1
|
Ma S, Breslmayr E, Zhou M, Mihovilovic M, Furtmüller PG, Wang L, Ludwig R. FAD binding and dissociation in GMC-oxidoreductases. Int J Biol Macromol 2025; 308:142470. [PMID: 40132288 DOI: 10.1016/j.ijbiomac.2025.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The glucose-methanol-choline (GMC)-oxidoreductase superfamily comprises a large group of flavoenzymes such as glucose oxidase, glucose dehydrogenase and cellobiose dehydrogenase, which have been extensively studied and applied in biocatalysis and biosensors. Since the applicability of recombinant flavoenzymes is compromised by divergent glycosylation patterns and substoichiometric FAD occupancy, this study employed experimental and computational methods to analyze the deflavination and reconstitution of three GMC-oxidoreductases from a structural perspective. The results demonstrated that the amount of glycosylation of flavoenzymes is critical for both processes. FAD dissociation constants for glucose oxidase, glucose dehydrogenase and cellobiose dehydrogenase were determined by three different methods, showing Kd values in the range of 10 to 47 nM. Both, the presence of FAD and N-glycosides increase the thermal stability of the flavoenzymes. Steered molecular dynamics simulations revealed differences in the FAD binding of the three enzymes and indicated an undiscovered route of the FAD to dissociate from GMC-oxidoreductases by movement of a loop-and-lid structure on the enzyme surface. This work provides new insights into the mechanism of FAD binding and dissociation in GMC-oxidoreductases and offers strategies for their recombinant production.
Collapse
Affiliation(s)
- Su Ma
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China; Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Erik Breslmayr
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Mengqi Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China
| | - Marko Mihovilovic
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Paul G Furtmüller
- Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Graça AP, Nikitushkin V, Ellerhorst M, Vilhena C, Klassert TE, Starick A, Siemers M, Al-Jammal WK, Vilotijevic I, Slevogt H, Papenfort K, Lackner G. MftG is crucial for ethanol metabolism of mycobacteria by linking mycofactocin oxidation to respiration. eLife 2025; 13:RP97559. [PMID: 39878311 PMCID: PMC11778925 DOI: 10.7554/elife.97559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
| | - Vadim Nikitushkin
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
| | - Mark Ellerhorst
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
| | - Cláudia Vilhena
- Leibniz Institute for Natural Product Research and Infection Biology– Hans Knöll Institute, Department of Infection BiologyJenaGermany
| | - Tilman E Klassert
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI BraunschweigBraunschweigGermany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATHHannoverGermany
| | - Andreas Starick
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Malte Siemers
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Walid K Al-Jammal
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular ChemistryJenaGermany
| | - Ivan Vilotijevic
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular ChemistryJenaGermany
| | - Hortense Slevogt
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI BraunschweigBraunschweigGermany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATHHannoverGermany
| | - Kai Papenfort
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Gerald Lackner
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
3
|
Blanco Nouche C, Picard L, Cochet C, Paris C, Oger P, Turpault MP, Uroz S. Acidification-based mineral weathering mechanism involves a glucose/methanol/choline oxidoreductase in Caballeronia mineralivorans PML1(12). Appl Environ Microbiol 2024; 90:e0122124. [PMID: 39503492 DOI: 10.1128/aem.01221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
While mineral weathering (MWe) plays a key role in plant growth promotion and soil fertility, the molecular mechanisms and the genes used by bacteria to weather minerals remain poorly characterized. Acidification-based dissolution is considered the primary mechanism used by bacteria. This mechanism is historically associated with the conversion of glucose to protons and gluconic acid through the action of particular glucose dehydrogenases (GDH) dependent on the pyrroquinoline quinone (PQQ) cofactor. Recently, bacteria lacking the GDH-PQQ system have been shown to perform the same enzymatic conversion with a glucose/methanol/choline (GMC) FAD-dependent oxidoreductase. Determining whether this particular enzyme is specific or widespread is especially important in terms of ecology and evolution. Genome analysis of the effective MWe strain Caballeronia mineralivorans PML1(12) revealed the presence of both systems (i.e., GDH-PQQ and several GMC oxidoreductases). The combination of mutagenesis, functional assays, and geochemical analyses demonstrated the key role of one of these GMC oxidoreductases in the mineral weathering ability of strain PML1(12) and the importance of the carbon source metabolized. Mass spectrometry confirmed the conversion of glucose to gluconic acid. Phylogenetic analyses highlighted a good relatedness of this new GMC oxidoreductase with GMC oxidoreductases presenting a GDH activity in Burkholderia cepacia and Collimonas pratensis and conferring its mineral weathering ability to the last one. Together, our analyses expand the number of bacteria capable of weathering minerals using GMC oxidoreductases, showing that such enzymes are not restricted to Collimonas. IMPORTANCE This work deciphers the molecular and genetic bases used by strain PML1(12) of Caballeronia mineralivorans to weather minerals. Through bioinformatics analyses, we identified a total of four GMC-FAD oxidoreductases in the genome of strain PML1(12) and a putative PQQ-dependent glucose dehydrogenase. Through a combination of physiological and geochemical analyses, we revealed that one of them (i.e., GMC3) was the enzyme responsible for the acidification-based mineral weathering mechanism used by strain PML1(12). To date, a single representative of this enzyme family has been identified in the effective mineral-weathering bacterial strain Collimonas pratensis PMB3(1). Phylogenetic analyses revealed that this new system appeared conserved in the Collimonas genus. The new findings presented in this work demonstrate that GMC oxidoreductases can have an active role in other effective MWe bacteria outside of collimonads and that Caballeronia are capable of weathering minerals using this type of enzyme. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, evolutionary biology, and soil sciences.
Collapse
Affiliation(s)
- Cintia Blanco Nouche
- Université de Lorraine, INRAE, « UMR1136 Interactions Arbres-Microorganismes », Nancy, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Laura Picard
- Université de Lorraine, INRAE, « UMR1136 Interactions Arbres-Microorganismes », Nancy, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Carine Cochet
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Cedric Paris
- Université de Lorraine, EA 4367 « Laboratoire d'Ingénierie des Biomolécules », Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Vandoeuvre-lès-Nancy, France
| | - Philippe Oger
- INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Villeurbanne, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, « UMR1136 Interactions Arbres-Microorganismes », Nancy, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| |
Collapse
|
4
|
Savinova OS, Savinova TS, Fedorova TV. Oestrogen Detoxification Ability of White Rot Fungus Trametes hirsuta LE-BIN 072: Exoproteome and Transformation Product Profiling. J Fungi (Basel) 2024; 10:795. [PMID: 39590714 PMCID: PMC11595678 DOI: 10.3390/jof10110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
White rot fungi, especially representatives of the genus Trametes spp. (Polyporaceae), are effective destructors of various xenobiotics, including oestrogens (phenol-like steroids), which are now widespread in the environment and pose a serious threat to the health of humans, animals and aquatic organisms. In this work, the ability of the white rot fungus Trametes hirsuta LE-BIN 072 to transform oestrone (E1) and 17β-oestradiol (E2), the main endocrine disruptors, was shown. More than 90% of the initial E1 and E2 were removed by the fungus during the first 24 h of transformation. The transformation process proceeded predominantly in the direction of the initial substrates' detoxification, with the radical oxidative coupling of E1 and E2 as well as their metabolites and the formation of less toxic dimers in various combinations. A number of minor metabolites, in particular, less toxic estriol (E3), were identified by HPLC-MS. The formation of E1 from E2 and vice versa were shown. The exoproteome of the white rot fungus during the transformation of oestrogens was studied in detail for the first time. The contribution of ligninolytic peroxidases (MnP5, MnP7 and VP2) to the process of the extracellular detoxification of oestrogens and their possible metabolites is highlighted. Thus, the studied strain appears to be a promising mycodetoxicant of phenol-like steroids in aquatic environments.
