1
|
Coleman C, Selvakumar T, Thurlapati A, Graf K, Pavuluri S, Mehrotra S, Sahin O, Sivapiragasam A. Harnessing Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Opportunities and Barriers to Clinical Integration. Int J Mol Sci 2025; 26:4292. [PMID: 40362529 PMCID: PMC12072607 DOI: 10.3390/ijms26094292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Triple-negative breast cancer (TNBC) continues to present a therapeutic challenge due to the fact that by definition, these cancer cells lack the expression of targetable receptors. Current treatment options include cytotoxic chemotherapy, antibody-drug conjugates (ADC), and the PD-1 checkpoint inhibitor, pembrolizumab. Due to high rates of recurrence, current guidelines for early-stage TNBC recommend either multi-agent chemotherapy or chemo-immunotherapy in all patients other than those with node-negative tumors < 0.5 cm. This approach can lead to significant long-term effects for TNBC survivors, driving a growing interest in de-escalating therapy where appropriate. Tumor infiltrating lymphocytes (TILs) represent a promising prognostic and predictive biomarker for TNBC. These diverse immune cells are present in the tumor microenvironment and within the tumor itself, and multiple retrospective studies have demonstrated that a higher number of TILs in early-stage TNBC portends a favorable prognosis. Research has also explored the potential of TIL scores to predict the response to immunotherapy. However, several barriers to the widespread use of TILs in clinical practice remain, including logistical and technical challenges with the scoring of TILs and lack of prospective trials to validate the trends seen in retrospective studies. This review will present the current understanding of the role of TILs in TNBC and discuss the future directions of TIL research.
Collapse
Affiliation(s)
- Cara Coleman
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| | - Tharakeswari Selvakumar
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| | - Aswani Thurlapati
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| | - Kevin Graf
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| | - Sushma Pavuluri
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Abirami Sivapiragasam
- Department of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA (T.S.); (S.P.)
| |
Collapse
|
2
|
Mariano NC, Marotti JD, Chen Y, Karakyriakou B, Salgado R, Christensen BC, Miller TW, Kettenbach AN. Quantitative proteomics analysis of triple-negative breast cancers. NPJ Precis Oncol 2025; 9:117. [PMID: 40269124 PMCID: PMC12019170 DOI: 10.1038/s41698-025-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15% of all Breast Cancer (BC) cases with poorer prognosis and clinical outcomes compared to other BC subtypes due to greater tumor heterogeneity and few therapeutically targetable oncogenic drivers. To reveal actionable pathways for anti-cancer treatment, we use a proteomic approach to quantitatively compare the abundances of 6306 proteins across 55 formalin-fixed and paraffin-embedded (FFPE) TNBC tumors. We identified four major TNBC clusters by unsupervised clustering analysis of protein abundances. Analyses of clinicopathological characteristics revealed associations between the proteomic profiles and clinical phenotypes exhibited by each subtype. We validate the findings by inferring immune and stromal cell type composition from genome-wide DNA methylation profiles. Finally, quantitative proteomics on TNBC cell lines was conducted to identify in vitro models for each subtype. Collectively, our data provide subtype-specific insights into molecular drivers, clinicopathological phenotypes, tumor microenvironment (TME) compositions, and potential pharmacologic vulnerabilities for further investigations.
Collapse
Affiliation(s)
| | - Jonathan D Marotti
- Department of Pathology and Laboratory Medicine, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | | | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Brock C Christensen
- Department of Pathology and Laboratory Medicine, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Lebanon, NH, USA
- Department of Epidemiology, Lebanon, NH, USA
- Department of Community and Family Medicine, Lebanon, NH, USA
| | - Todd W Miller
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Lebanon, NH, USA
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Hanover, NH, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
3
|
Guan J, Fan M, Li L. MVNMF: Multiview nonnegative matrix factorization for radio-multigenomic analysis in breast cancer prognosis. Med Image Anal 2025; 103:103566. [PMID: 40288334 DOI: 10.1016/j.media.2025.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Radiogenomic research provides a deeper understanding of breast cancer biology by investigating the correlations between imaging phenotypes and genetic data. However, current radiogenomic research primarily focuses on the correlation between imaging phenotypes and single-genomic data (e.g., gene expression data), overlooking the potential of multi-genomics data to unveil more nuances in cancer characterization. To this end, we propose a multiview nonnegative matrix factorization (MVNMF) method for the radio-multigenomic analysis that identifies dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features associated with multi-genomics data, including DNA copy number alterations, mutations, and mRNAs, each of which is independently predictive of cancer outcomes. MVNMF incorporates subspace learning and multiview regularization into a unified model to simultaneously select features and explore correlations. Subspace learning is utilized to identify representative radiomic features crucial for tumor analysis, while multiview regularization enables the learning of the correlation between the identified radiomic features and multi-genomics data. Experimental results showed that, for overall survival prediction in breast cancer, MVNMF classified patients into two distinct groups characterized by significant differences in survival (p = 0.0012). Furthermore, it achieved better performance with a C-index of 0.698 compared to the method without considering any genomics data (C-index = 0.528). MVNMF is an effective framework for identifying radiomic features linked to multi-genomics data, which improves its predictive power and provides a better understanding of the biological mechanisms underlying observed phenotypes. MVNMF offers a novel framework for prognostic prediction in breast cancer, with the potential to catalyze further radiogenomic/radio-multigenomic studies.
Collapse
Affiliation(s)
- Jian Guan
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; College of Mathematics and Data Science, Minjiang University, Fuzhou 350121, China
| | - Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zhang Y, Li Q, Lan J, Xie G, Zhang G, Cui J, Leng P, Wang Y. Triple-negative breast cancer molecular subtypes and potential detection targets for biological therapy indications. Carcinogenesis 2025; 46:bgaf006. [PMID: 39977309 DOI: 10.1093/carcin/bgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. While chemotherapy remains the conventional treatment approach, its efficacy is limited and often accompanied by significant toxicity. Advances in precision-targeted therapies have expanded treatment options for TNBC, including immunotherapy, poly (ADP-ribose) polymerase inhibitors, androgen receptor inhibitors, cell cycle-dependent kinase inhibitors, and signaling pathway inhibitors. However, the heterogeneous nature of TNBC contributes to variations in treatment outcomes, underscoring the importance of identifying intrinsic molecular subtypes for personalized therapy. Additionally, due to patient-specific variability, the therapeutic response to targeted treatments is inconsistent. This highlights the need to strategize patients based on potential therapeutic targets for targeted drugs to optimize treatment strategies. This review summarizes the classification strategies and immunohistochemical (IHC) biomarkers for TNBC subtypes, along with potential targets for identifying indications for targeted drug therapy. These insights aim to support the development of personalized treatment approaches for TNBC patients.
Collapse
Affiliation(s)
- Yanchuan Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, Institute of Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, China
| | - Junhao Cui
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Rajagopal PS, Reid S, Fan R, Venton L, Weidner A, Roberson ML, Vadaparampil S, Wang X, Yoder S, Rosa M, Sanders M, Gonzalez-Ericsson P, Hirbo J, Whisenant JG, Pietenpol J, Ye F, Pal T, Lehmann BD. Population-specific patterns in assessing molecular subtypes of young black females with triple-negative breast cancer. NPJ Breast Cancer 2025; 11:28. [PMID: 40069179 PMCID: PMC11897140 DOI: 10.1038/s41523-025-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
We determined triple-negative breast cancer (TNBC) subtypes, genetic ancestry, and immune features in a cohort of self-reported Black females with TNBC diagnosed at or below age 50. Among 104 tumors, 34.6% were basal-like 1 (BL1), 17.3% basal-like 2 (BL2), 9.6% luminal androgen receptor (LAR), 26.9% mesenchymal (M), and 11.5% unsubtyped (UNS). Subtypes resembled those seen in Europeans or East Asians, with less LAR (9.6% vs. 14.6-24.4%) and more UNS (11.5% vs. 0-7.5%). "High" proportion of West African ancestry was associated with more LAR (14.9% vs. 4.9%) and less M (25.5% vs. 34.2%). M demonstrated reduced immune activity and was marginally associated with worse overall survival in a multivariate model including stage, West African ancestry, BMI, and TILs, meriting future research. Our study is the largest to date of TNBC subtypes in young Black females. These results reinforce TNBC subtypes' application across populations and potential use as a prognostic biomarker.
