1
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Fracchia-Durán AG, Ramos-Zambrano E, Márquez-Rocha FJ, Martínez-Ayala AL. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids. World J Microbiol Biotechnol 2023; 39:251. [PMID: 37442840 DOI: 10.1007/s11274-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Collapse
Affiliation(s)
- Ana Guadalupe Fracchia-Durán
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Emilia Ramos-Zambrano
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Facundo Joaquín Márquez-Rocha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Unidad Tabasco, 86691, Cunduacán, Tabasco, Mexico
| | - Alma Leticia Martínez-Ayala
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico.
| |
Collapse
|
3
|
Wang LR, Zhang ZX, Nong FT, Li J, Huang PW, Ma W, Zhao QY, Sun XM. Engineering the xylose metabolism in Schizochytrium sp. to improve the utilization of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:114. [PMID: 36289497 PMCID: PMC9609267 DOI: 10.1186/s13068-022-02215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Schizochytrium sp. is a heterotrophic, oil-producing microorganism that can efficiently produce lipids. However, the industrial production of bulk chemicals using Schizochytrium sp. is still not economically viable due to high-cost culture medium. Replacing glucose with cheap and renewable lignocellulose is a highly promising approach to reduce production costs, but Schizochytrium sp. cannot efficiently metabolize xylose, a major pentose in lignocellulosic biomass. RESULTS In order to improve the utilization of lignocellulose by Schizochytrium sp., we cloned and functionally characterized the genes encoding enzymes involved in the xylose metabolism. The results showed that the endogenous xylose reductase and xylulose kinase genes possess corresponding functional activities. Additionally, attempts were made to construct a strain of Schizochytrium sp. that can effectively use xylose by using genetic engineering techniques to introduce exogenous xylitol dehydrogenase/xylose isomerase; however, the introduction of heterologous xylitol dehydrogenase did not produce a xylose-utilizing engineered strain, whereas the introduction of xylose isomerase did. The results showed that the engineered strain 308-XI with an exogenous xylose isomerase could consume 8.2 g/L xylose over 60 h of cultivation. Xylose consumption was further elevated to 11.1 g/L when heterologous xylose isomerase and xylulose kinase were overexpressed simultaneously. Furthermore, cultivation of 308-XI-XK(S) using lignocellulosic hydrolysates, which contained glucose and xylose, yielded a 22.4 g/L of dry cell weight and 5.3 g/L of total lipid titer, respectively, representing 42.7 and 30.4% increases compared to the wild type. CONCLUSION This study shows that engineering of Schizochytrium sp. to efficiently utilize xylose is conducive to improve its utilization of lignocellulose, which can reduce the costs of industrial lipid production.
Collapse
Affiliation(s)
- Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Quan-Yu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Patel A, Bettiga M, Rova U, Christakopoulos P, Matsakas L. Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol 2022; 40:1261-1273. [PMID: 35450778 DOI: 10.1016/j.tibtech.2022.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Squalene is generally sourced from the liver oil of deep sea sharks (Squalus spp.), in which it accounts for 40-70% of liver mass. To meet the growing demand for squalene because of its beneficial effects for human health, three to six million deep sea sharks are slaughtered each year, profoundly endangering marine ecosystems. To overcome this unsustainable practice, microbial sources of squalene might offer a viable alternative to plant- or animal-based squalene, although only a few microorganisms have been found that are capable of synthesizing up to 30% squalene of dry biomass by native biosynthetic pathways. These squalene biosynthetic pathways, on the other hand, can be genetically manipulated to transform microorganisms into 'cellular factories' for squalene overproduction.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Bioeconomy Division, EviKrets Biobased Processes Consultants, Landvetter, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
6
|
Magoni C, Bertacchi S, Giustra CM, Guzzetti L, Cozza R, Ferrari M, Torelli A, Marieschi M, Porro D, Branduardi P, Labra M. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Wang S, Wan W, Wang Z, Zhang H, Liu H, Arunakumara KKIU, Cui Q, Song X. A Two-Stage Adaptive Laboratory Evolution Strategy to Enhance Docosahexaenoic Acid Synthesis in Oleaginous Thraustochytrid. Front Nutr 2021; 8:795491. [PMID: 35036411 PMCID: PMC8759201 DOI: 10.3389/fnut.2021.795491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrid is a promising algal oil resource with the potential to meet the demand for docosahexaenoic acid (DHA). However, oils with high DHA content produced by genetic modified thraustochytrids are not accepted by the food and pharmaceutical industries in many countries. Therefore, in order to obtain non-transgenic strains with high DHA content, a two-stage adaptive laboratory evolution (ALE) strategy was applied to the thraustochytrid Aurantiochytrium sp. Heavy-ion irradiation technique was first used before the ALE to increase the genetic diversity of strains, and then two-step ALE: low temperature based ALE and ACCase inhibitor quizalofop-p-ethyl based ALE were employed in enhancing the DHA production. Using this strategy, the end-point strain E-81 with a DHA content 51% higher than that of the parental strain was obtained. The performance of E-81 strain was further analyzed by component analysis and quantitative real-time PCR. The results showed that the enhanced in lipid content was due to the up-regulated expression of key enzymes in lipid accumulation, while the increase in DHA content was due to the increased transcriptional levels of polyunsaturated fatty acid synthase. This study demonstrated a non-genetic approach to enhance lipid and DHA content in non-model industrial oleaginous strains.
