1
|
Sivalingam AM, Pandian A. Antihyperglycemic activity of polyphenolic metabolites and biosynthesized silver nanoparticles from Pedalium murex: Characterization and application of antioxidant and uropathogenic antimicrobial activities. Microb Pathog 2025; 205:107620. [PMID: 40287109 DOI: 10.1016/j.micpath.2025.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Pedalium murex commonly known as (large caltrops, bara gokhru) is a medicinal plant with potential therapeutic benefits. Hyperglycemia, a hallmark of diabetes, affects millions worldwide. Research on its leaf ethanol extract demonstrates potential for managing hyperglycemia in vitro and in vivo. Phytochemical analysis revealed secondary metabolites, including tannins, alkaloids, saponins, flavonoids, and polyphenols, with high levels of total flavonoids (287.5 ± 17.3 μg QEq./mg) and polyphenols (327.5 ± 17.2 μg QEq./mg). Scanning electron microscopy (SEM) confirmed the granular nature of synthesized silver nanoparticles (AgNPs) with a size range of 20-40 nm, while transmission electron microscopy (TEM) showed spherical AgNPs (20-50 nm). Energy-dispersive X-ray spectroscopy (EDX) identified silver (66.75 %), carbon (22.02 %), and oxygen (11.23 %) as the primary components. The extract effectively neutralized DPPH-free radicals (39.57 ± 4.77 %), while the AgNPs showed greater efficacy (68.23 ± 5.37 %). Superoxide radical (O2•-) reduction was significant for both the extract (59.33 ± 0.17 %) and AgNPs (38.73 ± 0.21 %), highlighting potent antioxidant properties. Hydroxyl radical (●OH) scavenging was higher for the extract (63.72 ± 0.17 %) than for AgNPs alone (36.71 ± 0.29 %). The AgNPs showed significant antimicrobial activity, with inhibition zones of 16.27 ± 0.18 mm against Staphylococcus aureus and 11.23 ± 0.17 mm against Candida albicans at 80 μg/mL. In toxicity studies, P. murex-AgNPs were well tolerated in mice. In hyperlipidemic mice, treatment with P. murex-AgNPs (350 mg/kg and 700 mg/kg) significantly reduced cholesterol, triglycerides, and LDL-c levels without affecting HDL-c. These findings provide valuable insights into the therapeutic potential of P. murex-AgNPs for the treatment of hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Arjun Pandian
- Centre for Applied Research, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Kumar R, Thakur N, Kumar S, Singh B. Designing of moringa gum-zwitterionic copolymer structure through supra-molecular and covalent interactions for biomedical uses. Int J Biol Macromol 2025; 310:143211. [PMID: 40246100 DOI: 10.1016/j.ijbiomac.2025.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Recently, functional materials derived from carbohydrate polymers have gained significant attention for their clinical uses due to their inherent bioactivity and biocompatibility. Therefore, the primary focus of the present research was to design bioactive moringa gum (MOGUM)-based hydrogels through covalent and supra-molecular interactions for use in biomedical applications. The copolymeric hydrogels were prepared by crosslinking of zwitterionic polymers of 2-(methacryloyloxy)ethyl] dimethyl-(3-sulfoproyl) ammonium hydroxide (MEDSAH) and carbopol (CP) onto gum for their applications in hydrogel wound dressings (HWDR) and drug delivery (DD). These copolymers were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), solid state 13C nuclear magnetic resonance (13C NMR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Release of the encapsulated drug (minocycline) from hydrogels exhibited non-Fickian mechanism and the release profile was best described by zero order kinetic model. These HWDR were found to be blood compatible, mechanically stable, permeable to H2O and O2. The HWDR revealed muco-adhesiveness and required a detachment force 153.00 ± 6.00 mN for their separation from mucosal membrane. The antioxidant activity of dressing materials revealed 76.57 ± 1.91 % scavenging during the DPPH assay. The minocycline encapsulated HWDR elucidated antibacterial activity against P. aeruginosa, E. coli & S. aureus. These findings suggest that these hydrogels hold significant potential for application in DD systems.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India.
| |
Collapse
|
3
|
Malkawi R, Battah K, Alkhreisat M. Pharmaceutical Insights Into Ammi and Parsley: Evaluating Antioxidant Activity, Total Phenolic Content, and Kidney Stone Disintegration Properties. Adv Pharmacol Pharm Sci 2025; 2025:5522905. [PMID: 40018327 PMCID: PMC11867721 DOI: 10.1155/adpp/5522905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
This study investigated the pharmaceutical potential of extracts from Ammi visnaga (Ammi) and Petroselinum crispum (Parsley), specifically focusing on their antioxidant activity, total phenolic content, and efficacy in disintegrating calcium oxalate kidney stones. Ammi and Parsley extracts, known for their traditional medicinal uses, contain bioactive compounds with significant antioxidant properties that have attracted attention in pharmaceutical research. Oxidative stress, a key factor in various physiological disorders, underscores the importance of antioxidants in the mitigation of cellular damage. Our investigation revealed concentration-dependent enhancements in antioxidant activity and total phenolic content in both Ammi and Parsley extracts, indicating their potential as natural antioxidant agents. Furthermore, both extracts were effective in reducing the size of calcium oxalate stones, with the Ammi extract demonstrating superior stone-disintegration properties. Dissolution studies have provided valuable insights into the release kinetics of phenolic compounds and antioxidant activity, suggesting sustained therapeutic potential. Overall, Ammi and Parsley extracts show promise in pharmaceutical development, offering alternative therapeutic avenues for managing oxidative stress-related conditions and kidney stone formation.
Collapse
Affiliation(s)
- Ruba Malkawi
- Department of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| | - Khairat Battah
- Department of Pathology, Microbiology and Forensic Medicine, Faculty of Medicine, Al-Balqa Applied University, Al Salt 19117, Jordan
| | - Mohammad Alkhreisat
- Department of Special Surgery, Faculty of Medicine, Al-Balqa Applied University, Al Salt 19117, Jordan
| |
Collapse
|
4
|
Acquaticci L, Santanatoglia A, Vittadini E, Beghelli D, La Terza A, Zengin G, Caprioli G. Quantification of Bioactive Compounds by HPLC-ESI-MS/MS and Evaluation of Antioxidant and Enzyme Inhibitory Activities of Acorn Flour Extracts. Antioxidants (Basel) 2024; 13:1526. [PMID: 39765854 PMCID: PMC11727278 DOI: 10.3390/antiox13121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
This study provides the first comprehensive evaluation of the bioactive potential of acorn flour extracts (Quercus robur, Fagaceae) prepared at different temperatures (20, 60, 80 and 100 °C), focusing on polyphenolic content, antioxidant properties and enzyme inhibitory activities. Through HPLC-ESI-MS/MS analysis, 36 bioactive compounds were identified, with the extract at 60 °C showing the highest concentrations of key polyphenols, notably gallic acid (210,008.9 mg·kg-1) and ellagic acid (45,469.6 mg·kg-1). This extract also exhibited a high antioxidant activity and significant inhibition of glucosidase and acetylcholinesterase, suggesting potential benefits for diabetes management and neuroprotection. The results indicate that extraction temperature affects bioactivity, with the 60 °C extract standing out as a promising candidate for nutraceutical, pharmaceutical, and cosmeceutical applications due to its rich polyphenol profile and potent biological properties.
Collapse
Affiliation(s)
- Laura Acquaticci
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (L.A.); (A.S.)
| | - Agnese Santanatoglia
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (L.A.); (A.S.)
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (E.V.); (D.B.); (A.L.T.)
