1
|
Broadbent DG, McEwan CM, Jayatunge D, Kaminsky EG, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. Ubiquitin-mediated recruitment of the ATG9A-ATG2 lipid transfer complex drives clearance of phosphorylated p62 aggregates. Mol Biol Cell 2025; 36:ar20. [PMID: 39718773 PMCID: PMC11809316 DOI: 10.1091/mbc.e24-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced nonselective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A, or the lipid transfer protein ATG2, leads to the accumulation of phosphorylated p62 aggregates in nutrient replete conditions. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Last, we present evidence that polyubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- David G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Colten M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Emily G Kaminsky
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
| | - Tsz-Min Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Daniel M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824
| | - Josh L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
3
|
Janovič T, Perez GI, Schmidt JC. TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630076. [PMID: 39763972 PMCID: PMC11703185 DOI: 10.1101/2024.12.23.630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes in vitro. However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined. To quantitatively analyze the shelterin function in living cells we generated a panel of cancer cell lines expressing HaloTagged shelterin proteins from their endogenous loci. We systematically determined the total cellular abundance and telomeric copy number of each shelterin subunit, demonstrating that the shelterin proteins are present at telomeres in equal numbers. In addition, we used single-molecule live-cell imaging to analyze the dynamics of shelterin protein association with telomeres. Our results demonstrate that TRF1-TIN2-TPP1-POT1 and TRF2-RAP1 form distinct subcomplexes that occupy non-overlapping binding sites on telomeric chromatin. TRF1-TIN2-TPP1-POT1 tightly associates with chromatin, while TRF2-RAP1 binding to telomeres is more dynamic, allowing it to recruit a variety of co-factors to chromatin to protect chromosome ends from DNA repair factors. In total, our work provides critical mechanistic insight into how the shelterin proteins carry out multiple essential functions in telomere maintenance and significantly advances our understanding of macromolecular structure of telomeric chromatin.
Collapse
Affiliation(s)
- Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
4
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
5
|
Mikhova M, Goff NJ, Janovič T, Heyza JR, Meek K, Schmidt JC. Single-molecule imaging reveals the kinetics of non-homologous end-joining in living cells. Nat Commun 2024; 15:10159. [PMID: 39578493 PMCID: PMC11584804 DOI: 10.1038/s41467-024-54545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-stranded breaks (DSBs) in vertebrates. However, due to challenges in detecting DSBs in living cells, the repair capacity of the NHEJ pathway is unknown. The DNA termini of many DSBs must be processed to allow ligation while minimizing genetic changes that result from break repair. Emerging models propose that DNA termini are first synapsed ~115 Å apart in one of several long-range synaptic complexes before transitioning into a short-range synaptic complex that juxtaposes DNA ends to facilitate ligation. The transition from long-range to short-range synaptic complexes involves both conformational and compositional changes of the NHEJ factors bound to the DNA break. Importantly, it is unclear how NHEJ proceeds in vivo because of the challenges involved in analyzing recruitment of NHEJ factors to DSBs over time in living cells. Here, we develop an approach to study the temporal and compositional dynamics of NHEJ complexes using live cell single-molecule imaging. Our results provide direct evidence for stepwise maturation of the NHEJ complex, pinpoint key regulatory steps in NHEJ progression, and allowed us to estimate the overall repair capacity of the NHEJ pathway in living cells.
Collapse
Affiliation(s)
- Mariia Mikhova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noah J Goff
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joshua R Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Katheryn Meek
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Zhao G, Ma Q, Yang H, Jiang H, Xu Q, Luo S, Meng Z, Liu J, Zhu L, Lin Q, Li M, Fang J, Ma L, Qiu W, Mao Z, Lu Z. Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology 2024; 79:1310-1323. [PMID: 38016019 DOI: 10.1097/hep.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Base editing has shown great potential for treating human diseases with mutated genes. However, its potential for treating HCC has not yet been explored. APPROACH AND RESULTS We employed adenine base editors (ABEs) to correct a telomerase reverse transcriptase ( TERT ) promoter mutation, which frequently occurs in various human cancers, including HCC. The mutated TERT promoter -124 C>T is corrected to -124 C by a single guide (sg) RNA-guided and deactivated Campylobacter jejuni Cas9 (CjCas9)-fused adenine base editor (CjABE). This edit impairs the binding of the E-twenty six/ternary complex factor transcription factor family, including E-twenty six-1 and GABPA, to the TERT promoter, leading to suppressed TERT promoter and telomerase activity, decreased TERT expression and cell proliferation, and increased cell senescence. Importantly, injection of adeno-associated viruses expressing sgRNA-guided CjABE or employment of lipid nanoparticle-mediated delivery of CjABE mRNA and sgRNA inhibits the growth of liver tumors harboring TERT promoter mutations. CONCLUSIONS These findings demonstrate that a sgRNA-guided CjABE efficiently converts the mutated TERT promoter -124 C>T to -124 C in HCC cells and underscore the potential to treat HCC by the base editing-mediated correction of TERT promoter mutations.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qingxia Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qianqian Xu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoyuan Meng
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Juanjuan Liu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qian Lin
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Fang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Leina Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
7
|
Mikhova M, Goff NJ, Janovič T, Heyza JR, Meek K, Schmidt JC. Single-molecule imaging reveals the kinetics of non-homologous end-joining in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546088. [PMID: 38826211 PMCID: PMC11142080 DOI: 10.1101/2023.06.22.546088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-stranded breaks (DSBs) in vertebrates. However, due to challenges in detecting DSBs in living cells, the repair capacity of the NHEJ pathway is unknown. The DNA termini of many DSBs must be processed to allow ligation while minimizing genetic changes that result from break repair. Emerging models propose that DNA termini are first synapsed ~115Å apart in one of several long-range synaptic complexes before transitioning into a short-range synaptic complex that juxtaposes DNA ends to facilitate ligation. The transition from long-range to short-range synaptic complexes involves both conformational and compositional changes of the NHEJ factors bound to the DNA break. Importantly, it is unclear how NHEJ proceeds in vivo because of the challenges involved in analyzing recruitment of NHEJ factors to DSBs over time in living cells. Here, we develop a new approach to study the temporal and compositional dynamics of NHEJ complexes using live cell single-molecule imaging. Our results provide direct evidence for stepwise maturation of the NHEJ complex, pinpoint key regulatory steps in NHEJ progression, and define the overall repair capacity NHEJ in living cells.
