1
|
Chao LL, Chen TH, Erazo E, Shih CM. Species description and molecular analysis of a hard tick ( Amblyomma cordiferum) parasitizing wild Taiwan cobra snake ( Naja atra) in southern Taiwan. Int J Parasitol Parasites Wildl 2025; 26:101025. [PMID: 39802583 PMCID: PMC11721908 DOI: 10.1016/j.ijppaw.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Species description based on the pictorial keys of morphological characters of female Amblyomma cordiferum tick parasitizing wild Taiwan cobra snake (Naja atra) was firstly described in Taiwan. Molecular analysis based on the 16S mitochondrial gene sequences was performed by comparing eight A. cordiferum ticks from Taiwan with other Amblyomma species documented in GenBank. In addition, two Dermacentor and two Rhipicephalus species were used as outgroups. All these Taiwan specimens constructing a monophyletic group which is genetically affiliated with A. cordiferum and it can be discriminated from other Amblyomma species. This study provides the first species description and determines the genetic identity of adult A. cordiferum ticks parasitizing wild Taiwan cobra snake. Further investigations focused on its ability to carry various tick-borne pathogens will help to illustrate the medical importance on human health in Taiwan.
Collapse
Affiliation(s)
- Li-Lian Chao
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Tien-Hsi Chen
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Esmeralda Erazo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chien-Ming Shih
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
2
|
Junsiri W, Thanasak J, Na Ayudhaya TI, Chaiwattanarungruengpaisan S, Taweethavonsawat P. Unveiling hidden threats: Molecular surveillance of bacterial and protozoan infections in Asian water monitors ( Varanus salvator) at Thailand 's Khao-zon Wildlife Breeding Station. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100250. [PMID: 40135109 PMCID: PMC11932867 DOI: 10.1016/j.crpvbd.2025.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Asian water monitors (Varanus salvator) are often exposed to harmful microorganisms such as species of Hepatozoon, Anaplasma, Rickettsia, and Borrelia. These pathogens pose significant risks to wildlife and public health. In this study, we aimed to investigate the presence and genetic diversity of pathogenic microorganisms in V. salvator from the Khao-zon Wildlife Breeding Station, Ratchaburi, Thailand. Sixteen V. salvator were collected, and thin blood smears and polymerase chain reaction (PCR) assays of the DNA isolated from blood were used to identify infections. Blood smear analysis revealed two positive samples (2/16; 12.5%) for Hepatozoon sp. PCR results confirmed the presence of Hepatozoon sp. (6/16; 37.5%), Anaplasma sp. (3/16; 18.75%), Rickettsia sp. (2/16; 12.5%), Borrelia sp. (4/16; 25.0%) and Burkholderia sp. (1/16; 6.25%). Phylogenetic analysis revealed 99.86% similarity of Hepatozoon sp. sequences with Hepatozoon ophisauri (GenBank: MN723845) in Pseudopus apodus from Iran, whereas the gltA gene of Rickettsia sp. was closely related to Rickettsia conorii raoultii (GenBank: MF002515) in Dermacentor nuttalli from China. This study represents the first detection of the five pathogens in V. salvator from Thailand and provides valuable insights into the genetic diversity of these microorganisms. Our findings suggest that V. salvator may serve as reservoir for multiple pathogens, posing potential threats to both wildlife and humans. The presence of zoonotic agents such as Rickettsia spp., Anaplasma spp., and Borrelia spp. underscores the importance of continued surveillance in wildlife populations to mitigate the risk of emerging infectious diseases.
Collapse
Affiliation(s)
- Witchuta Junsiri
- Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitkamol Thanasak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tawewan Issarankura Na Ayudhaya
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Biomarkers in Animals Parasitology Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Kazim AR, Nasir DM, Tan TK, Yin VSW, Noh AAM, Heo CC, Low VL. New host record and redescription of Amblyomma cordiferum nymphs and larvae infesting Malaysian house rats (Rattus rattus diardii) in Peninsular Malaysia, with molecular evidence of Rickettsia, Borrelia, and Bartonella. Acta Trop 2025; 261:107496. [PMID: 39667694 DOI: 10.1016/j.actatropica.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Nymphal and larval Amblyomma cordiferum ticks, a relatively rare species, were collected from the Malaysian house rat (Rattus rattus diardii) in Peninsular Malaysia. Redescription and molecular analysis of nymphs and larvae, based on the 12S rRNA, 16S rRNA, and COI genes, revealed divergence from A. cordiferum in Taiwan, suggesting that the Taiwanese tick specimens may represent a different taxon. Molecular analysis of the pathogens in these specimens revealed three sequences of Rickettsia closely related or identical to Rickettsia raoultii (99.71-100%), two sequences of relapsing fever Borrelia identical to Borrelia theileri, and four sequences of Bartonella identical to Bartonella phoceensis. This study also identifies a new host record for A. cordiferum in R. r. diardii and reports the first detection of Rickettsia, Borrelia, and Bartonella in this tick species.
Collapse
Affiliation(s)
- Abdul Rahman Kazim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Dzulhelmi Muhammad Nasir
- Crop Protection & Biosolution Department, FGV R&D Sdn Bhd, Tun Razak Agricultural Research Centre, 27000 Jerantut, Pahang, Malaysia
| | - Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vinnie-Siow Wei Yin
- Higher Institution of Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ariff Ateed Mohd Noh
- Crop Protection & Biosolution Department, FGV R&D Sdn Bhd, Tun Razak Agricultural Research Centre, 27000 Jerantut, Pahang, Malaysia
| | - Chong-Chin Heo
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia.
| | - Van Lun Low
- Higher Institution of Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Prasetyo DB, Fiorenzano JM, Nop D, Noch N, Huot B, Mom S, Prum S, Chhe V, Dul S, Heang V, Prom S, Jiang J, Richards AL, Farris CM, Hertz JC. Molecular detection of Rickettsia species in ectoparasites collected from two southern provinces of Cambodia. PLoS Negl Trop Dis 2024; 18:e0012544. [PMID: 39348408 PMCID: PMC11476676 DOI: 10.1371/journal.pntd.0012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024] Open
Abstract
Arthropod-borne rickettsioses comprise a wide variety of subtypes that are endemic in Cambodia, but there remains very little data on the geographic distribution of the pathogens or their vectors. Surveys were conducted in Koh Kong and Preah Sihanouk Provinces between September 2017 and June 2018 to collect ectoparasites from peridomestic animals and the environment using dragging and flagging methods. Collected ectoparasites were sorted and identified morphologically, then pooled by species, host, and location for molecular detection using Rickettsia genus- and species-specific qPCR and/or multilocus sequence typing (MLST) assays. A total of 14,254 ectoparasites were collected including seven new locality records. Rickettsia species were detected in 35.5% (174/505) of the pools screened representing 3,149 randomly selected ectoparasites from the total collected. Rickettsia asembonensis was detected in 89.6% (147/164) of Rickettsia-positive flea pools and 3.6% (6/164) of the flea pools were positive for both R. asembonensis and Rickettsia felis. Candidatus Rickettsia senegalensis from Ctenocephalides orientis fleas and Rickettsia sp. close to Rickettsia japonica and Rickettsia heilongjiangensis from Haemaphysalis ticks were identified by MLST. This appears to be the first report of these new ectoparasite records and rickettsial species in southern Cambodia, suggesting a potential health risk to military and civilians in this region.
