missing. Currently, microRNAs are being discussed as promising new biomarkers in sepsis. However, no suitable internal control for normalization of miRNA expression by qPCR has been validated so far, thus hampering their potential benefit. We here present the first evaluation of endogenous controls for miRNA analysis in human sepsis. Novel candidate reference miRNAs were identified via miRNA microArray. TaqMan qPCR assays were performed to evaluate these microRNAs in T-cells and whole blood cells of sepsis patients and healthy controls in two independent cohorts. In T-cells, U48 and miR-320 proved suitable as endogenous controls, while in whole blood cells, U44 and miR-942 provided best stability values for normalization of miRNA quantification. Commonly used snRNA U6 exhibited worst stability in all sample groups. The identified internal controls have been prospectively validated in independent cohorts. The critical importance of housekeeping gene selection is emphasized by exemplary quantification of imuno-miR-150 in sepsis patients. Use of appropriate internal controls could facilitate research on miRNA-based biomarker-use and might even improve treatment strategies in the future.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Gabriele Strauß
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - David Effinger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | | | - Simone Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
38
|
Wu X, Wu C, Gu W, Ji H, Zhu L. Serum Exosomal MicroRNAs Predict Acute Respiratory Distress Syndrome Events in Patients with Severe Community-Acquired Pneumonia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3612020. [PMID: 31467883 PMCID: PMC6699276 DOI: 10.1155/2019/3612020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) requiring intensive care unit (ICU) treatment commonly causes acute respiratory distress syndrome (ARDS) with high mortality. This study was aimed at evaluating whether microRNAs (miRNAs) in circulating exosomes have the predictive values for patients at risk of developing ARDS due to SCAP. METHODS ARDS/ALI-relevant miRNAs were obtained by literature search. Exosomes in serum were isolated by ultracentrifugation method and identified by Transmission Electron Microscopy. Then the miR profiling in the exosomes using real-time PCR was analyzed in SCAP patients with or without ARDS. Moreover, multivariate Cox proportional regression analysis was performed to estimate the odds ratio of miRNA for the occurrence of ARDS and prognosis. The receiver operating characteristics (ROC) curves were calculated to discriminate ARDS cases. Finally, the Kaplan-Meier curve using log-rank method was performed to test the equality for survival distributions with different miRNA classifiers. RESULTS A total of 53 SCAP patients were finally recruited. Ten miRNAs were picked out. Further, a subset of exosomal miRNAs, including the miR-146a, miR-27a, miR-126, and miR-155 in ARDS group exhibited significantly elevated levels than those in non-ARDS group. The combined expression of miR-126, miR-27a, miR-146a, and miR-155 predicted ARDS with an area under the curve of 0.909 (95 % CI 0.815 -1). Only miR-126 was selected to have potential to predict the 28-day mortality (OR=1.002, P=0.024) with its median value classifier. CONCLUSIONS The altered levels of circulating exosomal microRNAs may be useful biologic confirmation of ARDS in patients with SCAP.