Collapse
Affiliation(s)
- Mariia Mikhova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Noah J. Goff
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing
| | - Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Joshua R. Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Katheryn Meek
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
8
|
Borges G, Benslimane Y, Harrington L. A CRISPR base editing approach for the functional assessment of telomere biology disorder-related genes in human health and aging. Biogerontology 2024; 25:361-378. [PMID: 38310618 PMCID: PMC10998809 DOI: 10.1007/s10522-024-10094-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/06/2024] [Indexed: 02/06/2024]
Abstract
Telomere Biology Disorders (TBDs) are a group of rare diseases characterized by the presence of short and/or dysfunctional telomeres. They comprise a group of bone marrow failure syndromes, idiopathic pulmonary fibrosis, and liver disease, among other diseases. Genetic alterations (variants) in the genes responsible for telomere homeostasis have been linked to TBDs. Despite the number of variants already identified as pathogenic, an even more significant number must be better understood. The study of TBDs is challenging since identifying these variants is difficult due to their rareness, it is hard to predict their impact on the disease onset, and there are not enough samples to study. Most of our knowledge about pathogenic variants comes from assessing telomerase activity from patients and their relatives affected by a TBD. However, we still lack a cell-based model to identify new variants and to study the long-term impact of such variants on the genes involved in TBDs. Herein, we present a cell-based model using CRISPR base editing to mutagenize the endogenous alleles of 21 genes involved in telomere biology. We identified key residues in the genes encoding 17 different proteins impacting cell growth. We provide functional evidence for variants of uncertain significance in patients with TBDs. We also identified variants resistant to telomerase inhibition that, similar to cells expressing wild-type telomerase, exhibited increased tumorigenic potential using an in vitro tumour growth assay. We believe that such cell-based approaches will significantly advance our understanding of the biology of TBDs and may contribute to the development of new therapies for this group of diseases.
Collapse
Affiliation(s)
- Gustavo Borges
- Departments of Medicine and Biochemistry and Molecular Medicine, Molecular Biology Programme, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Yahya Benslimane
- Departments of Medicine and Biochemistry and Molecular Medicine, Molecular Biology Programme, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Lea Harrington
- Departments of Medicine and Biochemistry and Molecular Medicine, Molecular Biology Programme, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
9
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
10
|
Broadbent DG, McEwan CM, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. The formation of ubiquitin rich condensates triggers recruitment of the ATG9A lipid transfer complex to initiate basal autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569058. [PMID: 38077022 PMCID: PMC10705457 DOI: 10.1101/2023.11.28.569058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced non-selective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A or the lipid transfer protein ATG2 leads to the accumulation of phosphorylated p62 aggregates in the context of basal autophagy. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Lastly, we present evidence that poly-ubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- D G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
| | - C M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T M Tsang
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - B C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Ebata H, Shima T, Iizuka R, Uemura S. Accumulation of TERT in mitochondria exerts two opposing effects on apoptosis. FEBS Open Bio 2023; 13:1667-1682. [PMID: 37525387 PMCID: PMC10476567 DOI: 10.1002/2211-5463.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a protein that catalyzes the reverse transcription of telomere elongation. TERT is also expected to play a non-canonical role beyond telomere lengthening since it localizes not only in the nucleus but also in mitochondria, where telomeres do not exist. Several studies have reported that mitochondrial TERT regulates apoptosis induced by oxidative stress. However, there is still some controversy as to whether mitochondrial TERT promotes or inhibits apoptosis, mainly due to the lack of information on changes in TERT distribution in individual cells over time. Here, we simultaneously detected apoptosis and TERT localization after oxidative stress in individual HeLa cells by live-cell tracking. Single-cell tracking revealed that the stress-induced accumulation of TERT in mitochondria caused apoptosis, but that accumulation increased over time until cell death. The results suggest a new model in which mitochondrial TERT has two opposing effects at different stages of apoptosis: it predetermines apoptosis at the first stage of cell-fate determination, but also delays apoptosis at the second stage. As such, our data support a model that integrates the two opposing hypotheses on mitochondrial TERT's effect on apoptosis. Furthermore, detailed statistical analysis of TERT mutations, which have been predicted to inhibit TERT transport to mitochondria, revealed that these mutations suppress apoptosis independent of mitochondrial localization of TERT. Together, these results imply that the non-canonical functions of TERT affect a wide range of mitochondria-dependent and mitochondria-independent apoptosis pathways.
Collapse
Affiliation(s)
- Hiroshi Ebata
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
- Present address:
Buck Institute for Research on AgingNovatoCAUSA
| | - Tomohiro Shima
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| |
Collapse
|
12
|
Yi M, Wang M, Xu Y, Cao Z, Ling Y, Zhang Z, Cao H. CRISPR-based m 6A modification and its potential applications in telomerase regulation. Front Cell Dev Biol 2023; 11:1200734. [PMID: 37519297 PMCID: PMC10382234 DOI: 10.3389/fcell.2023.1200734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Telomerase determines cell lifespan by controlling chromosome stability and cell viability, m6A epigenetic modification plays an important role in the regulation of telomerase activity. Using CRISPR epigenome editing to analyze specific m6A modification sites in telomerase will provide an important tool for analyzing the molecular mechanism of m6A modification regulating telomerase activity. In this review, we clarified the relevant applications of CRISPR system, paid special attention to the regulation of m6A modification in stem cells and cancer cells based on CRISPR system, emphasized the regulation of m6A modification on telomerase activity, pointed out that m6A modification sites regulate telomerase activity, and discussed strategies based on telomerase activity and disease treatment, which are helpful to promote the research of anti-aging and tumor related diseases.