Collapse
Affiliation(s)
| | | | - Daliya Nop
- Vysnova Partners, LLC, Alexandria, Virginia, United States of America
| | - Nin Noch
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Boren Huot
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sokly Mom
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sitha Prum
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Visal Chhe
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Sokha Dul
- AC Investment Co., Ltd., Phnom Penh, Cambodia
| | - Vireak Heang
- U.S. Naval Medical Research Unit INDO PACIFIC, Phnom Penh, Cambodia
| | - Satharath Prom
- Department of Health, Ministry of National Defence, Phnom Penh, Cambodia
| | - Ju Jiang
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Allen L. Richards
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Christina M. Farris
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jeffrey C. Hertz
- U.S. Naval Medical Research Unit INDO PACIFIC, Sembawang, Singapore
| |
Collapse
|
5
|
Kwak ML, Jones MD, Harman MEA, Smith SN, D'souza A, Knierim T, Barnes CH, Waengsothorn S, Amarga AKS, Kuo CC, Nakao R. The East Indies reptile tick Amblyomma helvolum Koch, 1844 (Acari: Ixodidae), taxonomy, biology and new host records, including the first record of human infestation. Ticks Tick Borne Dis 2023; 14:102224. [PMID: 37422945 DOI: 10.1016/j.ttbdis.2023.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Amblyomma helvolum is a widespread, generalist ectoparasite of reptiles in the oriental region, and has the potential to become highly invasive should it be inadvertently introduced outside its native range through the exotic pet trade. All life stages of A. helvolum are re-characterised morphologically and the first examples of nanism (dwarfism) and gynandromorphy (male and female tissue in one animal) for the species are described. Eighteen new hosts records are presented for A. helvolum, including the first case of human infestation. The taxonomy, distribution, ecology, phenology, disease associations, and invasion biology of the species are also discussed.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, 9 Chome Kita 18 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0818, Japan
| | - Max D Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, VA, United States
| | - Madison E A Harman
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, United States
| | - Samantha N Smith
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Anji D'souza
- Sakaerat Enviromental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima, Thailand
| | - Tyler Knierim
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Curt H Barnes
- Center of Excellence for Ecoinformatics, School of Science, Walailak University, Thai Buri, Tha Sala District, Nakhon Si Thammarat, 80160, Thailand
| | - Surachit Waengsothorn
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Ace Kevin S Amarga
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Chien Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, 9 Chome Kita 18 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
6
|
Che Lah EF, Ahamad M, Dmitry A, Md Zain BM, Yaakop S. Metagenomic profile of the bacterial communities associated with Ixodes granulatus (Acari: Ixodidae): a potential vector of tick-borne diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2023:7131392. [PMID: 37075471 DOI: 10.1093/jme/tjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Ixodes granulatus Supino, 1897 (Acari: Ixodida) is one of Malaysia's most common hard ticks and is a potential vector for tick-borne diseases (TBDs). Despite its great public health importance, research on I. granulatus microbial communities remains largely unexplored. Therefore, this study aimed to investigate the bacterial communities of on-host I. granulatus collected from three different recreational areas on the East Coast of Peninsular Malaysia using high throughput Next Generation Sequencing (NGS). A total of 9 females on-host I. granulatus were subjected to metabarcoding analysis targeting V3-V4 regions of 16S ribosomal RNA (rRNA) using the Illumina MiSeq platform. This study identified 15 bacterial phyla corresponding to 19 classes, 54 orders, and 90 families from 435 amplicon sequence variants (ASVs), revealing a diverse bacterial community profile. Together with 130 genera assigned, local I. granulatus harbored 4 genera of pathogens, i.e., Rickettsia da Rocha Lima, 1916 (Rickettsiales: Rickettsiaceae) (58.6%), Borrelia Swellengrebel 1907 (Spirochaetales: Borreliaceae) (31.6%), Borreliella Adeolu and Gupta 2015 (Spirochaetales: Borreliaceae) (0.6%), and Ehrlichia Cowdria Moshkovski 1947 (Rickettsiales: Ehrlichiaceae) (39.9%). Some endosymbiont bacteria, such as Coxiella (Philip, 1943) (Legionellales: Coxiellaceae), Wolbachia Hertig 1936 (Rickettsiales: Ehrlichiaceae), and Rickettsiella Philip, 1956 (Legionellales: Coxiellaceae), were also detected at very low abundance. Interestingly, this study reported the co-infection of Borrelia and Ehrlichia for the first time, instilling potential health concerns in the context of co-transmission to humans, especially in areas with a high population of I. granulatus. This study successfully characterized the tick microbiome and provided the first baseline data of I. granulatus bacterial communities in Malaysia. These results support the need for way-forward research on tick-associated bacteria using NGS, focusing on medically important species toward TBD prevention.
Collapse
Affiliation(s)
- Ernieenor Faraliana Che Lah
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam, Selangor 40170, Malaysia
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Mariana Ahamad
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam, Selangor 40170, Malaysia
| | - Apanaskevich Dmitry
- United States National Tick Collection, The James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Badrul Munir Md Zain
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
7
|
Ticks (Acari: Ixodidae) of three Timor-Leste reptiles: first country record of Amblyomma helvolum, with new interactions and an updated list of host species. Ticks Tick Borne Dis 2023; 14:102060. [PMID: 36638670 DOI: 10.1016/j.ttbdis.2022.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
We report on the presence of the ixodid tick Amblyomma helvolum on three species of reptiles from Timor-Leste. Among a total of 21 host specimens (lizards: 18 four-fingered skinks, Carlia sp. 'Meleotegi' and two forest skinks, Sphenomorphus sp. 'Meleotegi'; snake: one Coelognathus subradiatus) four were parasitized by ticks. Whereas nymphs were associated with the lizards, an adult male was retrieved from the snake. This report is the first of A. helvolum for Timor-Leste, the first for the skink genera Carlia and Sphenomorphus, and the first for C. subradiatus. We present a comprehensive table with updated taxonomy of known associations between A. helvolum and other vertebrates.
Collapse
|
8
|
Mofokeng LS, Smit NJ, Cook CA. Molecular Detection of Tick-Borne Bacteria from Amblyomma (Acari: Ixodidae) Ticks Collected from Reptiles in South Africa. Microorganisms 2022; 10:microorganisms10101923. [PMID: 36296199 PMCID: PMC9607068 DOI: 10.3390/microorganisms10101923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Reptiles are hosts for various tick species and tick-associated organisms, many of which are zoonotic. However, little is known about the presence and diversity of tick-borne bacteria infecting reptiles and their ticks in South Africa. Amblyomma ticks (n = 253) collected from reptiles were screened for the presence of Coxiella, Anaplasma, Rickettsia, and Borrelia species by amplification, sequencing and phylogenetic analysis of the 16S rRNA, 23S rRNA, gltA, OmpA, and Flagellin genes, respectively. This study recorded the presence of reptile associated Borrelia species and Coxiella-like endosymbiont in South Africa for the first time. Furthermore, a spotted fever group Rickettsia species was observed in 7 Amblyomma marmoreum and 14 Amblyomma sylvaticum from tortoises of genera Kinixys and Chersina. Francisella-like endosymbiont was observed from 2 Amblyomma latum collected from the Mozambique spitting cobra, Naja mossambica. Coxiella burnetii and Anaplasma spp., were not detected from the current samples. Although the direct evidence that reptiles can act as reservoir hosts remains to be determined, observations from this study provide indications that reptilian ticks may play a role in the transmission of pathogenic bacteria to homothermic animals. Furthermore, the absence of Anaplasma spp., and C. burnetii does not mean that these pathogens should be completely neglected.
