1
|
Kim EM, Hong ST. Clonorchis sinensis and Cholangiocarcinoma. J Korean Med Sci 2025; 40:e145. [PMID: 40296827 PMCID: PMC12040606 DOI: 10.3346/jkms.2025.40.e145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Clonorchiasis is a parasitic disease caused by Clonorchis sinensis, a trematode that inhabits the intrahepatic bile ducts of humans and mammals. C. sinensis is one of common food-borne trematodes, prevalent in East Asia including Korea. The International Agency for Research on Cancer reclassified C. sinensis as the Group 1 biological carcinogen of human cholangiocarcinoma (CCA). Evidence supporting the carcinogenicity of C. sinensis includes epidemiological studies showing increased prevalence and odds ratio (OR) of CCA in clonorchiasis patients, the development of CCA in experimental animals, and molecular studies. Approximately 10% of CCA in Korea are believed to be solely caused by clonorchiasis, with an OR of 4.7 for CCA risk among clonorchiasis patients. All hamsters exposed to both of C. sinensis and N-nitrosodimethylamine (NDMA) developed CCA while those exposed to either C. sinensis or NDMA alone did not. In vitro studies using cell models investigated carcinogenetic changes of the intracellular molecules and genes following stimulation with a soluble extract of C. sinensis. The in vitro stimulated cells showed a significant shift to G2/M phage, produced oncogenic molecules, changed expression of oncogenes, increased cell proliferation and suppressed apoptosis. Additionally, the gap-junction proteins between cells, such as connexin (Cx) 43, Cx 26, and Cx 32, were changed significantly, disrupting intercellular homeostasis. These findings suggest that C. sinensis and nitrogen compounds synergistically stimulate the cholangiocytes to become neoplastic. C. sinensis is a biological carcinogen of human CCA, and the World Health Organization guidelines enlist food-borne trematodes as one of target neglected tropical diseases to be eliminated by 2030. The present article reviews and updates perspectives on clonorchiasis, focusing on carcinogenesis.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Sung-Tae Hong
- Department of Tropical Medicine and Parasitology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 PMCID: PMC11629161 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
3
|
Jiang Z, Yang F, Wang W. Applications of Yttrium-90 ( 90Y) in Hepatocellular Carcinoma. Onco Targets Ther 2024; 17:149-157. [PMID: 38414759 PMCID: PMC10898254 DOI: 10.2147/ott.s445898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the lack of systemic radiation therapy in hepatocellular carcinoma, researchers have been investigating the use of yttrium-90 (90Y) radioembolization for local-regional tumor control since the 1960s. With the development of glass and resin 90Y microspheres and the durable local control, good long-term efficacy, and equivalent tumor responsiveness and tolerability of 90Y-selective internal irradiation compared with alternative therapies such as transarterial chemoembolization (TACE) and sorafenib, 90Y radioembolization has gradually been applied in the treatment of hepatocellular carcinoma of all stages. In this article, we summarize the latest progress of 90Y in the treatment of hepatocellular carcinoma in terms of its principle, advantages, indications, contraindications, efficacy and adverse effects.
Collapse
Affiliation(s)
- ZhongHao Jiang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Fan Yang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - WanXiang Wang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
4
|
Wang N, Zhang Z, Huang L, Chen T, Yu X, Huang Y. Current status and progress in the omics of Clonorchis sinensis. Mol Biochem Parasitol 2023; 255:111573. [PMID: 37127222 DOI: 10.1016/j.molbiopara.2023.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Clonorchis sinensis (C. sinensis) is a fish-borne trematode that inhabits the bile duct of mammals including humans, cats, dogs, rats, and so on. In the complex life cycle of C. sinensis, the worm develops successively in two intermediate hosts in fresh water and one definitive host. What's more, it undergoes eight developmental stages with a distinct morphology. Clonorchiasis, caused by C. sinensis infection, is an important food-borne parasitic disease and one of the most common zoonoses. C. sinensis infection could result in hyperplasia of the bile duct epithelium, obstructive jaundice, gall-stones, cholecystitis and cholangitis, even liver cirrhosis and cholangiocarcinoma. Thus, clonorchiasis is a serious public health problem in endemic areas. Integrated strategies should be adopted in the prevention and control of clonorchiasis due to the epidemiological characteristics. The recent advances in high-throughput technologies have made available the profiling of multiple layers of a biological system, genomics, transcriptomics, proteomics, and metabolomics. These data can help us to get more information about the development, physiology, metabolism, and reproduction of the parasite as well as pathogenesis and parasite-host interactions in clonorchiasis. In the present study, we summarized recent progresses in omics studies on C. sinensis providing insights into the studies and future directions on treating and preventing C. sinensis associated diseases.