Collapse
Affiliation(s)
- Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Mingyue Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Yongjie Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Nähse V, Raiborg C, Tan KW, Mørk S, Torgersen ML, Wenzel EM, Nager M, Salo VT, Johansen T, Ikonen E, Schink KO, Stenmark H. ATPase activity of DFCP1 controls selective autophagy. Nat Commun 2023; 14:4051. [PMID: 37422481 PMCID: PMC10329651 DOI: 10.1038/s41467-023-39641-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/21/2023] [Indexed: 07/10/2023] Open
Abstract
Cellular homeostasis is governed by removal of damaged organelles and protein aggregates by selective autophagy mediated by cargo adaptors such as p62/SQSTM1. Autophagosomes can assemble in specialized cup-shaped regions of the endoplasmic reticulum (ER) known as omegasomes, which are characterized by the presence of the ER protein DFCP1/ZFYVE1. The function of DFCP1 is unknown, as are the mechanisms of omegasome formation and constriction. Here, we demonstrate that DFCP1 is an ATPase that is activated by membrane binding and dimerizes in an ATP-dependent fashion. Whereas depletion of DFCP1 has a minor effect on bulk autophagic flux, DFCP1 is required to maintain the autophagic flux of p62 under both fed and starved conditions, and this is dependent on its ability to bind and hydrolyse ATP. While DFCP1 mutants defective in ATP binding or hydrolysis localize to forming omegasomes, these omegasomes fail to constrict properly in a size-dependent manner. Consequently, the release of nascent autophagosomes from large omegasomes is markedly delayed. While knockout of DFCP1 does not affect bulk autophagy, it inhibits selective autophagy, including aggrephagy, mitophagy and micronucleophagy. We conclude that DFCP1 mediates ATPase-driven constriction of large omegasomes to release autophagosomes for selective autophagy.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Kia Wee Tan
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sissel Mørk
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Mireia Nager
- Autophagy Research Group, Department of Medical Biology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Veijo T Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kay Oliver Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway.
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
14
|
Aquilanti E, Kageler L, Watson J, Baird DM, Jones RE, Hodges M, Szegletes ZM, Doench JG, Strathdee CA, Figueroa JRMF, Ligon KL, Beck M, Wen PY, Meyerson M. Telomerase inhibition is an effective therapeutic strategy in TERT promoter-mutant glioblastoma models with low tumor volume. Neuro Oncol 2023; 25:1275-1285. [PMID: 36694348 PMCID: PMC10326479 DOI: 10.1093/neuonc/noad024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most lethal forms of cancer, with 5-year survival rates of only 6%. Glioblastoma-targeted therapeutics have been challenging to develop due to significant inter- and intra-tumoral heterogeneity. Telomerase reverse transcriptase gene (TERT) promoter mutations are the most common known clonal oncogenic mutations in glioblastoma. Telomerase is therefore considered to be a promising therapeutic target against this tumor. However, an important limitation of this strategy is that cell death does not occur immediately after telomerase ablation, but rather after several cell divisions required to reach critically short telomeres. We, therefore, hypothesize that telomerase inhibition would only be effective in glioblastomas with low tumor burden. METHODS We used CRISPR interference to knock down TERT expression in TERT promoter-mutant glioblastoma cell lines and patient-derived models. We then measured viability using serial proliferation assays. We also assessed for features of telomere crisis by measuring telomere length and chromatin bridge formation. Finally, we used a doxycycline-inducible CRISPR interference system to knock down TERT expression in vivo early and late in tumor development. RESULTS Upon TERT inactivation, glioblastoma cells lose their proliferative ability over time and exhibit telomere shortening and chromatin bridge formation. In vivo, survival is only prolonged when TERT knockdown is induced shortly after tumor implantation, but not when the tumor burden is high. CONCLUSIONS Our results support the idea that telomerase inhibition would be most effective at treating glioblastomas with low tumor burden, for example in the adjuvant setting after surgical debulking and chemoradiation.
Collapse
Affiliation(s)
- Elisa Aquilanti
- Division of Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lauren Kageler
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jacqueline Watson
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Marie Hodges
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zsofia M Szegletes
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Craig A Strathdee
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Beck
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Patrick Y Wen
- Division of Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Cancer Genomics, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Broadbent DG, Barnaba C, Perez GI, Schmidt JC. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. J Cell Biol 2023; 222:e202210078. [PMID: 37115157 PMCID: PMC10148237 DOI: 10.1083/jcb.202210078] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a catabolic pathway required for the recycling of cytoplasmic materials. To define the mechanisms underlying autophagy it is critical to quantitatively characterize the dynamic behavior of autophagy factors in living cells. Using a panel of cell lines expressing HaloTagged autophagy factors from their endogenous loci, we analyzed the abundance, single-molecule dynamics, and autophagosome association kinetics of autophagy proteins involved in autophagosome biogenesis. We demonstrate that autophagosome formation is inefficient and ATG2-mediated tethering to donor membranes is a key commitment step in autophagosome formation. Furthermore, our observations support the model that phagophores are initiated by the accumulation of autophagy factors on mobile ATG9 vesicles, and that the ULK1 complex and PI3-kinase form a positive feedback loop required for autophagosome formation. Finally, we demonstrate that the duration of autophagosome biogenesis is ∼110 s. In total, our work provides quantitative insight into autophagosome biogenesis and establishes an experimental framework to analyze autophagy in human cells.
Collapse
Affiliation(s)
- David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Mikkelsen NS, Bak RO. Enrichment strategies to enhance genome editing. J Biomed Sci 2023; 30:51. [PMID: 37393268 PMCID: PMC10315055 DOI: 10.1186/s12929-023-00943-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Collapse
Affiliation(s)
- Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark.
| |
Collapse
|
17
|
Mahadevan J, Jha A, Rudolph J, Bowerman S, Narducci D, Hansen AS, Luger K. Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. iScience 2022; 26:105779. [PMID: 36594010 PMCID: PMC9804145 DOI: 10.1016/j.isci.2022.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
PARP1 contributes to genome architecture and DNA damage repair through its dynamic association with chromatin. PARP1 and PARP2 (PARP1/2) recognize damaged DNA and recruit the DNA repair machinery. Using single-molecule microscopy in live cells, we monitored the movement of PARP1/2 on undamaged and damaged chromatin. We identify two classes of freely diffusing PARP1/2 and two classes of bound PARP1/2. The majority (>60%) of PARP1/2 diffuse freely in both undamaged and damaged nuclei and in the presence of inhibitors of PARP1/2 used for cancer therapy (PARPi). Laser-induced DNA damage results in a small fraction of slowly diffusing PARP1 and PARP2 to become transiently bound. Treatment of cells with PARPi in the presence of DNA damage causes subtle changes in the dynamics of bound PARP1/2, but not the high levels of PARP1/2 trapping seen previously. Our results imply that next-generation PARPi could specifically target the small fraction of DNA-bound PARP1/2.