Collapse
Affiliation(s)
- Olga S. Savinova
- Bach Institute of Biochemistry, Federal Research Center, Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.S.S.); (T.V.F.)
| | | | | |
Collapse
|
5
|
Ma X, Xu F, Yu K, Wang F, Li Q, Liang W, Liu B, Zhang B, Zhu J, Li J. Purification and catalysis of choline dehydrogenase from Escherichia coli. Arch Biochem Biophys 2024; 762:110212. [PMID: 39510372 DOI: 10.1016/j.abb.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Choline dehydrogenase (CHDH) is a membrane-bound enzyme belonging to the glucose-methanol-choline (GMC) oxidoreductase superfamily, which is characterized by a crucial FAD-binding domain essential for catalytic function. CHDH catalyzes the oxidation of choline to betaine aldehyde, which is further oxidized to betaine, a vital osmoprotectant and methyl donor for cellular physiology and metabolism. However, the detailed catalytic mechanism of CHDH still remains poorly understood. In our investigation, we gained purity E. coli CHDH samples in DDM (n-dodecyl-β-D-maltoside) and SMA (styrene maleic acid) copolymer respectively and examined their structural composition and catalytic activity separately. Our findings demonstrated the effectiveness of SMA, commonly employed for extracting transmembrane proteins and can preserve the natural bio-membrane environment surrounding the enzyme, in extracting peripheral membrane proteins like CHDH here, which lacks transmembrane helices. CHDH exhibited a trimeric conformation in SMA, whereas it existed as monomers in DDM, as determined by our negative staining analysis. Our experiments also revealed that highly pure E. coli CHDH could only oxidize choline to betaine aldehyde but failed to further oxidize betaine aldehyde to betaine as determined by the biochemical and enzymatic reaction kinetic assays. In addition, the enzyme in SMA displayed greater catalytic activity compared to that in DDM. Furthermore, we confirmed the crucial role of His473, which is hypothesized to be a critical site for substrate binding from our structural comparative analysis between CHDH and its highly homologous choline oxidase, in the catalytic activity of the enzyme through gene mutation. Our work also sheds light on CHDH's contribution to cellular osmotic tolerance through gene knockout. This research enhances our better understanding of CHDH within cellular biochemistry and metabolic pathways.
Collapse
Affiliation(s)
- Xiuxiu Ma
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Fangling Xu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Koukou Yu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Fan Wang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Quan Li
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Weifeng Liang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Bing Liu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Bo Zhang
- School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| | - Jiao Li
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Santema LL, Rozeboom HJ, Borger VP, Kaya SG, Fraaije MW. Identification of a robust bacterial pyranose oxidase that displays an unusual pH dependence. J Biol Chem 2024; 300:107885. [PMID: 39395808 DOI: 10.1016/j.jbc.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated, and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 μM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied by a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides, and has a peculiar pH-dependent "on-off switch".
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | | | - Veronica P Borger
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Saniye G Kaya
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Wang X, Liu Y, Chen Z, Wang K, Liu G, Chen T, Zhang B. Genomic Functional Analysis of Novel Radiation-Resistant Species of Knollia sp. nov. S7-12 T from the North Slope of Mount Everest. Microorganisms 2024; 12:1748. [PMID: 39338423 PMCID: PMC11433714 DOI: 10.3390/microorganisms12091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation protection is an important field of study, as it relates to human health and environmental safety. Radiation-resistance mechanisms in extremophiles are a research hotspot, as this knowledge has great application value in bioremediation and development of anti-radiation drugs. Mount Everest, an extreme environment of high radiation exposure, harbors many bacterial strains resistant to radiation. However, owing to the difficulties in studying them because of the extreme terrain, many remain unexplored. In this study, a novel species (herein, S7-12T) was isolated from the moraine of Mount Everest, and its morphology and functional and genomic characteristics were analyzed. The strain S7-12T is white in color, smooth and rounded, non-spore-forming, and non-motile and can survive at a UV intensity of 1000 J/m2, showing that it is twice as resistant to radiation as Deinococcus radiodurans. Radiation-resistance genes, including IbpA and those from the rec and CspA gene families, were identified. The polyphasic taxonomic approach revealed that the strain S7-12T (=KCTC 59114T =GDMCC 1.3458T) is a new species of the genus Knoellia and is thus proposed to be named glaciei. The in-depth study of the genome of strain S7-12T will enable us to gain further insights into its potential use in radiation resistance. Understanding how microorganisms resist radiation damage could reveal potential biomarkers and therapeutic targets, leading to the discovery of potent anti-radiation compounds, thereby improving human resistance to the threat of radiation.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Serrano A, Cinca-Fernando P, Carro J, Velázquez-Campoy A, Martínez-Júlvez M, Martínez ÁT, Ferreira P. Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors. Front Bioeng Biotechnol 2024; 12:1440598. [PMID: 39161354 PMCID: PMC11330772 DOI: 10.3389/fbioe.2024.1440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paula Cinca-Fernando
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Oliva B, Velasco J, Leila Berto G, Polikarpov I, Cristante de Oliveira L, Segato F. Recombinant cellobiose dehydrogenase from Thermothelomyces thermophilus: Its functional characterization and applicability in cellobionic acid production. BIORESOURCE TECHNOLOGY 2024; 402:130763. [PMID: 38692377 DOI: 10.1016/j.biortech.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization. Its applicability was evaluated to the sustainable production of cellobionic acid (CBA), a potential pharmaceutical and cosmetic ingredient rarely commercialized. Dissolving pulp was used as a disaccharide source for MtCDHB. Initially, recombinant exoglucanases (MtCBHI and MtCBHII) from T. thermophilus hydrolyzed the dissolving pulp, resulting in 87% cellobiose yield, which was subsequently converted into CBA by MtCDHB, achieving a 66% CBA yield after 24 h. These findings highlight the potential of MtCDHB as a novel approach to obtaining CBA through the bioconversion of a plant-based source.
Collapse
Affiliation(s)
- Bianca Oliva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil; Biological Sciences Department, Universidad de los Andes, Bogotá DC, Colombia
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Leandro Cristante de Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) São Paulo State University "Júlio de Mesquita Filho" - Unesp - São José do Rio Preto, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
10
|
Giorgianni A, Zenone A, Sützl L, Csarman F, Ludwig R. Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression. Microb Cell Fact 2024; 23:146. [PMID: 38783303 PMCID: PMC11112829 DOI: 10.1186/s12934-024-02420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.
