1
|
Di Giacomo AM, Subudhi S, Vos W, Andreatta M, Carmona S, McTavish W, Seliger B, Ibrahim R, Lahn M, Smith M, Eggermont A, Fox BA, Maio M. Perspectives on the role of "-Omics" in predicting response to immunotherapy. Eur J Cancer 2025; 220:115393. [PMID: 40168935 DOI: 10.1016/j.ejca.2025.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The annual Immuno-Oncology "Think Tank" held in October 2023 in Siena reviewed the rapidly evolving systems-biological approaches which are now providing a deeper understanding of tumor and tumor microenvironment heterogeneity. Based on this understanding opportunities for novel therapies may be identified to overcome resistance to immunotherapy. There is increasing evidence that malignant disease processes are not limited to purely intracellular or genetic events but constitute a dynamic interaction between the host and disease. Tumor responses are influenced by many host tissue determinants across different cellular compartments, which can now be investigated by high-throughput molecular profiling technologies, often labelled with a suffix "-omics". "Omics" together with ever increasing computational power, fast developments in machine learning, and high-resolution detection tools offer an unrivalled opportunity to connect high-dimensional data and create a holistic view of disease processes in cancer. This review describes advances in several state-of-the-art "-omics" approaches with perspectives on how these can be applied to the clinical development of new immunotherapeutic strategies and ultimately adopted in clinical practice.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| | - Sumit Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wim Vos
- Radiomics.bio (Oncoradiomics SA), Liège 4000, Belgium.
| | - Massimo Andreatta
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Santiago Carmona
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Will McTavish
- Nanostring Technologies Inc, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Barbara Seliger
- Institute of Translational Medicine, Brandenburg Medical School "Theodor Fontane" & Faculty of Health Sciences, Gertrud-Piter Platz 7, Brandenburg 14770, Germany; Medical Faculty, Martin Luther University Halle-Wittenberg, Halle and Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ramy Ibrahim
- Georgiamune Inc., 942 Clopper Rd, Gaithersburg, MD 20878, USA
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland.
| | - Michael Smith
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland
| | - Alexander Eggermont
- Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, Utrecht 3584, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximiliaan University, Munich, Germany.
| | - Bernard A Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, Providence Cancer Institute, 4805 NE Glisan St. Suite 2N35, Portland, OR 97213, USA; Department of Molecular Microbiology and Immunology, and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97213, USA.
| | - Michele Maio
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| |
Collapse
|
2
|
Saif A, Islam MT, Raihan MO, Yousefi N, Rahman MA, Faridi H, Hasan AR, Hossain MM, Saleem RM, Albadrani GM, Al-Ghadi MQ, Ahasan Setu MA, Kamel M, Abdel-Daim MM, Aktaruzzaman M. Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches. Comput Biol Med 2025; 190:110044. [PMID: 40120182 DOI: 10.1016/j.compbiomed.2025.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysis of CDC7 across multiple cancers is lacking, and existing therapeutic options have come with limited clinical success. The aim of this is to integrate a comprehensive pan-cancer analysis of CDC7 with the identification of novel marine-derived inhibitors, bridging the understanding of CDC7's role as a prognostic biomarker and therapeutic target across diverse cancer types. In this study, we conducted a pan-cancer analysis of CDC7 across 33 tumor types using publicly available datasets to evaluate its expression, genetic alterations, immune interactions, survival, and prognostic significance. Additionally, a marine-derived compound library of 31,492 molecules was screened to identify potential CDC7 inhibitors using chemoinformatics and machine learning. The top candidates underwent rigorous evaluations, including molecular docking, pharmacokinetics, toxicity, Density Functional Theory (DFT) calculations, and Molecular Dynamics (MD) simulations. The findings revealed that CDC7 is overexpressed in several cancers and is associated with poor survival outcomes and unfavorable prognosis. Enrichment analysis linked CDC7 to critical DNA replication pathways, while its role in modulating tumor-immune interactions highlighted its potential as a target for immunotherapy. Among all tested compounds, Tetrahydroaltersolanol D (CMNPD21999) exhibited the strongest binding affinity and stability, along with better drug-likeness and zero toxicity. These attributes highlight its potential as a promising drug candidate for CDC7 inhibition and future cancer treatment development. Furthermore, additional in vitro and in vivo studies are required to confirm the effectiveness of this drug candidate against the CDC7 protein.
Collapse
Affiliation(s)
- Ahmed Saif
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Tarikul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Obayed Raihan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA.
| | - Niloofar Yousefi
- Department of Industrial Engineering and Management Systems, University of Central Florida, USA, Orlando, FL, USA
| | - Md Ajijur Rahman
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hafeez Faridi
- Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA
| | - Al Riyad Hasan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mirza Mahfuj Hossain
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 65431, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ali Ahasan Setu
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Md Aktaruzzaman
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
3
|
Ahmed MZ, Billah MM, Ferdous J, Antar SI, Al Mamun A, Hossain MJ. Pan-cancer analysis reveals immunological and prognostic significance of CCT5 in human tumors. Sci Rep 2025; 15:14405. [PMID: 40274875 DOI: 10.1038/s41598-025-88339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/28/2025] [Indexed: 04/26/2025] Open
Abstract
The chaperonin containing TCP1 subunit 5 (CCT5) is believed to function as a tumor driver. However, a systematic pan-cancer analysis of CCT5 is still lacking. Therefore, this study aimed to identify the potential role of CCT5 in different types of tumors. This study comprehensively investigated the gene expression, proteomic expression, immune infiltration, DNA methylation, genetic alterations, correlation with TMB and MSI, drug sensitivity, enrichment analysis, and prognostic significance of CCT5 in 33 different tumors based on the TIMER2.0, GEPIA2, UALCAN, SMART, cBioPortal, GSCA databases, and TCGAplot R package. The results revealed significant CCT5 overexpression in most tumors and was significantly associated with poor OS and DFS in different tumor types. Reduced promoter and N-shore methylation of CCT5, indicating its potential oncogenic and epigenetic roles. Amplification was the most common type of CCT5 alterations. Immune infiltration analysis revealed a strong correlation between CCT5 and different immune cells. CCT5 exhibited a significant correlation with TMB and MSI in KIRC and STAD. Furthermore, enrichment analysis revealed associations between CCT5 and cell cycle pathway and various cellular functions. These findings suggested that CCT5 might serve as a potential prognostic biomarker and target for immunotherapy in various cancers.
Collapse
Affiliation(s)
- Md Zabir Ahmed
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Mohtasim Billah
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shoriful Islam Antar
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Animal Science and Veterinary Medicine, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Jubayer Hossain
- Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
4
|
Adams S, Demaria S, Rinchai D, Wang E, Novik Y, Oratz R, Fenton-Kerimian M, Levine PG, Li X, Marincola F, Jin P, Stroncek D, Goldberg J, Bedognetti D, Formenti SC. Topical TLR7 agonist and radiotherapy in patients with metastatic breast cancer. J Immunother Cancer 2025; 13:e011173. [PMID: 40187749 PMCID: PMC11973781 DOI: 10.1136/jitc-2024-011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonists and radiation therapy hold promise for cancer immunotherapy. We conducted a phase I/II trial combining topical imiquimod (IMQ, a TLR-7 agonist) and local radiotherapy (RT) in patients with metastatic breast cancer accompanied by longitudinal transcriptional analysis of tumor biopsies. METHODS The primary objective of the trial (NCT01421017) was to assess systemic responses by immune-related response criteria (irRC) after an 8-week cycle of topical IMQ and concurrent local RT (cohort 1). An amendment to the trial added two cohorts, both received one dose of cyclophosphamide (CTX) administered 1 week before study treatment initiation, IMQ/RT/CTX (cohort 2) and RT/CTX control (cohort 3). Cutaneous metastases were prospectively assigned to treatment with IMQ and RT (area A) or IMQ alone (area B). Secondary objectives were safety (Common Terminology Criteria for Adverse Events criteria) and local response in skin metastases. In all IMQ cohorts, tumors were biopsied before treatment and at 2 and 3 weeks. RESULTS 31 patients were enrolled (n=12, n=12, and n=7, in cohort 1, 2, and 3, respectively), with 4 out of 24 patients in the IMQ cohorts showing systemic tumor responses (two complete responses (CR) and two partial responses (PR)). No objective responses were observed in the seven patients enrolled in the control arm (RT alone). The treatment was well-tolerated, no grade 4-5 treatment-related adverse events occurred and grade 3 AEs were manageable (anemia, local pain, and local ulceration, n=1 each). Local objective responses were observed in 19/24 (9 CR and 10 PR) and 5/24 (5 PR) in areas treated with combined IMQ-RT and IMQ alone, respectively (p<0.001). All 24 patients treated with IMQ underwent serial biopsies, and 84 samples yielded sufficient material for transcriptional analyses. These revealed that the presence of a T-helper 1 functional orientation of the tumor microenvironment paralleled by the downregulation of DNA-repair genes was associated with CR after IMQ+RT, but not after IMQ alone. No post-treatment activation of immune-effector functions was observed in stable and progressing lesions. CONCLUSIONS Our findings support the safety and clinical efficacy of combining topical IMQ with local RT for recurrent breast cancer, with evidence of local and occasional systemic antitumor activity. TRIAL REGISTRATION NUMBER NCT01421017.
