1
|
Reheim MAMA, Abdou MM, El-Gaby MSA, Al-Omari MH, Abu-Rayyan A, Al-Assy WH, Refat HM, Sarhan AAM, Hafiz ISA. Bioactivity of novel isoxazole-fused heterocycles: comprehensive antimicrobial, antioxidant activities, SwissADME predictions, molecular docking, and DFT analysis. Mol Divers 2025:10.1007/s11030-025-11180-z. [PMID: 40244372 DOI: 10.1007/s11030-025-11180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Among the foremost goals for organic chemists is to discover novel approaches for the synthesis of a particular heterocyclic and its design. Our approach focused on the vital precursor 4-acetyl-3-phenylisoxazol-5(4H)-one 3, as this molecule has an endocyclic carbonyl function in position 5 adjacent to the substituted acetyl function at site 4. Therefore, compound 3 was a crucial component of many types of fused isoxazole. The investigators provide a straightforward synthesis of fused isoxazole from the following categories: pyrano[3,2-d]isoxazole 4 & 6, isochromeno[4,3-d]isoxazole 5, isoxazolo[4',5':5,6]pyrano[3,4-c]pyridine 7, thieno[3',4':4,5]pyrano [3,2-d]isoxazole 8, pyrazolo[4,3-d]isoxazole 10a,b and 11a,b, and isoxazolo[4,5-c]pyridazine derivatives 14a,b. The target compounds and their structures were supported by the results of 1H-NMR, IR and mass spectroscopy. Molecular docking studies highlighted strong binding affinities to bacterial enzymes crucial for cell wall synthesis, while DFT calculations provided deep insights into their electronic properties and stability. Additionally, the antioxidant potential of compounds 11a,b was assessed using DPPH and ABTS assays, showing impressive concentration-dependent activity. Addressing the critical issue of antibiotic resistance, especially due to β-lactamases, molecular docking affirmed the high binding propensity of these derivatives with essential β-lactamase proteins (PDB: 1CK3, 6MU9, and 6W2Z). These findings underscore the promise of isoxazoline derivatives as powerful antimicrobial and antioxidant agents, paving the way for further development in combating bacterial resistance and oxidative stress.
Collapse
Affiliation(s)
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | | | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University, Amman, 11931, Jordan
| | - Waleed H Al-Assy
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Hala M Refat
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| | - Ahmed A M Sarhan
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| | | |
Collapse
|
2
|
Safarkhani M, Taghavimandi F, Park Y, Ojaghi A, Kim D, Han S, Kim H, Mohammadi A, Kim MG, Yanamala P, Maleki R, Lee SM, Shin K, Huh YS. Sprayable Off-On DCP detection: Biocompatible carboxamide-based sensor with fluorescent signaling and colorimetric coagulation trigger. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138045. [PMID: 40174449 DOI: 10.1016/j.jhazmat.2025.138045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Detecting hazardous nerve agents is essential due to their extreme toxicity and potential for severe harm, necessitating rapid and reliable sensing solutions. This study introduces a compact, high-performance sensor designed for diethyl chlorophosphate (DCP) detection, a commonly used nerve agent simulant, engineered for rapid response and easy field readiness. Leveraging triphenyl phosphite as an innovative synthetic modification instead of the traditional triphenyl phosphate, the sensor achieved a higher yield, an acceptable limit of detection (LOD, 4.75 µM), and enhanced sensitivity. Characterization techniques (including Density Functional Theory (DFT) analysis, HOMO-LUMO gap, and electrostatic potential mapping) align with XPS, NMR, and Raman spectroscopy results, confirming the sensor's structural integrity and operational efficacy. The sensor's rapid response is showcased through distinct chromogenic and fluorescence shifts, enabling naked-eye visual identification. The selectivity study reveals strong specificity for DCP, with no response to even HCl, H3PO4, NaOH, or structurally similar compounds, ensuring reliability in complex environments. Biocompatibility tests on HaCaT and CD-1064sk cell lines further support their safe use by operators. With safe near-UV-A excitation (385 nm) and an extended linear range (1-50 Equiv) at high DCP concentrations, this sensor is a valuable tool for emergency applications where immediate detection and response are crucial.
Collapse
Affiliation(s)
- Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Fahimeh Taghavimandi
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yonghyeon Park
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Amirhossein Ojaghi
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Donghyeon Kim
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hanseung Kim
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ali Mohammadi
- Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Min Gyu Kim
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Poojitha Yanamala
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Sang Myeon Lee
- 3rd R&D Institute - 5th Directorate, Agency for Defense Development, Republic of Korea.