Collapse
Affiliation(s)
| | - Sonya Reid
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Run Fan
- Vanderbilt University Medical Center; Department of Biostatistics and Bioinformatics, Nashville, TN, USA
| | - Lindsay Venton
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Anne Weidner
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Mya L Roberson
- University of North Carolina; Department of Health Policy and Management, Chapel Hill, NC, USA
| | | | | | | | | | - Melinda Sanders
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | | | - Jibril Hirbo
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Jennifer G Whisenant
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Jennifer Pietenpol
- Vanderbilt University Medical Center; Department of Biochemistry, Nashville, TN, USA
| | - Fei Ye
- Vanderbilt University Medical Center; Department of Biostatistics and Bioinformatics, Nashville, TN, USA
| | - Tuya Pal
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA.
| | - Brian D Lehmann
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
7
|
Tu J, Li X, Chen Y, Qu W, Gong D, Ofri A, Klement RJ, Arumugam SL, Zhou Y. Androgen receptor expression distribution characteristics in young female breast cancer patients in China: a study of clinicopathological features. Transl Cancer Res 2025; 14:1388-1400. [PMID: 40104709 PMCID: PMC11912052 DOI: 10.21037/tcr-2025-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Background The expression of androgen receptor (AR) in breast cancer has potential implications for predicting clinical outcomes, especially amongst young female patients. Numerous studies have reported that the co-expression of AR with hormone receptors (HRs) is correlated with a favorable prognosis in breast cancer. However, research on the frequency and distribution of AR expression in Chinese breast cancer patients is limited. This study aims to investigate the relationship between AR expression and the expression of progesterone receptor (PR), estrogen receptor (ER), P53, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR) in breast cancer patients, and the distribution of molecular subtypes of breast cancer. Further, we aim to explore the pattern of AR expression and its correlation with clinicopathological features and prognosis among young female patients in China. Methods Formalin-fixed paraffin-embedded tissue samples from 321 young female breast cancer patients were collected from the Third Hospital of Nanchang. Immunohistochemistry was used to assess the expression of AR, ER, PR, HER2, and Ki67. A statistical analysis was conducted to explore the correlation between the expression of AR and these molecular markers, as well as their distribution across different molecular subtypes of breast cancer, and their prognostic significance. Results A total of 321 breast cancer patients were included in this study. Significant correlations were found between the positive expression of AR and the high expression of PR and ER (P<0.001). The rate of P53 positivity was significantly higher in the AR-positive patients than the AR-negative patients (P=0.01). Additionally, HER2 expression was significantly higher in the AR-positive patients than the AR-negative patients (P<0.001). Notably, the rate of EGFR positivity was significantly lower in the AR-positive patients compared to AR-negative patients (P<0.001). In relation to the molecular subtypes, AR positivity was significantly associated with the luminal A subtype (P<0.001), while the triple-negative breast cancer (TNBC)/basal-like subtype was more common in the AR-negative patients. Conclusions This study revealed that in young female breast cancer patients in China, AR-positive breast cancer was significantly associated with the high expression of HRs, increased P53 expression and reduced EGFR expression. The expression status of AR can serve as a biomarker to predict therapeutic responses but could also influence the classification of molecular subtypes and the selection of treatment strategies.
Collapse
Affiliation(s)
- Jianhong Tu
- Pathology Department, The Third Hospital of Nanchang, Nanchang, China
| | - Xiyan Li
- Supply Department, People's Hospital of Ganxian District, Ganzhou, China
| | - Yuexia Chen
- Pathology Department, The Third Hospital of Nanchang, Nanchang, China
| | - Wei Qu
- Pathology Department, The Third Hospital of Nanchang, Nanchang, China
| | - Dan Gong
- Pathology Department, The Third Hospital of Nanchang, Nanchang, China
| | - Adam Ofri
- Breast and Endocrine Department, Mater Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | | | - Yao Zhou
- Breast Surgery Department, The Third Hospital of Nanchang, Nanchang, China
| |
Collapse
|
8
|
Nedeljković M, Vuletić A, Mirjačić Martinović K. Divide and Conquer-Targeted Therapy for Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1396. [PMID: 40003864 PMCID: PMC11855393 DOI: 10.3390/ijms26041396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and malignant type of breast cancer with limited treatment options and poor prognosis. One of the most significant impediments in TNBC treatment is the high heterogeneity of this disease, as highlighted by the detection of several molecular subtypes of TNBC. Each subtype is driven by distinct mutations and pathway aberrations, giving rise to specific molecular characteristics closely connected to clinical behavior, outcomes, and drug sensitivity. This review summarizes the knowledge regarding TNBC molecular subtypes and how it can be harnessed to devise tailored treatment strategies instead of blindly using targeted drugs. We provide an overview of novel targeted agents and key insights about new treatment modalities with an emphasis on the androgen receptor signaling pathway, cancer stem cell-associated pathways, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, growth factor signaling, and immunotherapy.
Collapse
Affiliation(s)
- Milica Nedeljković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.V.); (K.M.M.)
| | | | | |
Collapse
|
9
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
10
|
Egeland EV, Seip K, Skourti E, Øy GF, Pettersen SJ, Pandya AD, Dahle MA, Haugen MH, Kristian A, Nakken S, Engebraaten O, Mælandsmo GM, Prasmickaite L. The SRC-family serves as a therapeutic target in triple negative breast cancer with acquired resistance to chemotherapy. Br J Cancer 2024; 131:1656-1667. [PMID: 39390250 PMCID: PMC11554838 DOI: 10.1038/s41416-024-02875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Resistance to chemotherapy, combined with heterogeneity among resistant tumors, represents a significant challenge in the clinical management of triple negative breast cancer (TNBC). By dissecting molecular pathways associated with treatment resistance, we sought to define patient sub-groups and actionable targets for next-line treatment. METHODS Bulk RNA sequencing and reverse phase protein array profiling were performed on isogenic patient-derived xenografts (PDX) representing paclitaxel-sensitive and -resistant tumors. Pathways identified as upregulated in the resistant model were further explored as targets in PDX explants. Their clinical relevance was assessed in two distinct patient cohorts (NeoAva and MET500). RESULTS Increased activity in signaling pathways involving SRC-family kinases (SFKs)- and MAPK/ERK was found in treatment resistant PDX, with targeted inhibitors being significantly more potent in resistant tumors. Up-regulation of SFKs- and MAPK/ERK-pathways was also detected in a sub-group of chemoresistant patients after neoadjuvant treatment. Furthermore, High SFK expression (of either SRC, FYN and/or YES1) was detected in metastatic lesions of TNBC patients with fast progressing disease (median disease-free interval 27 vs 105 months). CONCLUSIONS Upregulation of SFK-signaling is found in a subset of chemoresistant tumors and is persistent in metastatic lesions. Based on pre-clinical results, these patients may respond favorably to treatment targeting SFKs.