Collapse
Affiliation(s)
- Angela Giorgianni
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Leander Sützl
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
11
|
Bradley JM, Butlin RK, Scholes JD. Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages. BMC PLANT BIOLOGY 2024; 24:251. [PMID: 38582844 PMCID: PMC10998327 DOI: 10.1186/s12870-024-04935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Collapse
Affiliation(s)
- James M Bradley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Present address: Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | - Roger K Butlin
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Julie D Scholes
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
12
|
Zhao H, Karppi J, Mototsune O, Poshina D, Svartström J, Nguyen TTM, Vo TM, Tsang A, Master E, Tenkanen M. Substrate specificity mapping of fungal CAZy AA3_2 oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:47. [PMID: 38539167 PMCID: PMC10967070 DOI: 10.1186/s13068-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 11/11/2024]
Abstract
BACKGROUND Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Johanna Karppi
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Owen Mototsune
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Daria Poshina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jenny Svartström
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Tri Minh Vo
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Maija Tenkanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Gao H, Ji Y, Chen W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024; 280:127568. [PMID: 38118306 DOI: 10.1016/j.micres.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.
Collapse
Affiliation(s)
- Huali Gao
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yingrui Ji
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Siriatcharanon AK, Sutheeworapong S, Baramee S, Waeonukul R, Pason P, Kosugi A, Uke A, Ratanakhanokchai K, Tachaapaikoon C. Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production. J Microbiol Biotechnol 2024; 34:457-466. [PMID: 38044713 PMCID: PMC10940743 DOI: 10.4014/jmb.2307.07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.
Collapse
Affiliation(s)
- Ake-kavitch Siriatcharanon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sawannee Sutheeworapong
- Division of Bioinformatics and Systems Biology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| |
Collapse
|
15
|
Kostelac A, Taborda A, Martins LO, Haltrich D. Evolution and separation of actinobacterial pyranose and C-glycoside-3-oxidases. Appl Environ Microbiol 2024; 90:e0167623. [PMID: 38179968 PMCID: PMC10807413 DOI: 10.1128/aem.01676-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
FAD-dependent pyranose oxidase (POx) and C-glycoside-3-oxidase (CGOx) are both members of the glucose-methanol-choline superfamily of oxidoreductases and belong to the same sequence space. Pyranose oxidases had been studied for their oxidation of monosaccharides such as D-glucose, but recently, a bacterial C-glycoside-3-oxidase that is phylogenetically related to POx and that reacts with C-glycosides such as carminic acid, mangiferin or puerarin has been described. Since these actinobacterial CGOx enzymes belong to the same sequence space as bacterial POx, they must have evolved from the same ancestor. Here, we performed a phylogenetic analysis of actinobacterial sequences and resurrected seven ancestral enzymes of the POx/CGOx sequence space to study the evolutionary trajectory of substrate preferences for monosaccharides and C-glycosides. Clade I, with its dimeric member POx from Kitasatospora aureofaciens, shows strict preference for monosaccharides (D-glucose and D-xylose) and does not react with any of the glycosides tested. No extant member of clade II has been studied to date. The two extant members of clades III and IV, monomeric POx/CGOx from Pseudoarthrobacter siccitolerans and Streptomyces canus, oxidized both monosaccharides as well as various C-glycosides (homoorientin, isovitexin, mangiferin, and puerarin). Steady-state kinetic parameters of several clades III and IV ancestral enzymes indicate that the generalist ancestor N35 slowly evolved to present-day enzymes with a much higher preference for C-glycosides than monosaccharides. Based on structural predictions of ancestors, we hypothesize that the strict specificity of bacterial clade I POx (and also fungal POx) is the result of oligomerization, which in turn results from the evolution of protein segments that were shown to be important for oligomerization, the arm, and the head domain.IMPORTANCEC-Glycosides often form active compounds in various plants. Breakage of the C-C bond in these glycosides to release the aglycone is challenging and proceeds via a two-step reaction, the oxidation of the sugar and subsequent cleavage of the C-C bond. Recently, an enzyme from a soil bacterium, FAD-dependent C-glycoside-3-oxidase (CGOx), was shown to catalyze the initial oxidation reaction. Here, we show that CGOx belongs to the same sequence space as pyranose oxidase (POx), and that an actinobacterial ancestor of the POx/CGOx family evolved into four clades, two of which show a high preference for C-glycosides.
Collapse
Affiliation(s)
- Anja Kostelac
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Dietmar Haltrich
- Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Li Y, Wang H, Zhang Y, Xiang Q, Chen Q, Yu X, Zhang L, Peng W, Penttinen P, Gu Y. Hydrated lime promoted the polysaccharide content and affected the transcriptomes of Lentinula edodes during brown film formation. Front Microbiol 2023; 14:1290180. [PMID: 38111638 PMCID: PMC10726012 DOI: 10.3389/fmicb.2023.1290180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Brown film formation, a unique developmental stage in the life cycle of Lentinula edodes, is essential for the subsequent development of fruiting bodies in L. edodes cultivation. The pH of mushroom growth substrates are usually adjusted with hydrated lime, yet the effects of hydrated lime on cultivating L. edodes and the molecular mechanisms associated with the effects have not been studied systemically. We cultivated L. edodes on substrates supplemented with 0% (CK), 1% (T1), 3% (T2), and 5% (T3) hydrated lime (Ca (OH)2), and applied transcriptomics and qRT-PCR to study gene expression on the brown film formation stage. Hydrated lime increased polysaccharide contents in L. edodes, especially in T2, where the 5.3% polysaccharide content was approximately 1.5 times higher than in the CK. The addition of hydrated lime in the substrate promoted laccase, lignin peroxidase and manganese peroxidase activities, implying that hydrated lime improved the ability of L. edodes to decompose lignin and provide nutrition for its growth and development. Among the annotated 9,913 genes, compared to the control, 47 genes were up-regulated and 52 genes down-regulated in T1; 73 genes were up-regulated and 44 were down-regulated in T2; and 125 genes were up-regulated and 65 genes were down-regulated in T3. Differentially expressed genes (DEGs) were enriched in the amino acid metabolism, lipid metabolism and carbohydrate metabolism related pathways. The carbohydrate-active enzyme genes up-regulated in the hydrated lime treatments were mostly glycosyl hydrolase genes. The results will facilitate future optimization of L. edodes cultivation techniques and possibly shortening the production cycle.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hongcheng Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ying Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weihong Peng
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Motycka B, Csarman F, Rupp M, Schnabel K, Nagy G, Karnpakdee K, Scheiblbrandner S, Tscheliessnig R, Oostenbrink C, Hammel M, Ludwig R. Amino Acid Residues Controlling Domain Interaction and Interdomain Electron Transfer in Cellobiose Dehydrogenase. Chembiochem 2023; 24:e202300431. [PMID: 37768852 PMCID: PMC10726044 DOI: 10.1002/cbic.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Indexed: 09/30/2023]
Abstract
The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.