| | - Kwangsoo Shin
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Qneibi M, Hawash M, Bdir S, Bdair M, Idais T, Sarhan I, Touqan J. Regulating AMPA Receptors with Isoxazole-4-Carboxamide Derivatives: An Electrophysiological Study. J Xenobiot 2025; 15:40. [PMID: 40126258 PMCID: PMC11932207 DOI: 10.3390/jox15020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Isoxazole carboxamide derivatives are intriguing modulators of ionotropic glutamate receptors; more specifically, their prospective analgesic activities based on non-opioid pathways have sparked widespread research. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, especially Ca2+-permeable subtypes that are highly expressed in the spinal dorsal horn, play a critical role in nociceptive transmission and inflammatory pain. Herein, the neuromodulatory effects of these derivatives on AMPA receptor activity have been studied, focusing on their potential as modulators of AMPA receptors, a target implicated in pain and neurological disorders. The whole-cell patch clamp technique for electrophysiological recordings was used to investigate the effect of twelve isoxazole-4-carboxamide derivatives (CIC-1-12) on AMPA receptors' whole-cell currents and kinetics, including deactivation and desensitization. The isoxazole-4-carboxamide derivatives tested as inhibitors of AMPA receptor activity were very potent, with an 8-fold inhibition by CIC-1 and a 7.8-fold reduction by CIC-2. Additionally, these compounds profoundly altered the biophysical gating properties of both homomeric and heteromeric receptor subunits. These findings emphasize the therapeutic promise of isoxazole-4-carboxamide derivatives due to their potential as AMPA receptor modulators. Their ability to affect receptor activity and gating properties makes them promising candidates for future treatments for controlling pain.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammed Hawash
- Pharmaceutical Chemistry and Technology Division, Faculty of Pharmacy, An-Najah National University, P400 Nablus, Palestine;
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Iyas Sarhan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Joud Touqan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| |
Collapse
|
4
|
Salem MG, Nafie MS, Elzamek AA, Elshihawy HA, Sofan MA, Negm E. Design, synthesis, and biological investigations of new pyrazole derivatives as VEGFR2/CDK-2 inhibitors targeting liver cancer. BMC Chem 2024; 18:208. [PMID: 39449145 PMCID: PMC11520136 DOI: 10.1186/s13065-024-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
New Series of N-Manniche bases 3,4 (a-c) and 5,6 (a-b) were synthesized through the reaction of benzaldehyde and amine with 3-methyl-4-(aryldiazenyl)-1H-pyrazol-5-ol derivatives 2(a-c), they were fully characterized by FT-IR, (1H, 13C) NMR data in addition to their mass spectra. The Structural Activity Relationship of the target compounds were examined for their cytotoxicity. Some newly synthesized compounds showed promising antiproliferation properties when tested against HepG2 cancer cells. Compounds 4a, 5a, and 6b showed potent cytotoxicity against HepG2 with IC50 values of 4.4, 3.46 and 2.52 µM compared to Sorafenib (IC50 = 2.051 µM) and Roscovitine (IC50 = 4.18 µM). Furthermore, they were safe against the THLE2 cells with higher IC50 values. Compound 6b exhibited promising dual VEGFR2/CDK-2 inhibition activities; it had an IC50 value of 0.2 μM with VEGFR2 inhibition of 93.2%, and it had an IC50 value of 0.458 μM with CDK-2 inhibition of 88.7%. In comparison to the untreated control group (0.95%), compounds 5a (38.32%) and 6b (42.9%) considerably increased the cell population in total apoptosis. In addition, compounds 5a and 6b arrested the cell population at G0-G1 and S phases, respectively. Molecular docking experiments confirmed the virtual binding mechanism of the most active drugs, which were found to have good binding affinities with both receptor active sites.
Collapse
Affiliation(s)
- Manar G Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, P.O. 27272, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O 41522, Egypt
| | - Aya A Elzamek
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Mamdouh A Sofan
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Elham Negm
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
5
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
6
|
Zhou M, Liu Y, Wang S, Feng J, Ni H, Lu C, Jin G. A novel strategy to bind pyrimidine sulfonamide derivatives with odd even chains: exploration of their design, synthesis and biological activity evaluation. Mol Divers 2024; 28:3011-3026. [PMID: 38082105 DOI: 10.1007/s11030-023-10729-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 12/05/2024]
Abstract
Based on the hybridization strategy of dominant fragments, a series of pyrimidine sulfonamide (PS) derivatives were obtained by combining the pharmacophore fragments (sulfonamide group and pyrimidine group) with different biological activities, and evaluated as a new type of anticancer drug. The compounds were evaluated for in vitro cytotoxicity against four human cancer cell lines (HeLa, HCT-116, A-549 and HepG2) and the normal human cell line L02. Compared with the anti-cancer drug 5-fluorouracil (5-FU), the antiproliferative activity of compound PS14 was close to 5-FU and it has good antitumor activity. The IC50 values were 15.13 ± 2.20, 19.87 ± 2.01, 12.64 ± 3.22, 22.20 ± 1.34 and 102.46 ± 2.27 μM, respectively. The structure activity relationship was analyzed. The antitumor activity of the compound tended to increase. When the substituents of the branch chain of sulfonamides were odd. In addition, the oil-water partition coefficient was also investigated. The logP value of PS14 was between 0 and 3, indicating that PS14 was a compound with good lipophilic property, poor water solubility and easy to be absorbed and transported through cell membrane. The anti-cancer mechanism was further studied by flow cytometry. After PS14 treated HeLa, HCT-116, A-549 and HepG2, the percentage of apoptotic cells was 45.30%, 28.2%, 31.00% and 35.20%, respectively, which was higher than that of the control 5-FU. The results of cell cycle showed that PRD2 mainly blocked the cell cycle in the S phase, thereby inhibiting cell proliferation. Furthermore, molecular docking analyzed possible interactions between the compound and the PI3Kα active site, this compound has good binding with PI3Kα. Overall, this study laid the groundwork for the development and structural modification of new pyrimidine sulfonamide drugs, and PS14 could be further developed into a cancer treatment drug.
