1
|
Bar S, Diaper J, Fontao F, Belin X, Abrard S, Albu G, Dupont H, Habre W, Schiffer E. EARLY AND CONCOMITANT ADMINISTRATION OF NOREPINEPHRINE AND ILOMEDIN IMPROVES MICROCIRCULATORY PERFUSION WITHOUT IMPAIRING MACROCIRCULATION IN AN INTESTINAL ISCHEMIA-REPERFUSION INJURY SWINE MODEL: A RANDOMIZED EXPERIMENTAL TRIAL. Shock 2025; 63:606-613. [PMID: 39637355 DOI: 10.1097/shk.0000000000002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ABSTRACT Background: Intestinal ischemia-reperfusion injury is associated with both macrocirculatory and microcirculatory failure. Association of a vasoconstrictor in combination with a vasodilator such as ilomedin may improve macrocirculation parameters, microcirculation perfusion and reduce endothelial dysfunction. The primary objective was to demonstrate a difference in mean arterial pressure (MAP) after intestinal reperfusion with the concomitant administration of norepinephrine and ilomedin during ischemia compared with traditional hemodynamic treatment strategies (fluid resuscitation and vasopressors only). Secondary objectives were to demonstrate an improvement in peripheral and intestinal microcirculatory perfusion and endothelial dysfunction after intestinal reperfusion using this association. Methods: We conducted a randomized preclinical trial in 21 large white pigs, in which a 2-h small bowel ischemia was performed using a segmental mesenteric occlusion model, followed by a 2-h reperfusion. Pigs were randomized into the following three groups: goal-directed fluid therapy, early administration of norepinephrine before reperfusion and early administration of ilomedin and norepinephrine before reperfusion. Macrocirculatory (MAP and Cardiac Index (CI), microcirculatory (Sublingual with SideStream Dark Field system and intestinal hemoglobin oxygen saturation with hyperspectral imaging) measurements and biological analysis (biomarkers of endothelial dysfunction) were performed. Results: There were no significant differences in the MAP ( P = 0.499) and the CI ( P = 0.659) between the three groups. Perfused vessel density in sublingual microcirculation was significantly higher immediately after reperfusion and 2 h after reperfusion in the early administration of ilomedin and norepinephrine group compared with the other two groups ( P < 0.05). Hemoglobin oxygen saturation measured at the intestinal level was significantly higher immediately after reperfusion in the early administration of ilomedin and norepinephrine group compared with the other two groups ( P < 0.01). There were no significant differences in biomarkers of endothelial dysfunction between the three groups. Creatinine, AST and alkaline phosphatases increased significantly 2 h after reperfusion in the early administration of ilomedin and norepinephrine group compared with baseline ( P < 0.05). Conclusions: Early administration of norepinephrine and ilomedin during ischemia improved short-term postreperfusion sublingual and intestinal microcirculation without worsening macrocirculatory parameters in an intestinal ischemia-reperfusion injury model. However, use of this strategy seemed to worsen both liver and kidney function.
Collapse
Affiliation(s)
| | | | - Fabienne Fontao
- Unit for Anesthesiologic Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Xavier Belin
- Unit for Anesthesiologic Investigations, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Stanislas Abrard
- Department of Anesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | | | - Hervé Dupont
- Department of Anesthesiology and Critical Care Medicine, Amiens University Medical Centre, Amiens, France
| | | | - Eduardo Schiffer
- Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Dubin A, Pozo MO. Central Venous Minus Arterial CO 2 Partial Pressure and Its Ratio to Arterial Minus Central Venous Oxygen Content Are Misleading Surrogates for Tissue Perfusion and Oxygenation. Chest 2025; 167:923-925. [PMID: 40210306 DOI: 10.1016/j.chest.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 04/12/2025] Open
Affiliation(s)
- Arnaldo Dubin
- Sanatorio Otamendi y Miroli, Buenos Aires, Argentina; Laboratorio de Investigación Traslacional, Hospital Interzonal de Agudos "General San Martín" de La Plata y Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| | - Mario O Pozo
- Servicio de Terapia Intensiva, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Chalkias A, Papagiannakis N, Katsifa K, Destounis A, Gravos A, Kanakaki S, Karapiperis G, Koufaki F, Prekates A, Tselioti P. Characterization of Sublingual Microvascular Tortuosity in Steady-State Physiology and Septic Shock. Biomedicines 2025; 13:691. [PMID: 40149667 PMCID: PMC11939869 DOI: 10.3390/biomedicines13030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The characteristics of hemodynamic coherence in healthy states and disease remain unknown. Capillary tortuosity is a morphologic variant of microcirculatory vessels, but its effects have generally not been considered in the assessment of tissue perfusion and oxygenation. We investigated the role of sublingual capillary tortuosity in the hemodynamic coherence of anesthetized adult individuals with steady-state physiology (ASA 1) and patients with septic shock requiring emergency abdominal surgery (ASA 4E and 5E). Methods: Sublingual macro and microcirculatory variables, oxygen transport, metabolic parameters, and the capillary tortuosity score (CTS) were assessed. Results: Mean (SD) CTS was 0.55 (0.76) and 3.31 (0.86) in the steady-state and septic shock group, respectively (p < 0.001). In patients with septic shock, CTS was significantly associated with alveolar-to-arterial oxygen gradient (r = 0.658, p = 0.015) and oxygen debt (r = -0.769, p = 0.002). Significant differences were also observed in Consensus Proportion of Perfused Vessels (PPV; p < 0.001), Consensus PPV (small) (p < 0.001), Microvascular Flow Index (p < 0.001), vessel diameter (p < 0.001) and length (p < 0.001), wall shear stress (p < 0.001), lactate (p < 0.001), oxygen extraction ratio (p = 0.001), arterial oxygen content (p < 0.001), venous oxygen content (p < 0.001), oxygen delivery (p < 0.001), oxygen consumption (p < 0.001), and oxygen debt (p = 0.002) between the two groups. Conclusions: Sublingual tortuosity was essentially absent in individuals with steady-state physiology. In contrast, it was significantly increased and associated with Alveolar-to-arterial oxygen gradient and oxygen debt in critically ill patients with septic shock.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA
- OUTCOMES RESEARCH Consortium, Houston, TX 77030, USA
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Nikolaos Papagiannakis
- First Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Konstantina Katsifa
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Antonios Destounis
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Athanasios Gravos
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Sofia Kanakaki
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Georgios Karapiperis
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Faidra Koufaki
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Athanasios Prekates
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Paraskevi Tselioti
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| |
Collapse
|
4
|
Huang L, Huang Q, Ma W, Yang H. UNDERSTANDING HEMODYNAMIC INCOHERENCE: MECHANISMS, PHENOTYPES, AND IMPLICATIONS FOR TREATMENT. Shock 2025; 63:342-350. [PMID: 39527481 PMCID: PMC11882199 DOI: 10.1097/shk.0000000000002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
ABSTRACT The reversal of microcirculation dysfunction is crucial for assessing the success of shock resuscitation and significantly influences patient prognosis. However, hemodynamic incoherence is observed when microcirculatory dysfunction persists despite the restoration of macrocirculatory function after resuscitation. Recent advancements in technology have enabled bedside assessment of microcirculation in shock patients, allowing for direct visualization of microcirculatory morphology and quantitative evaluation of its functional status. This article reviews the pathophysiological mechanisms that lead to hemodynamic incoherence. It also introduces the current understanding and classification framework for the different phenotypes of hemodynamic incoherence. Existing evidence indicates that the diverse mechanisms leading to microcirculatory disorders result in varied manifestations among patients experiencing hemodynamic incoherence, highlighting the heterogeneity of this population. Some classification frameworks have been proposed to enhance our understanding of these phenotypes. By integrating pathophysiological mechanisms, clinical symptoms, indicators of macrocirculation, microcirculation, tissue metabolism, and biomarkers, we can summarize certain clinical features of phenotypes in hemodynamic incoherence to form a conceptual framework. Additionally, strategies for creating targeted treatments based on different phenotypes require further validation.