Collapse
Affiliation(s)
- Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Asmita Jha
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA,Corresponding author
| |
Collapse
|
18
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
19
|
Karn V, Sandhya S, Hsu W, Parashar D, Singh HN, Jha NK, Gupta S, Dubey NK, Kumar S. CRISPR/Cas9 system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell Int 2022; 22:234. [PMID: 35879772 PMCID: PMC9316746 DOI: 10.1186/s12935-022-02654-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the major causes of mortality worldwide, therefore it is considered a major health concern. Breast cancer is the most frequent type of cancer which affects women on a global scale. Various current treatment strategies have been implicated for breast cancer therapy that includes surgical removal, radiation therapy, hormonal therapy, chemotherapy, and targeted biological therapy. However, constant effort is being made to introduce novel therapies with minimal toxicity. Gene therapy is one of the promising tools, to rectify defective genes and cure various cancers. In recent years, a novel genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) has emerged as a gene-editing tool and transformed genome-editing techniques in a wide range of biological domains including human cancer research and gene therapy. This could be attributed to its versatile characteristics such as high specificity, precision, time-saving and cost-effective methodologies with minimal risk. In the present review, we highlight the role of CRISPR/Cas9 as a targeted therapy to tackle drug resistance, improve immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Vamika Karn
- Department of Biotechnology, Amity University, Mumbai, 410221, India
| | - Sandhya Sandhya
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wayne Hsu
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Deepak Parashar
- Department of Obstetrics and Gynaecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Himanshu Narayan Singh
- Department of System Biology, Columbia University Irving Medical Centre, New York, NY, 10032, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan. .,ShiNeo Technology Co., Ltd., New Taipei City, 24262, Taiwan.
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, India.
| |
Collapse
|
20
|
Sung JY, Kim SG, Kang YJ, Choi HC. Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mech Ageing Dev 2022; 206:111708. [PMID: 35863470 DOI: 10.1016/j.mad.2022.111708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The senescence of vascular smooth muscle cells (VSMCs) is an important cause of cardiovascular disease such as atherosclerosis and hypertension. These senescence may be triggered by many factors, such as oxidative stress, inflammation, DNA damage, and senescence-associated secretory phenotypes (SASPs). Mitochondrial oxidative stress induces cellular senescence, but the mechanisms by which mitochondrial reactive oxygen species (mtROS) regulates cellular senescence are still largely unknown. Here, we investigated the mechanism responsible for the anti-aging effect of metformin by examining links between VSMC senescence and mtROS in in vitro and in vivo. Metformin was found to increase p-AMPK (Ser485), but to decrease senescence-associated phenotypes and protein levels of senescence markers during ADR-induced VSMC senescence. Importantly, metformin decreased mtROS by inducing the deacetylation of superoxide dismutase 2 (SOD2) by increasing SIRT3 expression. Moreover, AMPK depletion reduced the expression of SIRT3 and increased the expression of acetylated SOD2 despite metformin treatment, suggesting AMPK activation by metformin is required to protect against mitochondrial oxidative stress by SIRT3. This study provides mechanistic evidence that metformin acts as an anti-aging agent and alleviates VSMC senescence by upregulating mitochondrial antioxidant induced p-AMPK (Ser485)-dependent SIRT3 expression, which suggests metformin has therapeutic potential for the treatment of age-associated vascular disease.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Telomerase gene therapy: a remission toward cancer. Med Oncol 2022; 39:105. [DOI: 10.1007/s12032-022-01702-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
|
22
|
CRISPR/Cas: A New Tool in the Research of Telomeres and Telomerase as Well as a Novel Form of Cancer Therapy. Int J Mol Sci 2022; 23:ijms23063002. [PMID: 35328421 PMCID: PMC8953708 DOI: 10.3390/ijms23063002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their close connection with senescence, aging, and disease, telomeres and telomerase provide a unique and vital research route for boosting longevity and health span. Despite significant advances during the last three decades, earlier studies into these two biological players were impeded by the difficulty of achieving real-time changes inside living cells. As a result of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system’s (Cas) method, targeted genetic studies are now underway to change telomerase, the genes that govern it as well as telomeres. This review will discuss studies that have utilized CRISPR-related technologies to target and modify genes relevant to telomeres and telomerase as well as to develop targeted anti-cancer therapies. These studies greatly improve our knowledge and understanding of cellular and molecular mechanisms that underlie cancer development and aging.
Collapse
|
23
|
Li X, Sun B, Qian H, Ma J, Paolino M, Zhang Z. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. J Zhejiang Univ Sci B 2022; 23:141-152. [PMID: 35187887 DOI: 10.1631/jzus.b2100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.,Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongrun Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinrong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Magdalena Paolino
- Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
24
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
25
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
26
|
Telomerase in Brain: The New Kid on the Block and Its Role in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9050490. [PMID: 33946850 PMCID: PMC8145691 DOI: 10.3390/biomedicines9050490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 01/14/2023] Open
Abstract
Telomerase is an enzyme that in its canonical function extends and maintains telomeres, the ends of chromosomes. This reverse transcriptase function is mainly important for dividing cells that shorten their telomeres continuously. However, there are a number of telomere-independent functions known for the telomerase protein TERT (Telomerase Reverse Transcriptase). This includes the shuttling of the TERT protein from the nucleus to mitochondria where it decreases oxidative stress, apoptosis sensitivity and DNA damage. Recently, evidence has accumulated on a protective role of TERT in brain and postmitotic neurons. This function might be able to ameliorate the effects of toxic proteins such as amyloid-β, pathological tau and α-synuclein involved in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the protective mechanisms of TERT are not clear yet. Recently, an activation of autophagy as an important protein degradation process for toxic neuronal proteins by TERT has been described. This review summarises the current knowledge about the non-canonical role of the telomerase protein TERT in brain and shows its potential benefit for the amelioration of brain ageing and neurodegenerative diseases such as AD and PD. This might form the basis for the development of novel strategies and therapies against those diseases.