Collapse
Affiliation(s)
- Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | - Ena Wang
- Sidra Medical and Research Center, Ar-Rayyan, Qatar
| | - Yelena Novik
- Department of Medicine, NYU Langone Health, New York, New York, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Xiaochun Li
- Division of Biostatistics, NYU Langone Health, New York, New York, USA
| | | | - Ping Jin
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - Judith Goldberg
- Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Grossman School of Medicine
| | | | | |
Collapse
|
5
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
6
|
Fang Z, Liao SC, Guo YY, Li JJ, Wang Z, Zhang YM, Yao F. Development of coenzyme Q10-related molecular subtypes and a prognostic signature for predicting breast cancer prognosis and response to immunotherapy. Transl Cancer Res 2025; 14:2010-2028. [PMID: 40225007 PMCID: PMC11985207 DOI: 10.21037/tcr-2025-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Background Breast cancer (BRCA) remains by far the most life-threatening malignancy in women. Resistance to BRCA treatment may be counteracted by the induction of ferroptosis in combination with immunotherapy. The study aims develop iron death-related prognostic models to predict prognosis and immunotherapy effects in BRCA patients. Methods We collected and organized 22 ferroptosis-related pathways and quantified their pathway activities using single-sample gene set enrichment analysis (ssGSEA). Coenzyme Q10 (CoQ10) is a pathway associated with prognosis in patients with BRCA. We compared the differences between patients with different CoQ10 expressions in terms of prognosis, biological function, mutational profile, immune infiltration, immunotherapy, and chemotherapeutic drug sensitivity. Results Patients with high CoQ pathway activity had a worse prognosis. In addition, patients with high CoQ activity showed greater cell cycle activation and lower immune infiltration. Based on different CoQ10 expression patterns, we developed a CoQ10-related prognostic model. The accuracy and stability of CoQ10-related prognostic models were well validated in the training set and multiple validation sets. High-risk patients showed a propensity for immune depletion and tolerance to immunotherapy. There were also some differences in the sensitivity to different chemotherapeutic agents between high- and low-risk patients. Conclusions We have constructed and validated a CoQ10-related gene model that can predict the prognosis of BRCA. Critically, it may serve as a reference standard to guide outcome prognostication in patients with BRCA.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Chong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue-Yue Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi-Min Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Hu B, Zhao T, Li Y, Li K, Shen L, Zhu Q, Ma B, Wei Y. Identification of E3 ubiquitin ligase-based molecular subtypes and prognostic signature regarding prognosis and immune landscape in bladder cancer. Cancer Cell Int 2025; 25:70. [PMID: 40016750 PMCID: PMC11869681 DOI: 10.1186/s12935-025-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
E3 ubiquitin ligases are acknowledged as the principal catalysts in the ubiquitination process due to their capacity to identify, bind and recruit specific substrates for modification. However, knowledge about the expression patterns of E3 ligases and their contribution to the tumor heterogeneity of bladder cancer (BLCA) is still lacking. Here, we delineated two distinct subcategories of BLCA utilizing consensus clustering of variable expression patterns of E3 ligases from the TCGA database, outlining the functional characteristics and immune profiles of these subclusters. Crucially, these clusters offered valuable perspectives on the tumor immune microenvironment (TIME) and tumor response to immunotherapy. Additionally, we established and validated an E3 ligase-related prognostic model predicated on genes associated with E3 ligases, which robustly foretold the prognosis, TIME, and the efficacy of immunotherapy in BLCA patients. Besides, we systematically interrogated the correlation between the IC50 values of commonly used antitumor drugs and the E3 ligase-related risk score and expression levels of prognostic genes. Notably, we identified and validated that EMP1 inhibition synergized with the antitumor effects of oxaliplatin in T24 and 5637 BLCA cell lines. Furthermore, knockdown of SLC26A8, an E3 ligase-related prognostic gene, significantly promoted tumor progression in BLCA. In summary, we introduced an innovative E3 ligase-based classification framework and prognostic model for BLCA, presenting a potent and auspicious prognostic and immunotherapeutic benefit predictor for individual BLCA patients.
Collapse
Affiliation(s)
- Bo Hu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250012, Shandong, P.R. China
| | - Tong Zhao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yongshan Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Kai Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Baojie Ma
- Department of Urology, Huai'an Cancer Hospital (Huai'an Hospital of Huai'an City), Jiangsu, 223200, Huai'an, China.
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
8
|
Pietrantonio F, Morano F, Niger M, Ghelardi F, Chiodoni C, Palazzo M, Nichetti F, Manca P, Cristarella E, Doldi V, Zaffaroni N, Sabella G, Brambilla N, Benincasa E, Giacovelli G, Vitalini C, Girolami F, Rovati LC. The Prostaglandin EP4 Antagonist Vorbipiprant Combined with PD-1 Blockade for Refractory Microsatellite-Stable Metastatic Colorectal Cancer: A Phase Ib/IIa Trial. Clin Cancer Res 2025; 31:649-658. [PMID: 39620921 PMCID: PMC11831105 DOI: 10.1158/1078-0432.ccr-24-2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 02/18/2025]
Abstract
PURPOSE Novel combinations are required to overcome resistance to immune checkpoint inhibitors in proficient mismatch repair (pMMR) or microsatellite-stable (MSS) metastatic colorectal cancer (mCRC). We aimed to determine whether vorbipiprant, a prostaglandin E2 receptor EP4 subtype antagonist, can convert immune-resistant mCRC into a tumor responsive to anti-PD-1 inhibition. PATIENTS AND METHODS This phase Ib/IIa prospective, open-label, single-arm trial followed a 3 + 3 dose-escalation and dose-optimization design. A total of 28 patients with chemorefractory pMMR/MSS mCRC were given dose-escalated oral vorbipiprant (30, 90, or 180 mg twice daily), along with biweekly intravenous balstilimab (3 mg/kg), an anti-PD-1 antibody. The primary endpoints included safety and the disease control rate (DCR). Secondary endpoints were the overall response rate, duration of response, progression-free survival, and overall survival. RESULTS No dose-limiting toxicities were observed. Of the 28 patients, seven (25%) experienced serious adverse events, but only one was attributed to vorbipiprant and one to balstilimab. The trial achieved a DCR of 50% observed across the entire cohort. In the subgroup of patients with liver metastases (n = 12), the DCR was 25%. The overall response rate was 11%, with three patients showing a partial response (median duration of response, 7.4 months). The median progression-free survival was 2.6 months, and the median overall survival was 14.2 months. Translational exploratory analyses suggested that vorbipiprant may boost response to anti-PD-1 in patients with immunogenic tumors. CONCLUSIONS The combination of vorbipiprant and a PD-1 inhibitor (balstilimab) yielded sufficient activity in refractory pMMR/MSS mCRC, which is worthy of confirmation in future clinical trials in biomarker-enriched populations.
Collapse
Affiliation(s)
- Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Palazzo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eleonora Cristarella
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Doldi
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Brambilla
- Department of Clinical Research, Rottapharm Biotech, Monza, Italy
| | - Elena Benincasa
- Department of Clinical Research, Rottapharm Biotech, Monza, Italy
| | | | | | | | - Lucio C. Rovati
- Department of Clinical Research, Rottapharm Biotech, Monza, Italy
- School of Medicine, University of Milano–Bicocca, Milan, Italy
| |
Collapse
|
9
|
Yang L, Feng Y, Liu X, Zhang Q, Liu Y, Zhang X, Li P, Chen D. DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma. Invest New Drugs 2025:10.1007/s10637-024-01495-3. [PMID: 39934438 DOI: 10.1007/s10637-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
Dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) is reported to play a potential role in cancer immunotherapy. However, the association between DYNC2H1 mutation and the clinical benefit of immunotherapy in non-small cell lung cancer (NSCLC) and melanoma remains to be elucidated. We collected data from three public immune checkpoint inhibitor (ICI)-treated NSCLC cohorts (n = 137 in total) and seven ICI-treated melanoma cohorts (n = 418 in total) to explore the potential of DYNC2H1 mutation as a predictive biomarker. The clinical outcomes, including the objective response rate (ORR) and progression-free survival (PFS), of patients with DYNC2H1 mutations are significantly better than those of patients with wild-type DYNC2H1. Multivariate Cox regression analysis confirmed that DYNC2H1 mutation was an independent predictive factor for ICI efficacy in NSCLC and melanoma. In addition, DYNC2H1 mutation exhibited no prognostic value for NSCLC or melanoma. Tumour mutational burden (TMB) and tumour neoantigen burden (TNB) were significantly higher in patients with DYNC2H1 mutation than in those with wild-type DYNC2H1 in both NSCLC and melanoma cohort. The analysis of immune-related genes and immune cell enrichment revealed an association between DYNC2H1 mutation and increased immune infiltration, revealing a potential mechanism underlying the predictive role of DYNC2H1 mutation in immunotherapy efficacy. In conclusion, DYNC2H1 mutation serves as a predictive biomarker of ICI efficacy in NSCLC and melanoma.
Collapse
Affiliation(s)
- Lu Yang
- Department of Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuewen Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Qin Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Xing Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
10
|
Qin X, Xu W, Wu J, Li M. Integration of single-cell and bulk RNA-sequencing data to construct and validate a signature based on NK cell marker genes to predict immunotherapy response and prognosis in colorectal cancer. Discov Oncol 2025; 16:134. [PMID: 39920524 PMCID: PMC11805743 DOI: 10.1007/s12672-025-01842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
We aimed to create a NK cell marker genes-based signature to predict immunotherapy response and prognosis in colorectal cancer. We integrated scRNA-seq data from four Gene Expression Omnibus (GEO) samples and performed Weighted gene correlation network analysis (WGCNA) based on 587 the Cancer Genome Atlas (TCGA) colorectal cancer samples to uncover NK cell-related genes. We identified 1080 NK cell-related core genes and 276 NK cell-related feature genes based on WGCNA and clustering and annotation of scRNA-seq data, respectively. Six key NK cell-related prognostic signature genes were obtained by univariate and LASSO regression analyses, including ADAM8, CTSD, CCL4, IL2RB, TTC38, and PLEK. Two validation cohorts from the GEO dataset, comprising 124 and 201 samples respectively, were used. The signature was significantly associated with overall survival and correlated with immune cell infiltration, immune and stromal scores, and immune checkpoint genes. Furthermore, the signature was associated with the homologous recombination deficiency (HRD) and T-cell receptor (TCR) scores. In conclusion, our study proposes a new prognostic signature based on NK cell marker genes, which may serve as a potential tool to predict overall survival and immunotherapy response for CRC patients.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Wenjuan Xu
- Department of General Surgery, Shanghai Punan Hospital, Pudong New District, Shanghai, 200125, China
| | - Jinxiu Wu
- Department of General Surgery, Shanghai Punan Hospital, Pudong New District, Shanghai, 200125, China
| | - Ming Li
- Department of General Surgery, Shanghai Punan Hospital, Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
11
|
Chang TH, Ho PC. Interferon-driven Metabolic Reprogramming and Tumor Microenvironment Remodeling. Immune Netw 2025; 25:e8. [PMID: 40078784 PMCID: PMC11896656 DOI: 10.4110/in.2025.25.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
IFNs play a critical role in cancer biology, including impacting tumor cell behavior and instructing the tumor microenvironment (TME). IFNs recently have been shown to reprogram tumor metabolism through distinct mechanisms. Furthermore, IFNs shape the TME by modulating immune cell infiltration and function, contributing to the intricate interaction between the tumor and stromal cells. This review summarizes the effects of IFNs on metabolic reprogramming and their impacts on the function of immune cells within the TME, with a particular focus on the dual roles of IFNs in mediating both anti-tumor and pro-tumor immune responses. Understanding the significance of IFNs-mediated processes aids to advise future therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Tzu-Hsuan Chang
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ferkel SAM, Holman EA, Sojwal RS, Rubin SJS, Rogalla S. Tumor-Infiltrating Immune Cells in Colorectal Cancer. Neoplasia 2025; 59:101091. [PMID: 39642846 DOI: 10.1016/j.neo.2024.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer encompasses a heterogeneous group of malignancies that differ in pathophysiological mechanisms, immune response and infiltration, therapeutic response, and clinical prognosis. Numerous studies have highlighted the clinical relevance of tumor-infiltrating immune cells among different types of colorectal tumors yet vary in cell type definitions and cell identification strategies. The distinction of immune signatures is particularly challenging when several immune subtypes are involved but crucial to identify novel intercellular mechanisms within the tumor microenvironment. In this review, we compile human and non-human studies on tumor-infiltrating immune cells and provide an overview of immune subtypes, their pathophysiological functions, and their prognostic role in colorectal cancer. We discuss how differentiating immune signatures can guide the development of immunotherapeutic targets and personalized treatment regimens. We analyzed comprehensive human protein biomarker profiles across the entire immune spectrum to improve interpretability and application of tumor studies and to ultimately enhance immunotherapy and advance precision medicine for colorectal cancer patients.