Collapse
Affiliation(s)
- Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chengzhi Wu
- Department of Laboratory, Qihe People's Hospital, Dezhou, 251100, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
39
|
Ling L, Lu HT, Wang HF, Shen MJ, Zhang HB. MicroRNA-203 Acts as a Potent Suppressor in Septic Shock by Alleviating Lung Injury via Inhibition of VNN1. Kidney Blood Press Res 2019; 44:565-582. [PMID: 31340209 DOI: 10.1159/000500484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Septic shock, the most serious complication of sepsis, is a life-threatening disease that is mainly characterized by hypoperfusion and multiple organ failure. Various aberrantly expressed microRNAs (miRNAs) have been reported to be related to septic shock. We explored the regulatory effect of microRNA-203 (miR-203) on lung injury in septic shock mice. METHODS Microarray-based gene expression profiling related to septic shock identified the differentially expressed gene vanin-1 (VNN1) and potential regulatory miR-203. miR-203 was predicted to mediate VNN1 expression, thus affecting septic shock, which was investigated by treatment with miR-203 mimic, miR-203 inhibitor, and siRNA-VNN1 in septic shock mouse models. Polymorphonuclear neutrophils (PMNs) and pulmonary alveolar macrophages in bronchoalveolar lavage fluid (BALF) as well as the wet/dry ratio of the lung were also measured to assess lung injury. Additionally, the effects of miR-203 on inflammatory cytokines, oxidative stress indexes, blood biochemical indexes, serine-threonine protein kinase (AKT) signaling pathway-related factors, and apoptosis-related factors were determined. RESULTS VNN1 was verified to be targeted and negatively regulated by miR-203. In mouse models of septic shock, weak expression of miR-203, high expression of VNN1, and inhibition of AKT signaling pathway were identified. In response to miR-203 mimic and VNN1 gene silencing, mouse models of septic shock displayed reduced apoptosis, MDA, ALT, and AST in lung tissues, decreased levels of TNF-α, IL-1β, IFN-γ, IL-10, and IL-6, in serum, and reduced PMN and PAM levels in BALF, in addition to elevated SOD activity. Notably, the presence of miR-203 mimic led to AKT signaling pathway activation. CONCLUSION This study shows that upregulating miR-203 can alleviate lung injury through activation of the AKT signaling pathway by downregulating VNN1 in septic shock.
Collapse
Affiliation(s)
- Lan Ling
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Hai-Tao Lu
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Hai-Feng Wang
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Mei-Jia Shen
- Clinical Institute, China-Japan Friendship Hospital, Beijing, China
| | - Hong-Bo Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing, China,
| |
Collapse
|
40
|
Role of sepsis modulated circulating microRNAs. EJIFCC 2019; 30:128-145. [PMID: 31263389 PMCID: PMC6599195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is a life-threating condition with dysregulated systemic host response to microbial pathogens leading to disproportionate inflammatory response and multi-organ failure. Various biomarkers are available for the diagnosis and prognosis of sepsis; however, these laboratory parameters may show limitations in these severe clinical conditions. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of post-transcriptional gene silencing. They normally control numerous intracellular events, such as signaling cascade downstream of Toll-like receptors (TLRs) to avoid excessive inflammation after infection. In contrast, abnormal miRNA expression contributes to the development of sepsis correlating with its clinical features and outcomes. Based on recent clinical studies altered levels of circulating miRNAs can act as potential diagnostic and prognostic biomarkers in sepsis. In this review, we summarized the available data about TLR-mediated inflammatory signaling with its intracellular response in immune cells and platelets upon sepsis, which are, at least in part, under the regulation of miRNAs. Furthermore, the role of circulating miRNAs is also described as potential laboratory biomarkers in sepsis.
Collapse
|
41
|
Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in Sepsis: Understanding Its Role in Endothelial Dysfunction, Immunosuppression, and Potential Therapeutics. Front Immunol 2019; 10:1363. [PMID: 31275313 PMCID: PMC6591469 DOI: 10.3389/fimmu.2019.01363] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis has a complex pathophysiology in which both excessive and refractory inflammatory responses are hallmark features. Pro-inflammatory cytokine responses during the early stages are responsible for significant endothelial dysfunction, loss of endothelial integrity, and organ failure. In addition, it is now well-established that a substantial number of sepsis survivors experience ongoing immunological derangement and immunosuppression following a septic episode. The underpinning mechanisms of these phenomena are incompletely understood yet they contribute to a significant proportion of sepsis-associated mortality. Epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs, have an increasingly clear role in modulating inflammatory and other immunological processes. Recent evidence suggests epigenetic mechanisms are extensively perturbed as sepsis progresses, and particularly play a role in endothelial dysfunction and immunosuppression. Whilst therapeutic modulation of the epigenome is still in its infancy, there is substantial evidence from animal models that this approach could reap benefits. In this review, we summarize research elucidating the role of these mechanisms in several aspects of sepsis pathophysiology including tissue injury and immunosuppression. We also evaluate pre-clinical evidence for the use of "epi-therapies" in the treatment of poly-microbial sepsis.