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (E.V.); (D.B.); (A.L.T.)
| | - Antonietta La Terza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (E.V.); (D.B.); (A.L.T.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (L.A.); (A.S.)
| |
Collapse
|
5
|
Duong TH, Tran TMD, To PM, Phan NHN, Nguyen TP, Le HT, Sichaem J. Potential Antioxidant Compounds from the Spores of Dicranopteris linearis and the Branches of Averrhoa bilimbi. Antioxidants (Basel) 2024; 13:1319. [PMID: 39594460 PMCID: PMC11591059 DOI: 10.3390/antiox13111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This study focused on bio-guided isolation based on antioxidant activities from Dicranopteris linearis spores and Averrhoa bilimbi branches. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities of the extracts were determined. For D. linearis spores, the ethyl acetate (EA) extract exhibited the highest TPC (120.13 ± 0.04 mg GAE/g) and TFC (21.94 ± 0.30 mg QE/g), along with strong DPPH antioxidant activity (96.3 ± 0.3% inhibition, IC50 of 39.4 ± 0.3 µg/mL). For A. bilimbi branches, the n-hexane-ethyl acetate (HEA) extract showed the highest TPC (165.21 ± 0.24 mg GAE/g) and TFC (26.20 ± 0.01 mg QE/g), with significant DPPH antioxidant activity (89.6 ± 0.7% inhibition, IC50 of 39.7 ± 1.9 µg/mL). Phytochemical investigation led to the identification of ten compounds (D1-D10) from D. linearis spores and twelve compounds (A1-A12) from A. bilimbi branches. Notably, compound A1 was identified as a new natural compound. The chemical structures were elucidated through NMR spectroscopy and comparison with existing literature. The antioxidant activities of selected compounds (D3-D5, D8-D10, and A1-A11) were evaluated using DPPH and ABTS free radical scavenging assays. Among them, compound A3 exhibited the strongest antioxidant activities (IC50 of 7.1 ± 0.1 µg/mL for DPPH and 14.8 ± 0.1 for ABTS, respectively). The results of this study highlight the potential of D. linearis and A. bilimbi for use in natural product-based antioxidant applications.
Collapse
Affiliation(s)
- Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (P.-M.T.)
| | - Thi-Minh-Dinh Tran
- Department of Biology, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam;
| | - Phuong-Mai To
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; (T.-H.D.); (P.-M.T.)
| | - Nguyen-Hong-Nhi Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Vietnam; (N.-H.-N.P.); (T.-P.N.)
| | - Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Vietnam; (N.-H.-N.P.); (T.-P.N.)
| | - Huong Thuy Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang 52190, Thailand
| |
Collapse
|
6
|
Muchimapura S, Thukham-mee W, Tong-un T, Sangartit W, Phuthong S. Effects of a Functional Cone Mushroom ( Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3616. [PMID: 39519449 PMCID: PMC11548036 DOI: 10.3390/nu16213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Due to the rising prevalence of cognitive impairment in the middle-aged and elderly population, combined with consumer demand for functional foods to improve health and well-being. Objective: This study aimed to formulate a functional cone mushroom (Termitomyces fuliginosus) (FCM) protein snack bar and evaluate its amino acid profile, phytochemical contents, biological activity and impact on cognitive function. Methods: A total of 26 middle-aged male and female participants were randomized and divided into placebo, FCM1 and FCM2 groups. Continuous consumption was performed for 6 weeks. Demographic data, body composition, cognitive function and memory were evaluated at baseline and at the end of the study period (6 weeks). Results: The event-related potential (ERP) analysis results showed a significant increase in N100 and P300 amplitude at the Fz location in participants who consumed the functional cone mushroom protein snack bar at a dose of 1 g compared to the placebo group (p = 0.015). Additionally, subjects who consumed the functional cone mushroom protein snack bar at a dose of 2 g showed a significantly increased P300 amplitude and percent accuracy of numeric working memory (p = 0.048) compared to those in the placebo group (p = 0.044). The possible underlying mechanism may involve AChE and MAO suppression activity alongside antioxidant activity. Conclusions: These data suggest that FCM can improve cognitive function and memory and may be considered for use in natural supplementation products with possible health benefits.
Collapse
Affiliation(s)
- Supaporn Muchimapura
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Yitagesu G, Leku DT, Seyume AM, Workneh GA. Biosynthesis of TiO 2/CuO and Its Application for the Photocatalytic Removal of the Methylene Blue Dye. ACS OMEGA 2024; 9:41301-41313. [PMID: 39398126 PMCID: PMC11465261 DOI: 10.1021/acsomega.4c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
In this study, we successfully synthesized a TiO2/CuO nanocomposite using the aqueous extract of Impatiens tinctoria A.rich. leaf extract as a capping, reducing, and stabilizing agent for the first time in an environmentally friendly, low-cost, straightforward, and sustainable technique. Numerous characterization techniques such as ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), photoluminescence (PL), Raman spectroscopy, Fourier-transform infrared (FTIR), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and high resolution TEM (HRTEM) were used to characterize the obtained TiO2/CuO nanocomposite. XRD verified that the TiO2/CuO nanocomposite has an average crystallite size of about 21 nm. The TEM result revealed an average particle size of 29 nm for the biosynthesized TiO2/CuO NC. The HRTEM analysis showed the presence of polycrystalline structures with the predominant lattice fringes 0.352 and 0.19 which were attributed to anatase phase TiO2 in the crystal plane of (101) and (200), respectively. The lattice fringes for monoclinic CuO were observed with values of 0.213 and 0.252 for the lattice planes of (111) and (111̅), respectively. The photoluminescence spectroscopic analysis revealed that the TiO2/CuO NC showed the lowest intensity compared to the pristine TiO2 and CuO indicating the reduction of exciton recombination in the case of the TiO2/CuO NC. The BET analysis showcased the formation of mesoporous materials with a surface area of 87.5 m2/g. The photocatalytic degradation performance of the biosynthesized TiO2, CuO, and TiO2/CuO nanomaterials against the potentially harmful MB dye was tested using the light source of a 150 tungsten-halogen lamp with a wavelength range of 360-2800 nm. The factors affecting photodegradation efficiencies like catalyst dose (20 mg), dye concentration(15 ppm), pH (9), and reaction time (90 min) were optimized for the degradation of the MB dye. The TiO2/CuO catalyst showed the highest degradation efficiency of 99% under the optimized conditions. The degradation rate of the MB dye in the presence of the TiO2/CuO NC was evaluated and found to be fitted to the pseudo-first-order kinetics with a rate constant of 0.03 min-1. The reusability test of the TiO2/CuO catalyst showed its good stability.
Collapse
Affiliation(s)
- Getye
Behailu Yitagesu
- Department
of Applied Chemistry, School of Applied and Natural Sciences, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Dereje Tsegaye Leku
- Department
of Applied Chemistry, School of Applied and Natural Sciences, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Abebaw Matebu Seyume
- Department
of Industrial Chemistry, Addis Ababa Science
and Technology University, P.O. Box 16417 Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O.
Box 16417 Addis Ababa, Ethiopia
| | - Getachew Adam Workneh
- Department
of Industrial Chemistry, Addis Ababa Science
and Technology University, P.O. Box 16417 Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O.