Collapse
Affiliation(s)
- Sonia A M Ferkel
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Elizabeth A Holman
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Raoul S Sojwal
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Samuel J S Rubin
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA
| | - Stephan Rogalla
- Stanford University, School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, USA.
| |
Collapse
|
14
|
Bonfiglio R, Giacobbi E, Palumbo V, Casciardi S, Sisto R, Servadei F, Scioli MP, Schiaroli S, Cornella E, Cervelli G, Sica G, Candi E, Melino G, Mauriello A, Scimeca M. Aluminum Concentration Is Associated with Tumor Mutational Burden and the Expression of Immune Response Biomarkers in Colorectal Cancers. Int J Mol Sci 2024; 25:13388. [PMID: 39769153 PMCID: PMC11676456 DOI: 10.3390/ijms252413388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that Al bioaccumulation occurred in 100% of the cases. A correlation between Al levels and tumor mutation burden was observed. Furthermore, RNA sequencing revealed a significant association between Al concentration and the expression of the immune checkpoint molecule CTLA-4. Although correlations with PD-1 and PD-L1 were not statistically significant, a trend was observed. Additionally, a correlation between Al levels and both the presence of myeloid cells and IFNγ expression was detected, linking Al exposure to inflammatory responses within the tumor microenvironment. These findings suggested that Al can play a role in CRC progression by promoting both genetic mutations and immune evasion. Given the ubiquitous presence of Al in industrial and consumer products, dietary sources, and environmental pollutants, these results underscored the need for stricter regulatory measures to control Al exposure.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefania Schiaroli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Elena Cornella
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giulio Cervelli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giuseppe Sica
- Department of Surgery, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| |
Collapse
|
15
|
Fu C, Gu H, Sun L, Wang Z, Zhang Q, Luo N, Chen D, Zhou T. Predictive value of ZFHX4 mutation for the efficacy of immune checkpoint inhibitors in non-small cell lung cancer and melanoma. Invest New Drugs 2024; 42:623-634. [PMID: 39369144 DOI: 10.1007/s10637-024-01477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Studies have shown that the Zinc finger homeobox 4 (ZFHX4) might be a factor in the prognosis of malignancies. However, little is known about the association between the ZFHX4 mutation and the effectiveness of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and melanoma. Three public ICIs-treated NSCLC cohorts were divided into discovery cohort (n=75) and validation cohort (n=62), which were used to evaluate the relationship between ZFHX4 mutation and ICIs effectiveness in NSCLC. Seven ICIs-treated melanoma cohorts (n = 418) were used to analyze the relationship between ZFHX4 mutation and immunotherapy efficacy in melanoma. NSCLC and skin cutaneous melanoma (SKCM) cohorts from The Cancer Genome Atlas (TCGA) were used to investigate underlying mechanism. Patients with ZFHX4 mutant-type (ZFHX4-Mut) showed a superior objective response rate (ORR) (P < 0.01) and longer progression-free survival (PFS) (P < 0.05) than patients with ZFHX4 wild-type (ZFHX4-WT) in NSCLC cohorts. In the melanoma cohorts, patients carrying ZFHX4-Mut had a higher ORR (P = 0.042) and longer overall survival (OS) (P = 0.011). Besides, patients with NSCLC and melanoma harboring ZFHX4-Mut had a higher tumor mutation burden (TMB) (P<0.001) and tumor neoantigen burden (TNB) (P<0.001) than those harboring ZFHX4-WT. ZFHX4 mutation was associated with higher levels of plasma B cells, activated CD4+ memory T cells, and CD8+ T cells. Seven DNA damage repair pathways were significantly enriched in the ZFHX4-Mut group. ZFHX4 mutation could serve as a predicter for the efficacy of ICIs therapy in NSCLC and melanoma.
Collapse
Affiliation(s)
- Cong Fu
- Department of Oncology, Changzhou Cancer (Fourth People's) Hospital, Changzhou, 213000, China
| | - Haoran Gu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Sun
- Department of Oncology, Changzhou Cancer (Fourth People's) Hospital, Changzhou, 213000, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, 210002, China
| | - Qin Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, 210002, China
| | - Ningning Luo
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, 210002, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Tong Zhou
- Department of Oncology, Changzhou Cancer (Fourth People's) Hospital, Changzhou, 213000, China.
| |
Collapse
|
16
|
Hjortborg M, Edin S, Böckelman C, Kaprio T, Li X, Gkekas I, Hagström J, Strigård K, Haglund C, Gunnarsson U, Palmqvist R. Systemic inflammatory response in colorectal cancer is associated with tumour mismatch repair and impaired survival. Sci Rep 2024; 14:29738. [PMID: 39613865 DOI: 10.1038/s41598-024-80803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
The systemic inflammatory response (SIR), defined as elevated levels of circulating C-reactive protein (CRP), is an important predictor of impaired survival in colorectal cancer. The aim of this study was to explore the prognostic role of SIR and its association with tumour mismatch repair status and the immune response. Immune activity profiles of mononuclear cells isolated from CRC tissues and blood in the U-CAN exploration cohort (n = 69), were analysed by flow cytometry. In the U-CAN validation cohort (n = 257), T-helper cells (T-bet+), cytotoxic T cells (CD8+), regulatory T cells (FoxP3+), B cells (CD20+), and macrophages (CD68+) were analysed by multispectral imaging. Microsatellite instability was determined using five mononucleotide-repeat microsatellite markers. Patients with high CRP levels (> 10 mg/l) were significantly more often diagnosed with high-grade tumours and tumours exhibiting microsatellite instability. However, some patients with high CRP levels were found to have microsatellite-stable tumours. Furthermore, high CRP levels were associated with specific tumour immune traits including an augmented macrophage response and were significantly linked to poorer cancer-specific survival, particularly in patients with microsatellite-stable tumours. In conclusion, our findings suggest an interplay between SIR and mismatch repair status in CRC prognosis which needs to be further explored.
Collapse
Affiliation(s)
- Mats Hjortborg
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Camilla Böckelman
- Department of Gastrointestinal Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Gastrointestinal Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ioannis Gkekas
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Jaana Hagström
- Department of Pathology, Department of Oral Pathology and Radiology, University of Helsinki, University of Turku, Helsinki, Finland
| | - Karin Strigård
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Caj Haglund
- Department of Gastrointestinal Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Ulf Gunnarsson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Cotan HT, Emilescu RA, Iaciu CI, Orlov-Slavu CM, Olaru MC, Popa AM, Jinga M, Nitipir C, Schreiner OD, Ciobanu RC. Prognostic and Predictive Determinants of Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:3928. [PMID: 39682117 DOI: 10.3390/cancers16233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, necessitating a thorough understanding of prognostic and predictive factors to enhance patient outcomes. This systematic review aims to comprehensively evaluate prognostic and predictive determinants in CRC, encompassing both traditional and emerging biomarkers. A systematic search of major electronic databases was conducted to identify relevant studies published from 1995 up to 2024. Eligible articles were critically appraised, and data extraction was performed according to predefined criteria. The prognostic determinants examined included clinicopathological features such as tumor stage, grade, and lymph node involvement, as well as molecular biomarkers including RAS, BRAF, and MSI status. Predictive determinants encompassed biomarkers influencing response to targeted therapies and immunotherapy, such as HER2 and Immunoscore. The review also explores novel prognostic and predictive markers, including tumor microenvironment characteristics and liquid biopsy-based biomarkers. Synthesizing evidence from diverse studies, this review provides insights into the prognostic and predictive landscape of CRC, highlighting the potential clinical implications of identified determinants. Understanding the multifaceted nature of prognostic and predictive factors in CRC is imperative for the advancement of personalized treatment strategies and improvement of patient outcomes.