Collapse
|
27
|
Chen L, Roake CM, Galati A, Bavasso F, Micheli E, Saggio I, Schoeftner S, Cacchione S, Gatti M, Artandi SE, Raffa GD. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 2021; 30:1358-1372.e5. [PMID: 32023455 PMCID: PMC7156301 DOI: 10.1016/j.celrep.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Stefan Schoeftner
- Cancer Epigenetic Group, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
28
|
Zhao D, Yin Z, Soellner MB, Martin BR. Scribble sub-cellular localization modulates recruitment of YES1 to regulate YAP1 phosphorylation. Cell Chem Biol 2021; 28:1235-1241.e5. [PMID: 33730553 DOI: 10.1016/j.chembiol.2021.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
The multi-domain scaffolding protein Scribble (Scrib) regulates cell polarity and growth signaling at cell-cell junctions. In epithelial cancers, Scrib mislocalization and overexpression paradoxically transform Scrib from a basolateral tumor suppressor to a cytosolic driver of tumorigenicity. To address the function of Scrib (mis)localization, a Scrib-HaloTag fusion was genome engineered in polarized epithelial cells. Expression of the epithelial to mesenchymal transcription factor Snail displaced Scrib-HaloTag from cell junctions, mirroring the mislocalization observed in cancers. Interestingly, Snail expression promotes Yes-associated protein-1 (YAP1) nuclear localization independent of hippo pathway-regulated YAP-S127 phosphorylation. Furthermore, Scrib HaloPROTAC degradation attenuates YAP1-Y357 phosphorylation. Halo-ligand affinity purification mass spectrometry analysis identified the Src family kinase YES1 as a mislocalized Scrib interaction partner, preferentially recruiting the kinase active and open global conformation (αC helix in). Altogether, mislocalized Scrib enhances YAP1 phosphorylation by scaffolding active YES1.
Collapse
Affiliation(s)
- Dongyu Zhao
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew B Soellner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent R Martin
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Scorpion Therapeutics, Inc., 888 Boylston Street, Suite 1111, Boston, MA 02199, USA.
| |
Collapse
|
29
|
Therapeutic targeting of FOS in mutant TERT cancers through removing TERT suppression of apoptosis via regulating survivin and TRAIL-R2. Proc Natl Acad Sci U S A 2021; 118:2022779118. [PMID: 33836600 DOI: 10.1073/pnas.2022779118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The telomerase reverse transcriptase (TERT) has long been pursued as a direct therapeutic target in human cancer, which is currently hindered by the lack of effective specific inhibitors of TERT. The FOS/GABPB/(mutant) TERT cascade plays a critical role in the regulation of mutant TERT, in which FOS acts as a transcriptional factor for GABPB to up-regulate the expression of GABPB, which in turn activates mutant but not wild-type TERT promoter, driving TERT-promoted oncogenesis. In the present study, we demonstrated that inhibiting this cascade by targeting FOS using FOS inhibitor T-5224 suppressed mutant TERT cancer cells and tumors by inducing robust cell apoptosis; these did not occur in wild-type TERT cells and tumors. Mechanistically, among 35 apoptotic cascade-related proteins tested, the apoptosis induced in this process specifically involved the transcriptional activation of tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) and inactivation of survivin, two key players in the apoptotic cascade, which normally initiate and suppress the apoptotic cascade, respectively. These findings with suppression of FOS were reproduced by direct knockdown of TERT and prevented by prior knockdown of TRAIL-R2. Further experiments demonstrated that TERT acted as a direct transcriptional factor of survivin, up-regulating its expression. Thus, this study identifies a therapeutic strategy for TERT promoter mutation-driven cancers by targeting FOS in the FOS/GABPB/(mutant) TERT cascade, circumventing the current challenge in pharmacologically directly targeting TERT itself. This study also uncovers a mechanism through which TERT controls cell apoptosis by transcriptionally regulating two key players in the apoptotic cascade.
Collapse
|
30
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
31
|
Long Y, Cech TR. Targeted mutagenesis in human iPSCs using CRISPR genome-editing tools. Methods 2021; 191:44-58. [PMID: 33444739 DOI: 10.1016/j.ymeth.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
Mutagenesis studies have rapidly evolved in the era of CRISPR genome editing. Precise manipulation of genes in human induced pluripotent stem cells (iPSCs) allows biomedical researchers to study the physiological functions of individual genes during development. Furthermore, such genetic manipulation applied to patient-specific iPSCs allows disease modeling, drug screening and development of therapeutics. Although various genome-editing methods have been developed to introduce or remove mutations in human iPSCs, comprehensive strategic designs taking account of the potential side effects of CRISPR editing are needed. Here we present several novel and highly efficient strategies to introduce point mutations, insertions and deletions in human iPSCs, including step-by-step experimental protocols. These approaches involve the application of drug selection for effortless clone screening and the generation of a wild type control strain along with the mutant. We also present several examples of application of these strategies in human iPSCs and show that they are highly efficient and could be applied to other cell types.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Thomas R Cech
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
32
|
Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson's disease associated with enhanced autophagy. Prog Neurobiol 2020; 199:101953. [PMID: 33188884 PMCID: PMC7938226 DOI: 10.1016/j.pneurobio.2020.101953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Telomerase activators (TA) increase Tert expression in brains of a PD mouse model. Activator treatment improves PD motor symptoms: gait and balance. Activators reduce different forms of alpha-synuclein in brains of transgenic mice. Decreased autophagy markers LC3 and p62 suggest a better protein degradation. Our preclinical data suggest a use of TA to ameliorate PD-like symptoms.