Box 16417 Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Dutta A, Saxena R, Dwivedi V, Venkidasamy B, Mishra RK. Evaluation of oxidative stress, biochemical parameters and in silico markers in different pea accessions in response to drought stress. PLANT CELL REPORTS 2024; 43:251. [PMID: 39367961 DOI: 10.1007/s00299-024-03311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions. Drought induces oxidative stress in plants, leading to the accumulation of high concentrations of reactive oxygen species that damage cell structures and vital functioning of cells. The primary objective was to identify stress-tolerant plants by evaluating different morphological and biochemical attributes, such as biomass, chlorophyll content, relative water content, ascorbate peroxidase (APX), superoxide dismutase (SOD), and DPPH scavenging activity, as well as protein, proline, and phenolic content. Our study revealed that pea accessions (ARG6 and ARG10) were more resilient to drought stress as their chlorophyll, relative water, protein, and proline contents increased under drought conditions. Antioxidant enzymes, such as SOD, APX, and DPPH activities, also increased under drought stress in ARG10 and ARG6, suggesting that these accessions could bolster the antioxidant defense system in response to drought stress. Based on putative (cellular, biological, and metabolic) functions, ten EST-SSR primers were selected for the amplification study. Three EST-SSR primers, AUMP06_110, AUMP18_300, and AUMP31_250, were used for ARG6 and ARG10. Based on the correlation between the presence or absence of specific EST-SSR alleles, various physiological and morphological traits, and DPPH scavenging activity, both ARG10 and ARG6 demonstrated resistance to drought stress.
Collapse
Affiliation(s)
- Anamika Dutta
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Raghvendra Saxena
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India.
| | | |
Collapse
|
9
|
Gaur PK, Mishra R, Kaushik R, Verma KK, Kumar N, Lata K. Polyherbal Antiacne Gel: In Vitro Antibacterial Activity and Efficacy Evaluation Against Cutibacterium acnes. Assay Drug Dev Technol 2024; 22:373-386. [PMID: 39253845 DOI: 10.1089/adt.2024.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Acne is a common skin condition that affects people of all ages and can lead to significant physical and psychological distress. The first line of action against acne is topical products, though the most effective are topical antibiotics. In such a scenario, the development of effective and safe herbal formulations for the treatment of acne is of great importance. Rubia cordifolia, Aloe barbadensis, and Allium cepa extracts are rich sources of bioactive metabolites and are safe compared with antibiotics, in addition to being cost effective, sustainable, and eco-friendly. Also, their combination has not been studied for treating acne, and their potential benefits need to be investigated. The present study aimed to develop an effective polyherbal gel formulation of R. cordifolia, A. barbadensis, and A. cepa combined extract for treating acne and validate its effect with reference to conventional antibiotics. Plant materials were extracted in water by the reflux method, and phytochemical analysis was done for flavonoid, anthraquinone, and phenolic contents. The combined extract (R. cordifolia, A. barbadensis, and A. cepa extracts) was formulated in gel. The selected polyherbal gel was evaluated for in vitro antibacterial activity using agar well diffusion against Cutibacterium acnes (P. acnes) culture. Phytochemical analysis of the composite extract revealed the rich presence of flavonoids, phenolics, and anthraquinones. The polyherbal gels showed good physicochemical properties; however, FCEG-4 was selected for further studies. It was found to be effective against C. acnes (MTCC 1951) in agar well diffusion, as it showed a similar zone of inhibition as that of standard. Also, during in vivo studies, FCEG-4 showed comparable efficacy with clindamycin gel. It was concluded from the study that composite extracts incorporated in an aqueous-based gel system were effective in topical therapy of mild acne vulgaris, showing similar efficacy to that of clindamycin cream.
Collapse
Affiliation(s)
| | - Rosaline Mishra
- Metro College of Health Sciences & Research, Greater Noida, India
| | - Rahul Kaushik
- Metro College of Health Sciences & Research, Greater Noida, India
| | | | - Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut, India
| | - Kank Lata
- Metro College of Health Sciences & Research, Greater Noida, India
| |
Collapse
|
10
|
Beere V, Choudhary K, Bisht P, Rai A, Kumar N. Prediction of molecular targets for antidepressant potential of hydroalcoholic extract of Tamarindus indica using network pharmacology approach and evaluating its efficacy in Chronic Unpredictable Mild Stress model in mice. 3 Biotech 2024; 14:232. [PMID: 39280801 PMCID: PMC11399486 DOI: 10.1007/s13205-024-04081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
The prevalence of psychological disorders has surged since the 1990s, posing a significant global health burden with depressed individuals averaging six lost hours per week and contributing to over 20% of all missed workdays. Current antidepressants, while effective for some, have limited efficacy, dietary restrictions, and adverse effects, including liver damage and hypertension. Natural remedies offer promising therapeutic potential with minimal side effects. Tamarindus indica (TI) is a plant that grows in the shape of a tree. Network pharmacology of TI revealed the key targets MAPK, D1-6, 5HT, DAT, MAO, COMT, PKA, PKC, AKT, and VMAT, which are linked to prominent key pathways such as dopaminergic and serotonergic. The cell viability assays on SH-Sy5y cells indicated a favourable safety profile with an IC50 of 573.99 µg/ml and further, the in vivo efficacy was observed through Chronic Unpredictable Mild Stress (CUMS) model in mice. The hydroalcoholic extract of TI demonstrated antidepressant effects, significantly reducing immobility time in the Tail Suspension Test (TST) and Forced Swim Test (FST). Additionally, locomotor activity, assessed via the Open Field Test (OFT), was significantly increased in the treatment group compared to CUMS mice. Biochemical analyses revealed elevated Brain Derived Neurotropic Factor (BDNF), decreased cortisol levels, and reduced catechol-O-methyltransferase (COMT) concentration in TI-treated (50 mg/kg) groups. These findings underscore the potential of TI as a natural antidepressant, offering a promising avenue for further therapeutic development in depression management. The current study did not evaluate the level of neurotransmitters in the brain, which will be evaluated in future studies.
Collapse
Affiliation(s)
- Vishnusai Beere
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Amita Rai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| |
Collapse
|
11
|
Soheili S, Dolatyar B, Adabi MR, Lotfollahi D, Shahrousvand M, Zahedi P, Seyedjafari E, Mohammadi-Rovshandeh J. Fabrication of fiber-particle structures by electrospinning/electrospray combination as an intrinsic antioxidant and oxygen-releasing wound dressing. J Mater Chem B 2024; 12:9074-9097. [PMID: 39171375 DOI: 10.1039/d4tb00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, we employed a combination of electrospinning and electrospray techniques to fabricate wound dressings with a particle-fiber structure, providing dual characteristics of oxygen-releasing and intrinsic antioxidant properties, simultaneously. The electrospun part of the dressing was prepared from a blend of polycaprolactone/gallic acid-grafted-gelatin (GA-g-GE), enabling intrinsic ROS scavenging. To the best of our knowledge, this is the first time that PCL/GA-g-GE was fabricated by electrospinning. Furthermore, polyvinyl pyrrolidone (PVP) microparticles, containing calcium peroxide nanoparticles (CNPs), were considered as the oxygen production agent through the electrospray part. The CNP content was 1% and 3% w/w of PVP while biopolymer:PCL was 10% w/w. The fabricated structures were characterized in terms of fiber/particle morphology, elemental analysis, oxygen release behavior, ROS inhibition capacity, and water contact angle assessments. The covalent bonding of gallic acid to gelatin was confirmed by 1H-NMR, UV spectroscopy, and FTIR. According to the SEM results, the morphology of the prepared PCL/biopolymer fibers was bead-free and with a uniform average diameter. The analysis of released oxygen showed that by increasing the weight percentage of CNPs from 1 to 3 wt%, the amount of released oxygen increased from 120 mmHg to 195 mmHg in 24 h, which remained almost constant until 72 h. The obtained DPPH assay results revealed that the introduction of GA-g-GE into the fibrous structure could significantly improve the antioxidant properties of wound dressing compared to the control group without CNPs and modified gelatine. In vitro, the fabricated wound dressings were evaluated in terms of biocompatibility and the potential of the dressing to protect human dermal fibroblasts under oxidative stress and hypoxia conditions by an MTT assay. The presence of GA-g-GE led to remarkable protection of the cells against oxidative stress and hypoxia conditions. In vivo studies revealed that the incorporation of intrinsic ROS inhibition and oxygen-releasing properties could significantly accelerate the wound closure rate during the experimental period (7, 14, and 21 days). Additionally, histopathological investigations in terms of H&E and Masson's trichrome staining showed that the incorporation of the two mentioned capabilities remarkably facilitated the wound-healing process.