Collapse
Affiliation(s)
- Lin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qiaobin Huang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Weiquan Ma
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| |
Collapse
|
5
|
Morin A, Missri L, Urbina T, Bonny V, Gasperment M, Bernier J, Baudel JL, Kattan E, Maury E, Joffre J, Ait-Oufella H. Relationship between skin microvascular blood flow and capillary refill time in critically ill patients. Crit Care 2025; 29:57. [PMID: 39905546 DOI: 10.1186/s13054-025-05285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Capillary refill time (CRT) and skin blood flow (SBF) have been reported to be strong predictors of mortality in critically ill patients. However, the relationship between both parameters remains unclear. METHODS We conducted a prospective observational study in a tertiary teaching hospital. All patients older than 18 years admitted in the intensive care unit (ICU) with circulatory failure and a measurable CRT were included. We assessed index SBF by laser doppler flowmetry and CRT on the fingertip, at T0 (Within the first 48 h from admission) and T1 (4 to 6 h later). Correlation was computed using Spearman or Pearson's formula. RESULTS During a 2-month period, 50 patients were included, 54% were admitted for sepsis. At baseline median CRT was 2.0 [1.1-3.9] seconds and median SBF was 46 [20-184] PU. At baseline SBF strongly correlated with CRT (R2 = 0.89; p < 0.0001, curvilinear relationship), this correlation was maintained whether patients were septic or not (R2 = 0.94; p = 0.0013; R2 = 0.87; p < 0.0001, respectively), and whether they received norepinephrine or not (R2 = 0.97; p = 0.0035; R2 = 0.92; p < 0.0001, respectively). Between T0 and T1, changes in SBF also significantly correlated with changes in CRT (R2 = 0.34; p < 0.0001). SBF was related to tissue perfusion parameters such as arterial lactate level (p = 0.02), whilst no correlation was found with cardiac output. In addition, only survivors significantly improved their SBF between T0 and T1. SBF was a powerful predictor of day-28 mortality as the AUROC at T0 was 85% [95% IC [76-91]] and at T1 90% [95% IC [78-100]]. CONCLUSION We have shown that index CRT and SBF were correlated, providing evidence that CRT is a reliable marker of microvascular blood flow. Trial registration Comité de protection des personnes Ouest II N° 2023-A02046-39.
Collapse
Affiliation(s)
- Alexandra Morin
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Louai Missri
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Tomas Urbina
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Vincent Bonny
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Maxime Gasperment
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Juliette Bernier
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Jean-Luc Baudel
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Eric Maury
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Jérémie Joffre
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
- Centre de Recherche Saint-Antoine Inserm UMR-S 938, Sorbonne University, 75012, Paris, France
| | - Hafid Ait-Oufella
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France.
- Paris Cardiovascular Research Center, Inserm U970, University Paris-Cité, Paris, France.
| |
Collapse
|
6
|
Shimuta T, Hanada K, Ryu K, Idei K, Kanai N. Peripheral Hemodynamics Estimation Using the Photoplethysmography Method. SENSORS (BASEL, SWITZERLAND) 2024; 24:7882. [PMID: 39771621 PMCID: PMC11680019 DOI: 10.3390/s24247882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is known to reduce blood circulation in capillaries and arterioles; however, no devices can easily measure this on a daily basis. In this study, we developed a tool for measuring finger photoplethysmograms using green light and near-infrared LEDs. Thereafter, photoplethysmography was conducted on 25 inpatients/outpatients with diabetes and 21 adult males and females who had not been diagnosed with or treated for diabetes, hypertension, or cardiovascular disease (control group). In patients with diabetes, the inverse full width at half-maximum velocity plethysmogram tended to be smaller than that in the control group, and the delay in the green light a-wave peak relative to the near-infrared light a-wave peak in the acceleration plethysmogram was significantly increased. The results suggest that peripheral hemodynamics can be easily estimated at home using a photoplethysmography device mounted on a ring-wearable device.
Collapse
Affiliation(s)
- Toru Shimuta
- Minato MIRAI Innovation Center, Murata Manufacturing Co., Ltd., 4-3-8, Minatomirai, Nishi-ku, Yokohama-shi 220-0012, Japan;
| | - Kaname Hanada
- Minato MIRAI Innovation Center, Murata Manufacturing Co., Ltd., 4-3-8, Minatomirai, Nishi-ku, Yokohama-shi 220-0012, Japan;
| | - Kazuteru Ryu
- Orthopedic Surgery, Kanai Hospital, 612-12, Yodokizu-cho, Fushimi-ku, Kyoto 613-0911, Japan; (K.R.); (K.I.)
| | - Koichi Idei
- Orthopedic Surgery, Kanai Hospital, 612-12, Yodokizu-cho, Fushimi-ku, Kyoto 613-0911, Japan; (K.R.); (K.I.)
| | - Nobuyuki Kanai
- Internal Medicine, Kanai Hospital, 612-12, Yodokizu-cho, Fushimi-ku, Kyoto 613-0911, Japan;
| |
Collapse
|
7
|
Tian R, Li R, Chen Y, Liu D, Li Y, He S, Pan T, Qu H, Tan R. Shenfu injection ameliorates endotoxemia-associated endothelial dysfunction and organ injury via inhibiting PI3K/Akt-mediated glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118634. [PMID: 39089657 DOI: 10.1016/j.jep.2024.118634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microcirculatory dysfunction is one of the main characteristics of sepsis. Shenfu Injection (SFI) as a traditional Chinese medicine is widely applied in clinical severe conditions. Recent studies have shown that SFI has the ability to ameliorate sepsis-induced inflammation and to improve microcirculation perfusion. AIM OF THE STUDY This study aims to investigate the underlying mechanism of SFI for ameliorating sepsis-associated endothelial dysfunction and organ injury. MATERIALS AND METHODS Side-stream dark-field (SDF) imaging was used to monitor the sublingual microcirculation of septic patients treated with or without SFI. Septic mouse model was used to evaluate the effects of SFI in vivo. Metabolomics and transcriptomics were performed on endothelial cells to identify the underlying mechanism for SFI-related protective effect on endothelial cells. RESULTS SFI effectively abolished the disturbance and loss of sublingual microcirculation in septic patients. Twenty septic shock patients with or without SFI administration were enrolled and the data showed that SFI significantly improved the levels of total vessel density (TVD), perfused vessel density (PVD), microvascular flow index (MFI), and the proportion of perfused vessels (PPV). The administration of SFI significantly decreased the elevated plasma levels of Angiopoietin-2 (Ang2) and Syndecan-1, which are biomarkers indicative of endothelial damage in sepsis patients. In the mouse septic model in vivo, SFI inhibited the upregulation of endothelial adhesion molecules and Ly6G + neutrophil infiltration while restored the expression of VE-Cadherin in the vasculature of the lung, kidney, and liver tissue. Additionally, SFI reduced the plasma levels of Ang2, Monocyte Chemoattractant Protein-1(MCP1), and Interleukin-6 (IL6), and alleviated liver and kidney injury in septic mice. Moreover, SFI significantly inhibited the inflammatory activation and increased permeability of endothelial cells induced by endotoxins in vitro. By performing metabolomics and transcriptomics, we identified the activation of PI3K/Akt-mediated glycolysis as the underlying mechanism for SFI-related protective effect on endothelial cells. CONCLUSIONS Our findings revealed that SFI may improve microcirculation perfusion and endothelial function in sepsis via inhibiting PI3K/Akt-mediated glycolysis, providing theoretical evidence for the clinical application of SFI.
Collapse
Affiliation(s)
- Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Di Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Schemmelmann M, Kelm M, Jung C. The microcirculation in cardiogenic shock. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:802-809. [PMID: 39506546 DOI: 10.1093/ehjacc/zuae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
Cardiogenic shock is a life-threatening condition characterized by inadequate cardiac output, leading to end-organ hypoperfusion and associated mortality rates ranging between 40 and 50%. The critical role of microcirculatory impairments in the progression of organ failure during shock has been highlighted in several studies. Traditional therapies have often focused on stabilizing macrocirculation, neglecting microcirculatory dysfunction, which can result in persistent tissue hypoxia and poor outcomes. This review highlights the importance of assessing microcirculation in cardiogenic shock, including parameters such as skin perfusion, sublingual microcirculation, and lactate dynamics. Integrating microcirculatory assessments into clinical practice remains challenging due to the complexity of the methods and limited therapeutic options targeting microvascular perfusion. While advances in microcirculation-guided therapies hold promise for improving outcomes in cardiogenic shock, further research is needed to establish effective protocols.
Collapse
Affiliation(s)
- Mara Schemmelmann
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
- CARID, Cardiovascular Research Institute Duesseldorf, Duesseldorf 40225, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
- CARID, Cardiovascular Research Institute Duesseldorf, Duesseldorf 40225, Germany
| |
Collapse
|
9
|
Fahey A, Neligan PJ, McNicholas B. Fluid management of acute kidney injury. Curr Opin Crit Care 2024; 30:548-554. [PMID: 39503204 DOI: 10.1097/mcc.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) is commonly encountered in critical care medicine as is intravenous fluid therapy. It is accepted that there is interplay between fluid use and AKI, both potentially positive and negative. An understanding of the physiological rationale for fluid is important to help clinicians when considering fluid therapy in patients with, or at risk for AKI; this includes understanding choice of fluid, method of monitoring, administration and clinical sequelae. RECENT FINDINGS There is increasing interest in combining both static and dynamic measures to assess fluid balance, fluid responsiveness effects of fluid therapy, which are areas requiring ongoing study to translate this theory into clinically useful practice at the bedside. Whilst the debate of choice of crystalloid in ICU practice continues, further evidence for benefits for balanced solutions emerges in the form of international guidelines and patient data meta-analysis of previously performed trials. SUMMARY This review assesses the physiological rationale for fluid use in ICU cohorts with AKI of various types, as well as a systematic approach for choice of fluid therapy using a number of different variables, which aims to help guide clinicians in managing fluid use and fluid balance in critically ill patients with AKI.