Collapse
Affiliation(s)
- Horia T Cotan
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Radu A Emilescu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristian I Iaciu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristina M Orlov-Slavu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mihaela C Olaru
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Ana M Popa
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mariana Jinga
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Oliver Daniel Schreiner
- Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Department 3-Medical Sciences, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
18
|
Xie Q, Liu X, Liu R, Pan J, Liang J. Cellular mechanisms of combining innate immunity activation with PD-1/PD-L1 blockade in treatment of colorectal cancer. Mol Cancer 2024; 23:252. [PMID: 39529058 PMCID: PMC11555832 DOI: 10.1186/s12943-024-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
PD-1/PD-L1 blockade therapies have displayed extraordinary clinical efficacy for melanoma, renal, bladder and lung cancer; however, only a minority of colorectal cancer (CRC) patients benefit from these treatments. The efficacy of PD-1/PD-L1 blockade in CRC is limited by the complexities of tumor microenvironment. PD-1/PD-L1 blockade immunotherapy is based on T cell-centered view of tumor immunity. However, the onset and maintenance of T cell responses and the development of long-lasting memory T cells depend on innate immune responses. Acknowledging the pivotal role of innate immunity in anti-tumor immune response, this review encapsulates the employment of combinational therapies those involve PD-1/PD-L1 blockade alongside the activation of innate immunity and explores the underlying cellular mechanisms, aiming to harnessing innate immune responses to induce long-lasting tumor control for CRC patients who received PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China.
| |
Collapse
|
19
|
Xu R, Chen Y, Wei S, Chen J. Comprehensive Pan-Cancer Analysis of the Prognostic Role of KLF Transcription Factor 2 (KLF2) in Human Tumors. Onco Targets Ther 2024; 17:887-904. [PMID: 39507409 PMCID: PMC11539754 DOI: 10.2147/ott.s476179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Background KLF2 is a transcription factor expressed early in mammalian development that plays a role in many processes of development and disease. Recently, increasing studies revealed that KLF2 plays a key role in the occurrence and progression of cancer. Purpose The aim of this study was to explore the role of KLF2 in various tumor types using the Cancer Genome Atlas dataset. Methods Here, we set out to explore the role of KLF2 in 33 tumor types using TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) dataset, Human Protein Atlas (HPA), UALCAN database, CancerSEA, GSCALite and several bioinformatic tools. Furthermore, we also performed immunohistochemistry and qPCR to further validate the role of KLF2 in multiple cancers and its correlation with prognosis. Results We found that KLF2 was underexpressed in most tumors and generally predicted poor OS in tumor patients. We found that amplification of KLF2 may be a risk factor for patients with OV (Ovarian serous cystadenocarcinoma). We also analyzed the abundance of checkpoints and markers of specific immune subsets including CD8+ T lymphocytes (T cells), CD4+ T cells, macrophages, and endothelial cells that significantly correlated with the expression level of KLF2 in pan-carcinoma tissues. In some cancers, KLF2 expression levels are positively correlated with gene promoter DNA methylation and drug sensitivity. In addition, we found that KLF2 is involved in single-cell level cell invasion in some cancers. In addition, KLF2 is co-expressed with several intracellular signal transduction genes involved in immune system processes. Immunohistochemistry and qPCR confirmed the low expression of KLF2 in STAD (stomach adenocarcinoma) and renal cancer. Conclusion Our pan-cancer analysis provides a comprehensive overview of the oncogenic roles of KLF2 in multiple human cancers and can be regarded as a potential prognostic marker and a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Rong Xu
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuhan Chen
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shicai Wei
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Chen
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
20
|
Yoon KA, Kim Y, Jung SY, Ryu JS, Kim KH, Lee EG, Chae H, Kwon Y, Kim J, Park JB, Kong SY. Proteogenomic analysis dissects early-onset breast cancer patients with prognostic relevance. Exp Mol Med 2024; 56:2382-2394. [PMID: 39482530 PMCID: PMC11612404 DOI: 10.1038/s12276-024-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024] Open
Abstract
Early-onset breast cancer is known for its aggressive clinical characteristics and high prevalence in East Asian countries, but a comprehensive understanding of its molecular features is still lacking. In this study, we conducted a proteogenomic analysis of 126 treatment-naïve primary tumor tissues obtained from Korean patients with young breast cancer (YBC) aged ≤40 years. By integrating genomic, transcriptomic, and proteomic data, we identified five distinct functional subgroups that accurately represented the clinical characteristics and biological behaviors of patients with YBC. Our integrated approach could be used to determine the proteogenomic status of HER2, enhancing its clinical significance and prognostic value. Furthermore, we present a proteome-based homologous recombination deficiency (HRD) analysis that has the potential to overcome the limitations of conventional genomic HRD tests, facilitating the identification of new patient groups requiring targeted HR deficiency treatments. Additionally, we demonstrated that protein-RNA correlations can be used to predict the late recurrence of hormone receptor-positive breast cancer. Within each molecular subtype of breast cancer, we identified functionally significant protein groups whose differential abundance was closely correlated with the clinical progression of breast cancer. Furthermore, we derived a recurrence predictive index capable of predicting late recurrence, specifically in luminal subtypes, which plays a crucial role in guiding decisions on treatment durations for YBC patients. These findings improve the stratification and clinical implications for patients with YBC by contributing to the optimal adjuvant treatment and duration for favorable clinical outcomes.
Collapse
Affiliation(s)
- Kyong-Ah Yoon
- Department of Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - So-Youn Jung
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
- Laboratory Animal Research Facility, Research Institute, National Cancer Center, Goyang, Korea
| | - Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Gyeong Lee
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Heejung Chae
- Cancer Data Center, Control Institute, National Cancer Center, Goyang, Korea
- Division of Medical Oncology, Hospital, National Cancer Center, Goyang, Korea
| | - Youngmee Kwon
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | | | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| | - Sun-Young Kong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
- Department of Laboratory Medicine, Research Institute, National Cancer Center Korea, Goyang, Korea.
- Department of Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Korea.
| |
Collapse
|
21
|
Randerson-Moor J, Davies J, Harland M, Nsengimana J, Bigirumurame T, Walker C, Laye J, Appleton ES, Ball G, Cook GP, Bishop DT, Salmond RJ, Newton-Bishop J. Systemic Inflammation, the Peripheral Blood Transcriptome, and Primary Melanoma. J Invest Dermatol 2024; 144:2513-2529.e17. [PMID: 38583742 DOI: 10.1016/j.jid.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Abstract
Peripheral blood transcriptomes from 383 patients with newly diagnosed melanoma were subjected to differential gene expression analysis. The hypotheses were that impaired systemic immunity is associated with poorer prognosis (thicker tumors and fewer tumor-infiltrating lymphocytes) and evidence of systemic inflammation (high-sensitivity CRP and fibrinogen levels). Higher fibrinogen levels were associated with thicker primary tumors. In single-gene analysis, high-sensitivity CRP levels were significantly associated with higher blood CD274 expression (coding for PD-L1), but each was independently prognostic, with high-sensitivity CRP associated with increased mortality and higher CD274 protective, independent of age. Pathway analysis identified downregulation of immune cell signaling pathways in the blood of people with thicker tumors and notable upregulation of signal transducer and activator of transcription 1 gene STAT1 in people with brisk tumor-infiltrating lymphocytes. Transcriptomic data provided evidence for increased NF-kB signaling with higher inflammatory markers but with reduction in expression of HLA class II molecules and higher CD274, suggesting that aberrant systemic inflammation is a significant mediator of reduced immune function in melanoma. In summary, transcriptomic data revealed evidence of reduced immune function in patients with thicker tumors and fewer tumor-infiltrating lymphocytes at diagnosis. Inflammatory markers were associated with thicker primaries and independently with death from melanoma, suggesting that systemic inflammation contributes to that reduced immune function.
Collapse
Affiliation(s)
- Juliette Randerson-Moor
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - John Davies
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom; Leeds Institute of Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Mark Harland
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jérémie Nsengimana
- Population Health Sciences Institute, Faculty of Medical Sciences, University of Newcastle, Newcastle, United Kingdom
| | - Theophile Bigirumurame
- Population Health Sciences Institute, Faculty of Medical Sciences, University of Newcastle, Newcastle, United Kingdom
| | - Christopher Walker
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jon Laye
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth S Appleton
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom; Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Graham P Cook
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - D Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert J Salmond
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
22
|
Usset J, Rosendahl Huber A, Andrianova MA, Batlle E, Carles J, Cuppen E, Elez E, Felip E, Gómez-Rey M, Lo Giacco D, Martinez-Jimenez F, Muñoz-Couselo E, Siu LL, Tabernero J, Vivancos A, Muiños F, Gonzalez-Perez A, Lopez-Bigas N. Five latent factors underlie response to immunotherapy. Nat Genet 2024; 56:2112-2120. [PMID: 39266764 PMCID: PMC11525176 DOI: 10.1038/s41588-024-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Only a subset of patients treated with immune checkpoint inhibitors (CPIs) respond to the treatment, and distinguishing responders from non-responders is a major challenge. Many proposed biomarkers of CPI response and survival probably represent alternative measurements of the same aspects of the tumor, its microenvironment or the host. Thus, we currently ignore how many truly independent biomarkers there are. With an unbiased analysis of genomics, transcriptomics and clinical data of a cohort of patients with metastatic tumors (n = 479), we discovered five orthogonal latent factors: tumor mutation burden, T cell effective infiltration, transforming growth factor-beta activity in the microenvironment, prior treatment and tumor proliferative potential. Their association with CPI response and survival was observed across all tumor types and validated across six independent cohorts (n = 1,491). These five latent factors constitute a frame of reference to organize current and future knowledge on biomarkers of CPI response and survival.
Collapse
Affiliation(s)
- Joseph Usset
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, Netherlands
| | - Axel Rosendahl Huber
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria A Andrianova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Elez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marina Gómez-Rey
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Deborah Lo Giacco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Martinez-Jimenez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, Netherlands
| | - Eva Muñoz-Couselo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josep Tabernero
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
23
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
24
|
Cornish AJ, Gruber AJ, Kinnersley B, Chubb D, Frangou A, Caravagna G, Noyvert B, Lakatos E, Wood HM, Thorn S, Culliford R, Arnedo-Pac C, Househam J, Cross W, Sud A, Law P, Leathlobhair MN, Hawari A, Woolley C, Sherwood K, Feeley N, Gül G, Fernandez-Tajes J, Zapata L, Alexandrov LB, Murugaesu N, Sosinsky A, Mitchell J, Lopez-Bigas N, Quirke P, Church DN, Tomlinson IPM, Sottoriva A, Graham TA, Wedge DC, Houlston RS. The genomic landscape of 2,023 colorectal cancers. Nature 2024; 633:127-136. [PMID: 39112709 PMCID: PMC11374690 DOI: 10.1038/s41586-024-07747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.