Collapse
Affiliation(s)
- Shima Soheili
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Darya Lotfollahi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Gilan, Iran.
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
12
|
Bello AA, Katta A, Obaydo RH, Jazmati A. Phytochemical analysis and antioxidant efficacy of Chrysojasminum fruticans (L.) Banfi in Syrian flora. Heliyon 2024; 10:e37322. [PMID: 39296118 PMCID: PMC11408042 DOI: 10.1016/j.heliyon.2024.e37322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigates the antioxidant properties of Chrysojasminum fruticans (L.) Banfi through a series of assays to measure the total phenolic content (TPC), total flavonoid content (TFC), and free radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, to ensure that it can be used as an antioxidant drug. The TPC, TFC and DPPH assay were performed using spectrophotometric method, and in terms of a linear standard curve for gallic acid, Quercetin, Vitamin C respectively. The. aqueous extract of the flowers exhibited the highest concentration of phenolics, reaching 81.9 mg GAE (Gallic Acid Equivalent) per gram of (Dry Extract) DE, Conversely the ethanolic extract from the fruits demonstrated the lowest phenolic content, with a mere 0.249 (mg GAE/g DE). the aqueous flower extract demonstrated the highest flavonoid concentration, achieving an impressive 113.584 mg quercetin equivalents per gram of DE (mg QUE/g DE). In contrast, the methanolic fruit extract exhibited the lowest flavonoid concentration, measured at a mere 0.695 (mg QUE/g DE). Additionally, the methanolic flower extract demonstrated superior free radical scavenging activity, requiring only 0.348 mg/mL to inhibit 50 % of DPPH radicals, Conversely, the methanolic fruit extract exhibited the least antioxidant activity, as reflected by its highest IC50 value of 1.996 mg/mL. These results underscore Chrysojasminum fruticans (L.) Banfi potent antioxidant capacity and its established role in traditional medicine practices globally, and encourage to be included as a drug contributing to the treatment of many chronic diseases such as diabetes and cardiovascular diseases, after conducting the necessary clinical studies.
Collapse
Affiliation(s)
- Abdel Aleem Bello
- Department of Plant Biology, Faculty of Science, University of Aleppo, Aleppo, Syria
| | - Abdullah Katta
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
| | - Reem Hasan Obaydo
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Ebla Private University, Idlib, Syria
| | - Alaa Jazmati
- Department of Plant Biology, Faculty of Science, University of Aleppo, Aleppo, Syria
| |
Collapse
|
13
|
Akhter A, Shirazi JH, Shoaib khan HM, Hussain MD, Kazi M. Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. agrestis: A novel approach for enhanced skin permeability and antifungal activity. Heliyon 2024; 10:e35069. [PMID: 39170221 PMCID: PMC11336325 DOI: 10.1016/j.heliyon.2024.e35069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The utilization of phytoconstituents in skin care products has emerged as a notable trend due to their recognized safety and therapeutic efficacy. However, the challenge lies in improving the effective delivery of phytoconstituents to specific tissues, primarily attributed to their poor solubility and low permeability. This study endeavors to address this challenge by developing, optimizing and characterizing Cucumis melo var. agrestis (CME) extract loaded nanoemulsion gel (CME-NEG), aiming to enhance the skin permeability and antifungal activity. Herein, nanoemulsions encapsulating the plant extract were prepared using ultrasonication technique and were characterized for droplet size, zeta potential, polydispersity index (PDI) and entrapment efficiency. Further, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were conducted to characterize the optimized CME extract loaded nanoemulsion (CME-NE 3) formulation. The optimized formulation was blended with Carbopol 940 gel to develop CME-NEG, which was evaluated for release kinetics, in vitro permeation and in vitro antifungal activity. High performance liquid chromatography (HPLC) analysis confirmed the presence of gallic acid, chlorogenic acid, 4-Hydroxy benzoic acid (HB acid), kaempferol, caffeic acid and quercetin. Findings of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the ethanolic extract had highest antioxidant activity (88.88 %). The optimized formulation displayed smooth spherical nanodroplets with size of 175.5 ± 1.56 nm, zeta potential of -21.5 ± 0.12 mV, PDI of 0.192 ± 0.06, and highest entrapment efficiency (EE) of 91.35 ± 1.65 %. The release profile of CME-NE exhibited a controlled release characteristic and the release kinetic mechanism was best described by the Korsmeyer-Peppas (Kp) model. In a 24 h permeation study, it was observed that the in vitro permeation of CME-NEG was 58.63 %, significantly higher than that of CME extract loaded plain gel (CME-PG) with an enhancement ratio of 2.12. The prepared CME-NEG formulation also presented enhanced antifungal activity as compared to pure CME extract. In conclusion, the designed CME-NEG offers a promising topical drug delivery system with enhanced skin permeability and antifungal activity.
Collapse
Affiliation(s)
- Ambreen Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Haji Muhammad Shoaib khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Kumar R, Singh B. Functional network copolymeric hydrogels derived from moringa gum: Physiochemical, drug delivery and biomedical properties. Int J Biol Macromol 2024; 275:133352. [PMID: 38945716 DOI: 10.1016/j.ijbiomac.2024.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The article explores the synthesis of network hydrogels derived from moringa gum (MG) through a grafting reaction with poly (vinylsulfonic acid) and carbopol. These hydrogels are designed for use in drug delivery (DD) and wound hydrogels dressing (HYDR) applications. The copolymers were characterized by FESEM, EDX, AFM, FTIR, 13C NMR, XRD and DSC. Tetracycline release from hydrogel occurred gradually with a non-Fickian diffusion and was best described by the Hixson-Crowell kinetic model in artificial wound fluid. The HYDR demonstrated compatibility with blood, exhibited antioxidant properties and possessed tensile strength, in addition to their mucoadhesive characteristics. The copolymer dressings absorbed approximately 7 g of simulated fluid. The copolymers exhibited significant antioxidant activity, measuring at 84 % free radicals scavenging, during DPPH assay. These dressings demonstrated permeability to H2O and O2,. The hydrogel alone did not reveal antibacterial activities; however, when combined with antibiotic drug tetracycline, the dressings revealed notable antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The observed biomedical properties suggested that these hydrogels could serve as promising materials for drug delivery HYDR applications.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India.
| |
Collapse
|
15
|
Hasan N, Wazir NN, Samsudin MY, Syahmi Mohd Sanizam MM, Ahmad NM, Badrol Hisham NA, Yasin Y, Nik Masdek NR. Evaluation of phytoactive contents and antibacterial activities of green synthesised cerium oxide nanoparticles using Melastoma sp. leaf extract as the capping agent. Heliyon 2024; 10:e34558. [PMID: 39114060 PMCID: PMC11305328 DOI: 10.1016/j.heliyon.2024.e34558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Simple and green methods of developing nanoparticles (NPs) have attracted the attention of researchers. Literature on utilising leaf extract to prepare cerium oxide (CeO2 NPs) is scarce. The present study synthesised leaf-mediated-CeO2 NPs to produce nanopowders of controllable sizes for further applications. The study is the first to report the optimised parameters (pH 7, 5 g/150 mL concentration of the leaf extract, and 3 h of reaction time) of procuring CeO2 NPs using Melastoma sp. leaf extract as the capping agent with excellent properties. The absorbance of the NPs suspension obtained in this study was recorded at approximately 252 nm with Ultraviolet-Visible (UV-Vis) Spectroscopy. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM) were also utilised to characterise and confirm the CeO2 NPs prepared. The XRD spectra documented the purity of the NPs at specific diffraction patterns, while TEM revealed the spherical form of the NPs with a particle size of 16 nm. The formation of CeO2 NPs has been confirmed from the FTIR spectra procured, which exhibited a Ce-O peak at 555 nm. Phytochemical screening test and FT-IR analysis of leaf extract revealed the existence of flavonoids, terpenoids, sugars, saponins, quinones, and glycosides. The NPs suspensions of varying concentrations (control, 50, 100, 150, 200, and 250 μg/mL) were prepared and employed for evaluations against Gram-positive and -negative bacteria. Resultantly, CeO2 NPs demonstrated antibacterial activities against both bacteria types. The highest antibacterial activities were recorded against E. coli and K. pneumonia at 1.83 ± 0.137 and 1.83 ± 0.14 mm maximum inhibition zones, respectively, at 250 mg/uL of the NPs.