Collapse
Affiliation(s)
- Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Huiyan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Chichong Lu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
8
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Kanzouai Y, Laghmari M, Yamari I, Bouzammit R, Bahsis L, Benali T, Chtita S, Bakhouch M, Akhazzane M, El Kouali M, Hammani K, Al Houari G. Chromone-isoxazole hybrids molecules: synthesis, spectroscopic, MEDT, ELF, antibacterial, ADME-Tox, molecular docking and MD simulation investigations. J Biomol Struct Dyn 2024; 42:6410-6424. [PMID: 37817499 DOI: 10.1080/07391102.2023.2266022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 10/12/2023]
Abstract
A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youssra Kanzouai
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Département de Chimie, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
- Environment and Health Team, Polydisciplinary Faculty of Safi, Department of Biology, Cadi Ayyad University, Safi, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Bakhouch
- Bioorganic Chemistry Team, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Akhazzane
- Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - M'hammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
10
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
12
|
Hawash M, Abdallah S, Abudayyak M, Melhem Y, Abu Shamat M, Aghbar M, Çapan I, Abualhasan M, Kumar A, Kamiński M, Góral T, Dominiak PM, Sobuh S. Exploration of isoxazole analogs: Synthesis, COX inhibition, anticancer screening, 3D multicellular tumor spheroids, and molecular modeling. Eur J Med Chem 2024; 271:116397. [PMID: 38626522 DOI: 10.1016/j.ejmech.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/18/2024]
Abstract
In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 μM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 μM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 μM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 μM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Samer Abdallah
- Department of Biology & Biotechnology, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Mahmoud Abudayyak
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, 34116, Istanbul, Turkey
| | - Yarob Melhem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Mohammed Abu Shamat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Meera Aghbar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Irfan Çapan
- Department of Material and Material Processing Technologies, Technical Sciences Vocational College, Gazi University, 06560, Ankara, Turkey; Basic and Engineering Sciences Central Laboratory Application and Research Center (GUTMAM), Gazi University, 06500, Ankara, Turkey
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Anil Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Ul. Zwirki I Wigury 101, 02-089, Warsaw, Poland
| | - Michał Kamiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Ul. Zwirki I Wigury 101, 02-089, Warsaw, Poland
| | - Tomasz Góral
- Centre of New Technologies, University of Warsaw, Ul. S. Banacha 2c, 02-097, Warsaw, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Ul. Zwirki I Wigury 101, 02-089, Warsaw, Poland
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
13
|
Bagińska ZH, Paczkowska-Walendowska M, Basa A, Rachalewski M, Lendzion K, Cielecka-Piontek J, Szymańska E. Chitosan/Pomegranate Seed Oil Emulgel Composition as a New Strategy for Dermal Delivery of Hydrocortisone. Int J Mol Sci 2024; 25:3765. [PMID: 38612575 PMCID: PMC11012218 DOI: 10.3390/ijms25073765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.
Collapse
Affiliation(s)
- Zofia Helena Bagińska
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.P.-W.); (J.C.-P.)
| | - Anna Basa
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Michał Rachalewski
- Dr Irena Eris, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland; (M.R.); (K.L.)
| | - Karolina Lendzion
- Dr Irena Eris, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland; (M.R.); (K.L.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.P.-W.); (J.C.-P.)
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|
14
|
Sayed EM, Bakhite EA, Hassanien R, Farhan N, Aly HF, Morsy SG, Hassan NA. Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties. BMC Chem 2024; 18:34. [PMID: 38365746 PMCID: PMC10873978 DOI: 10.1186/s13065-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evaluated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line (IC50: 0.155 µM) while compound 8d showed the most potent one against MCF7 cell line (IC50: 0.170 µM) in comparison with doxorubicin. In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experimental studies that compound 7e is a potent CDK2 inhibitor with IC50 of 0.149 µM, compared to the Roscovitine control drug with IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an IC50 of 0.199 µM, compared to Methotrexate control drug with IC50 of 0.131 µM. Evaluation of the antioxidant properties of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxidant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.