Collapse
Affiliation(s)
- Alex J Cornish
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, Germany
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- University College London Cancer Institute, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Frangou
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Boris Noyvert
- Cancer Research UK Centre and Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eszter Lakatos
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Henry M Wood
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Steve Thorn
- Department of Oncology, University of Oxford, Oxford, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jacob Househam
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - William Cross
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Philip Law
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Aliah Hawari
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Connor Woolley
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kitty Sherwood
- Department of Oncology, University of Oxford, Oxford, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nathalie Feeley
- Department of Oncology, University of Oxford, Oxford, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Güler Gül
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Luis Zapata
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Nirupa Murugaesu
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alona Sosinsky
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jonathan Mitchell
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Philip Quirke
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Andrea Sottoriva
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - David C Wedge
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| |
Collapse
|
25
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
26
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
27
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
28
|
Qianqian R, Peng Z, Licai Z, Ruizhi Z, Tianhe Y, Xiangwen X, Chuansheng Z, Fan Y. A longitudinal evaluation of oxidative stress - mitochondrial dysfunction - ferroptosis genes in anthracycline-induced cardiotoxicity. BMC Cardiovasc Disord 2024; 24:350. [PMID: 38987722 PMCID: PMC11234563 DOI: 10.1186/s12872-024-03967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Antineoplastic medications, including doxorubicin, idarubicin, and epirubicin, have been found to adversely affect the heart due to oxidative stress - mitochondrial dysfunction - ferroptosis (ORMFs), which act as contributing attributes to anthracycline-induced cardiotoxicity. To better understand this phenomenon, the time-resolved measurements of ORMFS genes were analyzed in this study. METHODS The effect of three anthracycline drugs on ORMFs genes was studied using a human 3D cardiac microtissue cell model. Transcriptome data was collected over 14 days at two doses (therapeutic and toxic). WGCNA identified key module-related genes, and functional enrichment analysis investigated the biological processes quantified by ssGSEA, such as immune cell infiltration and angiogenesis. Biopsies were collected from heart failure patients and control subjects. GSE59672 and GSE2965 were collected for validation. Molecular docking was used to identify anthracyclines's interaction with key genes. RESULTS The ORMFs genes were screened in vivo or in vitro. Using WGCNA, six co-expressed gene modules were grouped, with MEblue emerging as the most significant module. Eight key genes intersecting the blue module with the dynamic response genes were obtained: CD36, CDH5, CHI3L1, HBA2, HSD11B1, OGN, RPL8, and VWF. Compared with control samples, all key genes except RPL8 were down-regulated in vitro ANT treatment settings, and their expression levels varied over time. According to functional analyses, the key module-related genes were engaged in angiogenesis and the immune system pathways. In all ANT-treated settings, ssGSEA demonstrated a significant down-regulation of angiogenesis score and immune cell activity, including Activated CD4 T cell, Immature B cell, Memory B cell, Natural killer cell, Type 1 T helper cell, and Type 2 T helper cell. Molecular docking revealed that RPL8 and CHI3L1 show significant binding affinity for anthracyclines. CONCLUSION This study focuses on the dynamic characteristics of ORMFs genes in both human cardiac microtissues and cardiac biopsies from ANT-treated patients. It has been highlighted that ORMFs genes may contribute to immune infiltration and angiogenesis in cases of anthracycline-induced cardiotoxicity. A thorough understanding of these genes could potentially lead to improved diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Ren Qianqian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhu Peng
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhang Licai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhang Ruizhi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ye Tianhe
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xia Xiangwen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zheng Chuansheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Yang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
29
|
Saris J, Bootsma S, Verhoeff J, Tuynman JB, Wildenberg ME, Rijnstra ESV, Lenos KJ, Garcia Vallejo JJ, Vermeulen L, Grootjans J. T-cell responses in colorectal peritoneal metastases are recapitulated in a humanized immune system mouse model. Front Immunol 2024; 15:1415457. [PMID: 39044825 PMCID: PMC11263213 DOI: 10.3389/fimmu.2024.1415457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Background The occurrence of peritoneal metastasis (PM) in patients with colorectal cancer (CRC) has a dismal prognosis. There is often limited response to systemic- and immunotherapy, even in microsatellite unstable (MSI) CRC. To overcome therapy resistance, it is critical to understand local immune environment in the peritoneal cavity, and to develop models to study anti-tumor immune responses. Here, we defined the peritoneal immune system (PerIS) in PM-CRC patients and evaluate the pre-clinical potential of a humanized immune system (HIS) mouse model for PM-CRC. Methods We studied the human PerIS in PM-CRC patients (n=20; MSS 19/20; 95%) and in healthy controls (n=3). HIS mice (NODscid gamma background; n=18) were generated, followed by intraperitoneal injection of either saline (HIS control; n=3) or human MSS/MSI CRC cell lines HUTU80, MDST8 and HCT116 (HIS-PM, n=15). Immune cells in peritoneal fluid and peritoneal tumors were analyzed using cytometry by time of flight (CyTOF). Results The human and HIS mouse homeostatic PerIS was equally populated by NK cells and CD4+- and CD8+ T cells, however differences were observed in macrophage and B cell abundance. In HIS mice, successful peritoneal engraftment of both MSI and MSS tumors was observed (15/15; 100%). Both in human PM-CRC and in the HIS mouse PM-CRC model, we observed that MSS PM-CRC triggered a CD4+ Treg response in the PerIS, while MSI PM-CRC drives CD8+ TEMs responses. Conclusion In conclusion, T cell responses in PM-CRC in HIS mice mirror those in human PM-CRC, making this model suitable to study antitumor T cell responses in PM-CRC.
Collapse
Affiliation(s)
- Job Saris
- Department of Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sanne Bootsma
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Jurriaan B. Tuynman
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | | | - Kristiaan J. Lenos
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia Vallejo
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
30
|
Wankhede D, Yuan T, Kloor M, Halama N, Brenner H, Hoffmeister M. Clinical significance of combined tumour-infiltrating lymphocytes and microsatellite instability status in colorectal cancer: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 2024; 9:609-619. [PMID: 38734024 DOI: 10.1016/s2468-1253(24)00091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) status and tumour-infiltrating lymphocytes (TIL) are established prognostic factors in colorectal cancer. Previous studies evaluating the combination of TIL and MSI status identified distinct colorectal cancer subtypes with unique prognostic associations. However, these studies were often limited by sample size, particularly for MSI-high (MSI-H) tumours, and there is no comprehensive summary of the available evidence. We aimed to review the literature to compare the survival outcomes associated with the subtypes derived from the integrated MSI-TIL classification in patients with colorectal cancer. METHODS In this systematic review and network meta-analysis, we searched PubMed, Embase, Scopus, and the Cochrane Library without language restrictions, for articles published between Jan 1, 1990, and March 13, 2024. Patient cohorts comparing different combinations of TIL (high or low) and MSI status (MSI or microsatellite stable [MSS]) in patients with surgically resected colorectal cancer were included. Studies were excluded if they focused on neoadjuvant therapy or on other immune markers such as B cells or macrophages. Methodological quality assessment was done with the Newcastle-Ottawa scale; data appraisal and extraction was done independently by two reviewers. Summary estimates were extracted from published reports. The primary outcomes were overall survival, disease-free survival, and cancer-specific survival. A frequentist network meta-analysis was done to compare hazard ratios (HRs) and 95% CI for each outcome. The MSI-TIL subgroups were prognostically ranked based on P-score, bias, magnitude, and precision of associations with each outcome. The protocol is registered with PROSPERO (CRD42023461108). FINDINGS Of 302 studies initially identified, 21 studies (comprising 14 028 patients) were included in the systematic review and 19 (13 029 patients) in the meta-analysis. Nine studies were identified with a low risk of bias and the remaining ten had a moderate risk of bias. The MSI-TIL-high (MSI-TIL-H) subtype exhibited longer overall survival (HR 0·45, 95% CI 0·34-0·61; I2=77·7%), disease-free survival (0·43, 0·32-0·58; I2=61·6%), and cancer-specific survival (0·53, 0·43-0·66; I2=0%), followed by the MSS-TIL-H subtype for overall survival (HR 0·53, 0·41-0·69; I2=77·7%), disease-free survival (0·52, 0·41-0·64; I2=61·6%), and cancer-specific survival (0·55, 0·47-0·64; I2=0%) than did patients with MSS-TIL-low tumours (MSS-TIL-L). Patients with the MSI-TIL-L subtype had similar overall survival (0·88, 0·66-1·18; I2=77·7%) and disease-free survival (0·93, 0·69-1·26; I2=61·6%), but a modestly longer cancer-specific survival (0·72, 0·57-0·90; I2=0%) than did the MSS-TIL-L subtype. Results from the direct and indirect evidence were strongly congruous. INTERPRETATION The findings from this network meta-analysis suggest that better survival was only observed among patients with TIL-H colorectal cancer, regardless of MSI or MSS status. The integrated MSI-TIL classification should be further explored as a predictive tool for clinical decision-making in early-stage colorectal cancer. FUNDING German Research Council (HO 5117/2-2).
Collapse
Affiliation(s)
- Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany; Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Deng S, Gu H, Chen Z, Liu Y, Zhang Q, Chen D, Yi S. PTCH1 mutation as a potential predictive biomarker for immune checkpoint inhibitors in gastrointestinal cancer. Carcinogenesis 2024; 45:351-357. [PMID: 38310539 DOI: 10.1093/carcin/bgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become prominent therapies for gastrointestinal cancer (GC). However, it is urgent to screen patients who can benefit from ICIs. Protein patched homolog 1 (PTCH1) is a frequently altered gene in GC. We attempt to explore the association between PTCH1 mutation and immunotherapy efficacy. The Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 236) with GC (esophageal, gastric and colorectal cancers) patients receiving ICIs was used for discovery and the Peking University Cancer Hospital (PUCH) GC cohort (n = 92) was used for validation. Overall survival (OS) and tumor mutational burden (TMB) of the PTCH1 mutant-type (PTCH1-MUT) and PTCH1 wild-type (PTCH1-WT) groups were compared. Furthermore, GC data were collected from The Cancer Genome Atlas to assess the potential mechanisms. In the MSKCC cohort, PTCH1-MUT group showed significantly better OS (P = 0.017) and higher TMB. Multivariate analysis showed that PTCH1 mutation was associated with better OS. In the PUCH cohort, PTCH1-MUT group showed significantly longer OS (P = 0.036) and progression-free survival, and higher durable clinical benefit and TMB. Immune cell infiltration analysis revealed that PTCH1-MUT group had significantly higher distributions of CD8 T cells, CD4 T cells, NK cells, mast cells and M1 cells. The PTCH1-MUT group showed significantly higher expression of most immune-related genes. Gene set enrichment analysis showed that the PTCH1-MUT group had enriched INF-γ response, INF-α response, glycolysis and reactive oxygen species pathway gene sets. PTCH1 mutation may represent a potential biomarker for predicting ICIs response in GC. Nevertheless, prospective cohort studies should be performed to further validate our results.