Collapse
Affiliation(s)
- Nor'Aishah Hasan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Nurul Natasha Wazir
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Muhamad Yusuf Samsudin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Muhammad Mirza Syahmi Mohd Sanizam
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Nor Monica Ahmad
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Nurul Atikah Badrol Hisham
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Yamin Yasin
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Nik Rozlin Nik Masdek
- School of Mechanical Engineering, College of Engineering, UniversitiTeknologi, MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
16
|
Prakulanon J, Duangsrisai S, Vajrodaya S, Thongchin T. Evaluation of phytochemical profile, and antioxidant, antidiabetic activities of indigenous Thai fruits. PeerJ 2024; 12:e17681. [PMID: 39011385 PMCID: PMC11249001 DOI: 10.7717/peerj.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Background This research aims to explore the phenolics identification, phenolics quantification, antioxidant and potential biofunctional properties of lesser-known Thai fruits and their potency to treat type 2 diabetes mellitus (T2DM). Including, Antidesma puncticulatum, Dillenia indica, Diospyros decandra, Elaeagnus latifolia, Flacourtia indica, Garcinia dulcis, Lepisanthes fruticose, Mimusops elengi, Muntingia calabura, Phyllanthus reticulatus, Streblus asper, Syzygium cumini, Syzygium malaccense, Willughbeia edulis and Schleichera oleosa were analyzed by their phenolic and flavonoid content. These fruits have received limited scientific attention, prompting an investigation into their health benefits, particularly their relevance to diabetes management. Methods The study utilized methanolic crude extracts to measure phenolic and flavonoid levels. Additionally, UHPLC-DAD was utilized to identify and quantify phenolics. The methanolic extracts were assessed for antioxidant and antidiabetic abilities, including α-glucosidase and α-amylase inhibition. Results and Conclusion The study highlighted S. cumini as a rich source of phenolic (980.42 ± 0.89 mg GAE/g and flavonoid (3.55 ± 0.02 mg QE/g) compounds with strong antioxidant activity (IC50 by DPPH; 3.00 ± 0.01 µg/ml, IC50 by ABTS; 40 ± 0.01 µg/ml, FRAP; 898.63 ± 0.02 mg TE/ml). Additionally, S. cumini exhibited promising antidiabetic effects (S. cumini IC50; 0.13 ± 0.01 mg/ml for α-glucosidase inhibition, 3.91 ± 0.05 mg/ml for α-amylase inhibition), compared to Acarbose (IC50; 0.86 ± 0.01 mg/ml for α-glucosidase inhibition, 0.39 ± 0.05 mg/ml for α-amylase inhibition). Remarkably, compounds like catechins, gallic acid, kaempferol, and ellagic acid were identified in various quantities.This study suggests that these fruits, packed with phenolics, hold the potential to be included in an anti-diabetic diet and even pharmaceutical applications due to their health-promoting properties.
Collapse
Affiliation(s)
| | | | | | - Thanawat Thongchin
- Department of Medical Science, Ministry of Public Health, Medicinal Plant Research Institute, Nonthaburi, Thailand
| |
Collapse
|
17
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
18
|
Strashok O, Ziemiańska M, Czaplicka M, Strashok V. Pre-treatment of Cucurbita maxima 'Hokkaido orange' by Viscum album aqueous extracts in search of allelopathic potential. Sci Rep 2024; 14:14927. [PMID: 38942921 PMCID: PMC11213859 DOI: 10.1038/s41598-024-65918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Viscum album L. (VA) is a unique plant with regard to its biological content. It is rich in many different metabolites with high potential in various spheres of human activity. We conducted a pilot study with 5 VA aqueous extracts of different host-tree species for pre-sowing treatment of Cucurbita maxima 'Hokkaido orange' seeds. We set the following objectives consisting of hypotheses (1) H01 is based on different effects of tested VA extracts depending on host trees and time of pre-treatment; (2) H02 focuses on the allopathic properties of the tested extracts affecting the plant growth and development by dose-response relationship; (3) A01 considers highly biologically active compounds of VA extracts also containing allelochemicals that can be used to regulate plant growth processes and create eco-friendly and resilient cities. The analysis of the stimulatory allelopathy index for 7 parameters demonstrates the direct effect of VA extracts in 62.3% of cases. The variability of the broad spectrum of effects of VA extracts of different host trees on the ontogenesis of C. maxima plants shows the presence of potential allelochemicals, resulting from the vital products of the host-parasite relationship. These effects are not fully explained by total polyphenol content and antioxidant activity as in previous studies of other mistletoe species. The authors consider this work a pilot study that expands the areas of application of VA extracts and knowledge about potential sources of allelochemicals.
Collapse
Affiliation(s)
- Oleksandra Strashok
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine.
| | - Monika Ziemiańska
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Czaplicka
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Vitalii Strashok
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
19
|
Saleh M, Salam MA, Capanoglu E. Encapsulation of Black Rice Bran Extract in a Stable Nanoemulsion: Effects of Thermal Treatment, Storage Conditions, and In Vitro Digestion. ACS OMEGA 2024; 9:12585-12595. [PMID: 38524420 PMCID: PMC10955592 DOI: 10.1021/acsomega.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to improve the dispersibility of phenolic compounds from black rice bran through the encapsulation process within nanoemulsion. The study focused on assessing the stability of the nanoemulsions, which were prepared using a combination of surfactants with distinct hydrophilic-lipophilic balance (HLB) values and sunflower oil under different thermal treatments and storage conditions. The study revealed a significant correlation between the mixed surfactant HLB value and the nanoemulsions properties, including average particle size, polydispersity index (PDI), and ζ-potential. Specifically, an increase in the HLB value was associated with a decrease in the initial average particle size. The encapsulated polyphenols exhibited remarkable stability over a storage period of up to 30 days at different temperatures with no significant changes observed in particle size or PDI. The study also investigated the impact of different ionic strengths (0.2, 0.5, and 1.00 mol L-1 NaCl) on the physical stability and antioxidant black rice bran extract nanoemulsion, and the results revealed that adding NaCl influenced the particle size and surface charge of the nanoemulsions. Total phenolic content and DPPH results demonstrated a significant impact of salt concentration on antioxidant properties, with varying trends observed among the HLB formulations. Furthermore, the behavior of the encapsulated extracts during digestion was examined, and their antioxidant activity was evaluated.