Collapse
Affiliation(s)
- Bettina Motycka
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
- University of Natural Resources and Life Sciences, ViennaDepartment of BiotechnologyInstitute of Bioprocess Science and EngineeringMuthgasse 181190ViennaAustria
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryCyclotron road 194720BerkeleyCaliforniaUSA
| | - Florian Csarman
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Melanie Rupp
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Karoline Schnabel
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Gabor Nagy
- Max Planck Institut für Multidisciplinary SciencesDepartment of Theoretical and Computational BiophysicsAm Fassberg 1137077GöttingenGermany
| | - Kwankao Karnpakdee
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Stefan Scheiblbrandner
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Rupert Tscheliessnig
- University of Natural Resources and Life Sciences, ViennaDepartment of BiotechnologyInstitute of Bioprocess Science and EngineeringMuthgasse 181190ViennaAustria
- Division of BiophysicsGottfried-Schatz-Research-CenterMedical University of GrazNeue Stiftingtalstraße 68010GrazAustria
| | - Chris Oostenbrink
- University of Natural Resources and Life SciencesViennaDepartment of Material Sciences and Process EngineeringInstitute of Molecular Modeling and SimulationMuthgasse 181190ViennaAustria
| | - Michal Hammel
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryCyclotron road 194720BerkeleyCaliforniaUSA
| | - Roland Ludwig
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| |
Collapse
|
18
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
19
|
Tjallinks G, Boverio A, Maric I, Rozeboom H, Arentshorst M, Visser J, Ram AFJ, Mattevi A, Fraaije MW. Structure elucidation and characterization of patulin synthase, insights into the formation of a fungal mycotoxin. FEBS J 2023; 290:5114-5126. [PMID: 37366079 DOI: 10.1111/febs.16804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Patulin synthase (PatE) from Penicillium expansum is a flavin-dependent enzyme that catalyses the last step in the biosynthesis of the mycotoxin patulin. This secondary metabolite is often present in fruit and fruit-derived products, causing postharvest losses. The patE gene was expressed in Aspergillus niger allowing purification and characterization of PatE. This confirmed that PatE is active not only on the proposed patulin precursor ascladiol but also on several aromatic alcohols including 5-hydroxymethylfurfural. By elucidating its crystal structure, details on its catalytic mechanism were revealed. Several aspects of the active site architecture are reminiscent of that of fungal aryl-alcohol oxidases. Yet, PatE is most efficient with ascladiol as substrate confirming its dedicated role in biosynthesis of patulin.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Alessandro Boverio
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ivana Maric
- Molecular Enzymology, University of Groningen, The Netherlands
| | | | | | - Jaap Visser
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, The Netherlands
| |
Collapse
|
20
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
21
|
Khan MW, Murali A. Normal mode analysis and comparative study of intrinsic dynamics of alcohol oxidase enzymes from GMC protein family. J Biomol Struct Dyn 2023; 42:10075-10090. [PMID: 37676256 DOI: 10.1080/07391102.2023.2255275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Glucose-Methanol-Choline (GMC) family enzymes are very important in catalyzing the oxidation of a wide range of structurally diverse substrates. Enzymes that constitute the GMC family, share a common tertiary fold but < 25% sequence identity. Cofactor FAD, FAD binding signature motif, and similar structural scaffold of the active site are common features of oxidoreductase enzymes of the GMC family. Protein functionality mainly depends on protein three-dimensional structures and dynamics. In this study, we used the normal mode analysis method to search the intrinsic dynamics of GMC family enzymes. We have explored the dynamical behavior of enzymes with unique substrate catabolism and active site characteristics from different classes of the GMC family. Analysis of individual enzymes and comparative ensemble analysis of enzymes from different classes has shown conserved dynamic motion at FAD binding sites. The present study revealed that GMC enzymes share a strong dynamic similarity (Bhattacharyya coefficient >90% and root mean squared inner product >52%) despite low sequence identity across the GMC family enzymes. The study predicts that local deformation energy between atoms of the enzyme may be responsible for the catalysis of different substrates. This study may help that intrinsic dynamics can be used to make meaningful classifications of proteins or enzymes from different organisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Wahab Khan
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| | - Ayaluru Murali
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
22
|
Wang F, Ye Z, Liu Y, Wang L, Su S, Hou Z, Xu J, Tao J, Liu D. Characterization of the novel glucose-methanol-choline (GMC) oxidoreductase EnOXIO1 in Eimeria necatrix. Vet Parasitol 2023; 321:110002. [PMID: 37567028 DOI: 10.1016/j.vetpar.2023.110002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Eimeria species are intracellular obligate parasites, among the most common pathogens affecting the intensive poultry industry. Oxidoreductases are members of a class of proteins with redox activity and are widely found in apicomplexan protozoans. However, there have been few reports related to Eimeria species. In this study, total RNA was extracted from the gametocytes of E. necatrix Yangzhou strain to amplify the EnOXIO1 gene using reverse-transcription polymerase chain reaction. After cloning and sequence analysis, the prokaryotic expression vector pET-28a(+)-EnOXIO1 was constructed and transformed into Escherichia coli BL21(DE3), and the recombinant protein rEnOXIO1 was expressed by induction with isopropyl ß-D-1-thiogalactopyranoside. The full length EnOXIO1 gene was 2535 bp encoding 844 amino acids, and the EnOXIO1 protein had a molecular weight of about 100 kDa and was mainly expressed in inclusion bodies. Western blot analysis indicated that the rEnOXIO1 protein had good antigenicity and cross-reactivity and was specifically recognized by a 6 ×HIS labeled monoclonal antibody, mouse anti-recombinant protein polyclonal antibody, and recovery serum from chickens infected with E. necatrix, E. acervulina, and E. tenella sporulated oocysts. The results of laser confocal immunofluorescence localization showed that the EnOXIO1 protein was mainly located on the wall-forming bodies in gametocytes and played an important role in the formation of the oocyst wall. Quantitative PCR analysis revealed that transcript levels of EnOXIO1 were highest in the gametocyte stage. Protein expression levels of EnOXIO1 were higher in the gametocyte stage than in other developmental stages according to western blot analysis. Vaccination of chickens against E. necatrix was achieved with recombinant protein rEnOXIO1, which triggered humoral immunity and antibody production, increased average body weight gain, reduced oocyst output and alleviated lesions after E. necatrix infection. The highest ACI value (172.36) was observed in chickens that received 200 μg rEnOXIO1 compared with other immunization groups.
Collapse
Affiliation(s)
- Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhuang Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Finnigan W, Lubberink M, Hepworth LJ, Citoler J, Mattey AP, Ford GJ, Sangster J, Cosgrove SC, da Costa BZ, Heath RS, Thorpe TW, Yu Y, Flitsch SL, Turner NJ. RetroBioCat Database: A Platform for Collaborative Curation and Automated Meta-Analysis of Biocatalysis Data. ACS Catal 2023; 13:11771-11780. [PMID: 37671181 PMCID: PMC10476152 DOI: 10.1021/acscatal.3c01418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Indexed: 09/07/2023]
Abstract
Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.
Collapse
Affiliation(s)
- William Finnigan
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Lorna J. Hepworth
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Joan Citoler
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ashley P. Mattey
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Grayson J. Ford
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jack Sangster
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Bruna Zucoloto da Costa
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Yuqi Yu
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sabine L. Flitsch
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nicholas J. Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
24
|
Li Y, Shen X, Yang X, Lian F, Li Y, Li J, Huang Y, Shen W, Liu H. CHDH, a key mitochondrial enzyme, plays a diagnostic role in metabolic disorders diseases and tumor progression. Front Genet 2023; 14:1240650. [PMID: 37600654 PMCID: PMC10433736 DOI: 10.3389/fgene.2023.1240650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Human choline dehydrogenase (CHDH) is a transmembrane protein located in mitochondria. CHDH has been shown to be one of the important catalytic enzymes that catalyze the oxidation of choline to betaine and is involved in mitochondrial autophagy after mitochondrial damage. In recent years, an increasing number of studies have focused on CHDH and found a close association with the pathogenesis of various diseases, including tumor prognosis. Here we summarized the genomic localization, protein structure and basic functions of CHDH and discuss the progress of CHDH research in metabolic disorders and other diseases. Moreover, we described the regulatory role of CHDH on the progression of different types of malignant tumors. In addition, major pathogenic mechanisms of CHDH in multiple diseases may be associated with single nucleotide polymorphism (SNP). We look forward to providing new strategies and basis for clinical diagnosis and prognosis prediction of diseases by diagnosing SNP loci of CHDH genes. Our work evaluates the feasibility of CHDH as a molecular marker relevant to the diagnosis of some metabolic disorders diseases and tumors, which may provide new targets for the treatment of related diseases and tumors.