Protective effects of the telomerase protein TERT have been shown in neurons and brain. We previously demonstrated that TERT protein can accumulate in mitochondria of Alzheimer’s disease (AD) brains and protect from pathological tau in primary mouse neurons. This prompted us to employ telomerase activators in order to boost telomerase expression in a mouse model of Parkinson’s disease (PD) overexpressing human wild type α-synuclein. Our aim was to test whether increased Tert expression levels were able to ameliorate PD symptoms and to activate protein degradation. We found increased Tert expression in brain for both activators which correlated with a substantial improvement of motor functions such as gait and motor coordination while telomere length in the analysed region was not changed. Interestingly, only one activator (TA-65) resulted in a decrease of reactive oxygen species from brain mitochondria. Importantly, we demonstrate that total, phosphorylated and aggregated α-synuclein were significantly decreased in the hippocampus and neocortex of activator-treated mice corresponding to enhanced markers of autophagy suggesting an improved degradation of toxic alpha-synuclein. We conclude that increased Tert expression caused by telomerase activators is associated with decreased α-synuclein protein levels either by activating autophagy or by preventing or delaying impairment of degradation mechanisms during disease progression. This encouraging preclinical data could be translated into novel therapeutic options for neurodegenerative disorders such as PD.
Collapse
|
33
|
Pańczyszyn A, Boniewska-Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair (Amst) 2020; 95:102956. [PMID: 32937289 DOI: 10.1016/j.dnarep.2020.102956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for triggering the signaling of DNA damage response (DDR). Telomerase subunits in post-mitotic cells translocate between the nucleus, cytoplasm and mitochondria, participating in the regulation of their activity. Among other things, they contribute to the reduction of reactive oxygen species generation, which leads to telomere dysfunction and, consequently, senescence. Some proteins of the shelterin complex also play a protective role by inhibiting senescence-initiating kinases and limiting ROS production by mitochondria.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Ewa Boniewska-Bernacka
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Anna Goc
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| |
Collapse
|
34
|
Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, Manevski M, Ojha CR, Lapierre J, Tiwari S, Parira T, El-Hage N. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Aging Dis 2020; 11:895-915. [PMID: 32765953 PMCID: PMC7390517 DOI: 10.14336/ad.2019.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
With advances in medical technology, the number of people over the age of 60 is on the rise, and thus, increasing the prevalence of age-related pathologies within the aging population. Neurodegenerative disorders, cancers, metabolic and inflammatory diseases are some of the most prevalent age-related pathologies affecting the growing population. It is imperative that a new treatment to combat these pathologies be developed. Although, still in its infancy, the CRISPR-Cas9 system has become a potent gene-editing tool capable of correcting gene-mediated age-related pathology, and therefore ameliorating or eliminating disease symptoms. Deleting target genes using the CRISPR-Cas9 system or correcting for gene mutations may ameliorate many different neurodegenerative disorders detected in the aging population. Cancer cells targeted by the CRISPR-Cas9 system may result in an increased sensitivity to chemotherapeutics, lower proliferation, and higher cancer cell death. Finally, reducing gene targeting inflammatory molecules production through microRNA knockout holds promise as a therapeutic strategy for both arthritis and inflammation. Here we present a review based on how the expanding world of genome editing can be applied to disorders and diseases affecting the aging population.
Collapse
Affiliation(s)
- Allen Caobi
- 1Departments of Immunology and Nano-medicine
| | | | - Luis D Garbinski
- 3Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 2020; 52:931-938. [PMID: 32632336 DOI: 10.1038/s41588-020-0662-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Many chromatin-binding proteins and protein complexes that regulate transcription also bind RNA. One of these, Polycomb repressive complex 2 (PRC2), deposits the H3K27me3 mark of facultative heterochromatin and is required for stem cell differentiation. PRC2 binds RNAs broadly in vivo and in vitro. Yet, the biological importance of this RNA binding remains unsettled. Here, we tackle this question in human induced pluripotent stem cells by using multiple complementary approaches. Perturbation of RNA-PRC2 interaction by RNase A, by a chemical inhibitor of transcription or by an RNA-binding-defective mutant all disrupted PRC2 chromatin occupancy and localization genome wide. The physiological relevance of PRC2-RNA interactions is further underscored by a cardiomyocyte differentiation defect upon genetic disruption. We conclude that PRC2 requires RNA binding for chromatin localization in human pluripotent stem cells and in turn for defining cellular state.
Collapse
|
36
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 PMCID: PMC7377944 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert CA. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun 2020; 10:e00116. [PMID: 31890588 PMCID: PMC6926293 DOI: 10.1016/j.mec.2019.e00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.
Collapse
Key Words
- 5-FOA, 5-fluoroorotic acid
- CFU, colony forming unit
- CRISPR
- CRISPR/Cas, Clustered Regularly-Interspaced Short Palindromic Repeat/CRISPR associated
- Cas9
- Cas9n, nickase Cas9
- Clostridium thermocellum
- HDR, homology-directed repair
- HR, homologous recombination
- PAM, protospacer adjacent motif
- RNP, Cas9-sgRNA ribonucleoprotein
- Thermophilic recombineering
- Tm, thiamphenicol
- Type I–B
- sgRNA, single guide RNA
Collapse
Affiliation(s)
- Julie E. Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Anthony A. Lanahan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyong Zheng
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Camilo Toruno
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Lee R. Lynd
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jeffrey C. Cameron
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| | - Daniel G. Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| |
Collapse
|
38
|
Li X, Qian X, Wang B, Xia Y, Zheng Y, Du L, Xu D, Xing D, DePinho RA, Lu Z. Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nat Cell Biol 2020; 22:282-288. [PMID: 32066906 DOI: 10.1038/s41556-020-0471-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR interference and programmable base editing have transformed the manipulation of eukaryotic genomes for potential therapeutic applications1-4. Here, we exploited CRISPR interference and programmable base editing to determine their potential in editing a TERT gene promoter-activating mutation, which occurs in many diverse cancer types, particularly glioblastoma5-8. Correction of the -124C>T TERT promoter mutation to -124C was achieved using a single guide RNA (sgRNA)-guided and catalytically impaired Campylobacter jejuni CRISPR-associated protein 9-fused adenine base editor (CjABE). This modification blocked the binding of members of the E26 transcription factor family to the TERT promoter, reduced TERT transcription and TERT protein expression, and induced cancer-cell senescence and proliferative arrest. Local injection of adeno-associated viruses expressing sgRNA-guided CjABE inhibited the growth of gliomas harbouring TERT-promoter mutations. These preclinical proof-of-concept studies establish the feasibility of gene editing as a therapeutic approach for cancer and validate activated TERT-promoter mutations as a cancer-specific therapeutic target.