Collapse
Affiliation(s)
- Mohamed
N. Saleh
- Agricultural
Research Center, Food Technology Research
Institute, 3725004 Giza, Egypt
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | | | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| |
Collapse
|
20
|
Manasa V, Shubangi S, Jose A, Rame Gowda R, Serva Peddha M, Krishnaswamy K. Nanoencapsulation of apocynin and vanillic acid extracted from Picrorhiza kurroa Royle ex Benth plant roots and its characterisation. Heliyon 2024; 10:e26156. [PMID: 38390167 PMCID: PMC10881362 DOI: 10.1016/j.heliyon.2024.e26156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Picrorhiza kurroa Royle ex Benth (P.kurroa) is an important medicinal plant in the ayurvedic system for treating various liver and inflammatory conditions. The present study aimed to extract the phytocompounds from various extracts (Acetone, Chloroform, Ethanol, Ethyl acetate, Hexane, and Methanol) of P. kurroa. Further, the major phytocompounds were nano-encapsulated by PLGA (Poly-lactic-co-glycolic acid) method and characterized to enhance activity towards the target. The highest polyphenolic value was found to be 323.2 ± 16.6 and 316.3 ± 12.1 μg GAEq./mg in ethanolic and methanolic extracts. The highest flavonoid value was found to be 280.3 ± 19.8 and 300.8 ± 15.2 in ethanolic and methanolic extracts μg QEq./mg. P. kurroa exhibited DPPH radical scavenging with IC50 of 38.2 ± 1.1 and 43.7 ± 1.8 μg/mL and also showed potent ferric reducing power and total antioxidant activities. The major phytocompounds, such as apocynin (AP) and vanillic acid (VA), were confirmed using HPLC. Further, the nano-encapsulation of apocynin and vanillic acid successfully achieved by PLGA methods. The average particle size of nano-encapsulated apocynin, vanillic acid is 350 nm, 204.4 nm, and zeta potential were -25.3 mv and -11.2 mv. Nanoformulations showed an apocynin and vanillic acid encapsulation efficiency of 93.6% and 93.3%, respectively. SEM and AFM confirmed the round and smooth morphology of the nanoparticles. The results of XRD confirmed the amorphous nature of nanoformulations. FTIR technique confirm the presence of biomolecules inside the polymer. The thermal stability of nanoformulations determined by DSC analysis showed endothermic peak. The prepared and characterization apocynin, vanillic acid nanoparticles revealed their good quality index, suggesting that potential use in pharmacy and phytotherapy as a source of natural antioxidant.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| | - Sivathasan Shubangi
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| | - Anitta Jose
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| | - Rakshitha Rame Gowda
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| | - Krupashree Krishnaswamy
- Department of Biochemistry, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570 020, India
| |
Collapse
|
21
|
Yagi S, Nilofar N, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Koyuncu I, Seker F, Polat R, Supti SJ, Tasnim F, Al Dhaheri Y, Zengin G, Eid AH. Elucidating the chemical profile and biological studies of Verbascum diversifolium Hochst. extracts. Front Pharmacol 2024; 15:1333865. [PMID: 38352148 PMCID: PMC10862011 DOI: 10.3389/fphar.2024.1333865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 μg g-1) and p-coumaric acid (3044.01 μg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 μg g-1), caffeic acid (130.13 μg g-1) and 4-hydroxy benzoic acid (465.93 μg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 μg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Université de Lorraine, INRAE, LAE, Nancy, France
| | - Nilofar Nilofar
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici” “Gabriele d’Annunzio” University, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Türkiye
| | | | | | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Fatma Seker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Türkiye
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, Türkiye
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faria Tasnim
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Doha, Qatar
| |
Collapse
|
22
|
Uy NP, Kim H, Ku J, Lee S. Regional Variations in Peucedanum japonicum Antioxidants and Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2024; 13:377. [PMID: 38337910 PMCID: PMC10857489 DOI: 10.3390/plants13030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Peucedanum japonicum has long been a staple in East Asian cuisine. In the context of traditional medicine, various members of the Peucedanum genus have been investigated for potential medicinal properties. In laboratory settings, some compounds derived from this plant have shown antioxidant and anti-inflammatory properties-characteristics often associated with potential medicinal applications. This study aimed to determine which part of the P. japonicum plants cultivated on two Korean islands contains the most antioxidant compounds. This determination was made through assessments of total polyphenol content and total flavonoid content, coupled with evaluation of antioxidant activity via DPPH and ABTS assays. The results showed that the aerial parts contain a richer array of bioactive compounds and demonstrate superior antioxidant activity compared to their root counterparts in the plants from both islands. To characterize the phytochemicals underpinning this bioactivity, LC-MS/MS and HPLC analyses were carried out. These methods detected varying amounts of chlorogenic acid, peucedanol 7-O-glucoside, rutin, and peucedanol, with good separation and retention times. This study addresses the lack of research on the antioxidant activity of different parts of P. japonicum. The findings hold significance for traditional medicine, dietary supplements, and the development of functional foods. Understanding antioxidant distribution aids in the development of medicinal and nutritional applications, influences agricultural practices, and contributes to regional biodiversity-conservation efforts. The study's geographical scope provides insights into how location impacts the concentration of bioactive compounds in plants. Overall, the results contribute valuable data for future research in plant biology, biochemistry, and related fields.
Collapse
Affiliation(s)
- Neil Patrick Uy
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Jajung Ku
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| |
Collapse
|
23
|
Wong WY, Ismail SM, Phan CW, Tan YS. Size Matters: Influence of Particle Size on Antioxidant, β-Glucan, and Anti-Inflammatory Potential in Pleurotus floridanus (Agaricomycetes). Int J Med Mushrooms 2024; 26:17-31. [PMID: 39093399 DOI: 10.1615/intjmedmushrooms.2024054164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cellular damage resulting from elevated levels of free radicals can lead to persistent health issues. Pleurotus floridanus, an edible white oyster mushroom, is rich in β-glucans with potent antioxidant and anti-inflammatory properties. In this research, we examined the β-glucan content, total phenolic content, as well as antioxidant and anti-inflammatory potential of hot water extracts with varying particle sizes (< 75, 75-154, 154-300, and 300-600 μm) of both whole and sliced fruiting bodies of P. floridanus. The findings revealed that the в-glucan content increased as the particle size increased, although no significant differences were observed. Conversely, smaller particle sizes (< 75 μm) of whole and sliced fruiting bodies of P. floridanus exhibited higher phenolic content, 2,2-diphenyl-1-picryl-hy-drazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activity, and reducing ability compared with larger particle size (> 75 μm). Of the four samples (AW2, AW3, AS1, and AS2) with the highest antioxidant activity selected for anti-inflammatory assays, all demonstrated the ability to reduce nitric oxide and tumor necrosis factor-alpha levels, but did not enhance interleukin-10 expression in lipopolysaccharide-stimulated RAW264.7 cells. Interestingly, particle size < 75 to 300 μm did not appear to influence the anti-inflammatory activity, because no significant differences were observed among the particle sizes. Therefore, a particle size < 300 μm in a P. floridanus hot water extract could serve as a valuable source of antioxidant and anti-inflammatory compounds to counteract the harmful effects of free radicals.