Collapse
Affiliation(s)
- Yifei Li
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xinzhuang Shen
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaowen Yang
- College of Clinical Medicine, Jining Medical University, Jining, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yanping Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Jinmeng Li
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Huan Liu
- College of Clinical Medicine, Jining Medical University, Jining, China
| |
Collapse
|
25
|
Silva AC, Oshiquiri LH, de Morais Costa de Jesus LF, Maués DB, Silva RDN. The Cerato-Platanin EPL2 from Trichoderma reesei Is Not Directly Involved in Cellulase Formation but in Cell Wall Remodeling. Microorganisms 2023; 11:1965. [PMID: 37630525 PMCID: PMC10459490 DOI: 10.3390/microorganisms11081965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Trichoderma reesei is a saprophytic fungus that produces large amounts of cellulases and is widely used for biotechnological applications. Cerato-platanins (CPs) are a family of proteins universally distributed among Dikarya fungi and have been implicated in various functions related to fungal physiology and interaction with the environment. In T. reesei, three CPs are encoded in the genome: Trire2_111449, Trire2_123955, and Trire2_82662. However, their function is not fully elucidated. In this study, we deleted the Trire2_123955 gene (named here as epl2) in the wild-type QM6aΔtmus53Δpyr4 (WT) strain and examined the behavior of the Δepl2 strain compared with WT grown for 72 h in 1% cellulose using RNA sequencing. Of the 9143 genes in the T. reesei genome, 760 were differentially expressed, including 260 only in WT, 214 only in Δepl2, and 286 in both. Genes involved in oxidative stress, oxidoreductase activity, antioxidant activity, and transport were upregulated in the Δepl2 mutant. Genes encoding cell wall synthesis were upregulated in the mutant strain during the late growth stage. The Δepl2 mutant accumulated chitin and glucan at higher levels than the parental strain and was more resistant to cell wall stressors. These results suggest a compensatory effect in cell wall remodeling due to the absence of EPL2 in T. reesei. This study is expected to contribute to a better understanding of the role of the EPL2 protein in T. reesei and improve its application in biotechnological fields.
Collapse
Affiliation(s)
| | | | | | | | - Roberto do Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.C.S.); (L.H.O.); (L.F.d.M.C.d.J.); (D.B.M.)
| |
Collapse
|
26
|
Bouqellah NA, Elkady NA, Farag PF. Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. J Fungi (Basel) 2023; 9:740. [PMID: 37504729 PMCID: PMC10381368 DOI: 10.3390/jof9070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The fungal secretome is the main interface for interactions between the pathogen and its host. It includes the most important virulence factors and effector proteins. We integrated different bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg of rapeseed fungus) to predict the secretion of 217 proteins, including many cell-wall-degrading enzymes. All secretory proteins were identified; 85 were classified as CAZyme families and 25 were classified as protease families. Moreover, 49 putative effectors were predicted and identified, where 39 of them possessed at least one conserved domain. Some pectin-degrading enzymes were noticeable as a clustering group according to STRING web analysis. The secretome of P. lingam CAN1 was compared to the other two blackleg fungal species (P. lingam JN3 and P. biglobosus CA1) secretomes and their CAZymes and effectors were identified. Orthologue analysis found that P. lingam CAN1 shared 14 CAZy effectors with other related species. The Pathogen-Host Interaction database (PHI base) classified the effector proteins in several categories where most proteins were assigned as reduced virulence and two of them termed as hypervirulence. Nowadays, in silico approaches can solve many ambiguous issues about the mechanism of pathogenicity between fungi and plant host with well-designed bioinformatics tools.
Collapse
Affiliation(s)
- Nahla A Bouqellah
- Department of Biology, College of Science, Taibah University, P.O. Box 344, Al Madinah Al Munawwarah 42317-8599, Saudi Arabia
| | - Nadia A Elkady
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Peter F Farag
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
27
|
Lin YH, Silven JJM, Wybouw N, Fandino RA, Dekker HL, Vogel H, Wu YL, de Koster C, Große-Wilde E, Haring MA, Schuurink RC, Allmann S. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nat Commun 2023; 14:3666. [PMID: 37380635 DOI: 10.1038/s41467-023-39353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chris de Koster
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Michel A Haring
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Silke Allmann
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
28
|
Zhang L, Laurent CVF, Schwaiger L, Wang L, Ma S, Ludwig R. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. ACS Catal 2023; 13:8195-8205. [PMID: 37342832 PMCID: PMC10278072 DOI: 10.1021/acscatal.3c02116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Direct bioelectrocatalysis applied in biosensors, biofuel cells, and bioelectrosynthesis is based on an efficient electron transfer between enzymes and electrodes in the absence of redox mediators. Some oxidoreductases are capable of direct electron transfer (DET), while others achieve the enzyme to electrode electron transfer (ET) by employing an electron-transferring domain. Cellobiose dehydrogenase (CDH) is the most-studied multidomain bioelectrocatalyst and features a catalytic flavodehydrogenase domain and a mobile, electron-transferring cytochrome domain connected by a flexible linker. The ET to the physiological redox partner lytic polysaccharide monooxygenase or, ex vivo, electrodes depends on the flexibility of the electron transferring domain and its connecting linker, but the regulatory mechanism is little understood. Studying the linker sequences of currently characterized CDH classes we observed that the inner, mobile linker sequence is flanked by two outer linker regions that are in close contact with the adjacent domain. A function-based definition of the linker region in CDH is proposed and has been verified by rationally designed variants of Neurospora crassa CDH. The effect of linker length and its domain attachment on electron transfer rates has been determined by biochemical and electrochemical methods, while distances between the domains of CDH variants were computed. This study elucidates the regulatory mechanism of the interdomain linker on electron transfer by determining the minimum linker length, observing the effects of elongated linkers, and testing the covalent stabilization of a linker part to the flavodehydrogenase domain. The evolutionary guided, rational design of the interdomain linker provides a strategy to optimize electron transfer rates in multidomain enzymes and maximize their bioelectrocatalytic performance.
Collapse
Affiliation(s)
- Lan Zhang
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Christophe V. F.