Collapse
Affiliation(s)
- Eman M Sayed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Etify A Bakhite
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Reda Hassanien
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Nasser Farhan
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre, El-Behooth St., Dokki, Cairo, 12622, Egypt
| | - Salma G Morsy
- Department of Cancer Biology, Cancer Immunology and Virology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nivin A Hassan
- Department Cancer Biology, Pharmacology and Experimental Oncology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Moukhliss Y, Koubi Y, Zafar I, Alaqarbeh M, Maghat H, Sbai A, Lakhlifi T, Bouachrine M. Design of novel isoxazole derivatives as tubulin inhibitors using computer-aided techniques: QSAR modeling, in silico ADMETox, molecular docking, molecular dynamics, biological efficacy, and retrosynthesis. J Biomol Struct Dyn 2024:1-12. [PMID: 38353497 DOI: 10.1080/07391102.2024.2306493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2025]
Abstract
In the current work, computational methods were used to investigate new isoxazole derivatives that could be used as tubulin inhibitors. The study aims to develop a reliable quantitative structure-activity relationship (QSAR) model, following the criteria set by Golbraikh, Tropsha, and Roy. As a result, seven candidate compounds were developed, all having higher activity than the well-established anticancer agent Cisplatin (Cisp). According to the ADMETox in silico test, the candidates Pr4, Pr5, and P6 can be toxic. As a result, we have chosen to focus our study on compounds Pr1, Pr2, and Pr3. Molecular docking analysis revealed that drug candidate Pr2 exhibits the highest stability within the oxidized quinone reductase 2 (PDB ID: 4zvm), target receptor (ΔG(Pr2) = ΔG(Pr3) = -10.4 < ΔG(Pr1) = -10.0 < ΔG(Cisp) = -7.3 kcal/mol). This finding aligns with the activity predictions made by the QSAR model. Furthermore, molecular dynamics simulations of the Pr2-4zvm complex over 100 ns confirm the ligand's robust stability within the receptor's active site, supporting the results obtained from molecular docking and the QSAR model predictions. The CaverDock software was utilized to identify the tunnels likely to be followed by ligands moving from the active site to the receptor surface. This analysis also helped in determining the biological efficacy of the target compounds. The results indicated that the Pr2 compound is more effective than the others. Finally, the computer-assisted retrosynthesis process of two high confidence sequences was used to synthesize drug candidates.
Collapse
Affiliation(s)
- Youness Moukhliss
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Yassine Koubi
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Punjab, Pakistan
| | - Marwa Alaqarbeh
- Basic Science Department, Prince Al Hussein Bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, Jordan
| | - Hamid Maghat
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory (MCNSL), Department of Chemistry, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Beni-Mellal, Morocco
| |
Collapse
|
16
|
Elarabany N, Hamad A, Alzamel NM. Antitumor and Phytochemical Properties of Ferula assa-foetida L. Oleo-Gum-Resin against HT-29 Colorectal Cancer Cells In Vitro and in a Xenograft Mouse Model. Molecules 2023; 28:8012. [PMID: 38138502 PMCID: PMC10746072 DOI: 10.3390/molecules28248012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring tumors. Ferula assa-foetida oleo-gum-resin (OGR) extract is a traditional cooking spice known for its broad spectrum of biological activities such as antifungal, antiparasitic, and anti-inflammatory activities. This study evaluated the antitumor effect of OGR extract against HT-29 colorectal cancer cells. The OGR chemical composition was analyzed using LC-ESI-MS/MS; MTT, clonogenic assays, and a xenograft model were used to measure cytotoxicity, while apoptotic proteins were detected using Western blotting. Phytochemical analysis revealed that the extract was a rich source of isoflavones, xanthones, and other derivatives. In a dose-dependent manner, the OGR extract significantly inhibited colony formation ability and HT-29 cell growth (IC50 was 3.60 ± 0.02 and 10.5 ± 0.1 mg/mL, respectively). On the other hand, the OGR extract significantly induced apoptosis and increased the expression of some pro-death proteins involved in cellular apoptosis including PUMA, BIM, BIK, and BAK. Moreover, in a subcutaneous HT-29 xenograft model, the tumor volume and burden decreased after treatment with the OGR extract (550 ± 32 mm3 and 16.3 ± 3.6, respectively) This study demonstrated that Ferula assa-foetida OGR ethanolic extract has potential antitumor effects against HT-29 CRC cell lines by reducing cell viability and the function of apoptosis. More studies are needed to reveal the underlying mechanisms related to cytotoxicity and apoptosis induction.