Collapse
Affiliation(s)
- Wei-Yan Wong
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre, 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Tewari D, Bawari S, Mishra ST, Gupta P, M A, Cziáky Z, Jeko J, Lazarova I, Zengin G. Metabolomics-based pharmaceutical evaluation of different parts of Swertia chirayita (Roxb.) Buch.-Ham. ex C.B. Clarke from the western Himalayas. J Sep Sci 2024; 47:e2300795. [PMID: 38234031 DOI: 10.1002/jssc.202300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Swertia species are common ingredients in numerous herbal remedies. It is also used to treat a wide range of illnesses and possess diverse therapeutic activities. The aim of the study is to elucidate the comprehensive metabolomics profile of Swertia chirayita and the role of various extraction methods in the phytochemical compositions of the extracts of S. chirayita, and their antioxidant and enzyme inhibitory activities. Extraction of the stems, leaves, and flowering tops of S. chirayita was performed by maceration, infusion, and soxhlation using methanol and water as solvent. Extracts were subjected to phytochemical profiling by a liquid-chromatographic system. Antioxidant and enzyme inhibitory activity was carried out. The metabolomics profiling showed that a diverse range of specialized metabolites were present in the stems and leaves & flowering tops of the plant. All the extracts showed substantial antioxidant and enzyme inhibitory activities further confirmed by molecular docking studies. This study appraised the use of S. chirayita aerial parts as a potential antioxidant and its therapeutic application in various chronic illnesses including Alzheimer's disease, diabetes, and other skin-related disorders.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sweta Bawari
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh T Mishra
- Department of Career Services, Edvancer - a part of Global University System, India, Mumbai, India
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Aryalaxmi M
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyiregyhaza, Hungary
| | - József Jeko
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyiregyhaza, Hungary
| | - Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selçuk University, Konya, Turkey
| |
Collapse
|
25
|
Verma S, Suman P, Mandal S, Kumar R, Sahana N, Siddiqui N, Chakdar H. Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities. Braz J Microbiol 2023; 54:2671-2687. [PMID: 37688688 PMCID: PMC10689636 DOI: 10.1007/s42770-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 ± 0.65 μg GAEs g-1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 ± 0.002 mg QEs g-1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS•+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 ± 0.068%), followed by L. wollei K80 (97.22 ± 0.059%) while highest DPPH• radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 ± 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy.
Collapse
Affiliation(s)
- Shaloo Verma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
26
|
Veeramuthu K, Ahuja V, Annadurai P, Gideon DA, Sundarrajan B, Rusu ME, Annadurai V, Dhandayuthapani K. Chemical Profiling and Biological Activity of Psydrax dicoccos Gaertn. Molecules 2023; 28:7101. [PMID: 37894581 PMCID: PMC10609380 DOI: 10.3390/molecules28207101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is one of the deadliest diseases in women with a mortality rate of 6.6%. Adverse effects of synthetic drugs have directed research toward safer alternatives such as natural compounds. This study focused on Psydrax dicoccos Gaertn, an evergreen tree abundantly distributed in Tamil Nadu (India) for its possible application against breast cancer cells. P. dicoccos leaf methanol extract, found within a wide range of phytochemicals, demonstrated cytotoxic effects against MCF7 breast cancer cells at IC50 of 34 μg/mL. The extract exhibited good antioxidant activities against DPPH• (62%) and ABTS•+ (80%), as well as concentration-dependent (100-800 μg/mL) anti-inflammatory potential of 18-60% compared to standards, ascorbic acid or aspirin, respectively. Moreover, even low extract concentrations (10 μg/mL) inhibited the growth of Escherichia coli (1.9 ± 0.6 mm) and Pseudomonas aeruginosa (2.3 ± 0.7 mm), thus showing high antimicrobial and anti-inflammatory potential. GC-MS and LC-MS analyses identified 31 and 16 components, respectively, of which selected compounds were used to evaluate the interaction between key receptors (AKT-1, COX-2, and HER-2) of breast cancer based on binding energy (ΔG) and inhibition constant (Ki). The results indicate that bioactive compounds from P. dicoccos have potential against breast cancer cells, but further evaluations are needed.
Collapse
Affiliation(s)
- Kamaraj Veeramuthu
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
- University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Pushparaj Annadurai
- C.P.R. Environmental Education Center, 1 Eldams Road, Alwarpet, Chennai 600018, Tamil Nadu, India;
| | - Daniel A. Gideon
- Department of Biochemistry, St. Joseph College, Bangalore 560025, Karnataka, India;
| | - Balamurugan Sundarrajan
- Thanthai Periyar Government Arts and Science College (Autonomous), Bharathidasan University, Tiruchirappalli 620023, Tamil Nadu, India; (K.V.); (B.S.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vinothkanna Annadurai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Kandavel Dhandayuthapani
- Department of Botany, Government Arts College for Men, Nandanam, University of Madras, Chennai 600035, Tamil Nadu, India
| |
Collapse
|
27
|
Afrendi E, Prastya ME, Astuti RI, Wahyuni WT, Batubara I. Bioactivity of the Ethanol Extract of Clove ( Syzygium aromaticum) as Antitoxin. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:3245210. [PMID: 37780095 PMCID: PMC10539087 DOI: 10.1155/2023/3245210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/23/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023]
Abstract
Toxic compounds can induce the formation of free radicals (reactive oxygen species (ROS)) which can trigger damage and decrease cell viability. Clove (Syzygium aromaticum) contains phenolic compounds that are useful as antioxidants which can reduce ROS toxicity. However, little is known about the antitoxin activity of clove extract. Therefore, this study is aimed at determining the effect of ethanolic clove extract as an antitoxin agent against malachite green (MG) mutagen using the yeast Saccharomyces cerevisiae as a model. The methods used to analyze the ability of ethanolic clove extract as antitoxin were decolorization assay and cell viability test towards MG. The phenol contents of leaf and bud extract were 441.28 and 394.73 mg GAE g-1 extract, respectively. Clove leaf extract has strong antioxidant activity in vitro (IC50 9.29 ppm for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 29.57 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)). Liquid chromatography quadrupole-mass spectrometry (LC-MS/MS) analysis showed the presence of 4-O-caffeoylquinic acid and several other bioactive compounds, in which these compounds had bioactivity against toxic compound. The addition of extract reduced the ability of S. cerevisiae to decolorize malachite green but increased cell viability. Based on the data, clove leaf extract shows the potential antitoxin activity. This research should facilitate a preliminary study to investigate the antitoxin agent derived from cloves leaf extract. Further research to analyze the antitoxin mechanism of this extract in yeast model is interesting to do to provide a comprehensive insight into the potential antitoxin agents of clove leaf extract.
Collapse
Affiliation(s)
- Erwin Afrendi
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Rika Indri Astuti
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
| | - Wulan Tri Wahyuni
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Irmanida Batubara
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
28
|
Gidamo GH. Antioxidant activity and mineral content of Impatiens tinctoria A. Rich (Ensosila) tuber, an Ethiopian medicinal plant. Sci Rep 2023; 13:14998. [PMID: 37696977 PMCID: PMC10495335 DOI: 10.1038/s41598-023-41824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Recently, an interest has surged in incorporating extracts of medicinal plants as active ingredients in cosmetic formulations, highlighting the need to analyze medicinal plants of cosmetic interest for phytochemicals and bioactivities. The tuber of the Ethiopian medicinal plant Impatiens tinctoria A. Rich (Ensosila) is used to make traditional cosmetics. The aim of the study was to investigate the antioxidant and mineral content of the Impatiens tinctoria tuber. Water, ethanol, and methanol were used during the extraction process. High phenolic content was found in methanol extract (107.8 ± 0.025 µg/ml GAE) followed by water extract (92.4 ± 0.02 µg/ml GAE). High flavonoid content was also obtained in methanol extract (136.7 ± 0.04 µg/ml QE). Strong 2,2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity was recorded for methanol extract with IC50 value of 44.4 µg/ml, compared with ethanol extract (97.54 µg/ml) and water extracts (98.24 µg/ml). The lower IC50 value of methanolic extract demonstrated strong antioxidant activity. The three elements that were most prevalent in Impatiens tinctoria tuber out of the eight elements examined were K (170 ± 0.05 mg/100 g sample), Ca (87 ± 0.08 mg/100 g sample), and Mg (16 ± 0.01 mg/100 g sample). The phenolics, flavonoids, and minerals found in Impatiens tinctoria A. Rich (Ensosila) tuber may protect against oxidative stress-related skin damage and thus deserving attention for future applications in cosmetics formulations.