P. Laurent
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lushan Wang
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Su Ma
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Roland Ludwig
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| |
Collapse
|
29
|
Ferreira P, Carro J, Balcells B, Martínez AT, Serrano A. Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases. Appl Environ Microbiol 2023; 89:e0184422. [PMID: 37154753 DOI: 10.1128/aem.01844-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aryl-alcohol oxidases (AAOs) are members of the glucose-methanol-choline oxidase/dehydrogenase (GMC) superfamily. These extracellular flavoproteins have been described as auxiliary enzymes in the degradation of lignin by several white-rot basidiomycetes. In this context, they oxidize fungal secondary metabolites and lignin-derived compounds using O2 as an electron acceptor, and supply H2O2 to ligninolytic peroxidases. Their substrate specificity, including mechanistic aspects of the oxidation reaction, has been characterized in Pleurotus eryngii AAO, taken as a model enzyme of this GMC superfamily. AAOs show broad reducing-substrate specificity in agreement with their role in lignin degradation, being able to oxidize both nonphenolic and phenolic aryl alcohols (and hydrated aldehydes). In the present work, the AAOs from Pleurotus ostreatus and Bjerkandera adusta were heterologously expressed in Escherichia coli, and their physicochemical properties and oxidizing abilities were compared with those of the well-known recombinant AAO from P. eryngii. In addition, electron acceptors different from O2, such as p-benzoquinone and the artificial redox dye 2,6-Dichlorophenolindophenol, were also studied. Differences in reducing-substrate specificity were found between the AAO enzymes from B. adusta and the two Pleurotus species. Moreover, the three AAOs oxidized aryl alcohols concomitantly with the reduction of p-benzoquinone, with similar or even higher efficiencies than when using their preferred oxidizing-substrate, O2. IMPORTANCE In this work, quinone reductase activity is analyzed in three AAO flavooxidases, whose preferred oxidizing-substrate is O2. The results presented, including reactions in the presence of both oxidizing substrates-benzoquinone and molecular oxygen-suggest that such aryl-alcohol dehydrogenase activity, although less important than its oxidase activity in terms of maximal turnover, may have a physiological role during fungal decay of lignocellulose by the reduction of quinones (and phenoxy radicals) from lignin degradation, preventing repolymerization. Moreover, the resulting hydroquinones would participate in redox-cycling reactions for the production of hydroxyl free radical involved in the oxidative attack of the plant cell-wall. Hydroquinones can also act as mediators for laccases and peroxidases in lignin degradation in the form of semiquinone radicals, as well as activators of lytic polysaccharide monooxygenases in the attack of crystalline cellulose. Moreover, reduction of these, and other phenoxy radicals produced by laccases and peroxidases, promotes lignin degradation by limiting repolymerization reactions. These findings expand the role of AAO in lignin biodegradation.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Beatriz Balcells
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Ana Serrano
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| |
Collapse
|
30
|
Wu Y, Ma J, Shi J, Cao S, Luo J, Zheng T, Wang M. iTRAQ-Based Quantitative Proteomic Analysis of Arthrobacter simplex in Response to Cortisone Acetate and Its Mutants with Improved Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6376-6388. [PMID: 37043686 DOI: 10.1021/acs.jafc.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arthrobacter simplex is extensively used for cortisone acetate (CA) biotransformation in industry, but the Δ1-dehydrogenation molecular fundamental remains unclear. Herein, the comparative proteome revealed several proteins with the potential role in this reaction, which were mainly involved in lipid or amino acid transport and metabolism, energy production and conversion, steroid degradation, and transporter. The influences of six proteins were further confirmed, where pps, MceGA, yrbE4AA, yrbE4BA, and hyp2 showed positive impacts, while hyp1 exhibited a negative effect. Additionally, KsdD5 behaved as the best catalytic enzyme. By the combined manipulation in multiple genes under the control of a stronger promoter, an optimal strain with better catalytic enzyme activity, substrate transportation, and cell stress tolerance was created. After biotechnology optimization, the production peak and productivity were, respectively, boosted by 4.1- and 4.0-fold relative to the initial level. Our work broadens the understanding of the Δ1-dehydrogenation mechanism, also providing effective strategies for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jinghui Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingting Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
31
|
Ozaki T, Minami A, Oikawa H. Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host. Nat Prod Rep 2023; 40:202-213. [PMID: 36321441 DOI: 10.1039/d2np00031h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2013 to 2022In this review, we provide an overview elucidating the biosynthetic pathway and heterologous production of fungal indole diterpenes (IDTs). Based on the studies of six IDT biosynthesis, we extracted nature's strategy: (1) two-stage synthesis for the core scaffold and platform intermediates, and (2) late-stage modifications for installing an additional cyclic system on the indole ring. Herein, we describe reconstitution studies applying this strategy to the synthesis of highly elaborated IDTs. We also discuss its potential for future biosynthetic engineering.
Collapse
Affiliation(s)
- Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. .,Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
32
|
Virginia LJ, Peterbauer C. Localization of Pyranose 2-Oxidase from Kitasatospora aureofaciens: A Step Closer to Elucidate a Biological Role. Int J Mol Sci 2023; 24:1975. [PMID: 36768294 PMCID: PMC9916811 DOI: 10.3390/ijms24031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Lignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases. The only auxiliary activity subfamily with significantly similar representatives in bacteria is pyranose oxidase (POx). A biological role of providing H2O2 for peroxidase activation and reduction of radical degradation products suggests an extracellular localization, which has not been established. Analysis of the genomic locus of POX from Kitasatospora aureofaciens (KaPOx), which is similar to fungal POx, revealed a start codon upstream of the originally annotated one, and the additional sequence was considered a putative Tat-signal peptide by computational analysis. We expressed KaPOx including this additional upstream sequence as well as fusion constructs consisting of the additional sequence, the KaPOx mature domain and the fluorescent protein mRFP1 in Streptomyces lividans. The putative signal peptide facilitated secretion of KaPOx and the fusion protein, suggesting a natural extracellular localization and supporting a potential role in providing H2O2 and reducing radical compounds derived from lignin degradation.
Collapse
Affiliation(s)
- Ludovika Jessica Virginia
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Doctoral Programme BioToP—Biomolecular Technology of Proteins, BOKU—University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
33
|
Zhao H, Karppi J, Nguyen TTM, Bellemare A, Tsang A, Master E, Tenkanen M. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:135. [PMID: 36476312 PMCID: PMC9730589 DOI: 10.1186/s13068-022-02231-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically comprise a dehydrogenase domain, a cytochrome domain, and a carbohydrate-binding module from family 1 (CBM1). RESULTS In this work, an AA3_1 gene from T. myriococcoides CBS 398.93 encoding only a GMC dehydrogenase domain was expressed in Aspergillus niger. Like previously characterized CDHs, this enzyme (TmXdhA) predominantly accepts linear saccharides with β-(1 → 4) linkage and targets the hydroxyl on the reducing anomeric carbon. TmXdhA was distinguished, however, by its preferential activity towards xylooligosaccharides over cellooligosaccharides. Amino acid sequence analysis showed that TmXdhA possesses a glutamine at the substrate-binding site rather than a threonine or serine that occupies this position in previously characterized CDHs, and structural models suggest the glutamine in TmXdhA could facilitate binding to pentose sugars. CONCLUSIONS The biochemical analysis of TmXdhA revealed a catalytic preference for xylooligosaccharide substrates. The modeled structure of TmXdhA provides a reference for the screening of oxidoreductases targeting xylooligosaccharides. We anticipate TmXdhA to be a good candidate for the conversion of xylooligosaccharides to added-value chemicals by its exceptional catalytic ability.