Collapse
|
9
|
Che Lah EF, George E, Apanaskevich D, Ahmad M, Yaakop S. First Record of the Tortoise Tick, Amblyomma geoemydae (Cantor, 1847) (Acari: Ixodidae) Parasitizing a Tree Shrew, Tupaia glis (Scandentia: Tupaiidae) in West Malaysia. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1473-1478. [PMID: 35482611 DOI: 10.1093/jme/tjac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The tick genus Amblyomma Koch, 1844 (Acari: Ixodidae) has received little attention in Malaysia; therefore, its associated hosts and distribution records are poorly known. In this study, we collected six Amblyomma sp. individuals (two larvae and four adults) that infested a common treeshrew, Tupaia glis (Diard, 1820) (Scandentia: Tupaiidae) caught in a recreational area in Sungai Lembing, Pahang (West Malaysia). The adult female ticks were morphologically identified according to taxonomic keys prior to molecular identification using cytochrome oxidase subunit I (COI) and 16S rDNA genes. The ticks were genetically verified as Amblyomma geoemydae (Cantor, 1847) with 98%-99% similarity to the available GenBank sequences. Neighbor-joining (NJ) trees indicated that A. geoemydae was clearly distinguished from other Amblyomma ticks and this was supported with high bootstrap values. This paper is the first to report A. geoemydae ticks infesting T. glis and provides a new tick-host record from West Malaysia. This information is significant for further investigation, specifically on this tick species as potential vector of tick-borne disease (TBD) agents.
Collapse
Affiliation(s)
- Ernieenor Faraliana Che Lah
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ernna George
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Dmitry Apanaskevich
- United States National Tick Collection, The James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, 30460-8042, USA
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Mariana Ahmad
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Mofokeng LS, Smit NJ, Cook CA. Molecular screening of ticks of the genus Amblyomma (Acari: Ixodidae) infesting South African reptiles with comments on their potential to act as vectors for Hepatozoon fitzsimonsi (Dias, 1953) (Adeleorina: Hepatozoidae). Int J Parasitol Parasites Wildl 2021; 16:163-167. [PMID: 34584839 PMCID: PMC8455905 DOI: 10.1016/j.ijppaw.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
In South Africa, the role of reptilian ticks in the transmission of haemoparasites is lacking, in part, due to limited information on tick diversity and their associated haemoparasites. The aim of this research was to identify tick species parasitizing reptiles and to molecularly screen these ectoparasites for species of the blood apicomplexan genus Hepatozoon. Samples were collected from Ndumo Game Reserve, KwaZulu-Natal, and the Cape Columbine region, Western Cape. Reptiles collected included 2 snakes, 2 monitor lizards of a single species respectively, as well as 17 tortoises of four species. Ticks collected from these were morphologically identified as Amblyomma latum (n = 2) and Amblyomma marmoreum (n = 98), this identification was molecularly confirmed using 16S rRNA and CO1 genes. Screening for Hepatozoon was done by amplifying the 18S rRNA gene. A species of Hepatozoon, Hepatozoon fitzsimonsi, was identified from A. marmoreum ticks, with an overall prevalence of 10%. This Hepatozoon species, has been described parasitizing tortoises from southern Africa, and has been reported from ticks infesting tortoises from Kenya, East Africa. Even though ticks have been suggested to be the likely vector of this Hepatozoon species, with this supported by the findings of Hepatozoon-like developmental stages in ticks collected off of infected tortoises, a recent systematic revision placed this species in a newly erected genus Bartazoon, a genus vectorised by biting insects. The present study thus provides further support for ticks acting as the potential vectors of H. fitzsimonsi.
Collapse
Affiliation(s)
- Lehlohonolo S. Mofokeng
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| | - Nico J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| | - Courtney A. Cook
- Water Research Group, Unit for Environmental Sciences and Management, North - West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
11
|
Colosimo G, Jackson AC, Benton A, Varela-Stokes A, Iverson J, Knapp CR, Welch M. Correlated population genetic structure in a three-tiered host-parasite system. The potential for coevolution and adaptive divergence. J Hered 2021; 112:590-601. [PMID: 34612500 DOI: 10.1093/jhered/esab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
Three subspecies of Northern Bahamian Rock Iguanas, Cyclura cychlura, are currently recognized: C. c. cychlura, restricted to Andros Island, and C. c. figginsi and C. c. inornata, native to the Exuma Island chain. Populations on Andros are genetically distinct from Exuma Island populations, yet genetic divergence among populations in the Exumas is inconsistent with the two currently recognized subspecies from those islands. The potential consequences of this discrepancy might include the recognition of a single subspecies throughout the Exumas rather than two. That inference also ignores evidence that populations of C. cychlura are potentially adaptively divergent. We compared patterns of population relatedness in a three-tiered host-parasite system: C. cychlura iguanas, their ticks (genus Amblyomma, preferentially parasitizing these reptiles), and Rickettsia spp. endosymbionts (within tick ectoparasites). Our results indicate that while C. c. cychlura on Andros is consistently supported as a separate clade, patterns of relatedness among populations of C. c. figginsi and C. c. inornata within the Exuma Island chain are more complex. The distribution of the hosts, different tick species, and Rickettsia spp., supports the evolutionary independence of C. c. inornata. Further, these patterns are also consistent with two independent evolutionarily significant units within C. c. figginsi. Our findings suggest coevolutionary relationships between the reptile hosts, their ectoparasites, and rickettsial organisms, suggesting local adaptation. This work also speaks to the limitations of using neutral molecular markers from a single focal taxon as the sole currency for recognizing evolutionary novelty in populations of endangered species.