Collapse
Affiliation(s)
- Sen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weijian Wan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zhuojun Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huidan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - K. K. I. U. Arunakumara
- Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Qiu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojin Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Gupta A, Barrow CJ, Puri M. Multiproduct biorefinery from marine thraustochytrids towards a circular bioeconomy. Trends Biotechnol 2021; 40:448-462. [PMID: 34627647 DOI: 10.1016/j.tibtech.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Microalgal biotechnology research continues to expand due to largely unexplored marine environments and growing consumer interest in healthy products. Thraustochytrids, which are marine oleaginous protists, are known for their production of bioactives with significant applications in nutraceuticals, pharmaceuticals, and aquaculture. A wide range of high-value biochemicals, such as nutritional supplements (omega-3 fatty acids), squalene, exopolysaccharides (EPSs), enzymes, aquaculture feed, and biodiesel and pigment compounds, have been investigated. We discuss thraustochytrids as potential feedstocks to produce various bioactive compounds and advocate developing a biorefinery to offset production costs. We anticipate that future advances in cell manufacturing, lipidomic analysis, and nanotechnology-guided lipid extraction would facilitate large-scale cost-competitive production through these microbes.
Collapse
Affiliation(s)
- Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Adelaide, Australia; Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Geelong, Australia
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Adelaide, Australia; Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia; Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Geelong, Australia.
| |
Collapse
|
10
|
Rau EM, Ertesvåg H. Method Development Progress in Genetic Engineering of Thraustochytrids. Mar Drugs 2021; 19:515. [PMID: 34564177 PMCID: PMC8467673 DOI: 10.3390/md19090515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.
Collapse
Affiliation(s)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N7491 Trondheim, Norway;
| |
Collapse
|
11
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Ramamurthy PC, Singh S, Kapoor D, Parihar P, Samuel J, Prasad R, Kumar A, Singh J. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems. Microb Cell Fact 2021; 20:55. [PMID: 33653344 PMCID: PMC7923469 DOI: 10.1186/s12934-021-01547-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The accelerating energy demands of the increasing global population and industrialization has become a matter of great concern all over the globe. In the present scenario, the world is witnessing a considerably huge energy crisis owing to the limited availability of conventional energy resources and rapid depletion of non-renewable fossil fuels. Therefore, there is a dire need to explore the alternative renewable fuels that can fulfil the energy requirements of the growing population and overcome the intimidating environmental issues like greenhouse gas emissions, global warming, air pollution etc. The use of microorganisms such as bacteria has captured significant interest in the recent era for the conversion of the chemical energy reserved in organic compounds into electrical energy. The versatility of the microorganisms to generate renewable energy fuels from multifarious biological and biomass substrates can abate these ominous concerns to a great extent. For instance, most of the microorganisms can easily transform the carbohydrates into alcohol. Establishing the microbial fuel technology as an alternative source for the generation of renewable energy sources can be a state of art technology owing to its reliability, high efficiency, cleanliness and production of minimally toxic or inclusively non-toxic byproducts. This review paper aims to highlight the key points and techniques used for the employment of bacteria to generate, biofuels and bioenergy, and their foremost benefits.
Collapse
Affiliation(s)
- Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Phagwara, Punjab, India
| | - Jastin Samuel
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, Punjab, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Alok Kumar
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Box-138, Dire Dawa, Ethiopia.