Collapse
Affiliation(s)
- Shuangya Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haoran Gu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - ZongYao Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaqin Liu
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Shengen Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
33
|
Schmidt M, Avagyan S, Reiche K, Binder H, Loeffler-Wirth H. A Spatial Transcriptomics Browser for Discovering Gene Expression Landscapes across Microscopic Tissue Sections. Curr Issues Mol Biol 2024; 46:4701-4720. [PMID: 38785552 PMCID: PMC11119626 DOI: 10.3390/cimb46050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Susanna Avagyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| |
Collapse
|
34
|
Liu J, Ma R, Chen S, Lai Y, Liu G. Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma. Clin Transl Oncol 2024; 26:1170-1186. [PMID: 37989822 DOI: 10.1007/s12094-023-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, No. 1278 Baode Road, Shanghai, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
35
|
Abd El Rahiem RA, Ibrahim SA, Effat H, El-Houseini ME, Osman RA, Abdelraouf A, Elzayat EM. Curcumin, Piperine and Taurine Combination Enhances the Efficacy of Transarterial Chemoembolization Therapy in patients with Intermediate Stage Hepatocellular Carcinoma: A Pilot Study. Asian Pac J Cancer Prev 2024; 25:1589-1598. [PMID: 38809630 PMCID: PMC11318834 DOI: 10.31557/apjcp.2024.25.5.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Diagnosis of the majority of hepatocellular carcinoma (HCC) patients occurs at intermediate to advanced stages, with a few curative therapeutic options being available. It is therefore strongly urgent to discover additional adjuvant therapy for this lethal malignancy. This study aimed to assess the effectiveness of curcumin (C), piperine (P) and taurine (T) combination as adjuvant agents on serum levels of IFN-γ, immunophenotypic and molecular characterization of mononuclear leukocytes (MNLs) in HCC patients treated with Transarterial chemoembolization (TACE). PATIENTS AND METHODS Serum and MNLs were collected from 20 TACE-treated HCC patients before (baseline-control samples) and after treatment with 5 g curcumin capsules , 10 mg piperine and 0.5 mg taurine taken daily for three consecutive months. Immunophenotypic and molecular characterization of MNLs were determined by flow cytometry and quantitative real time PCR, respectively. In addition, serum IFN-γ level was quantified by ELISA. RESULTS After receiving treatment with CPT combination, there was a highly significant increase in IFN- γ levels in the sera of patients when compared to basal line control samples. Additionally, the group receiving combined therapy demonstrated a downregulation in the expression levels of PD-1, in MNLs as compared to controls. MNLs' immunophenotyping revealed a significant decline in CD4+CD25+cells (regulatory T lymphocytes). Furthermore, clinicopathological characteristics revealed a highly significant impact of CPT combination on aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and alpha feto protein (AFP) levels. CONCLUSION This study introduces a promising adjuvant CPT combined treatment as natural agents to enhance the management of HCC patients who are candidates to TACE treatment.
Collapse
Affiliation(s)
| | | | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Motawa E. El-Houseini
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Randa A. Osman
- Department of Clinical Pathology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Amr Abdelraouf
- Department of Surgery,National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Emad M. Elzayat
- Department of Biotechnology, Faculty of science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
36
|
Song XQ, Shao ZM. Identification of immune-related prognostic biomarkers in triple-negative breast cancer. Transl Cancer Res 2024; 13:1707-1720. [PMID: 38737702 PMCID: PMC11082668 DOI: 10.21037/tcr-23-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Background Triple-negative breast cancer (TNBC), a type of breast cancer, lacks immune-related markers that can be used for prognosis or prediction. Therefore, we created a predictive framework for TNBC using a risk assessment. Methods Our previous study group consisted of 360 individuals who were diagnosed with TNBC through pathology using RNA sequencing and had clinical data from Fudan University Shanghai Cancer Center (FUSCC). A risk scoring model was constructed using the Cox regression method with the least absolute shrinkage and selection operator (LASSO). A multivariate Cox regression analysis was utilized to develop the prediction model, which was then assessed using the consistency index and calibration plots. The validation cohort of The Cancer Genome Atlas (TCGA) TNBC confirmed the strength of the signatures' predictive value. Results The prognostic risk score model included 12 genes: TDO2, CHIT1, CARML2, HLA-C, ADIRF, C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL. The receiver operator characteristic (ROC) curves for survivability values at 1, 3, and 5 years in the FUSCC TNBC cohort demonstrated area under the curve (AUC) values of 0.78, 0.83, and 0.75, respectively. These results indicated a high level of accuracy in predicting outcomes, which was further confirmed through validation using TCGA database. The patients in the high-risk group showed worse prognoses and lower levels of immune cell infiltration, specifically CD8+ T cells, than those in the low-risk group. Furthermore, the low-risk group exhibited a significant upregulation of genes that encode immune checkpoints, including CD274 and CTLA4, suggesting that immunotherapy may yield enhanced efficacy within this particular group. Conclusions In conclusion, the prognostic signature consisting of 12 genes can assist in the choice of immunotherapy for TNBC.
Collapse
Affiliation(s)
- Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Xing A, Lv D, Wu C, Zhou K, Zhao T, Zhao L, Wang H, Feng H. Tertiary Lymphoid Structures Gene Signature Predicts Prognosis and Immune Infiltration Analysis in Head and Neck Squamous Cell Carcinoma. Curr Genomics 2024; 25:88-104. [PMID: 38751598 PMCID: PMC11092909 DOI: 10.2174/0113892029278082240118053857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/18/2024] Open
Abstract
Objectives This study aims to assess the prognostic implications of gene signature of the tertiary lymphoid structures (TLSs) in head and neck squamous cell carcinoma (HNSCC) and scrutinize the influence of TLS on immune infiltration. Methods Patients with HNSCC from the Cancer Genome Atlas were categorized into high/low TLS signature groups based on the predetermined TLS signature threshold. The association of the TLS signature with the immune microenvironment, driver gene mutation status, and tumor mutational load was systematically analyzed. Validation was conducted using independent datasets (GSE41613 and GSE102349). Results Patients with a high TLS signature score exhibited better prognosis compared to those with a low TLS signature score. The group with a high TLS signature score had significantly higher immune cell subpopulations compared to the group with a low TLS signature score. Moreover, the major immune cell subpopulations and immune circulation characteristics in the tumor immune microenvironment were positively correlated with the TLS signature. Mutational differences in driver genes were observed between the TLS signature high/low groups, primarily in the cell cycle and NRF2 signaling pathways. Patients with TP53 mutations and high TLS signature scores demonstrated a better prognosis compared to those with TP53 wild-type. In the independent cohort, the relationship between TLS signatures and patient prognosis and immune infiltration was also confirmed. Additionally, immune-related biological processes and signaling pathways were activated with elevated TLS signature. Conclusion High TLS signature is a promising independent prognostic factor for HNSCC patients. Immunological analysis indicated a correlation between TLS and immune cell infiltration in HNSCC. These findings provide a theoretical basis for future applications of TLS signature in HNSCC prognosis and immunotherapy.
Collapse
Affiliation(s)
- Aiyan Xing
- Department of Pathology, Shandong University Qilu Hospital, Jinan, Shandong, 250012, China
| | - Dongxiao Lv
- Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Changshun Wu
- Department of Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Kai Zhou
- Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tianhui Zhao
- Department of Translational Medicine, Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, 214104, China
| | - Lihua Zhao
- Department of Translational Medicine, Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, 214104, China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin, 300000, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
38
|
Xing H, Li X. Engineered Nanomaterials for Tumor Immune Microenvironment Modulation in Cancer Immunotherapy. Chemistry 2024:e202400425. [PMID: 38576219 DOI: 10.1002/chem.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Tumor immunotherapy, represented by immune checkpoint blocking and chimeric antigen receptor (CAR) T cell therapy, has achieved promising results in clinical applications. However, it faces challenges that hinder its further development, such as limited response rates and poor tumor permeability. The efficiency of tumor immunotherapy is also closely linked to the structure and function of the immune microenvironment where the tumor resides. Recently, nanoparticle-based tumor immune microenvironment (TIME) modulation strategies have attracted a great deal of attention in cancer immunotherapy. This is primarily due to the distinctive physical characteristics of nanoparticles, which enable them to effectively infiltrate the TIME and selectively modulate its key constituents. This paper reviews recent advances in nanoparticle engineering to improve anti-cancer immunotherapy. Emerging nanoparticle-based approaches for modulating immune cells, tumor stroma, cytokines and immune checkpoints are discussed, aiming to overcome current challenges in the clinic. In addition, integrating immunotherapy with various treatment modalities such as chemotherapy and photodynamic therapy can be facilitated through the utilization of nanoparticles, thereby enhancing the efficacy of cancer treatment. The future challenges and opportunities of using nanomaterials to reeducate the suppressive immune microenvironment of tumors are also discussed, with the aim of anticipating further advancements in this growing field.
Collapse
Affiliation(s)
- Hao Xing
- Department of General Surgery, Naval Medical Center, Naval Medical University, 200052, Shanghai, China
- The First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, College of Chemistry and Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, 200438, Shanghai, China
| |
Collapse
|
39
|
Godson L, Alemi N, Nsengimana J, Cook GP, Clarke EL, Treanor D, Bishop DT, Newton-Bishop J, Gooya A, Magee D. Immune subtyping of melanoma whole slide images using multiple instance learning. Med Image Anal 2024; 93:103097. [PMID: 38325154 DOI: 10.1016/j.media.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Determining early-stage prognostic markers and stratifying patients for effective treatment are two key challenges for improving outcomes for melanoma patients. Previous studies have used tumour transcriptome data to stratify patients into immune subgroups, which were associated with differential melanoma specific survival and potential predictive biomarkers. However, acquiring transcriptome data is a time-consuming and costly process. Moreover, it is not routinely used in the current clinical workflow. Here, we attempt to overcome this by developing deep learning models to classify gigapixel haematoxylin and eosin (H&E) stained pathology slides, which are well established in clinical workflows, into these immune subgroups. We systematically assess six different multiple instance learning (MIL) frameworks, using five different image resolutions and three different feature extraction methods. We show that pathology-specific self-supervised models using 10x resolution patches generate superior representations for the classification of immune subtypes. In addition, in a primary melanoma dataset, we achieve a mean area under the receiver operating characteristic curve (AUC) of 0.80 for classifying histopathology images into 'high' or 'low immune' subgroups and a mean AUC of 0.82 in an independent TCGA melanoma dataset. Furthermore, we show that these models are able to stratify patients into 'high' and 'low immune' subgroups with significantly different melanoma specific survival outcomes (log rank test, P< 0.005). We anticipate that MIL methods will allow us to find new biomarkers of high importance, act as a tool for clinicians to infer the immune landscape of tumours and stratify patients, without needing to carry out additional expensive genetic tests.