Collapse
Affiliation(s)
- Eivind Valen Egeland
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Kotryna Seip
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eleni Skourti
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Solveig J Pettersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Abhilash D Pandya
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maria A Dahle
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mads H Haugen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Alexander Kristian
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav Engebraaten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway-University of Tromsø, Tromsø, Norway
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Yang Y, Li H, Yang W, Shi Y. Improving efficacy of TNBC immunotherapy: based on analysis and subtyping of immune microenvironment. Front Immunol 2024; 15:1441667. [PMID: 39430759 PMCID: PMC11487198 DOI: 10.3389/fimmu.2024.1441667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer that encompasses several distinct subtypes. Recent advances in immunotherapy offer a promising future for the treatment of these highly heterogeneous and readily metastatic tumors. Despite advancements, the efficacy of immunotherapy remains limited as shown by unimproved efficacy of PD-L1 biomarker and limited patient benefit. To enhance the effectiveness of TNBC immunotherapy, we conducted investigation on the microenvironment, and corresponding therapeutic interventions of TNBC and recommended further investigation into the identification of additional biomarkers that can facilitate the subtyping of TNBC for more targeted therapeutic approaches. TNBC is a highly aggressive subtype with dismal long-term survival due to the lack of opportunities for traditional endocrine and targeted therapies. Recent advances in immunotherapy have shown promise, but response rates can be limited due to the heterogeneous tumor microenvironments and developed therapy resistance, especially in metastatic cases. In this review, we will investigate the tumor microenvironment of TNBC and corresponding therapeutic interventions. We will summarize current subtyping strategies and available biomarkers for TNBC immunotherapy, with a particular emphasis on the need for further research to identify additional prognostic markers and refine tailored therapies for specific TNBC subtypes. These efforts aim to improve treatment sensitivity and ultimately enhance survival outcomes for advanced-stage TNBC patients.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haifeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Kim CM, Park KH, Yu YS, Kim JW, Park JY, Park K, Yu JH, Lee JE, Sim SH, Seo BK, Kim JK, Lee ES, Park YH, Kong SY. A 10-Gene Signature to Predict the Prognosis of Early-Stage Triple-Negative Breast Cancer. Cancer Res Treat 2024; 56:1113-1125. [PMID: 38754473 PMCID: PMC11491257 DOI: 10.4143/crt.2024.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a particularly challenging subtype of breast cancer, with a poorer prognosis compared to other subtypes. Unfortunately, unlike luminal-type cancers, there is no validated biomarker to predict the prognosis of patients with early-stage TNBC. Accurate biomarkers are needed to establish effective therapeutic strategies. MATERIALS AND METHODS In this study, we analyzed gene expression profiles of tumor samples from 184 TNBC patients (training cohort, n=76; validation cohort, n=108) using RNA sequencing. RESULTS By combining weighted gene expression, we identified a 10-gene signature (DGKH, GADD45B, KLF7, LYST, NR6A1, PYCARD, ROBO1, SLC22A20P, SLC24A3, and SLC45A4) that stratified patients by risk score with high sensitivity (92.31%), specificity (92.06%), and accuracy (92.11%) for invasive disease-free survival. The 10-gene signature was validated in a separate institution cohort and supported by meta-analysis for biological relevance to well-known driving pathways in TNBC. Furthermore, the 10-gene signature was the only independent factor for invasive disease-free survival in multivariate analysis when compared to other potential biomarkers of TNBC molecular subtypes and T-cell receptor β diversity. 10-gene signature also further categorized patients classified as molecular subtypes according to risk scores. CONCLUSION Our novel findings may help address the prognostic challenges in TNBC and the 10-gene signature could serve as a novel biomarker for risk-based patient care.
Collapse
Affiliation(s)
- Chang Min Kim
- CbsBioscience. Inc., Daejeon, Korea
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Kyong Hwa Park
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Ju Won Kim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jong-Han Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hoon Sim
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Jin Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Eun Sook Lee
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
13
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
14
|
Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and Future of Immunotherapy for Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3250. [PMID: 39409871 PMCID: PMC11475478 DOI: 10.3390/cancers16193250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), human epidermal growth factor receptor 2 (HER2), and progesterone receptors (PRs). TNBC has the poorest prognosis among breast cancer subtypes and is more likely to respond to immunotherapy due to its higher expression of PD-L1 and a greater percentage of tumor-infiltrating lymphocytes. Immunotherapy has revolutionized TNBC treatment, especially with the FDA's approval of pembrolizumab (Keytruda) combined with chemotherapy for advanced cases, opening new avenues for treating this deadly disease. Although immunotherapy can significantly improve patient outcomes in a subset of patients, achieving the desired response rate for all remains an unmet clinical goal. Strategies that enhance responses to immune checkpoint blockade, including combining immunotherapy with chemotherapy, molecularly targeted therapy, or radiotherapy, may improve response rates and clinical outcomes. In this review, we provide a short background on TNBC and immunotherapy and explore the different types of immunotherapy strategies that are currently being evaluated in TNBC. Additionally, we review why combination strategies may be beneficial, provide an overview of the combination strategies, and discuss the novel immunotherapeutic opportunities that may be approved in the near future for TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Jézéquel P, Lasla H, Gouraud W, Basseville A, Michel B, Frenel JS, Juin PP, Ben Azzouz F, Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024; 31:825-840. [PMID: 38777987 DOI: 10.1007/s12282-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France.
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France.
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France.
| | - Hamza Lasla
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Wilfried Gouraud
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Agnès Basseville
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Bertrand Michel
- Nantes Université, École Centrale Nantes, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, 44000, Nantes, France
| | - Jean-Sébastien Frenel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | - Philippe P Juin
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
- Université d'Angers, 49000, Angers, France
| |
Collapse
|
16
|
Varzaru VB, Vlad T, Popescu R, Vlad CS, Moatar AE, Cobec IM. Triple-Negative Breast Cancer: Molecular Particularities Still a Challenge. Diagnostics (Basel) 2024; 14:1875. [PMID: 39272660 PMCID: PMC11393996 DOI: 10.3390/diagnostics14171875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Worldwide, breast cancer (BC) is one of the most common cancers in women and is responsible for the highest number of cancer-related deaths among women, with a special clinical behavior and therapy response. Triple-negative breast cancer (TNBC) is seen as a highly invasive BC, characterized by a short survival, higher mortality, recurrence, and metastasis when it is compared to the other BC subtypes. The molecular subtyping of TNBC based on mRNA expression levels does not accurately reflect protein expression levels, which impacts targeted therapy effectiveness and prognostic predictions. Most TNBC cases exhibit a high frequency of homologous recombination (HR) DNA repair deficiency (HRD) signatures and are associated with a complex genomic profile. Biomarker research in TNBC includes investigating genetic mutations, gene expression patterns, immune system-related markers, and other factors that can provide valuable information for diagnosis, treatment selection, and patient outcomes. Additionally, these biomarkers are often crucial in the development of personalized and precision medicine approaches, where treatments are customized to each patient's unique characteristics. This ongoing research is essential for improving the management and outcomes of TNBC, which is a challenging and heterogeneous form of breast cancer. The findings of this research have practical implications for refining treatment strategies, particularly in selecting appropriate systemic therapies and integrating traditional treatment modalities like surgery and radiotherapy into comprehensive care plans for TNBC patients.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tania Vlad
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
17
|
Rao X, Wang X, He C, Jiang Y, Shao Z, Feng Y, Zhou J, Guo X, Chen X. Integrating radiosensitivity index and triple-negative breast cancer subtypes reveals SERPINB5 as a radioresistance biomarker in triple-negative breast cancer. Clin Transl Med 2024; 14:e1787. [PMID: 39113221 PMCID: PMC11306282 DOI: 10.1002/ctm2.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024] Open
Affiliation(s)
- Xinxin Rao
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Clinical Research Center for Radiation OncologyShanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Xuanyi Wang
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Clinical Research Center for Radiation OncologyShanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Chao He
- Suzhou Cancer Center Core LaboratoryNanjing Medical University Affiliated Suzhou HospitalSuzhouChina
| | - YiZhou Jiang
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryFudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in ShanghaiShanghaiChina
| | - ZhiMing Shao
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryFudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in ShanghaiShanghaiChina
| | - Yan Feng
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Clinical Research Center for Radiation OncologyShanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Jundong Zhou
- Suzhou Cancer Center Core LaboratoryNanjing Medical University Affiliated Suzhou HospitalSuzhouChina
- Department of Radiation OncologyNanjing Medical University Affiliated Suzhou HospitalSuzhouChina
| | - Xiaomao Guo
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Clinical Research Center for Radiation OncologyShanghai Key Laboratory of Radiation OncologyShanghaiChina
| | - Xingxing Chen
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Clinical Research Center for Radiation OncologyShanghai Key Laboratory of Radiation OncologyShanghaiChina
| |
Collapse
|
18
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Sarmadi F, Gao Z, Su J, Barbier C, Artusa P, Bijian K, Gleason JL, White JH. Bifunctionality and Antitumor Efficacy of ZG-126, a Vitamin D Receptor Agonist/Histone Deacetylase Inhibitor Hybrid Molecule. J Med Chem 2024; 67:11182-11196. [PMID: 38906533 PMCID: PMC11249012 DOI: 10.1021/acs.jmedchem.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Analogues of hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D), signal through the nuclear vitamin D receptor (VDR). They have potential in combination therapies with other anticancer agents such as histone deacetylase inhibitors (HDACi's). Here, we characterize the ZG series of hybrid compounds that combine HDACi within the backbone of a VDR agonist. All display improved solubility, with ZG-126 being the most robustly bifunctional molecule in multiple cell lines. ZG-126 is well tolerated and strongly induces VDR target gene expression in vivo at therapeutic doses. Its antitumor efficacy is superior to 1,25D and the HDACi SAHA, separately or together, in mouse models of melanoma and triple-negative breast cancer (TNBC). Notably, ZG-126 treatment reduces metastases almost 4-fold in an aggressive TNBC model. ZG-126 also reduces total macrophage infiltration and the proportion of immunosuppressive M2-polarized macrophages in TNBC tumors by 2-fold. ZG-126 thus represents a bifunctional and efficacious anticancer agent with improved physicochemical properties.