Collapse
Affiliation(s)
- Deborah Cross
- Oxford Vaccine Group, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
42
|
Jin Y, Yang C, Sui X, Cai Q, Guo L, Liu Z. Endothelial progenitor cell transplantation attenuates lipopolysaccharide-induced acute lung injury via regulating miR-10a/b-5p. Lipids Health Dis 2019; 18:136. [PMID: 31174540 PMCID: PMC6556024 DOI: 10.1186/s12944-019-1079-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Background Bone marrow-derived endothelial progenitor cells (EPCs) are shown to attenuate lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in animal models. However, the molecular mechanism is largely unknown. Materials and methods The animal model of ALI was induced by intratracheal instillation of purified LPS with 2.5 mg/ml/kg. The expression of microRNAs and ADAM15 in lung tissues and LPS-induced mouse pulmonary microvascular endothelial cells (MPMVECs) was determined by quantitative real-time PCR and western blot analysis. The target relationship between miR-10a/b-5p and ADAM15 was confirmed by luciferase reporter assay and RNA interference. The effect of EPCs on MPMVEC proliferation was detected by MTT assay. Results EPCs increased the expression of miR-10a/b-5p and reduced ADAM15 protein level in LPS-induced ALI lung tissues and MPMVECs (p < 0.05), and promoted LPS-induced MPMVEC proliferation (p < 0.05). ADAM15 was confirmed to be a downstream target of miR-10a/b-5p. Additionally, EPCs promoted LPS-induced MPMVEC proliferation and exerted the therapeutic effect of ALI via regulating miR-10a/b-5p/ADAM15 axis. Conclusion EPC transplantation exerted its therapeutic effect of ALI via increasing miR-10a/b-5p and reducing ADAM15, thus providing a novel insight into the molecular mechanism of EPC transplantation in treating ALI. Electronic supplementary material The online version of this article (10.1186/s12944-019-1079-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Jin
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Chen Yang
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xintong Sui
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Quan Cai
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Liang Guo
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Zhi Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China.
| |
Collapse
|
43
|
From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns 2019; 45:16-31. [DOI: 10.1016/j.burns.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
44
|
Jones Buie JN, Zhou Y, Goodwin AJ, Cook JA, Vournakis J, Demcheva M, Broome AM, Dixit S, Halushka PV, Fan H. Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis. Inflammation 2019; 42:170-184. [PMID: 30244405 PMCID: PMC6380957 DOI: 10.1007/s10753-018-0882-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.
Collapse
Affiliation(s)
- Joy N Jones Buie
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA
| | - Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA
- Department of Biopharmaceutics College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Andrew J Goodwin
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John Vournakis
- Marine Polymer Technologies, Inc., Burlington, MA, 01803, USA
| | - Marina Demcheva
- Marine Polymer Technologies, Inc., Burlington, MA, 01803, USA
| | - Ann-Marie Broome
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Cell & Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suraj Dixit
- Department of Cell & Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
45
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
46
|
Möhnle P, Hirschberger S, Hinske LC, Briegel J, Hübner M, Weis S, Dimopoulos G, Bauer M, Giamarellos-Bourboulis EJ, Kreth S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol Med 2018; 24:54. [PMID: 30332984 PMCID: PMC6191918 DOI: 10.1186/s10020-018-0056-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Currently, no suitable clinical marker for detection of septic immunosuppression is available. We aimed at identifying microRNAs that could serve as biomarkers of T-cell mediated immunoparalysis in sepsis. Methods RNA was isolated from purified T-cells or from whole blood cells obtained from septic patients and healthy volunteers. Differentially regulated miRNAs were identified by miRNA Microarray (n = 7). Validation was performed via qPCR (n = 31). Results T-cells of septic patients revealed characteristics of immunosuppression: Pro-inflammatory miR-150 and miR-342 were downregulated, whereas anti-inflammatory miR-15a, miR-16, miR-93, miR-143, miR-223 and miR-424 were upregulated. Assessment of T-cell effector status showed significantly reduced mRNA-levels of IL2, IL7R and ICOS, and increased levels of IL4, IL10 and TGF-β. The individual extent of immunosuppression