Collapse
Affiliation(s)
- Lucy Godson
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom.
| | - Navid Alemi
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
| | - Jérémie Nsengimana
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Graham P Cook
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Darren Treanor
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom; Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - D Timothy Bishop
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Ali Gooya
- School of Computing, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Derek Magee
- School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
40
|
Ding Z, Han L, Zhang Q, Hu J, Li L, Qian X. Membrane Trafficking-Related Genes Predict Tumor Immune Microenvironment and Prognosis in Colorectal Cancer. Biochem Genet 2024; 62:1413-1427. [PMID: 37615899 DOI: 10.1007/s10528-023-10498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with varying clinical outcomes. The identification of distinct subgroups of CRC patients based on molecular profiling can aid in better understanding the disease and improving patient outcomes. This study aimed to investigate the potential of membrane trafficking-related genes (MTRGs) in sub-grouping colorectal cancer patients based on their overall survival and immune microenvironments. Consensus clustering analysis identified two distinct clusters with different expression profiles of membrane trafficking-related genes. The patients in cluster 1 had a significantly better overall survival than those in cluster 2. Furthermore, the immune microenvironments in the two clusters were also found to be significantly different, with cluster 1 having a higher immune score and more immune cells present. Functional analysis of differentially expressed genes between the two clusters revealed that MTRGs were involved in immune response and metabolic processes, and a risk signature model based on MTRGs was established to predict the prognosis of CRC patients. These findings suggest that MTRGs play a crucial role in the immune microenvironment and overall survival of CRC patients and may provide a potential target for personalized therapy.
Collapse
Affiliation(s)
- Zhou Ding
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lu Han
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qun Zhang
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jing Hu
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Li
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
41
|
Weng L, Zhou J, Guo S, Xu N, Ma R. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification. Cancer Cell Int 2024; 24:120. [PMID: 38555429 PMCID: PMC10981301 DOI: 10.1186/s12935-024-03261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive form of breast cancer, occurring more frequently in younger patients and characterized by high heterogeneity, early distant metastases and poor prognosis. Multiple treatment options have failed to achieve the expected therapeutic effects due to the lack of clear molecular targets. Based on genomics, transcriptomics and metabolomics, the multi-omics analysis further clarifies TNBC subtyping, which provides a greater understanding of tumour heterogeneity and targeted therapy sensitivity. For instance, the luminal androgen receptor subtype (LAR) exhibits responsiveness to anti-AR therapy, and the basal-like immune-suppressed subtype (BLIS) tends to benefit from poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-angiogenic therapy. The efficacy of multi-dimensional combination therapy holds immense importance in guiding personalized and precision medicine for TNBC. This review offers a systematic overview of recent FuDan TNBC molecular subtyping and its role in the instruction of clinical precision therapy.
Collapse
Affiliation(s)
- Lijuan Weng
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jianliang Zhou
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenchao Guo
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
42
|
Kasikova L, Rakova J, Hensler M, Lanickova T, Tomankova J, Pasulka J, Drozenova J, Mojzisova K, Fialova A, Vosahlikova S, Laco J, Ryska A, Dundr P, Kocian R, Brtnicky T, Skapa P, Capkova L, Kovar M, Prochazka J, Praznovec I, Koblizek V, Taskova A, Tanaka H, Lischke R, Mendez FC, Vachtenheim J, Heinzelmann-Schwarz V, Jacob F, McNeish IA, Halaska MJ, Rob L, Cibula D, Orsulic S, Galluzzi L, Spisek R, Fucikova J. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat Commun 2024; 15:2528. [PMID: 38514660 PMCID: PMC10957872 DOI: 10.1038/s41467-024-46873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Intratumoral tertiary lymphoid structures (TLSs) have been associated with improved outcome in various cohorts of patients with cancer, reflecting their contribution to the development of tumor-targeting immunity. Here, we demonstrate that high-grade serous ovarian carcinoma (HGSOC) contains distinct immune aggregates with varying degrees of organization and maturation. Specifically, mature TLSs (mTLS) as forming only in 16% of HGSOCs with relatively elevated tumor mutational burden (TMB) are associated with an increased intratumoral density of CD8+ effector T (TEFF) cells and TIM3+PD1+, hence poorly immune checkpoint inhibitor (ICI)-sensitive, CD8+ T cells. Conversely, CD8+ T cells from immunologically hot tumors like non-small cell lung carcinoma (NSCLC) are enriched in ICI-responsive TCF1+ PD1+ T cells. Spatial B-cell profiling identifies patterns of in situ maturation and differentiation associated with mTLSs. Moreover, B-cell depletion promotes signs of a dysfunctional CD8+ T cell compartment among tumor-infiltrating lymphocytes from freshly isolated HGSOC and NSCLC biopsies. Taken together, our data demonstrate that - at odds with NSCLC - HGSOC is associated with a low density of follicular helper T cells and thus develops a limited number of mTLS that might be insufficient to preserve a ICI-sensitive TCF1+PD1+ CD8+ T cell phenotype. These findings point to key quantitative and qualitative differences between mTLSs in ICI-responsive vs ICI-irresponsive neoplasms that may guide the development of alternative immunotherapies for patients with HGSOC.
Collapse
Affiliation(s)
| | | | | | - Tereza Lanickova
- Sotio Biotech a.s., Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | - Jana Drozenova
- Department of Pathology, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | | | | | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Dundr
- Department of Pathology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Roman Kocian
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Brtnicky
- Department of Gynecology and Obstetrics, 1st Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Petr Skapa
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ivan Praznovec
- Department of Gynecology and Obstetrics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vladimir Koblizek
- Department of Pneumology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Alice Taskova
- Department of Thoracic Surgery, Charles University, 3rd Faculty of Medicine and Thomayer University Hospital, Prague, Czech Republic
| | - Hisashi Tanaka
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Robert Lischke
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Fernando Casas Mendez
- Oncology and Pneumology Department, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jiri Vachtenheim
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Iain A McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michal J Halaska
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Cibula
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Radek Spisek
- Sotio Biotech a.s., Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech a.s., Prague, Czech Republic.
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
43
|
Hu Y, Recouvreux MS, Haro M, Taylan E, Taylor-Harding B, Walts AE, Karlan BY, Orsulic S. INHBA(+) cancer-associated fibroblasts generate an immunosuppressive tumor microenvironment in ovarian cancer. NPJ Precis Oncol 2024; 8:35. [PMID: 38360876 PMCID: PMC10869703 DOI: 10.1038/s41698-024-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Effective targeting of cancer-associated fibroblasts (CAFs) is hindered by the lack of specific biomarkers and a poor understanding of the mechanisms by which different populations of CAFs contribute to cancer progression. While the role of TGFβ in CAFs is well-studied, less attention has been focused on a structurally and functionally similar protein, Activin A (encoded by INHBA). Here, we identified INHBA(+) CAFs as key players in tumor promotion and immunosuppression. Spatiotemporal analyses of patient-matched primary, metastatic, and recurrent ovarian carcinomas revealed that aggressive metastatic tumors enriched in INHBA(+) CAFs were also enriched in regulatory T cells (Tregs). In ovarian cancer mouse models, intraperitoneal injection of the Activin A neutralizing antibody attenuated tumor progression and infiltration with pro-tumorigenic subsets of myofibroblasts and macrophages. Downregulation of INHBA in human ovarian CAFs inhibited pro-tumorigenic CAF functions. Co-culture of human ovarian CAFs and T cells revealed the dependence of Treg differentiation on direct contact with INHBA(+) CAFs. Mechanistically, INHBA/recombinant Activin A in CAFs induced the autocrine expression of PD-L1 through SMAD2-dependent signaling, which promoted Treg differentiation. Collectively, our study identified an INHBA(+) subset of immunomodulatory pro-tumoral CAFs as a potential therapeutic target in advanced ovarian cancers which typically show a poor response to immunotherapy.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcela Haro
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- United States Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
44
|
Lakatos E, Gunasri V, Zapata L, Househam J, Heide T, Trahearn N, Swinyard O, Cisneros L, Lynn C, Mossner M, Kimberley C, Spiteri I, Cresswell GD, Llibre-Palomar G, Mitchison M, Maley CC, Jansen M, Rodriguez-Justo M, Bridgewater J, Baker AM, Sottoriva A, Graham TA. Epigenome and early selection determine the tumour-immune evolutionary trajectory of colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579956. [PMID: 38405882 PMCID: PMC10888923 DOI: 10.1101/2024.02.12.579956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.
Collapse
Affiliation(s)
- Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Vinaya Gunasri
- UCL Cancer Institute, University College London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Nicholas Trahearn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ottilie Swinyard
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences Arizona State University, Tempe, USA
| | - Claire Lynn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chris Kimberley
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - George D. Cresswell
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Gerard Llibre-Palomar
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Miriam Mitchison
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences Arizona State University, Tempe, USA
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK
| | | | | | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A. Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
45
|
Takei S, Tanaka Y, Lin YT, Koyama S, Fukuoka S, Hara H, Nakamura Y, Kuboki Y, Kotani D, Kojima T, Bando H, Mishima S, Ueno T, Kojima S, Wakabayashi M, Sakamoto N, Kojima M, Kuwata T, Yoshino T, Nishikawa H, Mano H, Endo I, Shitara K, Kawazoe A. Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer. J Immunother Cancer 2024; 12:e008210. [PMID: 38336371 PMCID: PMC10860060 DOI: 10.1136/jitc-2023-008210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) combinations represent an emerging treatment strategies in cancer. However, their efficacy in microsatellite stable (MSS) or mismatch repair-proficient (pMMR) colorectal cancer (CRC) is variable. Here, a multiomic characterization was performed to identify predictive biomarkers associated with patient response to ICI combinations in MSS/pMMR CRC for the further development of ICI combinations. METHODS Whole-exome sequencing, RNA sequencing, and multiplex fluorescence immunohistochemistry of tumors from patients with MSS/pMMR CRC, who received regorafenib plus nivolumab (REGONIVO) or TAS-116 plus nivolumab (TASNIVO) in clinical trials were conducted. Twenty-two and 23 patients without prior ICI from the REGONIVO and TASNIVO trials were included in this study. A biomarker analysis was performed using samples from each of these studies. RESULTS The epithelial-mesenchymal transition pathway and genes related to cancer-associated fibroblasts were upregulated in the REGONIVO responder group, and the G2M checkpoint pathway was upregulated in the TASNIVO responder group. The MYC pathway was upregulated in the REGONIVO non-responder group. Consensus molecular subtype 4 was significantly associated with response (p=0.035) and longer progression-free survival (p=0.006) in the REGONIVO trial. CD8+ T cells, regulatory T cells, and M2 macrophages density was significantly higher in the REGONIVO trial responders than in non-responders. Mutations in the POLE gene and patient response were significantly associated in the TASNIVO trial; however, the frequencies of other mutations or tumor mutational burden were not significantly different between responders and non-responders in either trial. CONCLUSIONS We identified molecular features associated with the response to the REGONIVO and TASNIVO, particularly those related to tumor microenvironmental factors. These findings are likely to contribute to the development of biomarkers to predict treatment efficacy for MSS/pMMR CRC and future immunotherapy combinations for treatment.