Collapse
Affiliation(s)
- Hongbo Zhao
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Johanna Karppi
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Annie Bellemare
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Emma Master
- grid.5373.20000000108389418Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland ,grid.17063.330000 0001 2157 2938Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Maija Tenkanen
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation. Int J Mol Sci 2022; 23:ijms232213808. [PMID: 36430286 PMCID: PMC9699415 DOI: 10.3390/ijms232213808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive research efforts have been devoted to describing yeast alcohol oxidase (AO) and its promoter region, which is vastly applied in studies of heterologous gene expression. However, little is known about basidiomycetous AO and its physiological role in wood degradation. This review describes several alcohol oxidases from both white and brown rot fungi, highlighting their physicochemical and kinetic properties. Moreover, the review presents a detailed analysis of available AO-encoding gene promoter regions in basidiomycetous fungi with a discussion of the manipulations of culture conditions in relation to the modification of alcohol oxidase gene expression and changes in enzyme production. The analysis of reactions catalyzed by lignin-modifying enzymes (LME) and certain lignin auxiliary enzymes (LDA) elucidated the possible involvement of alcohol oxidase in the degradation of derivatives of this polymer. Combined data on lignin degradation pathways suggest that basidiomycetous AO is important in secondary reactions during lignin decomposition by wood degrading fungi. With numerous alcoholic substrates, the enzyme is probably engaged in a variety of catalytic reactions leading to the detoxification of compounds produced in lignin degradation processes and their utilization as a carbon source by fungal mycelium.
Collapse
|
35
|
Kostelac A, Sützl L, Puc J, Furlanetto V, Divne C, Haltrich D. Biochemical Characterization of Pyranose Oxidase from Streptomyces canus-Towards a Better Understanding of Pyranose Oxidase Homologues in Bacteria. Int J Mol Sci 2022; 23:13595. [PMID: 36362382 PMCID: PMC9659204 DOI: 10.3390/ijms232113595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pyranose oxidase (POx, glucose 2-oxidase; EC 1.1.3.10, pyranose:oxygen 2-oxidoreductase) is an FAD-dependent oxidoreductase and a member of the auxiliary activity (AA) enzymes (subfamily AA3_4) in the CAZy database. Despite the general interest in fungal POxs, only a few bacterial POxs have been studied so far. Here, we report the biochemical characterization of a POx from Streptomyces canus (ScPOx), the sequence of which is positioned in a separate, hitherto unexplored clade of the POx phylogenetic tree. Kinetic analyses revealed that ScPOx uses monosaccharide sugars (such as d-glucose, d-xylose, d-galactose) as its electron-donor substrates, albeit with low catalytic efficiencies. Interestingly, various C- and O-glycosides (such as puerarin) were oxidized by ScPOx as well. Some of these glycosides are characteristic substrates for the recently described FAD-dependent C-glycoside 3-oxidase from Microbacterium trichothecenolyticum. Here, we show that FAD-dependent C-glycoside 3-oxidases and pyranose oxidases are enzymes belonging to the same sequence space.
Collapse
Affiliation(s)
- Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Leander Sützl
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health-CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health-CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
36
|
Ayuso-Fernández I, Molpeceres G, Camarero S, Ruiz-Dueñas FJ, Martínez AT. Ancestral sequence reconstruction as a tool to study the evolution of wood decaying fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1003489. [PMID: 37746217 PMCID: PMC10512382 DOI: 10.3389/ffunb.2022.1003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 09/26/2023]
Abstract
The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gonzalo Molpeceres
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
37
|
Foley G, Mora A, Ross CM, Bottoms S, Sützl L, Lamprecht ML, Zaugg J, Essebier A, Balderson B, Newell R, Thomson RES, Kobe B, Barnard RT, Guddat L, Schenk G, Carsten J, Gumulya Y, Rost B, Haltrich D, Sieber V, Gillam EMJ, Bodén M. Engineering indel and substitution variants of diverse and ancient enzymes using Graphical Representation of Ancestral Sequence Predictions (GRASP). PLoS Comput Biol 2022; 18:e1010633. [PMID: 36279274 PMCID: PMC9632902 DOI: 10.1371/journal.pcbi.1010633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Ancestral sequence reconstruction is a technique that is gaining widespread use in molecular evolution studies and protein engineering. Accurate reconstruction requires the ability to handle appropriately large numbers of sequences, as well as insertion and deletion (indel) events, but available approaches exhibit limitations. To address these limitations, we developed Graphical Representation of Ancestral Sequence Predictions (GRASP), which efficiently implements maximum likelihood methods to enable the inference of ancestors of families with more than 10,000 members. GRASP implements partial order graphs (POGs) to represent and infer insertion and deletion events across ancestors, enabling the identification of building blocks for protein engineering. To validate the capacity to engineer novel proteins from realistic data, we predicted ancestor sequences across three distinct enzyme families: glucose-methanol-choline (GMC) oxidoreductases, cytochromes P450, and dihydroxy/sugar acid dehydratases (DHAD). All tested ancestors demonstrated enzymatic activity. Our study demonstrates the ability of GRASP (1) to support large data sets over 10,000 sequences and (2) to employ insertions and deletions to identify building blocks for engineering biologically active ancestors, by exploring variation over evolutionary time.
Collapse
Affiliation(s)
- Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Connie M. Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott Bottoms
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
| | - Leander Sützl
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Marnie L. Lamprecht
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Julian Zaugg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Rhys Newell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Jörg Carsten
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Burkhard Rost
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Dietmar Haltrich
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| |
Collapse
|
38
|
Wang C, Xiao D, Dun B, Yin M, Tsega AS, Xie L, Li W, Yue Q, Wang S, Gao H, Lin M, Zhang L, Molnár I, Xu Y. Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides. Proc Natl Acad Sci U S A 2022; 119:e2123379119. [PMID: 35914151 PMCID: PMC9371744 DOI: 10.1073/pnas.2123379119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Miaomiao Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Adigo Setargie Tsega
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wenhua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, AZ 85706
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
39
|
Sayed M, Gaber Y, Junghus F, Martín EV, Pyo S, Hatti‐Kaul R. Oxidation of 5-hydroxymethylfurfural with a novel aryl alcohol oxidase from Mycobacterium sp. MS1601. Microb Biotechnol 2022; 15:2176-2190. [PMID: 35349220 PMCID: PMC9328741 DOI: 10.1111/1751-7915.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Bio-based 5-hydroxymethylfurfural (HMF) serves as an important platform for several chemicals, among which 2,5-furan dicarboxylic acid (FDCA) has attracted considerable interest as a monomer for the production of polyethylene furanoate (PEF), a potential alternative for fossil-based polyethylene terephthalate (PET). This study is based on the HMF oxidizing activity shown by Mycobacterium sp. MS 1601 cells and investigation of the enzyme catalysing the oxidation. The Mycobacterium whole cells oxidized the HMF to FDCA (60% yield) and hydroxymethyl furan carboxylic acid (HMFCA). A gene encoding a novel bacterial aryl alcohol oxidase, hereinafter MycspAAO, was identified in the genome and was cloned and expressed in Escherichia coli Bl21 (DE3). The purified MycspAAO displayed activity against several alcohols and aldehydes; 3,5 dimethoxy benzyl alcohol (veratryl alcohol) was the best substrate among those tested followed by HMF. 5-Hydroxymethylfurfural was converted to 5-formyl-2-furoic acid (FFCA) via diformyl furan (DFF) with optimal activity at pH 8 and 30-40°C. FDCA formation was observed during long reaction time with low HMF concentration. Mutagenesis of several amino acids shaping the active site and evaluation of the variants showed Y444F to have around 3-fold higher kcat /Km and ~1.7-fold lower Km with HMF.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Department of Botany and MicrobiologyFaculty of ScienceSouth Valley UniversityQena83523Egypt
| | - Yasser Gaber
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni‐Suef UniversityBeni‐Suef62511Egypt
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyMutah UniversityAl‐Karak61710Jordan
| | - Fredrik Junghus
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Eric Valdés Martín
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Present address:
Department of ChemicalBiological and Environmental EngineeringUniversitat Autonoma BarcelonaBellaterraSpain
| | - Sang‐Hyun Pyo
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Rajni Hatti‐Kaul
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| |
Collapse
|
40
|
Boverio A, Widodo WS, Santema LL, Rozeboom H, Xiang R, Guallar V, Mattevi A, Fraaije MW. Structural Elucidation and Engineering of a Bacterial Carbohydrate Oxidase. Biochemistry 2022; 62:429-436. [PMID: 35881507 PMCID: PMC9850908 DOI: 10.1021/acs.biochem.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.