Collapse
Affiliation(s)
- Alison Fahey
- Department of Anaesthesia and Intensive Care Medicine, University Hospital Galway
| | - Patrick J Neligan
- Department of Anaesthesia and Intensive Care Medicine, University Hospital Galway
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, Galway, Ireland
| | - Bairbre McNicholas
- Department of Anaesthesia and Intensive Care Medicine, University Hospital Galway
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Kravitz MS, Lee JH, Shapiro NI. Cardiac arrest and microcirculatory dysfunction: a narrative review. Curr Opin Crit Care 2024; 30:611-617. [PMID: 39377652 PMCID: PMC11540727 DOI: 10.1097/mcc.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of the role of microcirculation in cardiac arrest and postcardiac arrest syndrome through handheld intravital microscopy and biomarkers. It highlights the importance of microcirculatory dysfunction in postcardiac arrest outcomes and explores potential therapeutic targets. RECENT FINDINGS Sublingual microcirculation is impaired in the early stage of postarrest and is potentially associated with increased mortality. Recent work suggests that the proportion of perfused small vessels is predictive of mortality. Microcirculatory impairment is consistently found to be independent of macrohemodynamic parameters. Biomarkers of endothelial cell injury and endothelial glycocalyx degradation are elevated in postarrest settings and may predict mortality and clinical outcomes, warranting further studies. Recent studies of exploratory therapies targeting microcirculation have shown some promise in animal models but still require significant research. SUMMARY Although research continues to suggest the important role that microcirculation may play in postcardiac arrest syndrome and cardiac arrest outcomes, the existing studies are still limited to draw any definitive conclusions. Further research is needed to better understand microcirculatory changes and their significance to improve cardiac arrest care and outcomes.
Collapse
Affiliation(s)
- Max S. Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John H. Lee
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Papp M, Ince C, Bakker J, Molnar Z. Endothelial Protection and Improved Micro- and Macrocirculation with Hemoadsorption in Critically Ill Patients. J Clin Med 2024; 13:7044. [PMID: 39685503 DOI: 10.3390/jcm13237044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
A dysregulated immune response is associated with an excessive release of cytokines that can lead to systemic vasoplegia and vasoplegic shock with the development of multiorgan failure that is associated with an increased risk of dying. Under physiological circumstances, the endothelium and the glycocalyx are responsible for maintaining vascular tone, capillary permeability, and hemostasis, and controlling inflammation. In hyperinflammation, the endothelium and glycocalyx become damaged due to the excessive production of certain toxic proteins, along with an overwhelming release of cytokines. It has been shown in both in vitro animal experiments and in humans that extracorporeal hemoadsorption can reduce circulating levels of cytokines and may also remove toxic proteins that directly take part in endothelium and glycocalyx damage. The current review aims to summarize current knowledge, put recent findings into context, and introduce the hypothesis of "endothelial protection with hemoadsorption" in critically ill patients.
Collapse
Affiliation(s)
- Marton Papp
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 78 Üllői St., 1082 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 22 Baross St., 1085 Budapest, Hungary
| | - Can Ince
- Laboratory for Translational Intensive Care, Department of Intensive Care, Erasmus MC, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jan Bakker
- Department of Pulmonary and Critical Care, New York University School of Medicine, New York, NY 10016, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
- Department of Intensive Care Adults, Erasmus MC University Medical Center, 3000 GD Rotterdam, The Netherlands
- Department of Intensive Care, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| | - Zsolt Molnar
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 78 Üllői St., 1082 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 22 Baross St., 1085 Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy and Pain Medicine, Poznan University for Medical Sciences, 49 Przybyszewskiego St, 60-355 Poznan, Poland
| |
Collapse
|
12
|
Müller-Graf F, Wrede D, Bork L, Klinkmann G, Flick M, Reuter DA, Zitzmann AR, Böhm SH, Reuter S. Quantification of Video Sequences of the Microcirculation: A Comparison Between Automated Analysis Using Analysis Manager and Manual Analysis Using Capillary Mapper. Microcirculation 2024; 31:e12890. [PMID: 39327705 DOI: 10.1111/micc.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Microcirculatory disturbances can contribute to organ dysfunction in patients undergoing major surgeries and critical illness. Incident dark field imaging (CytoCam, Braedius Medical BV, Huizen, Netherlands) provides direct visualization of the microcirculation. To utilize this method in daily clinical practice, automated image analysis is essential. This study aims to compare the automated analysis of recorded microcirculation video sequences using CytoCamTools V2 Analysis Manager (Braedius Medical BV) with established manual analysis using Capillary Mapper (Version 1.4.5, University Hospital Münster, Germany) as reference method. METHODS Sublingual microcirculation video sequences were recorded in patients undergoing laparotomy at four time points (before surgery, 2 and 6 h after surgery, and on the first postoperative day) using incident dark field imaging. Agreement between automated and manual analysis of total vessel density (TVD), perfused vessel density (PVD), and proportion of perfused vessels (PPV) was compared using intraclass correlation (ICC) and Bland-Altman method. RESULTS A total of 336 videos from 30 patients were analyzed. The ICC between the two measurement methods was 0.13 for TVD, 0.14 for PVD, and 0.16 for PPV. Bland-Altman analysis showed mean differences (95% limits of agreement) of 10.46 mm/mm2 (-1.73-22.65 mm/mm2) for TVD, 8.25 mm/mm2 (-9.88-26.39 mm/mm2) for PVD, and - 3.96% (-59.58%-51.65%) for PPV. DISCUSSION Automated microcirculatory analysis using the Analysis Manager did not show clinically acceptable agreement with manual analysis using Capillary Mapper. Consequently, automated video analysis using the Analysis Manager does not appear to be a suitable approach. TRIAL REGISTRATION ClinicalTrials.gov identifier: DRKS00020264.
Collapse
Affiliation(s)
- Fabian Müller-Graf
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - Dominik Wrede
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
| | - Lena Bork
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
| | - Gerd Klinkmann
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Moritz Flick
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel A Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
| | - Amelie R Zitzmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany
| | - Susanne Reuter
- Rudolf-Zenker-Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
13
|
Klibus M, Smirnova D, Marcinkevics Z, Rubins U, Grabovskis A, Vanags I, Sabelnikovs O. Quantitative Evaluation of Microcirculatory Alterations in Patients with COVID-19 and Bacterial Septic Shock through Remote Photoplethysmography and Automated Capillary Refill Time Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1680. [PMID: 39459467 PMCID: PMC11509756 DOI: 10.3390/medicina60101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Sepsis, a leading global health challenge, accounts for around 20% of deaths worldwide. The complexity of sepsis, especially the difference between bacterial and viral etiologies, requires an effective assessment of microcirculation during resuscitation. This study aimed to evaluate the impact of infusion therapy on microcirculation in patients with sepsis, focusing on bacterial- and COVID-19-associated sepsis using remote photoplethysmography (rPPG) and the automated capillary refill time (aCRT). Materials and Methods: This single-center prospective study was conducted in the ICU of Pauls Stradins Clinical University Hospital, including 20 patients with sepsis/septic shock. The patients were selected based on hemodynamic instability and divided into COVID-19 and Bacterial Septic Shock groups. Fluid responsiveness was assessed using the Passive Leg Raising Test (PLRT). Systemic hemodynamics and microcirculation were monitored through MAP CRT, rPPG, and serum lactate levels. Statistical analyses compared responses within and between the groups across different stages of the protocol. Results: The Bacterial group exhibited higher initial serum lactate levels and more pronounced microcirculatory dysfunction than the COVID-19 group. rPPG was more sensitive in detecting perfusion changes, showing significant differences between the groups. The automated CRT demonstrated greater sensitivity compared to the manual CRT, revealing significant differences during PLRT stages between bacterial- and COVID-19-associated sepsis. Both groups had a transient hemodynamic response to PLRT, with subsequent stabilization upon fluid infusion. Conclusions: When managing patients with sepsis in intensive care, monitoring microcirculation is of paramount importance in infusion therapy. Our study highlights the potential of rPPG and aCRT as tools for this purpose. These techniques can be used in conjunction with routine parameters, such as lactate levels and systemic hemodynamic parameters, to provide a comprehensive assessment of a patient's condition.
Collapse
Affiliation(s)
- Mara Klibus
- Department of Clinical Skills and Medical Technology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (M.K.); (D.S.)
- Department of Anaesthesiology and Reanimatology, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Department of Anaesthesiology and Reanimatology, Pauls Stradins CUH, LV-1002 Riga, Latvia
| | - Darja Smirnova
- Department of Clinical Skills and Medical Technology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (M.K.); (D.S.)