Collapse
Affiliation(s)
- Xinjian Li
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xia
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanhua Zheng
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linyong Du
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Daqian Xu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, China.,The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
39
|
CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells. Int J Mol Sci 2020; 21:ijms21020653. [PMID: 31963842 PMCID: PMC7014288 DOI: 10.3390/ijms21020653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian telomere lengths are primarily regulated by telomerase, a ribonucleoprotein consisting of a reverse transcriptase (TERT) and an RNA subunit (TERC). TERC is constitutively expressed in all cells, whereas TERT expression is temporally and spatially regulated, such that in most adult somatic cells, TERT is inactivated and telomerase activity is undetectable. Most tumor cells activate TERT as a mechanism for preventing progressive telomere attrition to achieve proliferative immortality. Therefore, inactivating TERT has been considered to be a promising means of cancer therapy. Here we applied the CRISPR/Cas9 gene editing system to target the TERT gene in cancer cells. We report that disruption of TERT severely compromises cancer cell survival in vitro and in vivo. Haploinsufficiency of TERT in tumor cells is sufficient to result in telomere attrition and growth retardation in vitro. In vivo, TERT haploinsufficient tumor cells failed to form xenograft after transplantation to nude mice. Our work demonstrates that gene editing-mediated TERT knockout is a potential therapeutic option for treating cancer.
Collapse
|
40
|
Zeng X, Hernandez-Sanchez W, Xu M, Whited TL, Baus D, Zhang J, Berdis AJ, Taylor DJ. Administration of a Nucleoside Analog Promotes Cancer Cell Death in a Telomerase-Dependent Manner. Cell Rep 2019; 23:3031-3041. [PMID: 29874588 DOI: 10.1016/j.celrep.2018.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Telomerase, the end-replication enzyme, is reactivated in malignant cancers to drive cellular immortality. While this distinction makes telomerase an attractive target for anti-cancer therapies, most approaches for inhibiting its activity have been clinically ineffective. As opposed to inhibiting telomerase, we use its activity to selectively promote cytotoxicity in cancer cells. We show that several nucleotide analogs, including 5-fluoro-2'-deoxyuridine (5-FdU) triphosphate, are effectively incorporated by telomerase into a telomere DNA product. Administration of 5-FdU results in an increased number of telomere-induced foci, impedes binding of telomere proteins, activates the ATR-related DNA-damage response, and promotes cell death in a telomerase-dependent manner. Collectively, our data indicate that telomerase activity can be exploited as a putative anti-cancer strategy.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Mengyuan Xu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tawna L Whited
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Diane Baus
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point. Int J Mol Sci 2019; 20:ijms20133186. [PMID: 31261825 PMCID: PMC6651453 DOI: 10.3390/ijms20133186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Collapse
|
42
|
Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells 2019; 8:cells8050392. [PMID: 31035374 PMCID: PMC6563133 DOI: 10.3390/cells8050392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Modulation of telomerase maintenance by gene therapy must meet two polarizing requirements to achieve different therapeutic outcomes: Anti-aging/regenerative applications require upregulation, while anticancer applications necessitate suppression of various genes integral to telomere maintenance (e.g., telomerase, telomerase RNA components, and shelterin complex). Patients suffering from aging-associated illnesses often exhibit telomere attrition, which promotes chromosomal instability and cellular senescence, thus requiring the transfer of telomere maintenance-related genes to improve patient outcomes. However, reactivation and overexpression of telomerase are observed in 85% of cancer patients; this process is integral to cancer immortality. Thus, telomere-associated genes in the scope of cancer gene therapy must be inactivated or inhibited to induce anticancer effects. These contradicting requirements for achieving different therapeutic outcomes mean that any vector-mediated upregulation of telomere-associated genes must be accompanied by rigorous evaluation of potential oncogenesis. Thus, this review aims to discuss how telomere-associated genes are being targeted or utilized in various gene therapy applications and provides some insight into currently available safety hazard assessments.
Collapse
|
43
|
Brane AC, Tollefsbol TO. Targeting Telomeres and Telomerase: Studies in Aging and Disease Utilizing CRISPR/Cas9 Technology. Cells 2019; 8:E186. [PMID: 30795542 PMCID: PMC6406488 DOI: 10.3390/cells8020186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres and telomerase provide a unique and important avenue of study in improving both life expectancy and quality of life due to their close association with aging and disease. While major advances in our understanding of these two biological mediators have characterized the last two decades, previous studies have been limited by the inability to affect change in real time within living cells. The last three years, however, have witnessed a huge step forward to overcome this limitation. The advent of the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has led to a wide array of targeted genetic studies that are already being employed to modify telomeres and telomerase, as well as the genes that affect them. In this review, we analyze studies utilizing the technology to target and modify telomeres, telomerase, and their closely associated genes. We also discuss how these studies can provide insight into the biology and mechanisms that underlie aging, cancer, and other diseases.
Collapse
Affiliation(s)
- Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
44
|
Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. Cells 2019; 8:cells8020107. [PMID: 30709063 PMCID: PMC6406355 DOI: 10.3390/cells8020107] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Telomeres, the protective structures of chromosome ends are gradually shortened by each cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found in the normal tissues. In this review, we summarize the latest knowledge about telomere length alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere length as a prognostic biomarker.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
45
|
Zhao Z, Tan Q, Zhan X, Lin J, Fan Z, Xiao K, Li B, Liao Y, Huang X. Cascaded Electrochemiluminescence Signal Amplifier for the Detection of Telomerase Activity from Tumor Cells and Tissues. Am J Cancer Res 2018; 8:5625-5633. [PMID: 30555568 PMCID: PMC6276299 DOI: 10.7150/thno.27680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is closely linked to the physiological transformation of tumor cells and is commonly overexpressed in most types of tumor cells. Therefore, telomerase has become a potential biomarker for the process of tumorigenesis, progression, prognosis and metastasis. Thus, it is important to develop a simple, accurate and reliable method for detecting telomerase activity. As a high signal-to-noise ratio mode, electrochemiluminescence (ECL) has been widely applied in the field of biomedical analysis. Here, our objective was to construct an improved ECL signal amplifier for the detection of telomerase activity. Methods: A cascaded ECL signal amplifier was constructed to detect telomerase activity with high selectivity via controllable construction of a lysine-based dendric Ru(bpy)3 2+ polymer (DRP). The sensitivity, specificity and performance index were simultaneously evaluated by standard substance and cell and tissue samples. Results: With this cascaded ECL signal amplifier, high sensitivities of 100, 50, and 100 cells for three tumor cell lines (A549, MCF7 and HepG2 cell lines) were simultaneously achieved, and desirable specificity was also obtained. Furthermore, the excellent performance of this platform was also demonstrated in the detection of telomerase in tumor cells and tissues. Conclusion: This cascaded ECL signal amplifier has the potential to be a technological innovation in the field of telomerase activity detection.