Collapse
Affiliation(s)
- Fatemeh Sarmadi
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Zhizhong Gao
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Jie Su
- Segal Cancer Center and Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Patricio Artusa
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Krikor Bijian
- Segal Cancer Center and Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - John H White
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Department of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
20
|
Romaniuk-Drapała A, Totoń E, Taube M, Idzik M, Rubiś B, Lisiak N. Breast Cancer Stem Cells and Tumor Heterogeneity: Characteristics and Therapeutic Strategies. Cancers (Basel) 2024; 16:2481. [PMID: 39001543 PMCID: PMC11240630 DOI: 10.3390/cancers16132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer is one of the most frequently detected malignancies worldwide. It is responsible for more than 15% of all death cases caused by cancer in women. Breast cancer is a heterogeneous disease representing various histological types, molecular characteristics, and clinical profiles. However, all breast cancers are organized in a hierarchy of heterogeneous cell populations, with a small proportion of cancer stem cells (breast cancer stem cells (BCSCs)) playing a putative role in cancer progression, and they are responsible for therapeutic failure. In different molecular subtypes of breast cancer, they present different characteristics, with specific marker profiles, prognoses, and treatments. Recent efforts have focused on tackling the Wnt, Notch, Hedgehog, PI3K/Akt/mTOR, and HER2 signaling pathways. Developing diagnostics and therapeutic strategies enables more efficient elimination of the tumor mass together with the stem cell population. Thus, the knowledge about appropriate therapeutic methods targeting both "normal" breast cancer cells and breast cancer stem cell subpopulations is crucial for success in cancer elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Malgorzata Idzik
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
21
|
Towner RA, Dissanayake R, Ahmed M. Clinical Advances in Triple Negative Breast Cancer Treatment: Focus on Poly (L-lactide-coglycolide) Nanoparticles. J Pharmacol Exp Ther 2024; 390:53-64. [PMID: 38580448 DOI: 10.1124/jpet.123.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer and is associated with high probability of metastasis and poor prognosis. Chemotherapeutics and surgery remain the most common options for TNBC patients; however, chemotherapeutic resistance and relapse of tumors limit the progression free survival and patient life span. This review provides an overview of recent chemotherapeutics that are in clinical trial, and the combination of drugs that are being investigated to overcome the drug resistance and to improve patient survival in different molecular subtypes of TNBCs. Nanotherapeutics have emerged as a promising platform for TNBC treatment and aim to improve the selectivity and solubility of drugs, reduce systemic side effects, and overcome multi-drug resistance. The study explores the role of nanoparticles for TNBC treatment and summarizes the types of nanoparticles that are in clinical trials. Poly(L-lactide-co-glycolide) (PLGA) is the most studied polymeric carrier for drug delivery and for TNBC treatment in research and in clinics. This review is about providing recent advancements in PLGA nanotherapeutic formulations and their application to help treat TNBC. Some background on current chemotherapies and pathway inhibitors is provided so that the readers are aware of what is currently considered for TNBC. Some of the pathway inhibitors may also be of importance for nanotherapeutics development. SIGNIFICANCE STATEMENT: This minireview summarizes the progress on chemotherapeutics and nanoparticle delivery for treatment of TNBC and specifically highlights the lead compounds that are in clinical trials.
Collapse
Affiliation(s)
- Rheal A Towner
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Ranga Dissanayake
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
22
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
23
|
Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J. Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep 2024; 14:12386. [PMID: 38811720 PMCID: PMC11137060 DOI: 10.1038/s41598-024-62991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has high heterogeneity, poor prognosis, and limited treatment success. Recently, an immunohistochemistry-based surrogate classification for the "Fudan University Shanghai Cancer Center (FUSCC) subtyping" has been developed and is considered more suitable for clinical application. Seventy-one paraffin-embedded sections of surgically resected TNBC were classified into four molecular subtypes using the IHC-based surrogate classification. Genomic analysis was performed by targeted next-generation sequencing and the specificity of the subtypes was explored by bioinformatics, including survival analysis, multivariate Cox regression, pathway enrichment, Pyclone analysis, mutational signature analysis and PHIAL analysis. AKT1 and BRCA1 mutations were identified as independent prognostic factors in TNBC. TNBC molecular subtypes encompass distinct genomic landscapes that show specific heterogeneities. The luminal androgen receptor (LAR) subtype was associated with mutations in PIK3CA and PI3K pathways, which are potentially sensitive to PI3K pathway inhibitors. The basal-like immune-suppressed (BLIS) subtype was characterized by high genomic instability and the specific possession of signature 19 while patients in the immunomodulatory (IM) subtype belonged to the PD-L1 ≥ 1% subgroup with enrichment in Notch signaling, suggesting a possible benefit of immune checkpoint inhibitors and Notch inhibitors. Moreover, mesenchymal-like (MES) tumors displayed enrichment in the receptor tyrosine kinase (RTK)-RAS pathway and potential sensitivity to RTK pathway inhibitors. The findings suggest potential treatment targets and prognostic factors, indicating the possibility of TNBC stratified therapy in the future.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Lei Yan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hai Xia Ma
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hui Wen Wang
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Feng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
24
|
de Paula B, Crocamo S, de Sousa CAM, Valverde P, Rezende F, Abdelhay E. Triple-Negative Breast Cancer Subclassified by Immunohistochemistry: Correlation with Clinical and Pathological Outcomes in Patients Receiving Neoadjuvant Chemotherapy. Int J Mol Sci 2024; 25:5825. [PMID: 38892013 PMCID: PMC11172922 DOI: 10.3390/ijms25115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The intrinsic subtype of triple-negative breast cancer (TNBC) is based on genomic evaluation. In this study, we report the survival and pathological complete response (pCR) rates of TNBC patients subtyped by IHC and treated with neoadjuvant chemotherapy (NACT). A retrospective cohort of 187 TNBC patients who received NACT between 2008 and 2017 was used, and IHC subtyping was performed on biopsy specimens before chemotherapy. The subtyping revealed predominantly basal-like tumors (IHC-BL, 61%), followed by basal-like immune-suppressed tumors (IHC-BLIS, 31%), mesenchymal tumors (12.5%), luminal androgen receptor tumors (IHC-LAR, 12%), and basal-like immune-activated tumors (IHC-BLIA, 10.9%). The pCR rate varied among subtypes, with IHC-BLIA showing the highest (30.0%) and IHC-LAR showing the lowest (4.5%). IHC-BLIS led in recurrence sites. Overall and disease-free survival analyses did not show significant differences among subtypes, although IHC-BLIA demonstrated a trend toward better survival, and IHC-mesenchymal, worse. Patients who achieved pCR exhibited significantly better disease-free survival and overall survival than non-responders. This study underscores the potential of IHC-based subtyping in TNBC management, highlighting distinct response patterns to neoadjuvant chemotherapy and potential implications for treatment strategies. Further research is warranted to validate these findings and explore tailored therapeutic approaches for specific TNBC subtypes.