Collapse
Affiliation(s)
- Naglaa Elarabany
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Abeer Hamad
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
- Biology Department, College of Applied and Industrial Science, Bahri University, Khartoum 1660, Sudan
| | - Nurah M. Alzamel
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
17
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
18
|
Mohamed-Ezzat RA, Hashem AH, Dacrory S. Synthetic strategy towards novel composite based on substituted pyrido[2,1-b][1,3,4]oxadiazine-dialdehyde chitosan conjugate with antimicrobial and anticancer activities. BMC Chem 2023; 17:88. [PMID: 37496066 PMCID: PMC10373407 DOI: 10.1186/s13065-023-01005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Synthesis of new compounds that have biological activity is an indispensible issue in order to deal with the drug resistant bacteria. This wok reports preparation of a novel composite based on substituted pyrido[2,1-b][1,3,4] oxadiazine-dialdehyde chitosan (PODACs) conjugate. Firstly, a novel approach of synthesizing of a new substituted pyrido[2,1-b][1,3,4]oxadiazine-7-carboxylic acid (PO) is reported through reacting(Z)-N'-(1-(3-aminophenyl)ethylidene)-2-cyanoacetohydrazide with (Z)-ethyl 2-cyano-3-(pyridin-3-yl)acrylate. Then Dialdehyde chitosan (DACs) has prepared via periodat oxidation of chitosan (Cs). The synthesized compounds have studied via various spectroscopic instruments to validate their chemical structure such as nuclear magnetic resonance 1 H NMR, 13 C NMR, fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The substituted pyrido [2,1-b][1,3,4]oxadiazine and the composite were evaluated for antimicrobial activity against pathogenic bacteria and unicellular fungi. The results revealed that, the composite exhibited promising antimicrobial activity against E. coli, S. aureus, B. subtilis and C. albicans where inhibition zones were 19, 18, 36 and 20 mm respectively. Furthermore, the substituted pyrido [2,1-b][1,3,4]oxadiazine and the composite were evaluated for cytotoxic activity against MCF-7 human breast cancer cell line as well as vero normal cell line. Results illustrated the prepared composite has anticancer activity against MCF7 where IC50 was 238 µg/ml.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St, Giza, 12622, Egypt.
| |
Collapse
|
19
|
Alminderej F, Ghannay S, Omer Elsamani M, Alhawday F, Albadri AEAE, Elbehairi SEI, Alfaifi MY, Kadri A, Aouadi K. In Vitro and In Silico Evaluation of Antiproliferative Activity of New Isoxazolidine Derivatives Targeting EGFR: Design, Synthesis, Cell Cycle Analysis, and Apoptotic Inducers. Pharmaceuticals (Basel) 2023; 16:1025. [PMID: 37513936 PMCID: PMC10384175 DOI: 10.3390/ph16071025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
A series of novel enantiopure isoxazolidine derivatives were synthesized and evaluated for their anticancer activities against three human cancer cell lines such as human breast carcinoma (MCF-7), human lung adenocarcinoma (A-549), and human ovarian carcinoma (SKOV3) by employing MTT assay. The synthesized compounds were characterized by NMR and elemental analysis. Results revealed that all the synthesized compounds displayed significant inhibition towards the tested cell lines. Among them, 2g and 2f, which differ only by the presence of an ester group at the C-3 position and small EDG (methyl) at the C-5 position of the phenyl ring (2g), were the most active derivatives in attenuating the growth of the three cells in a dose-dependent manner. The IC50 for 2g were 17.7 ± 1 µM (MCF-7), 12.1 ± 1.1 µM (A-549), and 13.9 ± 0.7 µM (SKOV3), and for 2f were 9.7 ± 1.3µM (MCF-7), 9.7 ± 0.7µM (A-549), and 6.5 ± 0.9µM (SKOV3), respectively, which were comparable to the standard drug, doxorubicin. The enzymatic inhibition of 2f and 2g against EGFR afforded good inhibitory activity with IC50 of 0.298 ± 0.007 μM and 0.484 ± 0.01 µM, respectively, close to the positive control, Afatinib. Compound 2f arrested the cell cycle in the S phase in MCF-7 and SKOV3 cells, and in the G2/M phase in the A549 cell; however, 2g induced G0/G1 phase cell cycle arrest, and inhibited the progression of the three cancer cells, together with significant apoptotic effects. The docking study of compounds 2f and 2g into EGFR ATP-active site revealed that it fits nicely with good binding affinity. The pharmacokinetic and drug-likeness scores revealed notable lead-like properties. At 100 ns, the dynamic simulation investigation revealed high conformational stability in the EGFR binding cavity.
Collapse
Affiliation(s)
- Fahad Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Omer Elsamani
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Food Science and Technology, Faculty of Sciences, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Fahad Alhawday
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| |
Collapse
|
20
|
Li G, Li J, Wang W, Feng X, Yu X, Yuan S, Zhang W, Chen J, Hu C. Synthesis, In Vitro, and In Vivo Investigations of Pterostilbene-Tethered Analogues as Anti-Breast Cancer Candidates. Int J Mol Sci 2023; 24:11468. [PMID: 37511230 PMCID: PMC10380385 DOI: 10.3390/ijms241411468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pterostilbene has been found to be an active scaffold with anti-breast cancer (BC) action. In this study, fourteen pterostilbene-tethered analogues (2A-2N) were prepared and screened in vitro against MDA-MB-231 and MCF-7 cells. Meanwhile, their structures were characterized using 1H-NMR, 13C-NMR, and HRMS (ESI) spectroscopy techniques. Among them, analogue 2L displayed the most potent anti-proliferation effect on MDA-MB-231 (IC50 = 10.39 μM) and MCF-7 cells (IC50 = 11.73 μM). Furthermore, the meaningful structure-activity relationships suggested that the introduction of a saturated six-membered nitrogen heterocyclic ring into the side chain favored anti-BC capacity. Biological observations indicated that 2L could cause the typical morphological changes in apoptosis, namely an increase in reactive oxygen species level and a loss of mitochondrial membrane potential in BC cells. Importantly, 2L could induce mitochondrial-mediated apoptosis by regulating the expression of caspase-related proteins. Consistent with the results of our in vitro study, 2L apparently inhibited tumor growth in MDA-MB-231 xenograft mice without obvious toxicity. These findings revealed that 2L is expected to be a promising anti-BC lead compound that merits further investigations.