differed markedly. MicroRNA-143, − 150 and − 223 independently indicated T-cell immunoparalysis and significantly correlated with patient’s IL7R-/ICOS-expression and SOFA-scores. In whole blood, composed of innate and adaptive immune cells, both traits of immunosuppression and hyperinflammation were detected. Importantly, miR-143 and miR-150 – both predominantly expressed in T-cells – retained strong power of discrimination also in whole blood samples. Conclusions These findings suggest miR-143 and miR-150 as promising markers for detection of T-cell immunosuppression in whole blood and may help to develop new approaches for miRNA-based diagnostic in sepsis. Electronic supplementary material The online version of this article (10.1186/s10020-018-0056-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Möhnle
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - S Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - L C Hinske
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - J Briegel
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - M Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - S Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - G Dimopoulos
- 2nd Department of Critical Care Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - E J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
47
|
Wu X, Liu Z, Hu L, Gu W, Zhu L. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp Cell Res 2018; 370:13-23. [DOI: 10.1016/j.yexcr.2018.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
|
48
|
Ling L, Zhang SH, Zhi LD, Li H, Wen QK, Li G, Zhang WJ. MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomed Pharmacother 2018; 104:411-419. [PMID: 29787988 DOI: 10.1016/j.biopha.2018.05.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Hepatocyte proliferation and apoptosis are critical cellular behaviors in rat liver as a result of a liver injury. Herein, we performed this study in order to evaluate the role of miR-30e and its target Fos-Related Antigen-2 (FOSL2) in septic rats through the JAK/STAT signaling pathway. METHODS Rat models of sepsis were induced by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was performed to access serum levels of lipopolysaccharide (LPS), inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to confirm the successful establishment of the model. The hepatocytes were subject to miR-30e mimics, miR-30e inhibitors or siRNA-FOSL2. The expressions of miR-30e, FOSL2, apoptosis- and, JAK/STAT signaling pathway-related genes in liver tissues and hepatocytes were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. MTT assay and flow cytometry were performed to evaluate hepatocyte viability and apoptosis, respectively. RESULTS The results obtained revealed that in the septic rats, serum levels of inflammatory factors, LPS, ALT and AST, as well as the expression of FOSL2 were elevated and the JAK/STAT signaling pathway was activated, while there was a reduction in the expression of miR-30e. An initial bioinformatics prediction followed by a confirmatory dual-luciferase reporter assay determined that miR-30e targeted and negatively regulated FOSL2 expression. MiR-30e inhibited the activation of JSK2/STAT3 signaling pathway by reducing FOSL2 expression, while miR-30e enhanced hepatocyte proliferation and decreased hepatocyte cell apoptosis in septic rats. CONCLUSION These findings indicated that miR-30e may serve as an independent therapeutic target for sepsis, due to its ability to inhibit apoptosis and induce proliferation of hepatocytes by targeted inhibition of FOSL2 through the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lan Ling
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Shan-Hong Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Li-Da Zhi
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Hong Li
- Department of Vascular Surgery, Jilin University, Changchun 130012, PR China
| | - Qian-Kuan Wen
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Gang Li
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wen-Jia Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, PR China
| |
Collapse
|
49
|