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
13
|
Bartosova Z, Ertesvåg H, Nyfløt EL, Kämpe K, Aasen IM, Bruheim P. Combined Metabolome and Lipidome Analyses for In-Depth Characterization of Lipid Accumulation in the DHA Producing Aurantiochytrium sp. T66. Metabolites 2021; 11:metabo11030135. [PMID: 33669117 PMCID: PMC7996494 DOI: 10.3390/metabo11030135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Thraustochytrids are marine heterotrophic microorganisms known for their potential to accumulate docosahexaenoic acid (DHA)-enriched lipids. There have been many attempts to improve thraustochytrid DHA bioprocesses, especially through traditional optimization of cultivation and media conditions. Nevertheless, thraustochytrid-based bioprocesses are still not commercially competitive for high volume-low cost production of DHA. Thus, it is realized that genetic and metabolic engineering strategies are needed for the development of commercially competitive thraustochytrid DHA cell factories. Here, we present an analytical workflow for high resolution phenotyping at metabolite and lipid levels to generate deeper insight into the thraustochytrid physiology, with particular focus on central carbon and redox metabolism. We use time-series sampling during unlimited growth and nitrogen depleted triggering of DHA synthesis and lipid accumulation (LA) to show-case our methodology. The mass spectrometric absolute quantitative metabolite profiling covered glycolytic, pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA) metabolites, amino acids, complete (deoxy)nucleoside phosphate pools, CoA and NAD metabolites, while semiquantitative high-resolution supercritical fluid chromatography MS/MS was applied for the lipid profiling. Interestingly, trace amounts of a triacylglycerols (TG) with DHA incorporated in all three acyl positions was detected, while TGs 16:0_16:0_22:6 and 16:0_22:6_22:6 were among the dominant lipid species. The metabolite profiling data indicated that lipid accumulation is not limited by availability of the acyl chain carbon precursor acetyl-CoA nor reducing power (NADPH) but rather points to the TG head group precursor glycerol-3-phosphate as the potential cause at the metabolite level for the gradual decline in lipid production throughout the cultivation. This high-resolution phenotyping provides new knowledge of changes in the central metabolism during growth and LA in thraustochytrids and will guide target selection for metabolic engineering needed for further improvements of this DHA cell factory.
Collapse
Affiliation(s)
- Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Eirin Lishaugen Nyfløt
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Kristoffer Kämpe
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Inga Marie Aasen
- Biotechnology and Nanomedicine, SINTEF Industry, 4730 Trondheim, Norway;
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
- Correspondence:
| |
Collapse
|
14
|
Choi KR, Jiao S, Lee SY. Metabolic engineering strategies toward production of biofuels. Curr Opin Chem Biol 2020; 59:1-14. [DOI: 10.1016/j.cbpa.2020.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
|
15
|
Trincone A. Application-Oriented Marine Isomerases in Biocatalysis. Mar Drugs 2020; 18:md18110580. [PMID: 33233366 PMCID: PMC7700177 DOI: 10.3390/md18110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned. Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment with this specialized in-depth analysis conducted using a literature search without time limit constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis that are not numerous confirming the general view previously reported. However, from this overall literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been long-standing. However, the major fields in which application examples are framed are placed at the cutting edge of current biotechnological development. Since these enzymes can offer properties of industrial interest, this will act as a promoter for future studies of marine-originating isomerases in applied biocatalysis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
16
|
Sun XM, Xu YS, Huang H. Thraustochytrid Cell Factories for Producing Lipid Compounds. Trends Biotechnol 2020; 39:648-650. [PMID: 33199047 DOI: 10.1016/j.tibtech.2020.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Thraustochytrids can accumulate over 150 g/l biomass, containing up to 55% lipids, without any genetic modification. Their broad substrate utilization capacity, several effective key metabolic pathways, and a well-developed suite of bioprocess engineering strategies all point toward great promise for the future development of these marine protists.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China.
| |
Collapse
|
17
|
Karnaouri A, Chalima A, Kalogiannis KG, Varamogianni-Mamatsi D, Lappas A, Topakas E. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii. BIORESOURCE TECHNOLOGY 2020; 303:122899. [PMID: 32028216 DOI: 10.1016/j.biortech.2020.122899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Omega-3 fatty acids have become a commodity of high nutritional and commercial value; intensive fishing and its environmental and social cost has led researchers to seeking alternative more sustainable ways of producing them. Heterotrophic microalgae such as Crypthecodinium cohnii, a marine dinoflagellate, have the ability to utilize various substrates and accumulate high amounts of docosahexaenoic acid (DHA). In this work, a mild oxidative organosolv pretreatment of beechwood pulps was employed that allowed up to 95% of lignin removal in a single stage, thus yielding a cellulose-rich solid fraction. The enzymatic hydrolysates were evaluated for their ability to support the growth and lipid accumulation of C. cohnii in batch and fed-batch cultures; the results verified the successful microalgae growth, while DHA reached up to 43.5% of the cell's total lipids. The proposed bioprocess demonstrated the utilization of non-edible biomass towards high added value food supplements in a sustainable and efficient manner.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Angelina Chalima
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th Km Harilaou‑Thermi Road, Thermi, 57001, Thessaloniki, Greece
| | - Despoina Varamogianni-Mamatsi
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Angelos Lappas
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th Km Harilaou‑Thermi Road, Thermi, 57001, Thessaloniki, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
18
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
19
|
Juntila DJ, Yoneda K, Suzuki I. Genetic modification of the thraustochytrid Aurantiochytrium sp. 18W-13a for cellobiose utilization by secretory expression of β-glucosidase from Aspergillus aculeatus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|