Collapse
Affiliation(s)
- Giuliano Colosimo
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA.,San Diego Zoo Wildlife Alliance, Escondido, California, USA
| | - Anna C Jackson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Amanda Benton
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrea Varela-Stokes
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John Iverson
- Department of Biology, Earlham College, Richmond, Indiana, USA
| | - Charles R Knapp
- Daniel P. Haerter Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Mark Welch
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
12
|
Mendoza-Roldan JA, Mendoza-Roldan MA, Otranto D. Reptile vector-borne diseases of zoonotic concern. Int J Parasitol Parasites Wildl 2021; 15:132-142. [PMID: 34026483 PMCID: PMC8121771 DOI: 10.1016/j.ijppaw.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Reptile vector-borne diseases (RVBDs) of zoonotic concern are caused by bacteria, protozoa and viruses transmitted by arthropod vectors, which belong to the subclass Acarina (mites and ticks) and the order Diptera (mosquitoes, sand flies and tsetse flies). The phyletic age of reptiles since their origin in the late Carboniferous, has favored vectors and pathogens to co-evolve through millions of years, bridging to the present host-vector-pathogen interactions. The origin of vector-borne diseases is dated to the early cretaceous with Trypanosomatidae species in extinct sand flies, ancestral of modern protozoan hemoparasites of zoonotic concern (e.g., Leishmania and Trypanosoma) associated to reptiles. Bacterial RVBDs are represented by microorganisms also affecting mammals of the genera Aeromonas, Anaplasma, Borrelia, Coxiella, Ehrlichia and Rickettsia, most of them having reptilian clades. Finally, reptiles may play an important role as reservoirs of arborivuses, given the low host specificity of anthropophilic mosquitoes and sand flies. In this review, vector-borne pathogens of zoonotic concern from reptiles are discussed, as well as the interactions between reptiles, arthropod vectors and the zoonotic pathogens they may transmit.
Collapse
Affiliation(s)
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
13
|
Qiu Y, Kidera N, Hayashi M, Fujishima K, Tamura H. Rickettsia spp. and Ehrlichia spp. in Amblyomma ticks parasitizing wild amphibious sea kraits and yellow-margined box turtles in Okinawa, Japan. Ticks Tick Borne Dis 2020; 12:101636. [PMID: 33360921 DOI: 10.1016/j.ttbdis.2020.101636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Recently, several tick-borne pathogens were detected in reptile-associated ticks. However, studies on the microorganisms in reptile-associated ticks in Japan are limited. This molecular survey thus aimed to identify and characterize tick-borne pathogens (Rickettsiaceae and Anaplasmataceae) in reptile-associated ticks in Japan. In total, 77 Amblyomma nitidum and 104 Amblyomma geoemydae were collected from wild amphibious sea kraits (Laticauda semifasciata, Laticauda colubrina, and Laticauda laticaudata) and from yellow-margined box turtles (Cuora flavomarginata evelynae), respectively. Conventional polymerase chain reaction was performed using the DNA extracted from the ticks to detect the selected pathogens. Sequencing analysis of four Rickettsia genes (gltA, ompA, ompB, and sca4) led to the identification of a putative novel Rickettsia sp. and Rickettsia aeschlimannii-like rickettsia in A. nitidum and A. geoemydae, respectively. Sequencing analysis of gltA and groEL of Anaplasmataceae revealed that the Ehrlichia spp. in these ticks were novel and related to Candidatus Ehrlichia occidentalis. This is the first study on the microorganisms in A. nitidium and the first record of Rickettsia and Ehrlichia in A. geoemydae. Further studies are required to understand their pathogenicity to humans and animals and their life cycle in the wild.
Collapse
Affiliation(s)
- Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.
| | - Noriko Kidera
- Department of Biosphere-Geosphere Science, Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama, Japan.
| | - Masaki Hayashi
- Department of Biosphere-Geosphere Science, Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama, Japan.
| | - Kanta Fujishima
- Department of Social Informatics, Graduate School of Informatics, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
14
|
Miranda J, Violet-Lozano L, Barrera S, Mattar S, Monsalve-Buriticá S, Rodas J, Contreras V. Candidatus Rickettsia colombianensi in ticks from reptiles in Córdoba, Colombia. Vet World 2020; 13:1764-1770. [PMID: 33132587 PMCID: PMC7566242 DOI: 10.14202/vetworld.2020.1764-1770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Wildlife animals are reservoirs of a large number of microorganisms pathogenic to humans, and ticks could be responsible for the transmission of these pathogens. Rickettsia spp. are the most prevalent pathogens found in ticks. This study was conducted to detect Rickettsia spp. in ticks collected from free-living and illegally trafficked reptiles from the Department of Córdoba, Colombia. Materials and Methods During the period from October 2011 to July 2014, ticks belonging to the family Ixodidae were collected, preserved in 96% ethanol, identified using taxonomic keys, and pooled (between 1 and 14 ticks) according to sex, stage, host, and collected place for subsequent DNA extraction. Rickettsia detection was performed using real-time polymerase chain reaction (RT-PCR), followed by conventional PCR to amplify a larger fragment of the gltA and 16S rRNA genes. The amplicons were sequenced using the Sanger method, and the nucleotide sequences were subjected to BLAST analysis to identify homologous sequences in GenBank, after which phylogenetic analysis was performed using the MEGA X software. Results In total, 21 specimens of nine species of reptiles were sampled, from which 805 Amblyomma dissimile ticks were collected, but only 180 ticks were selected to create 34 groups. The DNA of Rickettsia spp. was detected in 30/34 (88%) groups. The sequences of the gene gltA and 16S rRNA revealed a 100% identity with Candidatus Rickettsia colombianensi (GenBank: KF905456 and GenBank: KF691750). Conclusion A. dissimile was the only tick found in all the sampled reptiles. The presence of Candidatus Rickettsia colombianensi in reptile ticks could represent a public health problem due to the risk of transmission to humans and the introduction of microorganisms to other geographical areas.
Collapse
Affiliation(s)
- Jorge Miranda
- University of Córdoba, Institute of Tropical Biology Research, Córdoba, Colombia
| | - Lina Violet-Lozano
- University of Córdoba, Institute of Tropical Biology Research, Córdoba, Colombia
| | - Samia Barrera
- University of Córdoba, Institute of Tropical Biology Research, Córdoba, Colombia
| | - Salim Mattar
- University of Córdoba, Institute of Tropical Biology Research, Córdoba, Colombia
| | | | - Juan Rodas
- University of Antioquia, Colombia, Colombia
| | - Verónica Contreras
- University of Córdoba, Institute of Tropical Biology Research, Córdoba, Colombia
| |
Collapse
|
15
|
Mendoza-Roldan JA, Ribeiro SR, Castilho-Onofrio V, Marcili A, Simonato BB, Latrofa MS, Benelli G, Otranto D, Barros-Battesti DM. Molecular detection of vector-borne agents in ectoparasites and reptiles from Brazil. Ticks Tick Borne Dis 2020; 12:101585. [PMID: 33113476 DOI: 10.1016/j.ttbdis.2020.101585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023]
Abstract
Trombidiformes and Mesostigmata mites, as well as Ixodida ticks, infest ectothermic tetrapods worldwide, potentially acting as vectors of bacteria, viruses and protozoa. The relationship among ectoparasites, transmitted pathogenic agents (e.g., Borrelia spp., Coxiella spp., Hepatozoon spp., and Rickettsia spp.) and ectothermic hosts has been scarcely investigated. This research focuses on a large collection of Brazilian herpetofauna screened for the presence of arthropod ectoparasites and vector-borne microbial agents. Reptiles (n = 121) and amphibians (n = 49) from various locations were infested by ectoparasites. Following genomic extraction, microbial agents were detected in 81 % of the Acari (i.e. n = 113 mites and n = 26 ticks). None of the mites, ticks and tissues from amphibians yielded positive results for any of the screened agents. Blood was collected from reptiles and processed through blood cytology and molecular analyses (n = 48). Of those, six snakes (12.5 %) showed intraerythrocytic alterations compatible with Hepatozoon spp. gamonts and Iridovirus inclusions. Hepatozoon spp. similar to Hepatozoon ayorgbor and Hepatozoon musa were molecularly identified from seven hosts, two mite and two tick species. Rickettsia spp. (e.g., Rickettsia amblyommatis, Rickettsia bellii-like, Rickettsia sp.) were detected molecularly from four mite species and Amblyomma rotundatum ticks. Phylogenetic analyses confirmed the molecular identification of the above-mentioned microbial agents of mites and ticks related to snakes and lizards. Overall, our findings highlighted that the Brazilian herpetofauna and its ectoparasites harbour potentially pathogenic agents, particularly from the northern and south-eastern regions. The detection of several species of spotted fever group Rickettsia pointed out the potential role of ectothermic hosts and related arthropod ectoparasites in the epidemiological cycle of these bacteria in Brazil.