- Department of Anaesthesiology and Reanimatology, Pauls Stradins CUH, LV-1002 Riga, Latvia
| | | | - Uldis Rubins
- Faculty of Science and Technology, University of Latvia, LV-1063 Riga, Latvia; (U.R.); (A.G.)
| | - Andris Grabovskis
- Faculty of Science and Technology, University of Latvia, LV-1063 Riga, Latvia; (U.R.); (A.G.)
| | - Indulis Vanags
- Department of Anaesthesiology and Reanimatology, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Olegs Sabelnikovs
- Department of Clinical Skills and Medical Technology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (M.K.); (D.S.)
- Department of Anaesthesiology and Reanimatology, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Department of Anaesthesiology and Reanimatology, Pauls Stradins CUH, LV-1002 Riga, Latvia
| |
Collapse
|
14
|
Supthut W, Nuding S, Wienke A, Müller-Werdan U, Werdan K, Ebelt H. [Relationship between cardiac output, heart rate and microcirculation in patients with multiorgan dysfunction syndrome]. Med Klin Intensivmed Notfmed 2024; 119:538-545. [PMID: 38038767 DOI: 10.1007/s00063-023-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) is one of the main causes of death in intensive care units. There is evidence that microcirculation in sepsis and coronary shock is regulated separately from hemodynamics. This study investigates the relationship between heart rate (HR), cardiac output (CO) and microcirculation in patients with MODS. METHODS This is a partial analysis of the "MODIFY study" (Reducing Elevated Heart Rate in Patients With Multiple Organ Dysfunction Syndrome [MODS] by Ivabradine). During the period 05/2010-09/2011, the microcirculation of 46 patients with septic and coronary MODS was measured using the sidestream dark field technique on the day of inclusion and 96 h later. Patients were randomized into a control and ivabradine treatment group. RESULTS Overall, there is a relevant improvement in microcirculation over time small perfused vessels, SPV [%] on day 0, d0:56.5 ± 34.2/d4:73.2 ± 22.1 (p = 0.03); perfused vessel density, PVDsmall [1/mm2] d0:7.5 ± 5.0/d4:9.8 ± 3.4 (p = 0.04); proportion of perfused vessels, PPVsmall [%] d0:51.6 ± 31.6/d4:66.7 ± 21.8 (p = 0.04); microcirculatory flow index, MFI d0:1.7 ± 1.0/d4:2.2 ± 0.7 (p = 0.05). Administration of ivabradine shows no effect. In patients with coronary MODS, there is a relevant correlation between microcirculatory parameters and cardiac output (SPV [%]: r = 0.98, p = 0.004). Patients with coronary MODS show better microcirculation values at high heart rates (> 100 bpm), while patients with septic MODS show an opposite relationship. CONCLUSION The results indicate that in critically ill patients, depending on the genesis of the MODS, there are different relationships between HF or CO values, on the one hand, and the parameters of the microcirculation, on the other.
Collapse
Affiliation(s)
- Wiebke Supthut
- Klinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland.
| | - Sebastian Nuding
- Medizinische Klinik II, Krankenhaus St. Elisabeth und St. Barbara, Halle (Saale), Deutschland
| | - Andreas Wienke
- Institut für Medizinische Epidemiologie, Biometrie und Informatik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Deutschland
| | - Ursula Müller-Werdan
- Klinik für Geriatrie und Altersmedizin und EGZB, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Karl Werdan
- Klinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland
| | - Henning Ebelt
- Klinik für Innere Medizin II, Katholisches Krankenhaus St. Johann Nepomuk, Erfurt, Deutschland
| |
Collapse
|
15
|
Pérez MC, Fernández-Sarmiento J, Bustos JD, Ferro-Jackaman S, Ramírez-Caicedo P, Nieto A, Lucena N, Barrera S, Fernández-Rengifo JM, Cárdenas C, Garavito MC, Fernández-Sarta JP, Rotta IL, Coutin A, Patiño J, Acevedo L, Suárez JD, Duque-Arango C. Association between the lactate-albumin ratio and microcirculation changes in Pediatric Septic patients. Sci Rep 2024; 14:22579. [PMID: 39343791 PMCID: PMC11439901 DOI: 10.1038/s41598-024-73112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
A lactate/albumin ratio (LAR) greater than 0.5 measured early in the course of pediatric critical illness is associated with greater mortality. Whether the elevated LAR can be explained by microcirculation disorders in children with sepsis is not known. In this longitudinal retrospective study (January 2021-January 2024), serum albumin and lactate were measured on admission to the pediatric intensive care unit (PICU), with sublingual video microscopy performed simultaneously to measure microcirculation. A total of 178 children were included, 37% of whom had septic shock measured with the Phoenix Sepsis Score. Patients with remote sepsis had greater odds of an elevated LAR (aOR 6.87: 95% CI 1.98-23.73; p < 0.01). Children with an elevated LAR had more microvascular blood flow abnormalities (aOR 1.31 95% CI 1.08-1.58; p < 0.01), lower 4-6-micron capillary density (aOR 1.03 95% CI 1.01-1.05; p < 0.01) and greater odds of dying (aOR 3.55 95% CI 1.21-10.38; p = 0.02) compared to those with a low LAR. We found no association between LAR and endothelial glycocalyx degradation. A normal LAR is associated with less risk of microcirculatory injury (aOR 0.77 95% CI 0.65-0.93; p < 0.01). In children with sepsis, an elevated LAR is associated with microcirculation abnormalities (microvascular density and flow). The lactate/albumin ratio is a potentially useful biomarker for microcirculatory injury in sepsis.
Collapse
Affiliation(s)
- Maria Camila Pérez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Jaime Fernández-Sarmiento
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia.
| | - Juan David Bustos
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Sarah Ferro-Jackaman
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Paula Ramírez-Caicedo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Andrés Nieto
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Natalia Lucena
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Sofia Barrera
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - José Manuel Fernández-Rengifo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Carolina Cárdenas
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Maria Camila Garavito
- Department of Emergency Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Juan Pablo Fernández-Sarta
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Isabella La Rotta
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Alejandro Coutin
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Juanita Patiño
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad del Rosario , Bogotá, Colombia
| | - Lorena Acevedo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Juan David Suárez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| | - Catalina Duque-Arango
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil- Instituto de Cardiología, Universidad de La Sabana, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía - Cundinamarca, Bogotá, Colombia
| |
Collapse
|
16
|
Fernandes M, Lorenzo AD, Tibiriçá E. The Usefulness of Microcirculatory Assessment After Cardiac Surgery: Illustrative Case Report. Braz J Cardiovasc Surg 2024; 39:e20230383. [PMID: 39248437 PMCID: PMC11382545 DOI: 10.21470/1678-9741-2023-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Cardiac surgery causes a series of disturbances in human physiology. The correction of systemic hemodynamic variables is frequently ineffective in improving microcirculatory perfusion and delivering oxygen to the tissues. We present the case of a 52-year-old male submitted to mitral valve replacement (metallic valve) and subaortic membrane resection. Sublingual microcirculatory density and perfusion were evaluated using a handheld CytoCam camera before surgery and in the early postoperative period. In this case, systemic hemodynamic variables were compromised despite an actual improvement in the microcirculatory parameters in comparison to the preoperative evaluation, possibly due to the correction of the structural cardiac defects.