Collapse
Affiliation(s)
- Shogo Takei
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yi-Tzu Lin
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Shota Fukuoka
- Department of Gastroenterology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masashi Wakabayashi
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| |
Collapse
|
46
|
Guo X, Zhou W, Jin J, Lin J, Zhang W, Zhang L, Luan X. Integrative Multi-Omics Analysis Identifies Transmembrane p24 Trafficking Protein 1 (TMED1) as a Potential Prognostic Marker in Colorectal Cancer. BIOLOGY 2024; 13:83. [PMID: 38392302 PMCID: PMC10886729 DOI: 10.3390/biology13020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Several TMED protein family members are overexpressed in malignant tumors and associated with tumor progression. TMED1 belongs to the TMED protein family and is involved in protein vesicular trafficking. However, the expression level and biological role of TMED1 in colorectal cancer (CRC) have yet to be fully elucidated. In this study, the integration of patient survival and multi-omics data (immunohistochemical staining, transcriptomics, and proteomics) revealed that the highly expressed TMED1 was related to the poor prognosis in CRC. Crystal violet staining indicated the cell growth was reduced after knocking down TMED1. Moreover, the flow cytometry results showed that TMED1 knockdown could increase cell apoptosis. The expression of TMED1 was positively correlated with other TMED family members (TMED2, TMED4, TMED9, and TMED10) in CRC, and the protein-protein interaction network suggested its potential impact on immune regulation. Furthermore, TMED1 expression was positively associated with the infiltration levels of regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and endothelial cells and negatively correlated with the infiltration levels of CD4+ T cells, CD8+ T cells, and B cells. At last, the CTRP and GDSC datasets on the GSCA platform were used to analyze the relationship between TMED1 expression and drug sensitivity (IC50). The result found that the elevation of TMED1 was positively correlated with IC50 and implied it could increase the drug resistance of cancer cells. This research revealed that TMED1 is a novel prognostic biomarker in CRC and provided a valuable strategy for analyzing potential therapeutic targets of malignant tumors.
Collapse
Affiliation(s)
- Xin Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wei Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
Nicolini A, Rossi G, Ferrari P. Experimental and clinical evidence in favour of an effective immune stimulation in ER-positive, endocrine-dependent metastatic breast cancer. Front Immunol 2024; 14:1225175. [PMID: 38332913 PMCID: PMC10850262 DOI: 10.3389/fimmu.2023.1225175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 02/10/2024] Open
Abstract
In ER+ breast cancer, usually seen as the low immunogenic type, the main mechanisms favouring the immune response or tumour growth and immune evasion in the tumour microenvironment (TME) have been examined. The principal implications of targeting the oestrogen-mediated pathways were also considered. Recent experimental findings point out that anti-oestrogens contribute to the reversion of the immunosuppressive TME. Moreover, some preliminary clinical data with the hormone-immunotherapy association in a metastatic setting support the notion that the reversion of immune suppression in TME is likely favoured by the G0-G1 state induced by anti-oestrogens. Following immune stimulation, the reverted immune suppression allows the boosting of the effector cells of the innate and adaptive immune response. This suggests that ER+ breast cancer is a molecular subtype where a successful active immune manipulation can be attained. If this is confirmed by a prospective multicentre trial, which is expected in light of the provided evidence, the proposed hormone immunotherapy can also be tested in the adjuvant setting. Furthermore, the different rationale suggests a synergistic activity of our proposed immunotherapy with the currently recommended regimen consisting of antioestrogens combined with cyclin kinase inhibitors. Overall, this lays the foundation for a shift in clinical practice within this most prevalent molecular subtype of breast cancer.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology, National Research Council and Gabriele Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Young LEA, Nietert PJ, Stubler R, Kittrell CG, Grimsley G, Lewin DN, Mehta AS, Hajar C, Wang K, O’Quinn EC, Angel PM, Wallace K, Drake RR. Utilizing multimodal mass spectrometry imaging for profiling immune cell composition and N-glycosylation across colorectal carcinoma disease progression. Front Pharmacol 2024; 14:1337319. [PMID: 38273829 PMCID: PMC10808565 DOI: 10.3389/fphar.2023.1337319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) stands as a leading cause of death worldwide, often arising from specific genetic mutations, progressing from pre-cancerous adenomas to adenocarcinomas. Early detection through regular screening can result in a 90% 5-year survival rate for patients. However, unfortunately, only a fraction of CRC cases are identified at pre-invasive stages, allowing progression to occur silently over 10-15 years. The intricate interplay between the immune system and tumor cells within the tumor microenvironment plays a pivotal role in the progression of CRC. Immune cell clusters can either inhibit or facilitate tumor initiation, growth, and metastasis. To gain a better understanding of this relationship, we conducted N-glycomic profiling using matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI-MSI). We detected nearly 100 N-glycan species across all samples, revealing a shift in N-glycome profiles from normal to cancerous tissues, marked by a decrease in high mannose N-glycans. Further analysis of precancerous to invasive carcinomas showed an increase in pauci-mannose biantennary, and tetraantennary N-glycans with disease progression. Moreover, a distinct stratification in the N-glycome profile was observed between non-mucinous and mucinous CRC tissues, driven by pauci-mannose, high mannose, and bisecting N-glycans. Notably, we identified immune clusters of CD20+ B cells and CD3/CD44+ T cells distinctive and predictive with signature profiles of bisecting and branched N-glycans. These spatial N-glycan profiles offer potential biomarkers and therapeutic targets throughout the progression of CRC.
Collapse
Affiliation(s)
- Lyndsay E. A. Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J. Nietert
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Rachel Stubler
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Caroline G. Kittrell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - David N. Lewin
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Chadi Hajar
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Katherine Wang
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth C. O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
49
|
Edin S, Gylling B, Li X, Stenberg Å, Löfgren-Burström A, Zingmark C, van Guelpen B, Ljuslinder I, Ling A, Palmqvist R. Opposing roles by KRAS and BRAF mutation on immune cell infiltration in colorectal cancer - possible implications for immunotherapy. Br J Cancer 2024; 130:143-150. [PMID: 38040818 PMCID: PMC10781968 DOI: 10.1038/s41416-023-02483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The immune response has important clinical value in colorectal cancer (CRC) in both prognosis and response to immunotherapy. This study aims to explore tumour immune cell infiltration in relation to clinically well-established molecular markers of CRC. METHODS Multiplex immunohistochemistry and multispectral imaging was used to evaluate tumour infiltration of cytotoxic T cells (CD8+), Th1 cells (T-bet+), T regulatory cells (FoxP3+), B cells (CD20+), and macrophages (CD68+) in a cohort of 257 CRC patients. RESULTS We found the expected association between higher immune-cell infiltration and microsatellite instability. Also, whereas BRAF-mutated tumours displayed increased immune-cell infiltration compared to BRAF wild-type tumours, the opposite was seen for KRAS-mutated tumours, differences that were most prominent for cytotoxic T cells and Th1 cells. The opposing relationships of BRAF and KRAS mutations with tumour infiltration of cytotoxic T cells was validated in an independent cohort of 608 CRC patients. A positive prognostic importance of cytotoxic T cells was found in wild-type as well as KRAS and BRAF-mutated CRCs in both cohorts. CONCLUSION A combined evaluation of MSI status, KRAS and BRAF mutational status, and immune infiltration (cytotoxic T cells) may provide important insights to prognosis and response to immunotherapy in CRC.
Collapse
Affiliation(s)
- Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Åsa Stenberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Bao X, Leng X, Yu T, Zhu J, Zhao Y, Tenzindrogar, Yang Z, Wu S, Sun Q. Integrated Multi-omics Analyses Identify CDCA5 as a Novel Biomarker Associated with Alternative Splicing, Tumor Microenvironment, and Cell Proliferation in Colon Cancer Via Pan-cancer Analysis. J Cancer 2024; 15:825-840. [PMID: 38213717 PMCID: PMC10777042 DOI: 10.7150/jca.91082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Background: CDCA5 has been reported as a gene involved in the cell cycle, however current research provides little details. Our goal was to figure out its functions and probable mechanisms in pan-cancer. Methods: Pan-cancer bulk sequencing data and web-based analysis tools were applied to analyze CDCA5's correlations with the gene expression, clinical prognosis, genetic alterations, promoter methylation, alternative splicing, immune checkpoints, tumor microenvironment and enrichment. Real‑time PCR, cell clone formation assay, CCK-8 assay, cell proliferation assay, migration assay, invasion assay and apoptosis assay were used to evaluate the effect of CDCA5 silencing on colon cancer cell lines. Results: CDCA5 is highly expressed in most tumors, which has been linked to a poor prognosis. Immune checkpoints analysis revealed that CDCA5 was associated with the immune gene CD276 in various tumors. Single-cell analysis showed that CDCA5 correlated with proliferating T cell infiltration in COAD. Enrichment analysis demonstrated that CDCA5 may modify cell cycle genes to influence p53 signaling. The examination of DLD1 cells revealed that CDCA5 increased the proliferation and blocked cell apoptosis. Conclusion: This study contributes to the knowledge of the role of CDCA5 in carcinogenesis, highlighting the prognostic potential and carcinogenic involvement of CDCA5 in pan-cancer.
Collapse
Affiliation(s)
- Xinyue Bao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Leng
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou215300, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Junzheya Zhu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yunhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tenzindrogar
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhiluo Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaobo Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|