Collapse
Affiliation(s)
- Jairo Alfonso Mendoza-Roldan
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Stephany Rocha Ribeiro
- Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Valeria Castilho-Onofrio
- Zoological Collections Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Arlei Marcili
- Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Master's Program in Veterinary Medicine and Animal Welfare, and Doctoral Program in One Health, Santo Amaro University, São Paulo, 04829-300, Brazil
| | - Bruna Borghi Simonato
- Deparment of Veterinary Medicine, Anhembi Morumbi University Vila Tramontano, São Paulo, SP, 05650-000, Brazil
| | | | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via Del Borghetto 80, 56124, Pisa, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Felestin Sq., Hamedan, Iran
| | - Darci Moraes Barros-Battesti
- Faculty of Veterinary Medicine, University of São Paulo, São Paulo, 05508-270, Brazil; Department of Veterinary Pathology, Universidade Estadual Paulista Julio De Mesquita Filho (UNESP), Jaboticabal, 14884-900, Brazil
| |
Collapse
|
16
|
Low VL, Tan TK, Khoo JJ, Lim FS, AbuBakar S. An overview of rickettsiae in Southeast Asia: Vector-animal-human interface. Acta Trop 2020; 202:105282. [PMID: 31778642 DOI: 10.1016/j.actatropica.2019.105282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
Rickettsioses are emerging, and re-emerging diseases caused by obligate intracellular arthropod-borne bacteria that infect humans and animals worldwide. Various rickettsiae such as Orientia, Rickettsia, Anaplasma and Ehrlichia have been circulated in companion, domesticated and wild animals through bites of infected ticks, fleas, lice or mites. This review summarizes the infections of rickettsiae, including the newly discovered regional species Rickettsia thailandii, Candidatus Rickettsia sepangensis, Candidatus Rickettsia johorensis, Candidatus Rickettsia laoensis, Candidatus Rickettsia mahosotii, Candidatus Rickettsia khammouanensis, Candidatus Anaplasma pangolinii, and other novel genotypes in vectors, humans and animals in Southeast Asia. Issues on some unidentified rickettsiae that elicit immune responses and production of antibodies that are cross-reactive with the antigens used are discussed. Knowledge gaps which required attention are also identified in this review.
Collapse
Affiliation(s)
- Van Lun Low
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| | - Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jing Jing Khoo
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Fang Shiang Lim
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Kaenkan W, Nooma W, Chelong IA, Baimai V, Trinachartvanit W, Ahantarig A. Reptile-associated Borrelia spp. In Amblyomma ticks, Thailand. Ticks Tick Borne Dis 2020; 11:101315. [DOI: 10.1016/j.ttbdis.2019.101315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
|
18
|
Lim FS, Khoo JJ, Tan KK, Zainal N, Loong SK, Khor CS, AbuBakar S. Bacterial communities in Haemaphysalis, Dermacentor and Amblyomma ticks collected from wild boar of an Orang Asli Community in Malaysia. Ticks Tick Borne Dis 2019; 11:101352. [PMID: 31866439 DOI: 10.1016/j.ttbdis.2019.101352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Ticks are hematophagous vectors of arthropod-borne disease agents globally. In Malaysia, despite seroprevalence studies indicating the presence of tick-borne diseases among the indigenous people, the etiological agents of these diseases are still unclear. These indigenous people, also known as the Orang Asli, still live in forested areas with frequent contact with wildlife. Wild boar are ubiquitously found in the forested areas where the Orang Asli communities are located and are commonly hunted as a food supplement. In this study, we aim to determine the tick species parasitizing wild boar from an Orang Asli community, and explore the tick-associated bacterial communities using 16 s rRNA amplicon sequencing on the Ion Torrent PGM™ platform. A total of 72 ticks were collected from three wild boar and were morphologically identified as Haemaphysalis hystricis (n = 32), Dermacentor compactus (n = 15), Amblyomma testudinarium (n = 13), Dermacentor steini (n = 10) and Dermacentor atrosignatus (n = 2). Across all tick samples, 910 bacterial taxa were identified. Although the bacterial communities were not significantly distinct between tick species in beta-diversity analyses, Coxiella, Rickettsia and Francisella were detected at high relative abundance in H. hystricis, D. compactus and D. steini respectively. Many other bacterial genera, including those that have been described in many different tick species, were also identified, including Pseudomonas, Acinetobacter, Staphylococcus and Corynebacterium. Beta-diversity analyses also showed that the bacterial communities were separated based on the animal host from which the ticks were collected from, suggesting that the bacterial communities here may be influenced by the animal skin microflora, host blood or the environment. PCR screening confirmed the presence of Rickettsia sp. related to spotted fever group Rickettsia in some of the ticks. This study provides baseline knowledge of the microbiome of H. hystricis, D. atrosignatus, D. compactus, D. steini and A. testudinarium parasitizing wild boar in this region. The information gained in this study provides the basis to target our efforts in H. hystricis, D. compactus and D. steini for the future investigation of vector competence and the zoonotic potential for the Coxiella, Rickettsia and Francisella detected here, as well as their implications for the risks of tick-borne diseases among the Orang Asli communities.
Collapse
Affiliation(s)
- Fang Shiang Lim
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia; Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
| | - Jing Jing Khoo
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia.
| | - Kim Kee Tan
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603 Malaysia
| | - Shih Keng Loong
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia
| | - Chee Sieng Khor
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia
| | - Sazaly AbuBakar
- Tick Cell Biobank Asia Outpost, Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, 50603 Malaysia; Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603 Malaysia.