Collapse
Affiliation(s)
- Marcos Fernandes
- Instituto Nacional de Cardiologia, Ministry of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea De Lorenzo
- Instituto Nacional de Cardiologia, Ministry of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- Instituto Nacional de Cardiologia, Ministry of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Bertacchi M, Wendel-Garcia PD, Hana A, Ince C, Maggiorini M, Hilty MP. Nitroglycerin challenge identifies microcirculatory target for improved resuscitation in patients with circulatory shock. Intensive Care Med Exp 2024; 12:76. [PMID: 39222259 PMCID: PMC11369126 DOI: 10.1186/s40635-024-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Circulatory shock and multi-organ failure remain major contributors to morbidity and mortality in critically ill patients and are associated with insufficient oxygen availability in the tissue. Intrinsic mechanisms to improve tissue perfusion, such as up-regulation of functional capillary density (FCD) and red blood cell velocity (RBCv), have been identified as maneuvers to improve oxygen extraction by the tissues; however, their role in circulatory shock and potential use as resuscitation targets remains unknown. To fill this gap, we examined the baseline and maximum recruitable FCD and RBCv in response to a topical nitroglycerin stimulus (FCDNG, RBCvNG) in patients with and without circulatory shock to test whether this may be a method to identify the presence and magnitude of a microcirculatory reserve capacity important for identifying a resuscitation target. METHODS Sublingual handheld vital microscopy was performed after initial resuscitation in mechanically ventilated patients consecutively admitted to a tertiary medical ICU. FCD and RBCv were quantified using an automated computer vision algorithm (MicroTools). Patients with circulatory shock were retrospectively identified via standardized hemodynamic and clinical criteria and compared to patients without circulatory shock. RESULTS 54 patients (57 ± 14y, BMI 26.3 ± 4.9 kg/m2, SAPS 56 ± 19, 65% male) were included, 13 of whom presented with circulatory shock. Both groups had similar cardiac index, mean arterial pressure, RBCv, and RBCvNG. Heart rate (p < 0.001), central venous pressure (p = 0.02), lactate (p < 0.001), capillary refill time (p < 0.01), and Mottling score (p < 0.001) were higher in circulatory shock after initial resuscitation, while FCD and FCDNG were 10% lower (16.9 ± 4.2 and 18.9 ± 3.2, p < 0.01; 19.3 ± 3.1 and 21.3 ± 2.9, p = 0.03). Nitroglycerin response was similar in both groups, and circulatory shock patients reached FCDNG similar to baseline FCD found in patients without shock. CONCLUSION Critically ill patients suffering from circulatory shock were found to present with a lower sublingual FCD. The preserved nitroglycerin response suggests a dysfunction of intrinsic regulation mechanisms to increase the microcirculatory oxygen extraction capacity associated with circulatory shock and identifies a potential resuscitation target. These differences in microcirculatory hemodynamic function between patients with and without circulatory shock were not reflected in blood pressure or cardiac index.
Collapse
Affiliation(s)
- Massimiliano Bertacchi
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Anisa Hana
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Can Ince
- Laboratory of Translational Intensive Care, Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marco Maggiorini
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Asmar R, Stergiou G, de la Sierra A, Jelaković B, Millasseau S, Topouchian J, Shirai K, Blacher J, Avolio A, Jankowski P, Parati G, Bilo G, Rewiuk K, Mintale I, Rajzer M, Agabiti-Rosei E, Ince C, Postadzhiyan A, Zimlichman R, Struijker-Boudier H, Benetos A, Bäck M, Tasic N, Sirenko Y, Zelveian P, Wang H, Fantin F, Kotovskaya Y, Ezhov M, Kotsis V. Blood pressure measurement and assessment of arterial structure and function: an expert group position paper. J Hypertens 2024; 42:1465-1481. [PMID: 38899971 PMCID: PMC11296277 DOI: 10.1097/hjh.0000000000003787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Measuring blood pressure (BP) and investigating arterial hemodynamics are essential in understanding cardiovascular disease and assessing cardiovascular risk. Several methods are used to measure BP in the doctor's office, at home, or over 24 h under ambulatory conditions. Similarly, several noninvasive methods have been introduced for assessing arterial structure and function; these methods differ for the large arteries, the small ones, and the capillaries. Consequently, when studying arterial hemodynamics, the clinician is faced with a multitude of assessment methods whose technical details, advantages, and limitations are sometimes unclear. Moreover, the conditions and procedures for their optimal implementation, and/or the reference normality values for the parameters they yield are not always taken into sufficient consideration. Therefore, a practice guideline summarizing the main methods and their use in clinical practice is needed. This expert group position paper was developed by an international group of scientists after a two-day meeting during which each of the most used methods and techniques for blood pressure measurement and arterial function and structure evaluation were presented and discussed, focusing on their advantages, limitations, indications, normal values, and their pragmatic clinical application.
Collapse
Affiliation(s)
- Roland Asmar
- Foundation-Medical Research Institutes. Paris France
| | - George Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Alejandro de la Sierra
- Hypertension Unit. Department of Internal Medicine. Hospital Mutua Terrassa. University of Barcelona, Spain
| | - Bojan Jelaković
- University hospital Centre Zagreb and University of Zagreb, School of Medicine. Zagreb, Croatia
| | | | - Jirar Topouchian
- Centre de diagnostic et de thérapeutique, Hôpital Hôtel-Dieu. Paris, France
| | - Kohji Shirai
- Toho University Sakura medical center, Department of Internal Medicine. Toho Japan
| | - Jacques Blacher
- Centre de diagnostic et de thérapeutique, Hôpital Hôtel-Dieu; AP-HP; Université Paris Cité, Paris, France
| | - Alberto Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Humans Sciences, Macquarie University, Sydney, Australia
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca Milan, Italy
- IRCCS, Istituto Auxologico Italiano, Departmentof Cardiology, Milan, Italy
| | - Grzegorz Bilo
- Department of Medicine and Surgery, University of Milano-Bicocca Milan, Italy
- IRCCS, Istituto Auxologico Italiano, Departmentof Cardiology, Milan, Italy
| | - Krzysztof Rewiuk
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Cracow, Poland
| | - Iveta Mintale
- Institute of Cardiology and Regenerative Medicine, Latvian Centre of Cardiology; Riga Latvia
| | - Marek Rajzer
- First Department of Cardiology, Interventional Electro-cardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Enrico Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia and IRCCS Multimedica, Milan, Italy
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | | | - Reuven Zimlichman
- The Brunner Institute for Cardiovascular Research, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - Hongyu Wang
- Department of Heart and Vascular Medicine, PKU Shougang Hospital, Beijing China
| | - Francesco Fantin
- Centre for Medical Sciences – CISMed, Department of Psychology and Cognitive Science, Section of Geriatric Medicine, University of Trento, Rovereto, Italy
| | - Yulia Kotovskaya
- Russian Clinical and Research Center of Gerontology – Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marat Ezhov
- Myasnikov Clinical Cardiology Research Institute. Chazov National Medical Research Center of Cardiology. Moscow, Russia
| | - Vasilios Kotsis
- Department of Internal Medicine, Papageorgiou Hospital, Thessaloniki Greece
| |
Collapse
|
19
|
Sigg AA, Zivkovic V, Bartussek J, Schuepbach RA, Ince C, Hilty MP. The physiological basis for individualized oxygenation targets in critically ill patients with circulatory shock. Intensive Care Med Exp 2024; 12:72. [PMID: 39174691 PMCID: PMC11341514 DOI: 10.1186/s40635-024-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/21/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Circulatory shock, defined as decreased tissue perfusion, leading to inadequate oxygen delivery to meet cellular metabolic demands, remains a common condition with high morbidity and mortality. Rapid restitution and restoration of adequate tissue perfusion are the main treatment goals. To achieve this, current hemodynamic strategies focus on adjusting global physiological variables such as cardiac output (CO), hemoglobin (Hb) concentration, and arterial hemoglobin oxygen saturation (SaO2). However, it remains a challenge to identify optimal targets for these global variables that best support microcirculatory function. Weighting up the risks and benefits is especially difficult for choosing the amount of oxygen supplementation in critically ill patients. This review assesses the physiological basis for oxygen delivery to the tissue and provides an overview of the relevant literature to emphasize the importance of considering risks and benefits and support decision making at the bedside. PHYSIOLOGICAL PREMISES Oxygen must reach the tissue to enable oxidative phosphorylation. The human body timely detects hypoxia via different mechanisms aiming to maintain adequate tissue oxygenation. In contrast to the pulmonary circulation, where the main response to hypoxia is arteriolar vasoconstriction, the regulatory mechanisms of the systemic circulation aim to optimize oxygen availability in the tissues. This is achieved by increasing the capillary density in the microcirculation and the capillary hematocrit thereby increasing the capacity of oxygen diffusion from the red blood cells to the tissue. Hyperoxia, on the other hand, is associated with oxygen radical production, promoting cell death. CURRENT STATE OF RESEARCH Clinical trials in critically ill patients have primarily focused on comparing macrocirculatory endpoints and outcomes based on stroke volume and oxygenation targets. Some earlier studies have indicated potential benefits of conservative oxygenation. Recent trials show contradictory results regarding mortality, organ dysfunction, and ventilatory-free days. Empirical studies comparing various targets for SaO2, or partial pressure of oxygen indicate a U-shaped curve balancing positive and negative effects of oxygen supplementation. CONCLUSION AND FUTURE DIRECTIONS To optimize risk-benefit ratio of resuscitation measures in critically ill patients with circulatory shock in addition to individual targets for CO and Hb concentration, a primary aim should be to restore tissue perfusion and avoid hyperoxia. In the future, an individualized approach with microcirculatory targets will become increasingly relevant. Further studies are needed to define optimal targets.