Collapse
Affiliation(s)
- Bruno de Paula
- Núcleo de Pesquisa Clínica, Hospital do Cancer III, Instituto Nacional de Câncer –, Rio de Janeiro 20560-121, Brazil;
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford GU2 7XH, UK
| | - Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital do Cancer III, Instituto Nacional de Câncer –, Rio de Janeiro 20560-121, Brazil;
| | | | - Priscila Valverde
- Divisão de Patologia, COAS, Instituto Nacional de Câncer–INCA, Rio de Janeiro 20220-400, Brazil
| | - Fabiana Rezende
- Divisão de Patologia, COAS, Instituto Nacional de Câncer–INCA, Rio de Janeiro 20220-400, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios Especializados, COAS, Instituto Nacional de Câncer–INCA, Rio de Janeiro 202300-130, Brazil
| |
Collapse
|
25
|
Zhao S, Yan CY, Lv H, Yang JC, You C, Li ZA, Ma D, Xiao Y, Hu J, Yang WT, Jiang YZ, Xu J, Shao ZM. Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer. FUNDAMENTAL RESEARCH 2024; 4:678-689. [PMID: 38933195 PMCID: PMC11197495 DOI: 10.1016/j.fmre.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.
Collapse
Affiliation(s)
- Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao-Yang Yan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jing-Cheng Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 511466, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zi-Ang Li
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jia Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
26
|
Wasson MCD, Venkatesh J, Cahill HF, McLean ME, Dean CA, Marcato P. LncRNAs exhibit subtype-specific expression, survival associations, and cancer-promoting effects in breast cancer. Gene 2024; 901:148165. [PMID: 38219875 DOI: 10.1016/j.gene.2024.148165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.
Collapse
Affiliation(s)
| | | | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Meghan E McLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada; Nova Scotia Health Authority, Halifax, NS B3H1V8, Canada.
| |
Collapse
|
27
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
28
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
29
|
Zuo WJ, Chen L, Shen Y, Wang ZH, Liu GY, Yu KD, Di GH, Wu J, Li JJ, Shao ZM. Rational and trial design of FASCINATE-N: a prospective, randomized, precision-based umbrella trial. Ther Adv Med Oncol 2024; 16:17588359231225032. [PMID: 38362377 PMCID: PMC10868472 DOI: 10.1177/17588359231225032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Background With our growing insight into the molecular heterogeneity and biological characteristics of breast cancer, individualized treatment is the future of cancer treatment. In this prospective Fudan University Shanghai Cancer Center Breast Cancer Precision Platform Series study - neoadjuvant therapy (FASCINATE-N) trial, we classify breast cancer patients using multiomic characteristics into different subtypes to evaluate the efficacy of precision-based targeted therapies compared to standard neoadjuvant chemotherapy. Methods and design The FASCINATE-N trial is a prospective, randomized, precision-based umbrella trial that plans to enroll 716 women with early breast cancer. After enrollment, patients will first be divided into three groups: hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)-, HER2+, and HR-/HER2-. The HR+/HER2- patients are further stratified using fusion and clustering of similarity network fusion (SNF) algorithm into four subtypes; HER2+ patients are divided into HR+/HER2+ and HR-/HER2+ subtypes; and HR-/HER2- patients are stratified using the Fudan University Shanghai Cancer Center classification. For the assignment of drugs to patients, Bayesian methods of adaptive randomization will be used. The primary endpoint is pathological complete response rate; secondary endpoints include 3-year invasive disease-free survival, overall response rate, and toxicities according to common terminology criteria for adverse events (CTCAE) scale version 4.0 and the ratio of patients with complete cell cycle arrest (Ki67 < 2.7%) in HR+/HER2+ breast cancer. Discussion The goal of our trial is to test the efficacy of our subtyping-based treatment in a neoadjuvant setting and to conduct a pilot study into the efficacy of targeted therapies within each precision-based subtype. The precision-based treatment arm can be updated with the refinement of our subtyping method, the discovery of new targets, and the development of novel targeted drugs. Our trial offers a unique opportunity to provide patients with individualized neoadjuvant therapy and test promising novel treatments that may further benefit patients. Trial registration ClinicalTrials.gov identifier: NCT05582499 (https://classic.clinicaltrials.gov/ct2/show/NCT05582499).
Collapse
Affiliation(s)
- Wen-Jia Zuo
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Shen
- Department of Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhong-Hua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang-Yu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Jie Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-A Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-A Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
31
|
Keskinkılıc M, Gökmen-Polar Y, Badve SS. Triple Negative Breast Cancers: An Obsolete Entity? Clin Breast Cancer 2024; 24:1-6. [PMID: 38016912 DOI: 10.1016/j.clbc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Triple negative breast cancer is defined on the basis of what it is not. It has served as a useful umbrella entity for management of patients with breast cancer for the last couple of decades. However, during this period a number of novel therapies have become available. These therapies have been documented to be useful in subsets of TNBCs that can be identified on the basis of distinct biologic alterations. Herein we revisit the categorization and usage of the TNBC as an entity to assess its utility in view of the currently available therapies.
Collapse
Affiliation(s)
- Merve Keskinkılıc
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
32
|
Wu L, Chen M, Lin Y, Zeng B, Guo W, Chen L, Li Y, Yu L, Li J, Chen X, Zhang W, Li S, Cai W, Zhang K, Jin X, Huang J, Lin Q, Yang Y, Fu F, Wang C. Prognostic Value of Immunohistochemistry-based Subtyping Before and After Neoadjuvant Chemotherapy in Patients with Triple-negative Breast Cancer. Am J Surg Pathol 2024; 48:27-35. [PMID: 38117286 DOI: 10.1097/pas.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To assess the predictive and prognostic value of a subtyping method based on immunohistochemistry in patients with triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NAC). This study included patients with TNBC treated with anthracycline- and taxane-based NAC and curative surgery. Immunohistochemical (IHC) subtyping was performed using core needle biopsy specimens before NAC (pre-NAC) and residual tumors after NAC (post-NAC). Logistic regression was performed to identify predictive biomarkers of pathological complete response (pCR). Invasive disease-free survival (iDFS), distant disease-free survival (DDFS), and overall survival (OS) were assessed using the log-rank test and Cox proportional hazards regression. A total of 230 patients were followed up for a median of 59 months. Clinical lymph node status and the pre-NAC subtype were independent predictors of pCR (P=0.006 and 0.005, respectively). The pre-NAC subtype was an independent prognostic factor for long-term survival (iDFS: P < 0.001, DDFS: P=0.010, and OS: P=0.044). Among patients with residual disease (RD) after NAC, approximately 45% of tumors changed their IHC subtype. Furthermore, the post-NAC subtype, but not the pre-NAC subtype, was strongly associated with the survival of patients with RD (iDFS: P < 0.001, DDFS: P=0.005, and OS: P=0.006). The IHC subtype predicted response to NAC and long-term survival in patients with early TNBC. In patients with RD, almost 45% of the tumors changed subtype after NAC. The IHC subtype should be considered when planning additional therapies pre- and post-NAC.