Collapse
Affiliation(s)
- Gizachew Haile Gidamo
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Department of Biotechnology, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. BOX 16417, Addis Ababa, Ethiopia.
| |
Collapse
|
29
|
Fincheira P, Espinoza J, Vera J, Berrios D, Nahuelcura J, Ruiz A, Quiroz A, Bustamante L, Cornejo P, Tortella G, Diez MC, Benavides-Mendoza A, Rubilar O. The Impact of 2-Ketones Released from Solid Lipid Nanoparticles on Growth Modulation and Antioxidant System of Lactuca sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3094. [PMID: 37687341 PMCID: PMC10490278 DOI: 10.3390/plants12173094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
2-Ketones are signal molecules reported as plant growth stimulators, but their applications in vegetables have yet to be achieved. Solid lipid nanoparticles (SLNs) emerge as a relevant nanocarrier to develop formulations for the controlled release of 2-ketones. In this sense, seedlings of Lactuca sativa exposed to 125, 375, and 500 µL L-1 of encapsulated 2-nonanone and 2-tridecanone into SLNs were evaluated under controlled conditions. SLNs evidenced a spherical shape with a size of 230 nm. A controlled release of encapsulated doses of 2-nonanone and 2-tridecanone was observed, where a greater release was observed as the encapsulated dose of the compound increased. Root development was strongly stimulated mainly by 2-tridecanone and leaf area (25-32%) by 2-nonanone. Chlorophyll content increased by 15.8% with exposure to 500 µL L-1 of 2-nonanone, and carotenoid concentration was maintained with 2-nonanone. Antioxidant capacity decreased (13-62.7%) in L. sativa treated with 2-ketones, but the total phenol concentration strongly increased in seedlings exposed to some doses of 2-ketones. 2-Tridecanone strongly modulates the enzymatic activities associated with the scavenging of H2O2 at intra- and extracellular levels. In conclusion, 2-ketones released from SLNs modulated the growth and the antioxidant system of L. sativa, depending on the dose released.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
| | - Javier Espinoza
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Joelis Vera
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
| | - Daniela Berrios
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Javiera Nahuelcura
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile;
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile;
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| | | | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| |
Collapse
|
30
|
Ganai SA, Mir MA, Shah BA, Qadri RA, Wani AH, Rajamanikandan S, Sabhat A. Evaluation of free radical quenching, anti-inflammatory activity together with anticancer potential of Lychnis coronaria and characterization of novel molecules from its extract through high resolution-liquid chromatography mass spectrometry coupled to structural biochemistry approach. J Biomol Struct Dyn 2023; 41:13041-13055. [PMID: 36749717 DOI: 10.1080/07391102.2023.2173296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Lychnis coronaria, a perennial (herbaceous) belonging to Caryophyllaceae has been traditionally used for treating different complications. However, the free radical scavenging effect, anti-inflammatory activity and anticancer property of methanolic extract of this plant has not been addressed. Most importantly, the chemical constituents present in the extract of Lychnis coronaria responsible for its diverse activities have not been scrutinized till date. Here, we used a complex approach for exploring the above mentioned effects of Lychnis coronaria. We performed rigorous phytochemical screening followed by quantification of tannins, phenols, alkaloids, quinones and sterols from the extract. Moreover we employed in vitro DPPH, ABTS , FRAP assay, albumin denaturation inhibition experiment, MTT assay, high resolution liquid chromatography mass spectrometry for measurng the reactive oxygen species quenching, anti-inflammatory and anticancer strength of Lychnis coronaria and for identifying the possible bioactive molecules. We identified two novel molecules panaxynol (polyacetylenic alcohol) and norharman (9H-Pyrido [3, 4-B] indole) following rigorous analysis of the extract. Following this, the binding affinity of these molecules was estimated using human cyclooxygenase (COX)-2 enzyme as target. Among the constituents of Lychnis coronaria norharman manifested stronger binding towards COX-2 compared to panaxynol. Most importantly, norharman showed high stability in the groove of COX2 as confirmed by molecular dynamics simulation. Collectively, Lychnis coronaria manifested free radical neutralizing, inflammation soothing and anticancer effect in concentration dependent manner and thus may serve as a promising phytotherapeutic in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities, FoA, SKUAST-K, Sopore, Jammu & Kashmir, India
| | - Mudasir A Mir
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Arif Hussain Wani
- Division of Horticulture, FoA, SKUAST-Kashmir, Srinagar, Jammu & Kashmir, India
| | - Sundararaj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital-BIHER, Chennai, Tamil Nadu, India
| | - Awquib Sabhat
- Department of Sericulture, Govt. Degree College for Women, Anantnag, Jammu & Kashmir, India
| |
Collapse
|
31
|
Murthy HN, Yadav GG, Kadapatti SS, Sandhya M. Phytochemical Analysis, GC-MS Identification of Bioactive Compounds, and In Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04343-x. [PMID: 36705843 DOI: 10.1007/s12010-023-04343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
The objective of this study was to evaluate phytochemicals present in the resin of Garcinia indica (Gamboge). We assessed the phytochemical constituents and antioxidant potential of acetone, methanol, and water extracts of resin. Acetone and methanol extracts contain a high amount of phenolics (183.90 and 182.85 mg GAE (gallic acid equivalent)/g) and flavonoids (72.65 and 71.33 mg QE (quercetin equivalent)/g), respectively, whereas methanol extract had the highest 7.62 mg AE (atropine equivalent)/g of alkaloid. GC-MS analysis of acetone extract identified 15 compounds and the majority of them were terpenoids, and 9,19-cyclo-25,26-epoxyergostan-3-ol,4,4,14-trimethyl-, acetate was the major compound among all terpenoids. Both acetone and methanol extracts showed excellent antioxidant activity as assessed by DPPH, total antioxidant activity, and FRAP assays. This experimental evidence suggests that G. indica resin is an excellent source of bioactive compounds and can be explored for its medicinal applications.
Collapse
Affiliation(s)
| | | | | | - M Sandhya
- Department of Botany, Karnatak University, Dharwad, 580003, India
| |
Collapse
|
32
|
Sakai K, Okada M, Yamaguchi S. Decolorization and detoxication of plant-based proteins using hydrogen peroxide and catalase. Sci Rep 2022; 12:22432. [PMID: 36575236 PMCID: PMC9794787 DOI: 10.1038/s41598-022-26883-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The gap between the current supply of meat and its predicted future demand is widening, increasing the need to produce plant-based meat analogs. Despite ongoing technical developments, one of the unresolved challenges of plant-based meat analogs is to safely and effectively decolor plant proteins that originally exhibit yellow-brown or strong brown color. This study aimed to develop an effective and safe decoloring system for soy-based protein products using food-grade hydrogen peroxide and catalase. First, soy-based protein isolate (PI) and textured vegetable protein (TVP) were treated with hydrogen peroxide, and then the residual hydrogen peroxide was degraded using catalase. This process caused notable decolorization of PI and TVP, and residual hydrogen peroxide was not detected in these products. These findings indicate that this process could safely and effectively decolorize soy-based proteins. Interestingly, this decoloring process enhanced the solubility, water- and oil-holding capacities, foaming capacity, and emulsifying stability of decolored soy-based PI. Additionally, cooking loss and juiciness of decolored TVP-based foods were improved compared to those of non-treated foods. These findings indicate that the decoloring process also enhances the physical properties of soy-based protein products.
Collapse
Affiliation(s)
- Kiyota Sakai
- grid.508898.40000 0004 1763 7331Amano Enzyme Inc., Innovation Center, Kakamigahara, Japan
| | - Masamichi Okada
- grid.508898.40000 0004 1763 7331Amano Enzyme Inc., Innovation Center, Kakamigahara, Japan
| | - Shotaro Yamaguchi
- grid.508898.40000 0004 1763 7331Amano Enzyme Inc., Innovation Center, Kakamigahara, Japan
| |
Collapse
|