Collapse
Affiliation(s)
- Anne-Aylin Sigg
- Institute of Intensive Care Medicine, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Vanja Zivkovic
- Institute of Intensive Care Medicine, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Jan Bartussek
- Institute of Intensive Care Medicine, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
20
|
De Lorenzo A, Fernandes M, Tibirica E. From bench to bedside: A review of the application and potential of microcirculatory assessment by hand-held videomicroscopy. IJC HEART & VASCULATURE 2024; 53:101451. [PMID: 39050555 PMCID: PMC11266521 DOI: 10.1016/j.ijcha.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
In clinical practice, there is vast knowledge regarding the evaluation of macrocirculatory parameters, such as systemic blood pressure and cardiac output, for the hemodynamic monitoring of patients. However, assessment of the microcirculation has not yet been incorporated into the bedside armamentarium. Hand-held intravital video microscopy enables the direct, noninvasive, evaluation of the sublingual microcirculation at the bedside, offering insights into the status of the systemic microcirculation. It is easily performed and may be employed in several clinical settings, providing immediate results that may help guide patient management. Therefore, the incorporation of hand-held intravital video microscopy into clinical practice may lead to tremendous improvements in the quality of care of critical, unstable patients or offer new data in the evaluation of patients with chronic diseases, especially those with microcirculatory involvement, such as occurs in diabetes.
Collapse
|
21
|
Kohnke J, Pattberg K, Nensa F, Kuhlmann H, Brenner T, Schmidt K, Hosch R, Espeter F. A proof of concept for microcirculation monitoring using machine learning based hyperspectral imaging in critically ill patients: a monocentric observational study. Crit Care 2024; 28:230. [PMID: 38987802 PMCID: PMC11238485 DOI: 10.1186/s13054-024-05023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Impaired microcirculation is a cornerstone of sepsis development and leads to reduced tissue oxygenation, influenced by fluid and catecholamine administration during treatment. Hyperspectral imaging (HSI) is a non-invasive bedside technology for visualizing physicochemical tissue characteristics. Machine learning (ML) for skin HSI might offer an automated approach for bedside microcirculation assessment, providing an individualized tissue fingerprint of critically ill patients in intensive care. The study aimed to determine if machine learning could be utilized to automatically identify regions of interest (ROIs) in the hand, thereby distinguishing between healthy individuals and critically ill patients with sepsis using HSI. METHODS HSI raw data from 75 critically ill sepsis patients and from 30 healthy controls were recorded using TIVITA® Tissue System and analyzed using an automated ML approach. Additionally, patients were divided into two groups based on their SOFA scores for further subanalysis: less severely ill (SOFA ≤ 5) and severely ill (SOFA > 5). The analysis of the HSI raw data was fully-automated using MediaPipe for ROI detection (palm and fingertips) and feature extraction. HSI Features were statistically analyzed to highlight relevant wavelength combinations using Mann-Whitney-U test and Benjamini, Krieger, and Yekutieli (BKY) correction. In addition, Random Forest models were trained using bootstrapping, and feature importances were determined to gain insights regarding the wavelength importance for a model decision. RESULTS An automated pipeline for generating ROIs and HSI feature extraction was successfully established. HSI raw data analysis accurately distinguished healthy controls from sepsis patients. Wavelengths at the fingertips differed in the ranges of 575-695 nm and 840-1000 nm. For the palm, significant differences were observed in the range of 925-1000 nm. Feature importance plots indicated relevant information in the same wavelength ranges. Combining palm and fingertip analysis provided the highest reliability, with an AUC of 0.92 to distinguish between sepsis patients and healthy controls. CONCLUSION Based on this proof of concept, the integration of automated and standardized ROIs along with automated skin HSI analyzes, was able to differentiate between healthy individuals and patients with sepsis. This approach offers a reliable and objective assessment of skin microcirculation, facilitating the rapid identification of critically ill patients.
Collapse
Affiliation(s)
- Judith Kohnke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Kevin Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Henning Kuhlmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - René Hosch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Florian Espeter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Yu Z, Li G. VA-ECMO for infarct-related cardiogenic shock. Lancet 2024; 403:2487. [PMID: 38851287 DOI: 10.1016/s0140-6736(24)00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Zhexuan Yu
- The First School of Clinial Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanhua Li
- Department of Cardiothoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
23
|
Bodolea C. The Role of Microcirculation in Haemodynamics: A Journey from Atlas to Sisyphus. J Crit Care Med (Targu Mures) 2024; 10:115-118. [PMID: 39109278 PMCID: PMC11193977 DOI: 10.2478/jccm-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Constantin Bodolea
- University of Medicine and Pharmacy Iuliu Hatieganu Cluj Napoca, Romania
| |
Collapse
|
24
|
Behem CR, Friedheim T, Holthusen H, Rapp A, Suntrop T, Graessler MF, Pinnschmidt HO, Wipper SH, von Lucadou M, Schwedhelm E, Renné T, Pfister K, Schierling W, Trepte CJC. Goal-directed colloid versus crystalloid therapy and microcirculatory blood flow following ischemia/reperfusion. Microvasc Res 2024; 152:104630. [PMID: 38048876 DOI: 10.1016/j.mvr.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Ischemia/reperfusion can impair microcirculatory blood flow. It remains unknown whether colloids are superior to crystalloids for restoration of microcirculatory blood flow during ischemia/reperfusion injury. We tested the hypothesis that goal-directed colloid - compared to crystalloid - therapy improves small intestinal, renal, and hepatic microcirculatory blood flow in pigs with ischemia/reperfusion injury. METHODS This was a randomized trial in 32 pigs. We induced ischemia/reperfusion by supra-celiac aortic-cross-clamping. Pigs were randomized to receive either goal-directed isooncotic hydroxyethyl-starch colloid or balanced isotonic crystalloid therapy. Microcirculatory blood flow was measured using Laser-Speckle-Contrast-Imaging. The primary outcome was small intestinal, renal, and hepatic microcirculatory blood flow 4.5 h after ischemia/reperfusion. Secondary outcomes included small intestinal, renal, and hepatic histopathological damage, macrohemodynamic and metabolic variables, as well as specific biomarkers of tissue injury, renal, and hepatic function and injury, and endothelial barrier function. RESULTS Small intestinal microcirculatory blood flow was higher in pigs assigned to isooncotic hydroxyethyl-starch colloid therapy than in pigs assigned to balanced isotonic crystalloid therapy (768.7 (677.2-860.1) vs. 595.6 (496.3-694.8) arbitrary units, p = .007). There were no important differences in renal (509.7 (427.2-592.1) vs. 442.1 (361.2-523.0) arbitrary units, p = .286) and hepatic (604.7 (507.7-701.8) vs. 548.7 (444.0-653.3) arbitrary units, p = .376) microcirculatory blood flow between groups. Pigs assigned to colloid - compared to crystalloid - therapy also had less small intestinal, but not renal and hepatic, histopathological damage. CONCLUSIONS Goal-directed isooncotic hydroxyethyl-starch colloid - compared to balanced isotonic crystalloid - therapy improved small intestinal, but not renal and hepatic, microcirculatory blood flow in pigs with ischemia/reperfusion injury. Whether colloid therapy improves small intestinal microcirculatory blood flow in patients with ischemia/reperfusion needs to be investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Holthusen
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adina Rapp
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Suntrop
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Kurita T, Kawashima S, Khaleelullah MMSI, Nakajima Y. IMPACT OF HIGH-DOSE VASOPRESSOR DURING ENDOTOXIC SHOCK ON THE CEREBRAL, LINGUAL, HEPATIC, AND RENAL MICROCIRCULATION EVALUATED BY NEAR-INFRARED SPECTROSCOPY IN SWINE. Shock 2024; 61:406-413. [PMID: 38010114 DOI: 10.1097/shk.0000000000002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: High-dose vasopressors maintain blood pressure during septic shock but may adversely reduce microcirculation in vital organs. We assessed the effect of high-dose norepinephrine and vasopressin on the microcirculation of the brain, tongue, liver, and kidney during endotoxic shock using near-infrared spectroscopy (NIRS). Methods: Thirteen pigs (24.5 ± 1.8 kg) were anesthetized, and an NIRS probe was attached directly to each organ. Approximately 0.2, 0.5, 1, and 2 μg/kg/min of norepinephrine were administered in a stepwise manner, followed by 0.5, 1, 2, and 5 μg/kg/min of sodium nitroprusside in normal condition. Moreover, 1 μg/kg/h of lipopolysaccharide was administered continuously after 100 μg bolus to create endotoxic shock and after 1,000 mL of crystalloid infusion and high-dose norepinephrine (2, 5, 10, and 20 μg/kg/min) and vasopressin (0.6, 1.5, 3, and 6 U/min) were administered in a stepwise manner. The relationship between the MAP and each tissue oxygenation index (TOI) during vasopressor infusion was evaluated. Results: Three pigs died after receiving lipopolysaccharides, and 10 were analyzed. An increase of >20% from the baseline MAP induced by high-dose norepinephrine during endotoxic shock reduced the TOI in all organs except the liver. The elevation of MAP to baseline with vasopressin alone increased the kidney and liver TOIs and decreased the tongue TOI. Conclusion: Forced blood pressure elevation with high-dose norepinephrine during endotoxic shock decreased the microcirculation of vital organs, especially the kidney. Cerebral TOI may be useful for identifying the upper limit of blood pressure, at which norepinephrine impairs microcirculation.