| |
Collapse
|
19
|
Tsai KH, Chung LH, Chien CH, Tung YJ, Wei HY, Yen TY, Shu PY, Wang HC. Human granulocytic anaplasmosis in Kinmen, an offshore island of Taiwan. PLoS Negl Trop Dis 2019; 13:e0007728. [PMID: 31539395 PMCID: PMC6774531 DOI: 10.1371/journal.pntd.0007728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/02/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background Human granulocytic anaplasmosis, a tick-borne infection caused by Anaplasma phagocytophilum, has received scant attention, while scrub typhus, a mite-transmitted disease caused by Orientia tsutsugamushi, is the most common rickettsiosis in Taiwan. The clinical presentations of both diseases are characterized by undifferentiated fever, headache and malaise. Moreover, both pathogens have been detected in small mammals that serve as hosts for chiggers and ticks in the wild. The objective of the present study was to investigate whether human granulocytic anaplasmosis occurs in Taiwan. Methodology/Principal findings Blood samples from 274 patients suspected of having scrub typhus in Kinmen, an offshore island of Taiwan, in 2011 and 2012 were retrospectively examined by immunofluorescence assays. IgG antibodies reactive with Anaplasma phagocytophilum was found in 31.8% (87/274) of the patients. Paired serology identified 3 patients with human granulocytic anaplasmosis and 8 patients with coinfection with O. tsutsugamushi and A. phagocytophilum. Laboratory tests showed that elevated serum ALT/AST, creatinine, and BUN levels were observed in patients with anaplasmosis and coinfection, but elevated serum CRP levels, thrombocytopenia, and anemia were only observed in coinfected patients. PCR detected A. phagocytophilum 16S rDNA and p44/msp2 in 2 patients. The phylogenetic analysis suggested that the replicons of the 16S rDNA shared high sequence similarity with the reference sequences in the Korea, USA, Japan, and China. The amplicons of p44/msp2 were close to those of the human variants identified in the USA and Japan. Conclusions Our findings indicated that A. phagocytophilum infection was prevalent but unrecognized in Taiwan. Human granulocytic anaplasmosis is a tick-borne rickettsial infection caused by Anaplasma phagocytophilum. Although most cases resolve readily, life-threatening complications can occur without prompt antibiotic treatment. The major difficulty in diagnosing human granulocytic anaplasmosis is due to the nonspecific nature of the symptoms. Given that scrub typhus is the most frequently reported rickettsial disease in Taiwan and shares similar early clinical signs with anaplasmosis, we retrospectively examined blood samples from patients with suspected diagnoses of scrub typhus in 2011 and 2012. While serological evidence of potential past exposure was found in as many as 31.8% (87/274) of the patients, current or recent anaplasmosis was supported by seroconversion in 11 patients, including 8 patients coinfected with scrub typhus. Anaplasma phagocytophilum DNA was detected in acute phase samples, and the amplified fragments were phylogenetically close to those of variants in the Korea, the USA, Japan, and China. Herein, for the first time, we confirmed the presence of human granulocytic anaplasmosis in Taiwan. By reporting coinfections with anaplasmosis and scrub typhus, the study further highlighted the health risk of increasing contact with wild rodents.
Collapse
Affiliation(s)
- Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lo-Hsuan Chung
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Hao Chien
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Jung Tung
- Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Hsin-Yi Wei
- Taipei Regional Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- * E-mail: (PYS); (HCW)
| | - Hsi-Chieh Wang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- * E-mail: (PYS); (HCW)
| |
Collapse
|
20
|
Supriyono, Takano A, Kuwata R, Shimoda H, Hadi UK, Setiyono A, Agungpriyono S, Maeda K. Detection and isolation of tick-borne bacteria (Anaplasma spp., Rickettsia spp., and Borrelia spp.) in Amblyomma varanense ticks on lizard (Varanus salvator). Microbiol Immunol 2019; 63:328-333. [PMID: 31209913 DOI: 10.1111/1348-0421.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
Ticks are one of the arthropods that play an important role in the transmission of numerous pathogens to livestock and humans. We investigated the presence of tick-borne bacteria in 23 Amblyomma varanense that fed on a water monitor (Varanus salvator) in Indonesia. Anaplasmataceae and borreliae were detected by PCR in 17.4% and 95.7% of ticks, respectively. "Candidatus Rickettsia sepangensis", spotted fever group of Rickettsia, was detected in 21.7% of ticks. The water monitor is a common reptile that is widely encountered in city areas in Asian countries. Our results suggested that Am. varanense on water monitor in Indonesia harbored several kinds of bacteria.
Collapse
Affiliation(s)
- Supriyono
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai Takano
- Laboratory of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Upik K Hadi
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Agus Setiyono
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
21
|
Tappe D, Gross Y, Ngui R, Rauch J, Tay ST, Lim YAL. High Seroprevalence Against Typhus Group and Spotted Fever Group Rickettsiae in Rural Indigenous Populations of Peninsular Malaysia. Vector Borne Zoonotic Dis 2019; 19:323-327. [DOI: 10.1089/vbz.2018.2391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yvonne Gross
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Romano Ngui
- Department of Parasitology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Sánchez-Montes S, Isaak-Delgado AB, Guzmán-Cornejo C, Rendón-Franco E, Muñoz-García CI, Bermúdez S, Morales-Diaz J, Cruz-Romero A, Romero-Salas D, Dzul-Rosado K, Lugo-Caballero C, Colunga-Salas P, Becker I. Rickettsia species in ticks that parasitize amphibians and reptiles: Novel report from Mexico and review of the worldwide record. Ticks Tick Borne Dis 2019; 10:987-994. [PMID: 31126748 DOI: 10.1016/j.ttbdis.2019.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Ticks are obligate haematophagous ectoparasites that are associated with a wide range of vertebrate hosts, among them also reptiles and amphibians. They have dynamic ecological interactions with multiple microorganisms, ranging from endosymbionts to pathogens, such as the members of the genus Rickettsia. The aim of this work was to detect Rickettsia in ticks from amphibians and reptiles from southern Mexico by the amplification, sequencing and phylogenetic reconstruction of the gltA and ompA genes, and also to compile all the published records worldwide of Rickettsia associated with ticks attached to reptiles and amphibians, in order to elucidate the host-parasite relationships, and to identify the geographical distribution of each bacterial species. We record for the first time the presence of Rickettsia sp. strain Colombianensi and Rickettsia amblyommatis in ticks from several reptiles and amphibians collected in three new localities from the states of Guerrero and Veracruz, Mexico. Additionally, we here report 23 Rickettsia taxa associated with 18 tick species attached to 42 host taxa of amphibians and reptiles in 36 countries. Our findings increase the inventory of rickettsia reported in Mexico and summarizes the knowledge of these bacteria associated with ticks of this particular group of vertebrate host worldwide.
Collapse
Affiliation(s)
- Sokani Sánchez-Montes
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Belem Isaak-Delgado
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carmen Guzmán-Cornejo
- Laboratorio de Acarología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Emilio Rendón-Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Claudia I Muñoz-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Sergio Bermúdez
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama
| | - Jorge Morales-Diaz
- Facultad de Medicina Veterinaria y Zootecnia, Región Veracruz. Universidad Veracruzana, Mexico
| | - Anabel Cruz-Romero
- Facultad de Medicina Veterinaria y Zootecnia, Región Veracruz. Universidad Veracruzana, Mexico
| | - Dora Romero-Salas
- Facultad de Medicina Veterinaria y Zootecnia, Región Veracruz. Universidad Veracruzana, Mexico
| | - Karla Dzul-Rosado
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - César Lugo-Caballero
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Kho KL, Tan PE, Tay ST. Diversity of Rickettsiae in Feeding and Questing Ticks Collected From a Malaysian Forest Reserve Area. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:547-552. [PMID: 30304529 DOI: 10.1093/jme/tjy168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 06/08/2023]
Abstract
High seropositivity to Rickettsia conorii and Rickettsia felis has been reported in Malaysian indigenous community living in settlements adjacent to forest areas. The current study was conducted to determine the type and distribution of rickettsiae in feeding and questing ticks that were collected from a forest reserve area at Kuala Lompat in Pahang, Malaysia. Using PCR assays targeting citrate synthase (gltA), outer membrane protein A (ompA) and B (ompB) genes, rickettsiae were detected from approximately one-third of 98 ticks (mainly Dermacentor and Haemaphysalis spp.) collected from the forest reserve. BLAST analysis reveals the predominance of Rickettsia sp. RF2125 in both feeding and questing ticks and Rickettsia sp. TCM1 in the questing ticks. Sequences exhibiting close genetic relationship with Rickettsia raoultii, Rickettsia tamurae, Rickettsia heilongjiangensis, and Rickettsia asiatica were also detected from the ticks. This study highlights the diversity of rickettsial species and potential tick vectors which may contribute to the high seropositivity observed among the local communities.