Collapse
Affiliation(s)
- Guoxun Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jian Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou 213164, China
| | - Wenqian Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiaoqing Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xingkang Yu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shuo Yuan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wei Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jialing Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Caijuan Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
21
|
Çapan İ, Hawash M, Jaradat N, Sert Y, Servi R, Koca İ. Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chem 2023; 17:60. [PMID: 37328860 DOI: 10.1186/s13065-023-00961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Material and Material Processing Technologies, Gazi University, Technical Sciences Vocational College, 06560, Ankara, Turkey.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine
| | - Yusuf Sert
- Yozgat Bozok University, Sorgun Vocational School, Yozgat, Turkey
| | - Refik Servi
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
22
|
Pachauri A, Chitme H, Visht S, Chidrawar V, Mohammed N, Abdel-Wahab BA, Khateeb MM, Habeeb MS, Orabi MAA, Bakir MB. Permeability-Enhanced Liposomal Emulgel Formulation of 5-Fluorouracil for the Treatment of Skin Cancer. Gels 2023; 9:gels9030209. [PMID: 36975657 PMCID: PMC10048565 DOI: 10.3390/gels9030209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The plain 5-fluorouracil (5FU) formulations available in the market are associated with adverse effects such as skin irritation, pruritus, redness, blisters, allergy, and dryness on the site of application. The objective of the present study was to develop a liposomal emulgel of 5FU with increased skin permeability and efficacy using clove oil and eucalyptus oil along with pharmaceutically acceptable carriers, excipients, stabilizers, binders, and additives. A series of seven formulations were developed and evaluated for their entrapment efficiency, in vitro release profile, and cumulative drug release profile. The compatibility of drugs and excipients, as confirmed by FTIR (fourier-transform infrared spectroscopy) and DSC (differential scanning calorimetry) as well as SEM (scanning electron microscopy) and TEM (transmission electron microscopy) studies, revealed that the size and shape of liposomes are smooth and spherical, and the liposomes are non-aggregated. To understand their efficacy, the optimized formulations were evaluated for cytotoxicity using B16-F10 mouse skin melanoma cells. The eucalyptus oil and clove oil-containing preparation significantly produced a cytotoxic effect against a melanoma cell line. The addition of clove oil and eucalyptus oil increased the efficacy of the formulation by improving skin permeability and reducing the dose required for the anti-skin cancer activity.
Collapse
Affiliation(s)
- Ankur Pachauri
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
- Correspondence: ; Tel.: +91-135-7144000
| | - Sharad Visht
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Vijay Chidrawar
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Nawaj Mohammed
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Masood Medleri Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | | | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Marwa B. Bakir
- Department of Pharmacology, College of Medicine, Najran University, Najran P.O. Box 1988, Saudi Arabia
| |
Collapse
|
23
|
It Takes Two to Tango, Part II: Synthesis of A-Ring Functionalised Quinones Containing Two Redox-Active Centres with Antitumour Activities. Molecules 2023; 28:molecules28052222. [PMID: 36903471 PMCID: PMC10005332 DOI: 10.3390/molecules28052222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
In 2021, our research group published the prominent anticancer activity achieved through the successful combination of two redox centres (ortho-quinone/para-quinone or quinone/selenium-containing triazole) through a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The combination of two naphthoquinoidal substrates towards a synergetic product was indicated, but not fully explored. Herein, we report the synthesis of 15 new quinone-based derivatives prepared from click chemistry reactions and their subsequent evaluation against nine cancer cell lines and the murine fibroblast line L929. Our strategy was based on the modification of the A-ring of para-naphthoquinones and subsequent conjugation with different ortho-quinoidal moieties. As anticipated, our study identified several compounds with IC50 values below 0.5 µM in tumour cell lines. Some of the compounds described here also exhibited an excellent selectivity index and low cytotoxicity on L929, the control cell line. The antitumour evaluation of the compounds separately and in their conjugated form proved that the activity is strongly enhanced in the derivatives containing two redox centres. Thus, our study confirms the efficiency of using A-ring functionalized para-quinones coupled with ortho-quinones to obtain a diverse range of two redox centre compounds with potential applications against cancer cell lines. Here as well, it literally takes two for an efficient tango!