Collapse
Affiliation(s)
- Tadayoshi Kurita
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | |
Collapse
|
26
|
Matsushita H, Saku K, Nishikawa T, Yokota S, Sato K, Morita H, Yoshida Y, Fukumitsu M, Uemura K, Kawada T, Yamaura K. The impact of ECPELLA on haemodynamics and global oxygen delivery: a comprehensive simulation of biventricular failure. Intensive Care Med Exp 2024; 12:13. [PMID: 38361021 PMCID: PMC10869331 DOI: 10.1186/s40635-024-00599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND ECPELLA, a combination of veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) and Impella, a percutaneous left ventricular (LV) assist device, has emerged as a novel therapeutic option in patients with severe cardiogenic shock (CS). Since multiple cardiovascular and pump factors influence the haemodynamic effects of ECPELLA, optimising ECPELLA management remains challenging. In this study, we conducted a comprehensive simulation study of ECPELLA haemodynamics. We also simulated global oxygen delivery (DO2) under ECPELLA in severe CS and acute respiratory failure as a first step to incorporate global DO2 into our developed cardiovascular simulation. METHODS AND RESULTS Both the systemic and pulmonary circulations were modelled using a 5-element resistance‒capacitance network. The four ventricles were represented by time-varying elastances with unidirectional valves. In the scenarios of severe LV dysfunction, biventricular dysfunction with normal pulmonary vascular resistance (PVR, 0.8 Wood units), and biventricular dysfunction with high PVR (6.0 Wood units), we compared the changes in haemodynamics, pressure-volume relationship (PV loop), and global DO2 under different VA-ECMO flows and Impella support levels. RESULTS In the simulation, ECPELLA improved total systemic flow with a minimising biventricular pressure-volume loop, indicating biventricular unloading in normal PVR conditions. Meanwhile, increased Impella support level in high PVR conditions rendered the LV-PV loop smaller and induced LV suction in ECPELLA support conditions. The general trend of global DO2 was followed by the changes in total systemic flow. The addition of veno-venous ECMO (VV-ECMO) augmented the global DO2 increment under ECPELLA total support conditions. CONCLUSIONS The optimal ECPELLA support increased total systemic flow and achieved both biventricular unloading. The VV-ECMO effectively improves global DO2 in total ECPELLA support conditions.
Collapse
Affiliation(s)
- Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Takuya Nishikawa
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kei Sato
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hidetaka Morita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
- NTTR-NCVC Bio Digital Twin Centre, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Chen R, Gao B, Wang X, Zhao H, Wang X, Liu D. Ultrasonographic assessment of renal microcirculation is a new vision for the treatment of intensive care unit associated acute kidney injury. Eur J Med Res 2024; 29:115. [PMID: 38341556 PMCID: PMC10858548 DOI: 10.1186/s40001-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Affiliation(s)
- Rongping Chen
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Beijun Gao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xinchen Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
29
|
Chi C, Gong H, Yang K, Peng P, Zhang X. Early peripheral perfusion index predicts 28-day outcome in patients with septic shock. World J Emerg Med 2024; 15:372-378. [PMID: 39290600 PMCID: PMC11402868 DOI: 10.5847/wjem.j.1920-8642.2024.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To investigate the prognostic value of the peripheral perfusion index (PPI) in patients with septic shock. METHODS This prospective cohort study, conducted at the emergency intensive care unit of Peking University People's Hospital, recruited 200 patients with septic shock between January 2023 and August 2023. These patients were divided into survival (n=84) and death (n=116) groups based on 28-day outcomes. Clinical evaluations included laboratory tests and clinical scores, with lactate and PPI values assessed upon admission to the emergency room and at 6 h and 12 h after admission. Risk factors associated with mortality were analyzed using univariate and multivariate Cox regression analyses. Receiver operator characteristic (ROC) curve was used to assess predictive performance. Mortality rates were compared, and Kaplan-Meier survival plots were created. RESULTS Compared to the survival group, patients in the death group were older and had more severe liver damage and coagulation dysfunction, necessitating higher norepinephrine doses and increased fluid replacement. Higher lactate levels and lower PPI levels at 0 h, 6 h, and 12 h were observed in the death group. Multivariate Cox regression identified prolonged prothrombin time (PT), decreased 6-h PPI and 12-h PPI as independent risk factors for death. The area under the curves for 6-h PPI and 12-h PPI were 0.802 (95% CI 0.742-0.863, P<0.001) and 0.945 (95% CI 0.915-0.974, P<0.001), respectively, which were superior to Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA) scores (0.864 and 0.928). Cumulative mortality in the low PPI groups at 6 h and 12 h was significantly higher than in the high PPI groups (6-h PPI: 77.52% vs. 22.54%; 12-h PPI: 92.04% vs. 13.79%, P<0.001). CONCLUSION PPI may have value in predicting 28-day mortality in patients with septic shock.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Emergency, Peking University People's Hospital, Beijing 100044, China
| | - Hao Gong
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Kai Yang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Peng Peng
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiaoxia Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| |
Collapse
|
30
|
Hilty MP, Duranteau J, Montomoli J, Yeh TYC, Ince C. A microcirculation-guided trial doomed to fail. Intensive Care Med 2023; 49:1557-1558. [PMID: 37707580 DOI: 10.1007/s00134-023-07223-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Jacques Duranteau
- Department of Anesthesiology and Intensive Care, UMR-S 999, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), INSERM, Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Jonathan Montomoli
- Department of Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Tony Yu-Chang Yeh
- Department of Anaesthesiology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Bruno RR, Hernandez G, Thiele H, Kattan E, Jung C. A microcirculation-guided trial: never trying is worse than failing. Intensive Care Med 2023; 49:1555-1556. [PMID: 37812227 PMCID: PMC10709223 DOI: 10.1007/s00134-023-07245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Raphael Romano Bruno
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Glenn Hernandez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Medical Faculty, Moorenstraße 5, 40225, Duesseldorf, Germany.
- CARID (Cardiovascular Research Institute Düsseldorf), Duesseldorf, Germany.
| |
Collapse
|
32
|
Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T, Frabasile L, Guadagno CN, Karadeinz U, Lacerenza M, Mesquida J, Parsa S, Re R, Sanoja Garcia D, Konugolu Venkata Sekar S, Spinelli L, Torricelli A, Tosi A, Weigel UM, Yaqub MA, Zanoletti M, Contini D. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:5994-6015. [PMID: 38021143 PMCID: PMC10659778 DOI: 10.1364/boe.502618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Tyndall National Institute, Lee Maltings Complex, Cork, Ireland
| | - Umut Karadeinz
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Jaume Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari. Institut D’Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels, (Barcelona), Spain
| | - M. Atif Yaqub
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
33
|
Vahldieck C, Fels B, Löning S, Nickel L, Weil J, Kusche-Vihrog K. Prolonged Door-to-Balloon Time Leads to Endothelial Glycocalyx Damage and Endothelial Dysfunction in Patients with ST-Elevation Myocardial Infarction. Biomedicines 2023; 11:2924. [PMID: 38001925 PMCID: PMC10669223 DOI: 10.3390/biomedicines11112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Damage to the endothelial glycocalyx (eGC) has been reported during acute ischemic events like ST-elevation myocardial infarction (STEMI). In STEMI, a door-to-balloon time (D2B) of <60 min was shown to reduce mortality and nonfatal complications. Here, we hypothesize that eGC condition is associated with D2B duration and endothelial function during STEMI. One hundred and twenty-six individuals were analyzed in this study (STEMI patients vs. age-/sex-matched healthy volunteers). After stimulating endothelial cells with patient/control sera, the eGC's nanomechanical properties (i.e., height/stiffness) were analyzed using the atomic force microscopy-based nanoindentation technique. eGC components were determined via ELISA, and measurements of nitric oxide levels (NO) were based on chemiluminescence. eGC height/stiffness (both p < 0.001), as well as NO concentration (p < 0.001), were reduced during STEMI. Notably, the D2B had a strong impact on the endothelial condition: a D2B > 60 min led to significantly higher serum concentrations of eGC components (syndecan-1: p < 0.001/heparan sulfate: p < 0.001/hyaluronic acid: p < 0.0001). A D2B > 60 min led to the pronounced loss of eGC height/stiffness (both, p < 0.001) with reduced NO concentrations (p < 0.01), activated the complement system (p < 0.001), and prolonged the hospital stay (p < 0.01). An increased D2B led to severe eGC shedding, with endothelial dysfunction in a temporal context. eGC components and pro-inflammatory mediators correlated with a prolonged D2B, indicating a time-dependent immune reaction during STEMI, with a decreased NO concentration. Thus, D2B is a crucial factor for eGC damage during STEMI. Clinical evaluation of the eGC condition might serve as an important predictor for the endothelial function of STEMI patients in the future.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, 23538 Luebeck, Germany
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| |
Collapse
|
34
|
Kuhlmann H, Garczarek L, Künne D, Pattberg K, Skarabis A, Frank M, Schmidt B, Arends S, Herbstreit F, Brenner T, Schmidt K, Espeter F. Bedside Hyperspectral Imaging and Organ Dysfunction Severity in Critically Ill COVID-19 Patients-A Prospective, Monocentric Observational Study. Bioengineering (Basel) 2023; 10:1167. [PMID: 37892897 PMCID: PMC10604239 DOI: 10.3390/bioengineering10101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Hyperspectral imaging (HSI) is a non-invasive technology that provides information on biochemical tissue properties, including skin oxygenation and perfusion quality. Microcirculatory alterations are associated with organ dysfunction in septic COVID-19 patients. This prospective observational study investigated associations between skin HSI and organ dysfunction severity in critically ill COVID-19 patients. During the first seven days in the ICU, palmar HSI measurements were carried out with the TIVITA® tissue system. We report data from 52 critically ill COVID-19 patients, of whom 40 required extracorporeal membrane oxygenation (ECMO). HSI parameters for superficial tissue oxygenation (StO2) and oxygenation and perfusion quality (NPI) were persistently decreased. Hemoglobin tissue content (THI) increased, and tissue water content (TWI) was persistently elevated. Regression analysis showed strong indications for an association of NPI and weaker indications for associations of StO2, THI, and TWI with sequential organ failure assessment (SOFA) scoring. StO2 and NPI demonstrated negative associations with vasopressor support and lactate levels as well as positive associations with arterial oxygen saturation. These results suggest that skin HSI provides clinically relevant information, opening new perspectives for microcirculatory monitoring in critical care.