Collapse
Affiliation(s)
- Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Poai Ean Tan
- Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Tomassone L, Portillo A, Nováková M, de Sousa R, Oteo JA. Neglected aspects of tick-borne rickettsioses. Parasit Vectors 2018; 11:263. [PMID: 29690900 PMCID: PMC5937841 DOI: 10.1186/s13071-018-2856-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are among the oldest known infectious diseases. In spite of this, and of the extensive research carried out, many aspects of the biology and epidemiology of tick-borne rickettsiae are far from being completely understood. Their association with arthropod vectors, the importance of vertebrates as reservoirs, the rarity of clinical signs in animals, or the interactions of pathogenic species with rickettsial endosymbionts and with the host intracellular environment, are only some examples. Moreover, new rickettsiae are continuously being discovered. In this review, we focus on the ‘neglected’ aspects of tick-borne rickettsioses and on the gaps in knowledge, which could help to explain why these infections are still emerging and re-emerging threats worldwide.
Collapse
Affiliation(s)
- Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco (Torino), Italy.
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, Spain
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic
| | - Rita de Sousa
- National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575, Aguas de Moura, Portugal
| | - José Antonio Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, Spain
| |
Collapse
|
25
|
Panetta JL, Šíma R, Calvani NED, Hajdušek O, Chandra S, Panuccio J, Šlapeta J. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 2017; 10:616. [PMID: 29262840 PMCID: PMC5738880 DOI: 10.1186/s13071-017-2579-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge on the capacity of Australian ticks to carry Borrelia species is currently limited or missing. To evaluate the potential of ticks to carry bacterial pathogens and their DNA, it is imperative to have a robust workflow that maximises recovery of bacterial DNA within ticks in order to enable accurate identification. By exploiting the bilateral anatomical symmetry of ticks, we were able to directly compare two DNA extraction methods for 16S rRNA gene diversity profiling and pathogen detection. We aimed to assess which combination of DNA extraction and 16S rRNA hypervariable region enables identification of the greatest bacterial diversity, whilst minimising bias, and providing the greatest capacity for the identification of Borrelia spp. RESULTS We collected Australian endemic ticks (Bothriocroton undatum), isolated DNA from equal tick halves using two commercial DNA extraction methods and sequenced samples using V1-V3 and V3-V4 16S rRNA gene diversity profiling assays. Two distinct Borrelia spp. operational taxonomic units (OTUs) were detected using the V1-V3 16S rRNA hypervariable region and matching Borrelia spp. sequences were obtained using a conventional nested-PCR. The tick 16S rRNA gene diversity profile was dominated by Rickettsia spp. (98-99%), while the remaining OTUs belonged to Proteobacteria (51-81%), Actinobacteria (6-30%) and Firmicutes (2-7%). Multiple comparisons tests demonstrated biases in each of the DNA extraction kits towards different bacterial taxa. CONCLUSIONS Two distinct Borrelia species belonging to the reptile-associated Borrelia group were identified. Our results show that the method of DNA extraction can promote bias in the final microbiota identified. We determined an optimal DNA extraction method and 16S rRNA gene diversity profile assay that maximises detection of Borrelia species.
Collapse
Affiliation(s)
- Jessica L. Panetta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Nichola E. D. Calvani
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Shona Chandra
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jessica Panuccio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
26
|
Catherine BR, Jayathangaraj MG, Soundararajan C, Bala Guru C, Yogaraj D. Prevalence of Amblyomma gervaisi ticks on captive snakes in Tamil Nadu. J Parasit Dis 2017; 41:952-958. [PMID: 29114125 DOI: 10.1007/s12639-017-0917-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
Abstract
Ticks are the important ectoparasites that occur on snakes and transmit rickettsiosis, anaplasmosis and ehrlichiosis. A total of 62 snakes (Reticulated python, Indian Rock Python, Rat snakes and Spectacled cobra) were examined for tick infestation at Chennai Snake Park Trust (Guindy), Arignar Anna Zoological Park (Vandalur) and Rescue centre (Velachery) in Tamil Nadu from September, 2015 to June, 2016. Ticks from infested snakes were collected and were identified as Amblyomma gervaisi (previously known as Aponomma gervaisi). Overall occurrence of tick infestation on snakes was 66.13%. Highest prevalence of tick infestation was observed more on Reticulated Python (Python reticulatus, 90.91%) followed by Indian Rock Python (Python molurus, 88.89%), Spectacled cobra (Naja naja, 33.33%) and Rat snake (Ptyas mucosa, 21.05%). Highest prevalence of ticks were observed on snakes reared at Chennai Snake Park Trust, Guindy (83.33%), followed by Arignar Anna Zoological Park, Vandalur (60.00%) and low level prevalence of 37.50% on snakes at Rescue centre, Velachery. Among the system of management, the prevalence of ticks were more on captive snakes (70.37%) than the free ranging snakes (37.5%). The presences of ticks were more on the first quarter when compared to other three quarters and were highly significant (P ≤ 0.01).