Collapse
|
24
|
El Abbouchi A, El Brahmi N, Hiebel MA, Ghammaz H, El Fahime E, Bignon J, Guillaumet G, Suzenet F, El Kazzouli S. Improvement of the Chemical Reactivity of Michael Acceptor of Ethacrynic Acid Correlates with Antiproliferative Activities. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020910. [PMID: 36677966 PMCID: PMC9865193 DOI: 10.3390/molecules28020910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
The present study aims to report the design, synthesis, and biological activity of new ethacrynic acid (EA) analogs (6-10) obtained by the double modulation of the carboxylic acid moiety and the aromatic ring with the aim to increase the chemical reactivity of Michael acceptor of EA. All obtained compounds were characterized by 1H and 13C NMR, IR, and high-resolution mass spectrometry. The antiproliferative activity was evaluated in vitro using MMT test, in a first step, against HL60 cell line and in a second step, on a panel of human cancer cell lines such as HCT116, A549, MCF7, PC3, U87-MG, and SKOV3, and normal cell line MRC5 in comparison with positive control doxorubicin. Among all the tested compounds, the product 8 containing a propargyl and a hydroxyl groups, allowing an intramolecular hydrogen bond with the keto group of EA, exhibited a pronounced and selective activity in a nanomolar range against HL60, A549, PC3, and MCF7 with IC50 values of 15, 41.2, 68.7, and 61.5 nM, respectively. Compound 8 also showed a good selectivity index (SI) against HL60 and moderate SI against the other three human cancer cells (A549, PC3, and MCF7). The study of the structure-activity relationship showed that both modifications of the carboxylic group and the introduction of an intramolecular hydrogen bond are highly required to improve the antiproliferative activities. The molecular modeling studies of compound 8 revealed that it favorably binds to the glutathione S-transferase active site, which may explain its interesting anticancer activity. These new compounds have potential to be developed as novel therapeutic agents against various cancer types.
Collapse
Affiliation(s)
- Abdelmoula El Abbouchi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orléans, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orléans, France
| | - Hamza Ghammaz
- Centre National de la Recherche Scientifique et Technique (CNRST), Angle Avenues des FAR et Allal El Fassi, Hay Ryad, Rabat 10102, Morocco
| | - Elmostafa El Fahime
- Centre National de la Recherche Scientifique et Technique (CNRST), Angle Avenues des FAR et Allal El Fassi, Hay Ryad, Rabat 10102, Morocco
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Gérald Guillaumet
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orléans, France
- Correspondence: (G.G.); (F.S.); (S.E.K.)
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orléans, France
- Correspondence: (G.G.); (F.S.); (S.E.K.)
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
- Correspondence: (G.G.); (F.S.); (S.E.K.)
| |
Collapse
|
25
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
26
|
PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238295. [PMID: 36500387 PMCID: PMC9737185 DOI: 10.3390/molecules27238295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.
Collapse
|
27
|
Yegireddy M, Nadoor P, Rao S, Hanumanthu PB, Rajashekaraiah R, Ramachandrappa SC, Halemani GM, Mannem S, Prasad TNVKV, Ubaradka S. Chitosan Encapsulated Meloxicam Nanoparticles for Sustained Drug Delivery Applications: Preparation, Characterization, and Pharmacokinetics in Wistar Rats. Molecules 2022; 27:7312. [PMID: 36364138 PMCID: PMC9658985 DOI: 10.3390/molecules27217312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 08/19/2023] Open
Abstract
Meloxicam (MLX) is currently used in the therapeutic management of both acute and chronic inflammatory disorders such as pain, injuries, osteoarthritis, and rheumatoid arthritis in both humans and animals. Gastrointestinal toxicity and occasional renal toxicity were observed in patients taking it for a long-term period. Meloxicam's late attainment of peak plasma concentration results in a slow onset of action. The goal of the current study was to prepare and characterize chitosan encapsulated meloxicam nanoparticles (CEMNPs) with high bioavailability and less gastro intestinal toxicity in order to prevent such issues. The size of the prepared CEMNPs was approximately 110-220 nm with a zetapotential of +39.9 mV and polydispersity index of 0.268, suggesting that they were uniformly dispersed nanoparticles. The FTIR and UV-Vis spectroscopy have confirmed the presence of MLX in the prepared CEMNPs. The pharmacokinetics have been studied with three groups of male Wistar rats receiving either of the treatments, viz., 4 mg·kg-1 of MLX and 1 or 4 mg·kg-1 of CEMNPs. Plasma samples were collected until 48 h post administration, and concentrations of MLX were quantified by using reverse (C18) phase HPLC. Non-compartmental analysis was applied to determine pharmacokinetic variables. Upon oral administration, the maximum concentration (Cmax) was reached in 4 h for CEMNPs and 6 h for MLX. The mean area under the plasma MLX concentration-time curve from 'zero' to infinity (AUC0-∞), half-life (t1/2β), and mean resident time (MRT) of 1 mg·kg-1 of CEMNPs was 1.4-, 2-, and 1.8-fold greater than 4 mg·kg-1 of MLX. The prepared CEMNPs demonstrated quicker absorption and prolonged release along with a significant improvement in the bioavailability of MLX, paving a prospective path for the development of drugs with enhanced bioavailability with less side effects.