Collapse
Affiliation(s)
- Henning Kuhlmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Lena Garczarek
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - David Künne
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Kevin Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Annabell Skarabis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Mirjam Frank
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sven Arends
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Frank Herbstreit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Florian Espeter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
35
|
Hilty MP, Jung C. Tissue oxygenation: how to measure, how much to target. Intensive Care Med Exp 2023; 11:64. [PMID: 37740840 PMCID: PMC10517908 DOI: 10.1186/s40635-023-00551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Affiliation(s)
- Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Christian Jung
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| |
Collapse
|
36
|
Jacquet-Lagrèze M, Magnin M, Allaouchiche B, Abrard S. Is handheld video microscopy really the future of microcirculation monitoring? Crit Care 2023; 27:352. [PMID: 37700327 PMCID: PMC10498643 DOI: 10.1186/s13054-023-04642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
- Matthias Jacquet-Lagrèze
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, 59, Boulevard Pinel, 69677, Bron Cedex, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, 69373, Lyon Cedex 08, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard, Lyon 1, Lyon, France
| | - Mathieu Magnin
- Unité de Physiologie, Pharmacodynamie et Thérapeutique, VetAgro Sup, Université de Lyon, 1 Avenue Bourgelat, 69280, Marcy L'Etoile, France
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, UPSP 2021.A101, Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 69280, Marcy L'Étoile, France
| | - Bernard Allaouchiche
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, 69373, Lyon Cedex 08, France
- Pulmonary and Cardiovascular Aggression in Sepsis APCSe, UPSP 2021.A101, Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 69280, Marcy L'Étoile, France
- Centre Hospitalier Lyon-Sud, Service de Réanimation, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Stanislas Abrard
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, 69373, Lyon Cedex 08, France.
- Service d'Anesthésie-Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, 5 Pl d'Arsonval, 69437, Lyon, France.
- Institut MitoVasc, INSERM 1083 ‑ CNRS 6015, Université d'Angers, 3 Rue Roger Amsler, 49100, Angers, France.
| |
Collapse
|
37
|
Dubin A, Pozo MO. Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1262. [PMID: 37512072 PMCID: PMC10384777 DOI: 10.3390/medicina59071262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
According to Fick's principle, the total uptake of (or release of) a substance by tissues is the product of blood flow and the difference between the arterial and the venous concentration of the substance. Therefore, the mixed or central venous minus arterial CO2 content difference depends on cardiac output (CO). Assuming a linear relationship between CO2 content and partial pressure, central or mixed venous minus arterial PCO2 differences (Pcv-aCO2 and Pmv-aCO2) are directly related to CO. Nevertheless, this relationship is affected by alterations in the CO2Hb dissociation curve induced by metabolic acidosis, hemodilution, the Haldane effect, and changes in CO2 production (VCO2). In addition, Pcv-aCO2 and Pmv-aCO2 are not interchangeable. Despite these confounders, CO is a main determinant of Pcv-aCO2. Since in a study performed in septic shock patients, Pmv-aCO2 was correlated with changes in sublingual microcirculation but not with those in CO, it has been proposed as a monitor for microcirculation. The respiratory quotient (RQ)-RQ = VCO2/O2 consumption-sharply increases in anaerobic situations induced by exercise or critical reductions in O2 transport. This results from anaerobic VCO2 secondary to bicarbonate buffering of anaerobically generated protons. The measurement of RQ requires expired gas analysis by a metabolic cart, which is not usually available. Thus, some studies have suggested that the ratio of Pcv-aCO2 to arterial minus central venous O2 content (Pcv-aCO2/Ca-cvO2) might be a surrogate for RQ and tissue oxygenation. In this review, we analyze the physiologic determinants of Pcv-aCO2 and Pcv-aCO2/Ca-cvO2 and their potential usefulness and limitations for the monitoring of critically ill patients. We discuss compelling evidence showing that they are misleading surrogates for tissue perfusion and oxygenation, mainly because they are systemic variables that fail to track regional changes. In addition, they are strongly dependent on changes in the CO2Hb dissociation curve, regardless of changes in systemic and microvascular perfusion and oxygenation.
Collapse
Affiliation(s)
- Arnaldo Dubin
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedras de Terapia Intensiva y Farmacología Aplicada, 60 y 120, La Plata B1902AGW, Argentina
- Servicio de Terapia Intensiva, Sanatorio Otamendi, Azcuénaga 870, Ciudad Autónoma de Buenos Aires C1115AAB, Argentina
| | - Mario O Pozo
- Servicio de Terapia Intensiva, Hospital Británico, Perdriel 74, Ciudad Autónoma de Buenos Aires 1280AEB, Argentina
| |
Collapse
|
38
|
van den Brom CE, Bulte CSE. Editorial: Microvascular dysfunction and organ failure during cardiac surgery. Front Med (Lausanne) 2023; 10:1231464. [PMID: 37378297 PMCID: PMC10291680 DOI: 10.3389/fmed.2023.1231464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Charissa E. van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien S. E. Bulte
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, Netherlands
| |
Collapse
|
39
|
Moschopoulos CD, Dimopoulou D, Dimopoulou A, Dimopoulou K, Protopapas K, Zavras N, Tsiodras S, Kotanidou A, Fragkou PC. New Insights into the Fluid Management in Patients with Septic Shock. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1047. [PMID: 37374251 PMCID: PMC10301281 DOI: 10.3390/medicina59061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
The importance of fluid resuscitation therapy during the early stages of sepsis management is a well-established principle. Current Surviving Sepsis Campaign (SSC) guidelines recommend the early administration of intravenous crystalloid fluids for sepsis-related hypotension or hyperlactatemia due to tissue hypoperfusion, within the first 3 h of resuscitation and suggest using balanced solutions (BSs) instead of normal saline (NS) for the management of patients with sepsis or septic shock. Studies comparing BS versus NS administration in septic patients have demonstrated that BSs are associated with better outcomes including decreased mortality. After initial resuscitation, fluid administration has to be judicious in order to avoid fluid overload, which has been associated with increased mortality, prolonged mechanical ventilation, and worsening of acute kidney injury. The "one size fits all" approach may be "convenient" but it should be avoided. Personalized fluid management, based on patient-specific hemodynamic indices, provides the foundations for better patient outcomes in the future. Although there is a consensus on the need for adequate fluid therapy in sepsis, the type, the amount of administered fluids, and the ideal fluid resuscitation strategy remain elusive. Well-designed large randomized controlled trials are certainly needed to compare fluid choices specifically in the septic patient, as there is currently limited evidence of low quality. This review aims to summarize the physiologic principles and current scientific evidence regarding fluid management in patients with sepsis, as well as to provide a comprehensive overview of the latest data on the optimal fluid administration strategy in sepsis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- Fourth Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.D.M.); (S.T.)
| | - Dimitra Dimopoulou
- Second Department of Pediatrics, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Anastasia Dimopoulou
- First Department of Pediatric Surgery, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | | | - Konstantinos Protopapas
- Fourth Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.D.M.); (S.T.)
| | - Nikolaos Zavras
- Department of Pediatric Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.D.M.); (S.T.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Paraskevi C. Fragkou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| |
Collapse
|