Collapse
Affiliation(s)
- Alessandro Boverio
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands,Department
of Biology and Biotechnology, University
of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Wahyu S. Widodo
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Lars L. Santema
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Henriëtte
J. Rozeboom
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ruite Xiang
- Electronic
and Atomic Protein Modelling Group, Barcelona
Supercomputing Center, E-08034 Barcelona, Spain
| | - Víctor Guallar
- Electronic
and Atomic Protein Modelling Group, Barcelona
Supercomputing Center, E-08034 Barcelona, Spain
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco W. Fraaije
- Molecular
Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands,
| |
Collapse
|
41
|
Terrasan CRF, Rubio MV, Gerhardt JA, Cairo JPF, Contesini FJ, Zubieta MP, de Figueiredo FL, Valadares FL, Corrêa TLR, Murakami MT, Franco TT, Davies GJ, Walton PH, Damasio A. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiol Spectr 2022; 10:e0212521. [PMID: 35658600 PMCID: PMC9241910 DOI: 10.1128/spectrum.02125-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.
Collapse
Affiliation(s)
- César Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Paulo Franco Cairo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lopes de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lima Valadares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gideon J. Davies
- Department of Chemistry, University of York, York, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York, United Kingdom
| | - Andre Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Nigg M, de Oliveira TC, Sarmiento-Villamil JL, de la Bastide PY, Hintz WE, Sherif SM, Shukla M, Bernier L, Saxena PK. Comparative Analysis of Transcriptomes of Ophiostoma novo-ulmi ssp. americana Colonizing Resistant or Sensitive Genotypes of American Elm. J Fungi (Basel) 2022; 8:637. [PMID: 35736120 PMCID: PMC9224576 DOI: 10.3390/jof8060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.
Collapse
Affiliation(s)
- Martha Nigg
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Thais C. de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Jorge L. Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Paul Y. de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Will E. Hintz
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
43
|
Jabłońska J, Tawfik DS. Innovation and tinkering in the evolution of oxidases. Protein Sci 2022; 31:e4310. [PMID: 35481655 PMCID: PMC9040561 DOI: 10.1002/pro.4310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Although molecular oxygen is a relative newcomer to the biosphere, it has had a profound impact on metabolism. About 700 oxygen‐dependent enzymatic reactions are known, the vast majority of which emerged only after the appearance of oxygen in the biosphere, circa 3 billion years ago. Oxygen was a major driving force for evolutionary innovation—~60% of all known oxygen‐dependent enzyme families emerged as such; that is, the founding ancestor was an O2‐dependent enzyme. The other 40% seem to have diverged by tinkering from pre‐existing proteins whose function was not related to oxygen. Here, we focus on the latter. We describe transitions from various enzyme classes, as well as from non‐enzymatic proteins, and we explore these transitions in terms of catalytic chemistry, metabolism, and protein structure. These transitions vary from subtle ones, such as simply repurposing oxidoreductases by replacing an electron acceptor such as NAD by O2, to drastic changes in reaction mechanism, such as turning carboxylases and hydrolases into oxidases. The latter is more common and can occur with strikingly minor changes, for example, only one mutation in the active site. We further suggest that engineering enzymes to harness the extraordinary reactivity of oxygen may yield higher catabolic power and versatility.
Collapse
Affiliation(s)
- Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Minjárez-Sáenz M, Martínez-Júlvez M, Yruela I, Medina M. Mining the Flavoproteome of Brucella ovis, the Brucellosis Causing Agent in Ovis aries. Microbiol Spectr 2022; 10:e0229421. [PMID: 35315701 PMCID: PMC9045290 DOI: 10.1128/spectrum.02294-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.
Collapse
Affiliation(s)
- Martha Minjárez-Sáenz
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| |
Collapse
|
45
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
47
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
48
|
Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers. Proc Natl Acad Sci U S A 2022; 119:2114420119. [PMID: 35074876 PMCID: PMC8812537 DOI: 10.1073/pnas.2114420119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
Beyond sugars, many types of nectar solutes play important ecological roles; however, the molecular basis for the diversity of nectar composition across species is less explored. One rare trait among flowering plants is the production of colored nectar, which may function to attract and guide prospective pollinators. Our findings indicate convergent evolution of a red-colored nectar has occurred across two distantly related plant species. Behavioral data show that the red pigment attracts diurnal geckos, the likely pollinator of one of these plants. These findings join a growing list of examples of distinct biochemical and molecular mechanisms underlying evolutionary convergence and provide a fascinating system for testing how interactions across species drive the evolution of novel pigments in an understudied context. Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar’s red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon. We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.
Collapse
|
49
|
Characterization of a sorbose oxidase involved in the biosynthesis of 2-keto-L-gulonic acid from Gluconobacter oxydans WSH-004. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Rembeza E, Boverio A, Fraaije MW, Engqvist MKM. Discovery of Two Novel Oxidases Using a High-Throughput Activity Screen. Chembiochem 2022; 23:e202100510. [PMID: 34709726 PMCID: PMC9299179 DOI: 10.1002/cbic.202100510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Discovery of novel enzymes is a challenging task, yet a crucial one, due to their increasing relevance as chemical catalysts and biotechnological tools. In our work we present a high-throughput screening approach to discovering novel activities. A screen of 96 putative oxidases with 23 substrates led to the discovery of two new enzymes. The first enzyme, N-acetyl-D-hexosamine oxidase (EC 1.1.3.29) from Ralstonia solanacearum, is a vanillyl alcohol oxidase-like flavoprotein displaying the highest activity with N-acetylglucosamine and N-acetylgalactosamine. Before our discovery of the enzyme, its activity was an orphan one - experimentally characterized but lacking the link to amino acid sequence. The second enzyme, from an uncultured marine euryarchaeota, is a long-chain alcohol oxidase (LCAO, EC 1.1.3.20) active with a range of fatty alcohols, with 1-dodecanol being the preferred substrate. The enzyme displays no sequence similarity to previously characterised LCAOs, and thus is a completely novel representative of a protein with such activity.
Collapse
Affiliation(s)
- Elzbieta Rembeza
- Department of Biology and Biological EngineeringChalmers University of Technology412 96GothenburgSweden
| | - Alessandro Boverio
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringChalmers University of Technology412 96GothenburgSweden
| |
Collapse
|