Collapse
|
33
|
Huang X, Huang J, Huang Q, Zhou S. A ten long noncoding RNA-based prognostic risk model construction and mechanism study in the basal-like immune-suppressed subtype of triple-negative breast cancer. Transl Cancer Res 2023; 12:3653-3671. [PMID: 38193005 PMCID: PMC10774046 DOI: 10.21037/tcr-23-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024]
Abstract
Background According to the Fudan University Shanghai Cancer Center (FUSCC) system, triple-negative breast cancer (TNBC) is divided into four stable subtypes: (I) luminal androgen receptor, (II) immunomodulatory, (III) basal-like immune-suppressed (BLIS), and (IV) mesenchymal-like. However, the treatment outcomes of the corresponding targeted therapies are unsatisfactory, especially for the BLIS subtype. Therefore, we aimed to identify the key long noncoding RNAs (lncRNAs) to construct a prognostic model for BLIS subtype and discover potential targets to explore potential therapeutic strategies in this study. Methods The FUSCC cohort was used to establish a prognostic risk model via least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. The Cancer Genome Atlas (TCGA) cohort was then used to evaluate and verify the model. To understand the functional aspects of the model, functional, immune landscape, mutation, and drug sensitivity analyses were performed between high- and low-risk groups. Results Ten prognostic-related lncRNAs identified, including C5ORF66-AS2, DIO3OS, FZD10-DT, LINC00393, LNC-ERI1-32, LNC-FOXO1-2, LNC-SPARCL1-1, HCG23, LNC-MMD-4 and LNC-TMEM106C-6, were selected for risk score system construction. The results showed that the model constructed could divide the patients with BLIS subtype into two groups of high and low risk, and patients with higher risk scores had shorter recurrence-free survival. In addition, drug sensitivity analysis identified 3 compounds, including BMS-754807, cytochalasin b, and linifanib, that could have a potential therapeutic effect on patients with the BLIS subtype. Conclusions The risk prognosis model showed good prognostic value for the BLIS subtype patients, and the ten lncRNAs may be potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoying Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinlong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuyan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shihao Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Corredor G, Bharadwaj S, Pathak T, Viswanathan VS, Toro P, Madabhushi A. A Review of AI-Based Radiomics and Computational Pathology Approaches in Triple-Negative Breast Cancer: Current Applications and Perspectives. Clin Breast Cancer 2023; 23:800-812. [PMID: 37380569 PMCID: PMC10733554 DOI: 10.1016/j.clbc.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Breast cancer is one of the most common and deadly cancers worldwide. Approximately, 20% of all breast cancers are characterized as triple negative (TNBC). TNBC typically is associated with a poorer prognosis relative to other breast cancer subtypes. Due to its aggressiveness and lack of response to hormonal therapy, conventional cytotoxic chemotherapy is the usual treatment; however, this treatment is not always effective, and an important percentage of patients develop recurrence. More recently, immunotherapy has started to be used on some populations with TNBC showing promising results. Unfortunately, immunotherapy is only applicable to a minority of patients and responses in metastatic TNBC have overall been modest in comparison to other cancer types. This situation evidences the need for developing effective biomarkers that help to stratify and personalize patient management. Thanks to recent advances in artificial intelligence (AI), there has been an increasing interest in its use for medical applications aiming at supporting clinical decision making. Several works have used AI in combination with diagnostic medical imaging, more specifically radiology and digitized histopathological tissue samples, aiming to extract disease-specific information that is difficult to quantify by the human eye. These works have demonstrated that analysis of such images in the context of TNBC has great potential for (1) risk-stratifying patients to identify those patients who are more likely to experience disease recurrence or die from the disease and (2) predicting pathologic complete response. In this manuscript, we present an overview on AI and its integration with radiology and histopathological images for developing prognostic and predictive approaches for TNBC. We present state of the art approaches in the literature and discuss the opportunities and challenges with developing AI algorithms regarding further development and clinical deployment, including identifying those patients who may benefit from certain treatments (e.g., adjuvant chemotherapy) from those who may not and thereby should be directed toward other therapies, discovering potential differences between populations, and identifying disease subtypes.
Collapse
Affiliation(s)
- Germán Corredor
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Satvika Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | - Tilak Pathak
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | - Vidya Sankar Viswanathan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | | | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA; Atlanta VA Medical Center, Atlanta, GA.
| |
Collapse
|
35
|
Li JW, Sheng DL, Chen JG, You C, Liu S, Xu HX, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol 2023; 68:23TR01. [PMID: 37722385 DOI: 10.1088/1361-6560/acfade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Breast cancer, which is the most common type of malignant tumor among humans, is a leading cause of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery, postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for individual patients. Such personalized therapies have tremendously reduced the threat of breast cancer in females. Furthermore, early imaging screening plays an important role in reducing the treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this review, we introduce the necessity of incorporating AI into breast imaging and the applications of AI in mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography/computed tomography based on published articles since 1994. Moreover, the challenges of AI in breast imaging are discussed.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dan-Li Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication & Electronic Engineering, East China Normal University, People's Republic of China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
36
|
Li C, Yuan Q, Deng T, Xu G, Hou J, Zheng L, Wu G. Prognosis difference between HER2-low and HER2-zero breast cancer patients: a systematic review and meta-analysis. Breast Cancer 2023; 30:965-975. [PMID: 37470943 DOI: 10.1007/s12282-023-01487-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND HER2-low breast cancer (BC) is proposed to be a special population of patients with an immunohistochemistry (IHC) score of 1 + or 2 + and non-amplified in situ hybridization (ISH) results. The role and prognostic impact of HER2-low BC is still controversial. This meta-analysis aims to explore the prognostic difference between of HER2-low and HER2-zero characteristic in BC patients. METHODS A meta-analysis was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and eligible studies were search in PubMed, Web of Science and EMBASE databases. Quality assessment of included studies were performed by Quality in Prognostic Studies (QUIPS) tool. Hazard ratios (HRs) and corresponding 95% confidence interval (CI) for overall survival (OS) and disease-free survival (DFS) were pooled in a meta-analysis. Furthermore, subgroup analysis, sensitivity analysis, and analysis for publication bias were conducted. RESULTS Eighteen studies comprising a total of 93,317 patients were included for meta-analysis. BC patients with HER2-low characteristic have longer OS (HRs 0.87, 95% CI 0.81-0.93, p < 0.0001) and DFS (HRs 0.82, 95% CI 0.73-0.93, p = 0.001) compared to those with HER2-zero characteristic. Subgroup analysis indicate that the source of heterogeneity may come from the hormone receptor (HR) status group. Although, the publication bias was detected, sensitivity analysis and the trim-and-fill method analysis demonstrated the stability and reliability of the results. CONCLUSION HER2-low BC patients have longer OS and DFS compared to HER2-zero BC patients, and its prognostic value is consistent among different HR status patients. Whether HER2-low breast cancer is an independent subtype of breast cancer is still a subject of ongoing research, and more studies are needed to fully understand the molecular and clinical features of this subtype.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Tong Deng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Gaoran Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Lewei Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Dai YW, Wang WM, Zhou X. Development of a CD8 + T cell-based molecular classification for predicting prognosis and heterogeneity in triple-negative breast cancer by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon 2023; 9:e19798. [PMID: 37810147 PMCID: PMC10559128 DOI: 10.1016/j.heliyon.2023.e19798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC), although the most intractable subtype, is characterized by abundant immunogenicity, which enhances responsiveness to immunotherapeutic measures. Methods First, we identified CD8+ T cell core genes (TRCG) based on single-cell sequence and traditional transcriptome sequencing and then used this data to develop a first-of-its-kind classification system based on CD8+ T cells in patients with TNBC. Next, TRCG-related patterns were systematically analyzed, and their correlation with genomic features, immune activity (microenvironment associated with immune infiltration), and clinicopathological characteristics were assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the Cancer Genome Atlas (TCGA), GSE103091, GSE96058 databases. Additionally, a CD8+ T cell-related prognostic signature (TRPS) was developed to quantify a patient-specific TRCG pattern. What's more, the genes-related TRPS was validated by polymerase chain reaction (PCR) experiment. Results This study, for the first time, distinguished two subsets in patients with TNBC based on the TRCG. The immune microenvironment and prognostic stratification between these have distinct heterogeneity. Furthermore, this study constructed a novel scoring system named TRPS, which we show to be a robust prognostic marker for TNBC that is related to the intensity of immune infiltration and immunotherapy. Moreover, the levels of genes related the TRPS were validated by quantitative Real-Time PCR. Conclusions Consequently, this study unraveled an association between the TRCG and the tumor microenvironment in TNBC. TRPS model represents an effective tool for survival prediction and treatment guidance in TNBC that can also help identify individual variations in TME and stratify patients who are sensitive to anticancer immunotherapy.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
38
|
Vishnubalaji R, Alajez NM. Long non-coding RNA AC099850.4 correlates with advanced disease state and predicts worse prognosis in triple-negative breast cancer. Front Med (Lausanne) 2023; 10:1149860. [PMID: 37727755 PMCID: PMC10505935 DOI: 10.3389/fmed.2023.1149860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Our understanding of the function of long non-coding RNAs (lncRNAs) in health and disease states has evolved over the past decades due to the many advances in genome research. In the current study, we characterized the lncRNA transcriptome enriched in triple-negative breast cancer (TNBC, n = 42) and estrogen receptor (ER+, n = 42) breast cancer compared to normal breast tissue (n = 56). Given the aggressive nature of TNBC, our data revealed selective enrichment of 57 lncRNAs in TNBC. Among those, AC099850.4 lncRNA was chosen for further investigation where it exhibited elevated expression, which was further confirmed in a second TNBC cohort (n = 360) where its expression correlated with a worse prognosis. Network analysis of AC099850.4high TNBC highlighted enrichment in functional categories indicative of cell cycle activation and mitosis. Ingenuity pathway analysis on the differentially expressed genes in AC099850.4high TNBC revealed the activation of the canonical kinetochore metaphase signaling pathway, pyridoxal 5'-phosphate salvage pathway, and salvage pathways of pyrimidine ribonucleotides. Additionally, upstream regulator analysis predicted the activation of several upstream regulator networks including CKAP2L, FOXM1, RABL6, PCLAF, and MITF, while upstream regulator networks of TP53, NUPR1, TRPS1, and CDKN1A were suppressed. Interestingly, elevated expression of AC099850.4 correlated with worse short-term relapse-free survival (log-rank p = 0.01). Taken together, our data are the first to reveal AC099850.4 as an unfavorable prognostic marker in TNBC, associated with more aggressive clinicopathological features, and suggest its potential utilization as a prognostic biomarker and therapeutic target in TNBC.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M. Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
39
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
40
|
Bhardwaj PV, Wang Y, Brunk E, Spanheimer PM, Abdou YG. Advances in the Management of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12478. [PMID: 37569851 PMCID: PMC10419523 DOI: 10.3390/ijms241512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoadjuvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most importantly, provides important prognostic information that is essential to determining post-surgical therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal candidates. Further, treatment algorithms guide the systemic management of patients based on their pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequencing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC remain elusive and are being extensively studied. In this review, we describe current practices and promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in molecular determinants of response to therapy in early-stage TNBC.