Collapse
Affiliation(s)
- B R Catherine
- Department of Wildlife Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600007 India
| | - M G Jayathangaraj
- Teaching Veterinary Clinical Complex, Veterinary College and Research Institute, Tirunelveli, Tamil Nadu 627358 India
| | - C Soundararajan
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu 600007 India
| | - C Bala Guru
- Veterinary Affairs Manager, Scientific Remedies Private Limited, Vadodara, Gujarat 390008 India
| | - D Yogaraj
- Veterinary Surgeon, Centre for Laboratory Animal Technology and Research, Research and Development, Sathyabama University, Chennai, 600119 India
| |
Collapse
|
27
|
Kho KL, Koh FX, Hasan LIM, Wong LP, Kisomi MG, Bulgiba A, Nizam QNH, Tay ST. Rickettsial seropositivity in the indigenous community and animal farm workers, and vector surveillance in Peninsular Malaysia. Emerg Microbes Infect 2017; 6:e18. [PMID: 28400593 PMCID: PMC5457682 DOI: 10.1038/emi.2017.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Rickettsioses are emerging zoonotic diseases that are often neglected in many countries in Southeast Asia. Rickettsial agents are transmitted to humans through exposure to infected arthropods. Limited data are available on the exposure of indigenous community and animal farm workers to the aetiological agents and arthropod vectors of rickettsioses in Peninsular Malaysia. Serological analysis of Rickettsia conorii and Rickettsia felis was performed for 102 individuals from the indigenous community at six rural villages and 87 workers from eight animal farms in Peninsular Malaysia in a cross-sectional study. The indigenous community had significantly higher seropositivity rates for R. conorii (P<0.001) and R. felis (P<0.001), as compared to blood donors from urban (n=61). Similarly, higher seropositivity rates for R. conorii (P=0.046) and R. felis (P<0.001) were noted for animal farm workers, as compared to urban blood donors. On the basis of the sequence analysis of gltA, ompA and ompB, various spotted fever group rickettsiae closely related to R. raoultii, R. heilongjiangensis, R. felis-like organisms, R. tamurae, Rickettsia sp. TCM1, R. felis, Rickettsia sp. LON13 and R. hulinensis were identified from tick/flea samples in animal farms, indigenous villages and urban areas. This study describes rickettsial seropositivity of the Malaysian indigenous community and animal farm workers, and provides molecular evidence regarding the presence of rickettsial agents in ticks/fleas infesting domestic animals in Peninsular Malaysia.
Collapse
Affiliation(s)
- Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fui Xian Koh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Li Ping Wong
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masoumeh Ghane Kisomi
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Awang Bulgiba
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Quaza Nizamuddin Hassan Nizam
- Department of Veterinary Services, Ministry of Agriculture and Agro-Based Industry Malaysia, Federal Government Administrative Centre, 62630 Putrajaya, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Kho KL, Koh FX, Singh HKL, Zan HAM, Kukreja A, Ponnampalavanar S, Tay ST. Spotted Fever Group Rickettsioses and Murine Typhus in a Malaysian Teaching Hospital. Am J Trop Med Hyg 2016; 95:765-768. [PMID: 27402519 DOI: 10.4269/ajtmh.16-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023] Open
Abstract
Limited information is available on the etiological agents of rickettsioses in southeast Asia. Herein, we report the molecular investigation of rickettsioses in four patients attending a teaching hospital in Malaysia. DNA of Rickettsia sp. RF2125, Rickettsia typhi, and a rickettsia closely related to Rickettsia raoultii was detected in the blood samples of the patients. Spotted fever group rickettsioses and murine typhus should be considered in the diagnosis of patients with nonspecific febrile illness in this region.
Collapse
Affiliation(s)
- Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fui Xian Koh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Anjanna Kukreja
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Ghane Kisomi M, Wong LP, Tay ST, Bulgiba A, Zandi K, Kho KL, Koh FX, Ong BL, Jaafar T, Hassan Nizam QN. Factors Associated with Tick Bite Preventive Practices among Farmworkers in Malaysia. PLoS One 2016; 11:e0157987. [PMID: 27341678 PMCID: PMC4920353 DOI: 10.1371/journal.pone.0157987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background Farmworkers are at high-risk for tick bites, which potentially transmit various tick-borne diseases. Previous studies show that personal prevention against tick bites is key, and certain factors namely, knowledge, experience of tick bites, and health beliefs influence compliance with tick bites preventive behaviour. This study aimed to assess these factors and their associations with tick bite preventive practices among Malaysian farmworkers. Methods A total of eight cattle, goat and sheep farms in six states in Peninsular Malaysia participated in a cross-sectional survey between August and October 2013 Results A total of 151 (72.2%) out of 209 farmworkers answered the questionnaire. More than half of the farmworkers (n = 91) reported an experience of tick bites. Farms with monthly acaricide treatment had significantly (P<0.05) a low report of tick bites. Tick bite exposure rates did not differ significantly among field workers and administrative workers. The mean total knowledge score of ticks for the overall farmworkers was 13.6 (SD±3.2) from 20. The mean total tick bite preventive practices score for all farmworkers was 8.3 (SD±3.1) from 15. Fixed effect model showed the effects of four factors on tick bite prevention: (1) farms, (2) job categories (administrative workers vs. field workers), (3) perceived severity of tick bites, and (4) perceived barriers to tick bite prevention. Conclusions A high proportion of farmworkers, including administrative workers, reported an experience of tick bites. The effectiveness of monthly acaricide treatment was declared by low reports of tick bites on these farms. Tick bite preventive practices were insufficient, particularly in certain farms and for administrative workers. Our findings emphasise the need to have education programmes for all farmworkers and targeting farms with low prevention practices. Education and health programmes should increase the perception of the risk of tick bites and remove perceived barriers of tick bite prevention.
Collapse
Affiliation(s)
- Masoumeh Ghane Kisomi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Li Ping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Julius Centre University of Malaya (JCUM), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Awang Bulgiba
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Julius Centre University of Malaya (JCUM), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fui Xian Koh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bee Lee Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kelantan, Malaysia
| | - Tariq Jaafar
- Department of Veterinary Services, Ministry of Agriculture and Agro-Based Industry Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Quaza Nizamuddin Hassan Nizam
- Department of Veterinary Services, Ministry of Agriculture and Agro-Based Industry Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia
| |
Collapse
|
30
|
Khoo JJ, Chen F, Kho KL, Ahmad Shanizza AI, Lim FS, Tan KK, Chang LY, AbuBakar S. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia. Ticks Tick Borne Dis 2016; 7:929-937. [PMID: 27132518 DOI: 10.1016/j.ttbdis.2016.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation.
Collapse
Affiliation(s)
- Jing-Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Fezshin Chen
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Azzy Iyzati Ahmad Shanizza
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Fang-Shiang Lim
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Li-Yen Chang
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
31
|
Guo LP, Mu LM, Xu J, Jiang SH, Wang AD, Chen CF, Guo G, Zhang WJ, Wang YZ. Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China-Kazakhstan border. Parasit Vectors 2015; 8:461. [PMID: 26383238 PMCID: PMC4573940 DOI: 10.1186/s13071-015-1065-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 11/12/2022] Open
Abstract
We found Rickettsia raoultii DNA in 2 out of 32 (6.25 %) Haemaphysalis erinacei ticks. Result showed that the sequences of five genes (17-kDa, gltA, ompA, rrs, and ompB) were 100 % identity with that of R. Raoultii in GenBank. This study is the first report on the presence of R. raoultii in H. erinacei from wild marbled polecat, Vormela peregusna. Our findings suggest that H. erinacei parasitizing wild marbled polecat may serve as reservoir and carriers for R. raoultii in areas around the China-Kazakhstan border. The transmission of tick-borne diseases originated from wildlife should not be underestimated in border region.
Collapse
Affiliation(s)
- Li-Ping Guo
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Lu-Meng Mu
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Jun Xu
- Xinjiang Entry-Exit Inspection and Quarantine Bureau, Urumqi, 830063, China.
| | - Su-Hua Jiang
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - An-Dong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, China.
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, China.
| | - Gang Guo
- Xinjiang Entry-Exit Inspection and Quarantine Bureau, Urumqi, 830063, China.
| | - Wan-Jiang Zhang
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Yuan-Zhi Wang
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|