Collapse
Affiliation(s)
- Muralidhar Yegireddy
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Prakash Nadoor
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Veterinary College, Vinobanagar, Shivamogga 577 204, Karnataka, India
| | - Suguna Rao
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pathology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
| | - Pavithra Balekatte Hanumanthu
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
| | - Santhosh Chickankandahalli Ramachandrappa
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Gadag 582 101, Karnataka, India
| | - Girish Mallikarjun Halemani
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Anatomy, Veterinary College, Hebbal, Bengaluru 560 024, Karnataka, India
| | - Sravanthi Mannem
- State Level Diagnostic Laboratory, Sri Venkateswara Veterinary University, Tirupati 517 502, Andhra Pradesh, India
| | | | - Sunilchandra Ubaradka
- Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar 585 401, Karnataka, India
- Department of Veterinary Pharmacology and Toxicology, Vinobanagar, Shivamogga 577 204, Karnataka, India
| |
Collapse
|
28
|
Nohira N, Shinji S, Nakamura S, Nihashi Y, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells. Biomedicines 2022; 10:2691. [PMID: 36359210 PMCID: PMC9687923 DOI: 10.3390/biomedicines10112691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10-30 μM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 μM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10-30 μM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.
Collapse
Affiliation(s)
- Naoki Nohira
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
29
|
Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175721. [PMID: 36080486 PMCID: PMC9457828 DOI: 10.3390/molecules27175721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/21/2022]
Abstract
Pelargonium graveolens leaves are widely used in traditional medicine for relieving some cardiovascular, dental, gastrointestinal, and respiratory disorders. They are also used as food and tea additives in Palestine and many other countries. Consequently, this investigation aimed to describe the chemical markers, cytotoxic, antioxidant, antimicrobial, metabolic, and cyclooxygenase (COX) enzymes inhibitory characteristics of P. graveolens essential oil (PGEO) from Palestine utilizing reference methods. There were 70 chemicals found in the GCMS analysis, and oxygenated terpenoids were the most abundant group of the total PGEO. Citronellol (24.44%), citronellyl formate (15.63%), γ-eudesmol (7.60%), and iso-menthone (7.66%) were the dominant chemical markers. The EO displayed strong antioxidant activity (IC50 = 3.88 ± 0.45 µg/mL) and weak lipase and α-amylase suppressant effects. Notably, the PGEO displayed high α-glucosidase inhibitory efficacy compared with Acarbose, with IC50 doses of 52.44 ± 0.29 and 37.15 ± 0.33 µg/mL, respectively. PGEO remarkably repressed the growth of methicillin-resistant Staphylococcus aureus (MRSA), even more than Ampicillin and Ciprofloxacin, and strongly inhibited Candida albicans compared with Fluconazole. The highest cytotoxic effect of the PGEO was noticed against MCF-7, followed by Hep3B and HeLa cancer cells, with IC50 doses of 32.71 ± 1.25, 40.71 ± 1.89, and 315.19 ± 20.5 µg/mL, respectively, compared with doxorubicin. Moreover, the screened EO demonstrated selective inhibitory activity against COX-1 (IC50 = 14.03 µg/mL). Additionally, PGEO showed a weak suppressant effect on COX-2 (IC50 = 275.97 µg/mL). The current research can be considered the most comprehensive investigation of the chemical and pharmacological characterization of the PGEO. The results obtained in this study demonstrate, without doubt, that this plant represents a rich source of bioactive substances that can be further investigated and authenticated for their medicinal potential.
Collapse
|
30
|
Salem SS, Hashem AH, Sallam AAM, Doghish AS, Al-Askar AA, Arishi AA, Shehabeldine AM. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers (Basel) 2022; 14:polym14163352. [PMID: 36015608 PMCID: PMC9412901 DOI: 10.3390/polym14163352] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional cancer treatments include surgery, radiation, and chemotherapy. According to medical sources, chemotherapy is still the primary method for curing or treating cancer today and has been a major contributor to the recent decline in cancer mortality. Nanocomposites based on polymers and metal nanoparticles have recently received the attention of researchers. In the current study, a nanocomposite was fabricated based on carboxymethyl cellulose and silver nanoparticles (CMC-AgNPs) and their antibacterial, antifungal, and anticancer activities were evaluated. The antibacterial results revealed that CMC-AgNPs have promising antibacterial activity against Gram-negative (Klebsiella oxytoca and Escherichia coli) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). Moreover, CMC-AgNPs exhibited antifungal activity against filamentous fungi such as Aspergillus fumigatus, A. niger, and A. terreus. Concerning the HepG2 hepatocellular cancer cell line, the lowest IC50 values (7.9 ± 0.41 µg/mL) were recorded for CMC-AgNPs, suggesting a strong cytotoxic effect on liver cancer cells. As a result, our findings suggest that the antitumor effect of these CMC-Ag nanoparticles is due to the induction of apoptosis and necrosis in hepatic cancer cells via increased caspase-8 and -9 activities and diminished levels of VEGFR-2. In conclusion, CMC-AgNPs exhibited antibacterial, antifungal, and anticancer activities, which can be used in the pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| | - Al-Aliaa M. Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Cairo, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amr A. Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| |
Collapse
|