Collapse
Affiliation(s)
- Prarthna V. Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Yue Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Brunk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genomic Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Computational Medicine Program, UNC Chapel Hill, NC 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yara G. Abdou
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
41
|
Foldi J, Geyer CE. Precision medicine for metastatic TNBC: the FUTURE is now. Cell Res 2023; 33:491-492. [PMID: 37156878 PMCID: PMC10313756 DOI: 10.1038/s41422-023-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Affiliation(s)
- Julia Foldi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Charles E Geyer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- NSABP Foundation, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Kim JY, Park S, Cho EY, Lee JE, Jung HH, Chae BJ, Kim SW, Nam SJ, Cho SY, Park YH, Ahn JS, Lee S, Im YH. Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer. Exp Mol Med 2023; 55:1451-1461. [PMID: 37394589 PMCID: PMC10394068 DOI: 10.1038/s12276-023-01030-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Apocrine carcinoma is a rare breast cancer subtype. As such, the genomic characteristics of apocrine carcinoma with triple negative immunohistochemical results (TNAC), which has been treated as triple negative breast cancer (TNBC), have not been revealed. In this study, we evaluated the genomic characteristics of TNAC compared to TNBC with low Ki-67 (LK-TNBC). In the genetic analysis of 73 TNACs and 32 LK-TNBCs, the most frequently mutated driver gene in TNAC was TP53 (16/56, 28.6%), followed by PIK3CA (9/56, 16.1%), ZNF717 (8/56, 14.3%), and PIK3R1 (6/56, 10.71%). Mutational signature analysis showed enrichment of defective DNA mismatch repair (MMR)-related signatures (SBS6 and SBS21) and the SBS5 signature in TNAC, whereas an APOBEC activity-associated mutational signature (SBS13) was more prominent in LK-TNBC (Student's t test, p < 0.05). In intrinsic subtyping, 38.4% of TNACs were classified as luminal A, 27.4% as luminal B, 26.0% as HER2-enriched (HER2-E), 2.7% as basal, and 5.5% as normal-like. The basal subtype was the most dominant subtype (43.8%) in LK-TNBC (p < 0.001), followed by luminal B (21.9%), HER2-E (21.9%), and luminal A (12.5%). In the survival analysis, TNAC had a five-year disease-free survival (DFS) rate of 92.2% compared to 59.1% for LK-TNBC (P = 0.001) and a five-year overall survival (OS) rate of 95.3% compared to 74.6% for LK-TNBC (P = 0.0099). TNAC has different genetic characteristics and better survival outcomes than LK-TNBC. In particular, normal-like and luminal A subtypes in TNAC have much better DFS and OS than other intrinsic subtypes. Our findings are expected to impact medical practice for patients diagnosed with TNAC.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| | - Sabin Park
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hae Hyun Jung
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Soo Youn Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, 06351, Republic of Korea.
| |
Collapse
|
43
|
Tierno D, Grassi G, Scomersi S, Bortul M, Generali D, Zanconati F, Scaggiante B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci 2023; 24:9688. [PMID: 37298642 PMCID: PMC10253720 DOI: 10.3390/ijms24119688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.T.); (G.G.)
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.T.); (G.G.)
| | - Serena Scomersi
- Breast Unit-Azienda Sanitaria Universitaria Integrata Giuliano Isontina ASUGI, University of Trieste, 34149 Trieste, Italy;
| | - Marina Bortul
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.B.); (D.G.); (F.Z.)
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.B.); (D.G.); (F.Z.)
- Azienda Socio-Sanitaria Territoriale di Cremona-ASST, Breast Cancer Unit and Translational Research Unit, 26100 Cremona, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.B.); (D.G.); (F.Z.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.T.); (G.G.)
| |
Collapse
|
44
|
Nisticò N, Aloisio A, Lupia A, Zimbo AM, Mimmi S, Maisano D, Russo R, Marino F, Scalise M, Chiarella E, Mancuso T, Fiume G, Omodei D, Zannetti A, Salvatore G, Quinto I, Iaccino E. Development of Cyclic Peptides Targeting the Epidermal Growth Factor Receptor in Mesenchymal Triple-Negative Breast Cancer Subtype. Cells 2023; 12:cells12071078. [PMID: 37048151 PMCID: PMC10093212 DOI: 10.3390/cells12071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
- Net4Science srl, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Maisano
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Teresa Mancuso
- “Annunziata” Regional Hospital Cosenza, 87100 Cosenza, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Omodei
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Università degli studi di Napoli “Parthenope”, 80133 Naples, Italy
- CEINGE- Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
45
|
Schreier A, Zappasodi R, Serganova I, Brown KA, Demaria S, Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer. Front Oncol 2023; 12:1061789. [PMID: 36703796 PMCID: PMC9872136 DOI: 10.3389/fonc.2022.1061789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease that is difficult to treat and portends a poor prognosis in many patients. Recent efforts to implement immune checkpoint inhibitors into the treatment landscape of TNBC have led to improved outcomes in a subset of patients both in the early stage and metastatic settings. However, a large portion of patients with TNBC remain resistant to immune checkpoint inhibitors and have limited treatment options beyond cytotoxic chemotherapy. The interplay between the anti-tumor immune response and tumor metabolism contributes to immunotherapy response in the preclinical setting, and likely in the clinical setting as well. Specifically, tumor glycolysis and lactate production influence the tumor immune microenvironment through creation of metabolic competition with infiltrating immune cells, which impacts response to immune checkpoint blockade. In this review, we will focus on how glucose metabolism within TNBC tumors influences the response to immune checkpoint blockade and potential ways of harnessing this information to improve clinical outcomes.