Real JM, Ferreira LRP, Esteves GH, Koyama FC, Dias MVS, Bezerra-Neto JE, Cunha-Neto E, Machado FR, Salomão R, Azevedo LCP. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care 2018. [PMID: 29540208 PMCID: PMC5852953 DOI: 10.1186/s13054-018-2003-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Exosomes isolated from plasma of patients with sepsis may induce vascular apoptosis and myocardial dysfunction by mechanisms related to inflammation and oxidative stress. Despite previous studies demonstrating that these vesicles contain genetic material related to cellular communication, their molecular cargo during sepsis is relatively unknown. In this study, we evaluated the presence of microRNAs (miRNAs) and messenger RNAs (mRNAs) related to inflammatory response and redox metabolism in exosomes of patients with septic shock. Methods Blood samples were collected from 24 patients with septic shock at ICU admission and after 7 days of treatment. Twelve healthy volunteers were used as control subjects. Exosomes were isolated by ultracentrifugation, and their miRNA and mRNA content was evaluated by qRT-PCR array. Results As compared with healthy volunteers, exosomes from patients with sepsis had significant changes in 65 exosomal miRNAs. Twenty-eight miRNAs were differentially expressed, both at enrollment and after 7 days, with similar kinetics (18 miRNAs upregulated and 10 downregulated). At enrollment, 35 differentially expressed miRNAs clustered patients with sepsis according to survival. The pathways enriched by the miRNAs of patients with sepsis compared with control subjects were related mostly to inflammatory response. The comparison of miRNAs from patients with sepsis according to hospital survival demonstrated pathways related mostly to cell cycle regulation. At enrollment, sepsis was associated with significant increases in the expression of mRNAs related to redox metabolism (myeloperoxidase, 64-fold; PRDX3, 2.6-fold; SOD2, 2.2-fold) and redox-responsive genes (FOXM1, 21-fold; SELS, 16-fold; GLRX2, 3.4-fold). The expression of myeloperoxidase mRNA remained elevated after 7 days (65-fold). Conclusions Exosomes from patients with septic shock convey miRNAs and mRNAs related to pathogenic pathways, including inflammatory response, oxidative stress, and cell cycle regulation. Exosomes may represent a novel mechanism for intercellular communication during sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-018-2003-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Monte Real
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil.,Sao Paulo State Cancer Institute, University of São Paulo, São Paulo, Brazil.,Hospital do Servidor Publico Estadual de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Morphology Department, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunology, Heart Institute, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | - Fernanda Christtanini Koyama
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| | | | | | - Edécio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciano Cesar Pontes Azevedo
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil. .,Emergency Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
50
|
Li Y, Zhang F, Cong Y, Zhao Y. Identification of potential genes and miRNAs associated with sepsis based on microarray analysis. Mol Med Rep 2018; 17:6227-6234. [PMID: 29512785 PMCID: PMC5928603 DOI: 10.3892/mmr.2018.8668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response syndrome caused by infection. The present study aimed to examine key genes and microRNAs (miRNAs) involved in the pathogenesis of sepsis. The GSE13205 microarray dataset, downloaded from the Gene Expression Omnibus was analyzed using bioinformatics tools, and included muscle biopsy specimens of 13 patients with sepsis and eight healthy controls. The differentially expressed genes (DEGs) in samples from patients with sepsis were identified using the Linear Models for Microarray package in R language. Using the Database for Annotation, Visualization and Integration Discovery tool, functional and pathway enrichment analyses were performed to examine the potential functions of the DEGs. The protein-protein interaction (PPI) network was constructed with the DEGs using the Search Tool for the Retrieval of Interacting Genes, and the network topology was analyzed using CytoNCA. Subsequently, MCODE in Cytoscape was used to identify modules in the PPI network. Finally, the integrated regulatory network was constructed based on the DEGs, miRNAs and transcription factors (TFs). A total of 259 upregulated DEGs (MYC and BYSL) and 204 downregulated DEGs were identified in the patients with sepsis. NOP14, NOP2, AATF, GTPBP4, BYSL and TRMT6 were key genes in the MCODE module. In the integrated DEG-miRNA-TF regulatory network, hsa-miR-150 (target gene MYLK3) and 21 TFs, comprising 14 upregulated DEGs (including MYC) and seven downregulated DEGs, were identified. The results suggested that NOP14, NOP2, AATF, GTPBP4, BYSL, MYC, MYLK3 and miR-150 may be involved in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yin Li
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Fengxia Zhang
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yan Cong
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yun Zhao
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| |
Collapse
|