Collapse
|
46
|
Huang MC, Chu IT, Wang ZF, Lin S, Chang TC, Chen CT. A G-Quadruplex Structure in the Promoter Region of CLIC4 Functions as a Regulatory Element for Gene Expression. Int J Mol Sci 2018; 19:ijms19092678. [PMID: 30201851 PMCID: PMC6165315 DOI: 10.3390/ijms19092678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.
Collapse
Affiliation(s)
- Mu-Ching Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - I-Te Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
47
|
Li X, Bai Y, Cheng X, Kalds PGT, Sun B, Wu Y, Lv H, Xu K, Zhang Z. Efficient SSA-mediated precise genome editing using CRISPR/Cas9. FEBS J 2018; 285:3362-3375. [PMID: 30085411 DOI: 10.1111/febs.14626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/11/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
CRISPR/Cas9 has been emerging as a main player in genome editing field since its advent. However, CRISPR/Cas9-induced precise gene editing remains challenging since it requires no scar left after editing. Among the few reports regarding two-step 'pop in & out' technologies for precise gene editing, the combination of CRISPR/Cas9 with Cre/LoxP demonstrates a higher efficiency, but leaves behind a 34-base pair of tag sequence due to its inherent property. Another method utilizes piggyBac transposon for removing the selection cassette, and its disadvantage is the difficulty in controlling its random reintegration after releasing. Here, we report a novel two-step precise gene-editing method by leveraging the SSA-mediated repair mechanism into the CRISPR/Cas9-mediated gene-editing system. An integrating cassette was developed with positive and negative selection markers, which was flanked by direct repeat sequences with desired mutations as SSA arms. After the targeted integration of the cassette mediated by CRISPR/Cas9-induced homologous-directed repair, cell clones were first selected through the positive selection. In the second round targeting, the selection cassette was removed by the SSA-mediated DNA double-strand break (DSB) repair without any scar left behind. The novel seamless genome editing technique was tested on CCR5 and APP loci, and finally demonstrated, respectively, up to 45.83% and 68% of precise genome editing efficiency. This study provides a new efficient approach for precise genome editing and gene correction.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, China
| | - Xinzhen Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peter Girgis Tawfek Kalds
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Wu
- College of Biology and Agriculture Science, Zunyi Normal University, China
| | - Huijiao Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Ren C, Xu K, Segal DJ, Zhang Z. Strategies for the Enrichment and Selection of Genetically Modified Cells. Trends Biotechnol 2018; 37:56-71. [PMID: 30135027 DOI: 10.1016/j.tibtech.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Programmable artificial nucleases have transitioned over the past decade from ZFNs and TALENs to CRISPR/Cas systems, which have been ubiquitously used with great success to modify genomes. The efficiencies of knockout and knockin vary widely among distinct cell types and genomic loci and depend on the nuclease delivery and cleavage efficiencies. Moreover, genetically modified cells are almost phenotypically indistinguishable from normal counterparts, making screening and isolating positive cells rather challenging and time-consuming. To address this issue, we review several strategies for the enrichment and selection of genetically modified cells, including transfection-positive selection, nuclease-positive selection, genome-targeted positive selection, and knockin-positive selection, to provide a reference for future genome research and gene therapy studies.
Collapse
Affiliation(s)
- Chonghua Ren
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA; These authors contributed equally to this article
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; These authors contributed equally to this article
| | - David Jay Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
49
|
A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells. Nat Chem Biol 2018; 14:964-971. [PMID: 30061719 PMCID: PMC6143402 DOI: 10.1038/s41589-018-0103-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
RNAs directly regulate a vast array of cellular processes, emphasizing the need for robust approaches to fluorescently label and track RNAs in living cells. Here, we develop an RNA imaging platform using the cobalamin riboswitch as an RNA tag and a series of probes containing cobalamin as a fluorescence quencher. This highly modular ‘Riboglow’ platform leverages different colored fluorescent dyes, linkers and riboswitch RNA tags to elicit fluorescent turn-on upon binding RNA. We demonstrate the ability of two different Riboglow probes to track mRNA and small non-coding RNA in live mammalian cells. A side-by-side comparison revealed that Riboglow outperformed the dye binding aptamer Broccoli and performed on par with the gold standard RNA imaging system, the MS2-fluorescent protein system, while featuring a much smaller RNA tag. Together, the versatility of the Riboglow platform and ability to track diverse RNAs suggest broad applicability for a variety of imaging approaches.
Collapse
|
50
|
Elias A, Gritsenko N, Gorovits R, Spector I, Prag G, Yagil E, Kolot M. Anti-cancer binary system activated by bacteriophage HK022 integrase. Oncotarget 2018; 9:27487-27501. [PMID: 29938000 PMCID: PMC6007955 DOI: 10.18632/oncotarget.25512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/14/2018] [Indexed: 01/10/2023] Open
Abstract
The binary system presented in this work is based on the bacteriophage HK022 integrase recombinase that activates the expression of a silenced Diphtheria toxin gene, both controlled by the cancer specific hTERT promoter. Using a lung cancer mice model, assays of different apoptotic and anti-apoptotic factors have demonstrated that the Integrase based binary system is highly specific towards cancer cells and more efficient compared to the conventional mono system whose toxin is directly expressed under hTERT. In a mice survival test, this binary system demonstrated longer persistence compared to the untreated and the mono treated ones. The reason underlying the advantage of this binary system over the mono system seems to be an overexpression of various hTERT suppressing factors induced by the mono system.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Itay Spector
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|