Collapse
Affiliation(s)
- Ashley Schreier
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States,*Correspondence: Eleni Andreopoulou,
| |
Collapse
|
46
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
47
|
Balkrishna A, Umar Zango U, Kauser Nasir S, Arya V. A Clinical Cognizance of Molecular and Pathological Diagnostic Approach of TNBC. THERAPEUTIC DRUG TARGETS AND PHYTOMEDICINE FOR TRIPLE NEGATIVE BREAST CANCER 2023:26-46. [DOI: 10.2174/9789815079784123010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Genetic, transcriptional, and clinical heterogeneity of disease has remained
to be a prominent obstacle to the development of a targeted therapeutic approach
against TNBC. So far, based on tumor size, lymph node status, and histologic features
TNBC subtypes were stratified. Insights into inter and intratumoral heterogeneity of
TNBC were gained by next-generation sequencing, genomic, transcriptomic,
proteomic, and clinicopathological characterization. To depict tumor response to
neoadjuvant chemotherapy, radiological characterization may also a play significant
role. Biomarkers for subtyping TNBC were highly needed to depict the survival
outcome. This chapter discussed the available and possible molecular and pathological
diagnostic approaches to TNBC. Furthermore, the integration of morphological and
genomic data may emerge as a promising approach for the identification of new
therapeutic and prognostic markers to predict the likely outcome of the disease. This
chapter aims to highlight the molecular and pathological diagnostic approaches to
depict both metastatic and non-metastatic TNBC. <br>
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Research Institute,Patanjali Herbal Research Department,Haridwar,India,
| | - Usman Umar Zango
- Sa'adatu Rimi College of Education,Department of Biology,Kumbotso,Nigeria,
| | - Saima Kauser Nasir
- Indian Institute of Science Bangalore,Department of Microbiology and Cell Biology (MCB),Bangalore,India,
| | - Vedpriya Arya
- Patanjali Research Institute,Patanjali Herbal Research Department,Haridwar,India,
| |
Collapse
|
48
|
Lam T, Mastos C, Sloan EK, Halls ML. Pathological changes in GPCR signal organisation: Opportunities for targeted therapies for triple negative breast cancer. Pharmacol Ther 2023; 241:108331. [PMID: 36513135 DOI: 10.1016/j.pharmthera.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Triple negative breast cancer (TNBC) has the poorest prognosis compared to other breast cancer subtypes, due to a historical lack of targeted therapies and high rates of relapse. Greater insight into the components of signalling pathways in TNBC tumour cells has led to the clinical evaluation, and in some cases approval, of targeted therapies. In the last decade, G protein-coupled receptors, such as the β2-adrenoceptor, have emerged as potential new therapeutic targets. Here, we describe how the β2-adrenoceptor accelerates TNBC progression in response to stress, and the unique signalling pathway activated by the β2-adrenoceptor to drive the invasion of an aggressive TNBC tumour cell. We highlight evidence that supports an altered organisation of GPCRs in tumour cells, and suggests that activation of the same GPCR in a different cellular location can control unique cell responses. Finally, we speculate how the relocation of GPCRs to the "wrong" place in tumour cells presents opportunities to develop targeted anti-cancer GPCR drugs with greater efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
49
|
Integrative network analysis reveals subtype-specific long non-coding RNA regulatory mechanisms in head and neck squamous cell carcinoma. Comput Struct Biotechnol J 2022; 21:535-549. [PMID: 36659932 PMCID: PMC9816915 DOI: 10.1016/j.csbj.2022.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is one of most common malignancies with high mortality worldwide. Importantly, the molecular heterogeneity of HNSC complicates the clinical diagnosis and treatment, leading to poor overall survival outcomes. To dissect the complex heterogeneity, recent studies have reported multiple molecular subtyping systems. For instance, HNSC can be subdivided to four distinct molecular subtypes: atypical, basal, classical, and mesenchymal, of which the mesenchymal subtype is characterized by upregulated epithelial-mesenchymal transition (EMT) and associated with poorer survival outcomes. Despite a wealth of studies into the complex molecular heterogeneity, the regulatory mechanism specific to this aggressive subtype remain largely unclear. Herein, we developed a network-based bioinformatics framework that integrates lncRNA and mRNA expression profiles to elucidate the subtype-specific regulatory mechanisms. Applying the framework to HNSC, we identified a clinically relevant lncRNA LNCOG as a key master regulator mediating EMT underlying the mesenchymal subtype. Five genes with strong prognostic values, namely ANXA5, ITGA5, CCBE1, P4HA2, and EPHX3, were predicted to be the putative targets of LNCOG and subsequently validated in other independent datasets. By integrative analysis of the miRNA expression profiles, we found that LNCOG may act as a ceRNA to sponge miR-148a-3p thereby upregulating ITGA5 to promote HNSC progression. Furthermore, our drug sensitivity analysis demonstrated that the five putative targets of LNCOG were also predictive of the sensitivities of multiple FDA-approved drugs. In summary, our bioinformatics framework facilitates the dissection of cancer subtype-specific lncRNA regulatory mechanisms, providing potential novel biomarkers for more optimized treatment of HNSC.
Collapse
Key Words
- AUC, area under the curve
- BH, Benjamini-Hochberg
- CI, confidence interval
- CTRP, The Cancer Therapeutics Response Portal
- Competitive endogenous RNA
- DEG, differentially expressed gene
- DEX, dexamethasone
- DFS, disease-free survival
- EMT, epithelial-mesenchymal transition
- FPKM, fragments per kilobase million
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- GSEA, gene set enrichment analysis
- HNSC, head and neck squamous cell carcinoma
- HR, hazard ratio
- Head and neck cancer
- ICGC, The International Cancer Genome Consortium
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LASSO, least absolute shrinkage and selection operator
- Long non-coding RNAs
- Network inference
- OS, overall survival
- ROC, receiver operating characteristic curve
- Subtype-specific
- TCGA, The Cancer Genome Atlas
- TPM, transcripts per million
- UCSC, the University of California Santa Cruz
- ceRNA, the competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
|
50
|
Akhouayri L, Ostano P, Mello-Grand M, Gregnanin I, Crivelli F, Laurora S, Liscia D, Leone F, Santoro A, Mulè A, Guarino D, Maggiore C, Carlino A, Magno S, Scatolini M, Di Leone A, Masetti R, Chiorino G. Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles. Hum Genomics 2022; 16:70. [PMID: 36536459 PMCID: PMC9764480 DOI: 10.1186/s40246-022-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a very heterogeneous disease. Several gene expression and mutation profiling approaches were used to classify it, and all converged to the identification of distinct molecular subtypes, with some overlapping across different approaches. However, a standardised tool to routinely classify TNBC in the clinics and guide personalised treatment is lacking. We aimed at defining a specific gene signature for each of the six TNBC subtypes proposed by Lehman et al. in 2011 (basal-like 1 (BL1); basal-like 2 (BL2); mesenchymal (M); immunomodulatory (IM); mesenchymal stem-like (MSL); and luminal androgen receptor (LAR)), to be able to accurately predict them. METHODS Lehman's TNBCtype subtyping tool was applied to RNA-sequencing data from 482 TNBC (GSE164458), and a minimal subtype-specific gene signature was defined by combining two class comparison techniques with seven attribute selection methods. Several machine learning algorithms for subtype prediction were used, and the best classifier was applied on microarray data from 72 Italian TNBC and on the TNBC subset of the BRCA-TCGA data set. RESULTS We identified two signatures with the 120 and 81 top up- and downregulated genes that define the six TNBC subtypes, with prediction accuracy ranging from 88.6 to 89.4%, and even improving after removal of the least important genes. Network analysis was used to identify highly interconnected genes within each subgroup. Two druggable matrix metalloproteinases were found in the BL1 and BL2 subsets, and several druggable targets were complementary to androgen receptor or aromatase in the LAR subset. Several secondary drug-target interactions were found among the upregulated genes in the M, IM and MSL subsets. CONCLUSIONS Our study took full advantage of available TNBC data sets to stratify samples and genes into distinct subtypes, according to gene expression profiles. The development of a data mining approach to acquire a large amount of information from several data sets has allowed us to identify a well-determined minimal number of genes that may help in the recognition of TNBC subtypes. These genes, most of which have been previously found to be associated with breast cancer, have the potential to become novel diagnostic markers and/or therapeutic targets for specific TNBC subsets.
Collapse
Affiliation(s)
- Laila Akhouayri
- Department of Biomedical Sciences, Genetics and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Hassan II-Casablanca University, Casablanca, Morocco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Ilaria Gregnanin
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Francesca Crivelli
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
- Clinical Research Division, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Sara Laurora
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Daniele Liscia
- Pathology Department, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Francesco Leone
- Oncology Department, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Angela Santoro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonino Mulè
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Claudia Maggiore
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Carlino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefano Magno
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Scatolini
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Alba Di Leone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Masetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|