Collapse
Affiliation(s)
- Nian Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Zhuanling Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Lisi Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Wang X, Zhang N, Yu Y, Bao P, Ma Y, Zhang H, Zhang X, Zhang X, Gong P, Li X, Li J. Extracellular vesicles of Clonorchis sinensis promote IL-6 and TNF-α secretion via the Toll-like receptor 9-mediated ERK pathway in biliary epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104555. [PMID: 36183840 DOI: 10.1016/j.dci.2022.104555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Clonorchis sinensis is closely associated with cholangitis, cholecystitis, biliary fibrosis and cholangiocarcinoma. The present study elucidated the role of extracellular vesicles of C. sinensis (CsEVs) in activating Toll-like receptor 9 (TLR9) and regulating inflammatory responses. The results showed that TLR9 expression was increased in the livers of C. sinensis-infected mice. CsEVs were cup-shaped or saucer-shaped and 80-120 nm in diameter. CsEVs activated TLR9 and promoted IL-6 and TNF-α expression in mouse biliary epithelial cells (BECs), and TLR9 siRNA interference reduced the secretion of the two cytokines. CsEV stimulation promoted the phosphorylation of ERK, p38, AKT, and p65, and TLR9 siRNA interference regulated the phosphorylated ERK, AKT and p65 levels. The ERK inhibitor decreased the CsEVs-induced IL-6 and TNF-α secretion. The present study elucidated for the first time that CsEVs induced IL-6 and TNF-α production in BECs via the TLR9-mediated ERK pathway.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yanhui Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Penglin Bao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yeting Ma
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Haoyang Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xu Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Jianhua Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
7
|
Csi-let-7a-5p delivered by extracellular vesicles from a liver fluke activates M1-like macrophages and exacerbates biliary injuries. Proc Natl Acad Sci U S A 2021; 118:2102206118. [PMID: 34772807 DOI: 10.1073/pnas.2102206118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic infection with liver flukes (such as Clonorchis sinensis) can induce severe biliary injuries, which can cause cholangitis, biliary fibrosis, and even cholangiocarcinoma. The release of extracellular vesicles by C. sinensis (CsEVs) is of importance in the long-distance communication between the hosts and worms. However, the biological effects of EVs from liver fluke on biliary injuries and the underlying molecular mechanisms remain poorly characterized. In the present study, we found that CsEVs induced M1-like activation. In addition, the mice that were administrated with CsEVs showed severe biliary injuries associated with remarkable activation of M1-like macrophages. We further characterized the signatures of miRNAs packaged in CsEVs and identified a miRNA Csi-let-7a-5p, which was highly enriched. Further study showed that Csi-let-7a-5p facilitated the activation of M1-like macrophages by targeting Socs1 and Clec7a; however, CsEVs with silencing Csi-let-7a-5p showed a decrease in proinflammatory responses and biliary injuries, which involved in the Socs1- and Clec7a-regulated NF-κB signaling pathway. Our study demonstrates that Csi-let-7a-5p delivered by CsEVs plays a critical role in the activation of M1-like macrophages and contributes to the biliary injuries by targeting the Socs1- and Clec7a-mediated NF-κB signaling pathway, which indicates a mechanism contributing to biliary injuries caused by fluke infection. However, molecules other than Csi-let-7a-5p from CsEVs that may also promote M1-like polarization and exacerbate biliary injuries are not excluded.
Collapse
|
8
|
Koda S, Zhang B, Zhou QY, Xu N, Li J, Liu JX, Liu M, Lv ZY, Wang JL, Shi Y, Gao S, Yu Q, Li XY, Xu YH, Chen JX, Tekengne BOT, Adzika GK, Tang RX, Sun H, Zheng KY, Yan C. β2-Adrenergic Receptor Enhances the Alternatively Activated Macrophages and Promotes Biliary Injuries Caused by Helminth Infection. Front Immunol 2021; 12:754208. [PMID: 34733286 PMCID: PMC8558246 DOI: 10.3389/fimmu.2021.754208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that β2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, β2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the β2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/physiopathology
- Bile Ducts/parasitology
- Bile Ducts/pathology
- Cells, Cultured
- Clonorchiasis/complications
- Clonorchiasis/immunology
- Clonorchiasis/physiopathology
- Cytokines/blood
- Humans
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/parasitology
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/parasitology
- Liver Cirrhosis, Biliary/pathology
- MAP Kinase Signaling System
- Macrophage Activation
- Macrophages/classification
- Macrophages/immunology
- Male
- Mechanistic Target of Rapamycin Complex 1/physiology
- Mice, Knockout
- Neuroimmunomodulation/physiology
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/physiology
- Specific Pathogen-Free Organisms
- Mice
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yan Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, World Health Organization (WHO) Collaborating Center of Malaria, Schistosomiasis, and Filariasis, Shanghai, China
| | | | | | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Zhou QY, Yang HM, Liu JX, Xu N, Li J, Shen LP, Zhang YZ, Koda S, Zhang BB, Yu Q, Chen JX, Zheng KY, Yan C. MicroRNA-497 induced by Clonorchis sinensis enhances the TGF-β/Smad signaling pathway to promote hepatic fibrosis by targeting Smad7. Parasit Vectors 2021; 14:472. [PMID: 34521449 PMCID: PMC8442346 DOI: 10.1186/s13071-021-04972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Various stimuli, including Clonorchis sinensis infection, can cause liver fibrosis. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) with massive production of extracellular matrix (ECM). Our previous study showed that the TGF-β1-induced Smad signaling pathway played a critical role in the activation of HSCs during liver fibrosis induced by worm infection; however, the mechanisms that modulate the TGF-β/Smad signaling pathway are still poorly understood. Accumulating evidence demonstrates that miRNAs act as an important regulator of activation of HSCs during liver fibrosis. Methods The target of miR-497 was determined by bioinformatics analysis combined with a dual-luciferase activity assay. LX-2 cells were transfected with miR-497 inhibitor and then stimulated with TGF-β1 or excretory/secretory products of C. sinensis (CsESPs), and activation of LX-2 was assessed using qPCR or western blot. In vivo, the mice treated with CCl4 were intravenously injected with a single dose of adeno-associated virus serotype 8 (AAV8) that overexpressed anti-miR-497 sequences or their scramble control for 6 weeks. Liver fibrosis and damage were assessed by hematoxylin and eosin (H&E) staining, Masson staining, and qPCR; the activation of the TGF-β/Smad signaling pathway was detected by qPCR or western blot. Results In the present study, the expression of miR-497 was increased in HSCs activated by TGF-β1 or ESPs of C. sinensis. We identified that Smad7 was the target of miR-497 using combined bioinformatics analysis with luciferase activity assays. Transfection of anti-miR-497 into HSCs upregulated the expression of Smad7, leading to a decrease in the level of p-Smad2/3 and subsequent suppression of the activation of HSCs induced by TGF-β1 or CsESPs. Furthermore, miR-497 inhibitor delivered by highly-hepatotropic (rAAV8) inhibited TGF-β/smads signaling pathway by targeting at Smad7 to ameliorate CCL4-induced liver fibrosis. Conclusions The present study demonstrates that miR-497 promotes liver fibrogenesis by targeting Smad7 to promote TGF-β/Smad signaling pathway transduction both in vivo and in vitro, which provides a promising therapeutic strategy using anti-miR-497 against liver fibrosis. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hui-Min Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Na Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Li-Ping Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Yu-Zhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center of Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China. .,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China. .,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Ahn CS, Kim JG, Kang I, Kong Y. Omega-Class Glutathione Transferases of Carcinogenic Liver Fluke, Clonorchis sinensis, Modulate Apoptosis and Differentiation of Host Cholangiocytes. Antioxidants (Basel) 2021; 10:antiox10071017. [PMID: 34202740 PMCID: PMC8300630 DOI: 10.3390/antiox10071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
The small liver fluke Clonorchis sinensis causes hepatobiliary ductal infections in humans. Clonorchiasis is characterized histopathologically by ductal dysplasia, hyperplasia and metaplasia, which closely resembles cholangiocarcinoma (CCA). The disruption of programmed cell death is critical for malignant transformation, while molecular events underlying these phenomena have poorly been understood in clonorchiasis-related CCA tumorigenesis. We incorporated recombinant C. sinensis omega-class glutathione transferase (rCsGSTo) 1 or 2 into human intrahepatic biliary epithelial cells (HIBECs) and analyzed pathophysiological alterations of HIBECs upon the application of oxidative stress. rCsGSTos partially but significantly rescued HIBECs from cell death by inhibiting oxidative stress-induced apoptosis (p < 0.01). rCsGSTos modulated transcriptional levels of numerous genes. We analyzed 13 genes involved in programmed cell death (the upregulation of five antiapoptotic and two apoptotic genes, and the downregulation of one antiapoptotic and five apoptotic genes) and 11 genes associated with cell differentiation (the increase in seven and decrease in four genes) that showed significant modifications (p < 0.05). The induction profiles of the mRNA and proteins of these differentially regulated genes correlated well with each other, and mostly favored apoptotic suppression and/or cell differentiation. We detected increased active, phosphorylated forms of Src, PI3K/Akt, NF-κB p65, MKK3/6 and p38 MAPK, but not JNK and ERK1/2. CsGSTos were localized in the C. sinensis-infected rat cholangiocytes, where cytokeratin 19 was distributed. Our results demonstrated that CsGSTos excreted to the biliary lumen are internalized and accumulated in the host cholangiocytes. When cholangiocytes underwent oxidative stressful condition, CsGSTos appeared to be critically involved in both antiapoptotic process and the differentiation of host cholangiocytes through the regulation of target genes following the activation of responsible signal molecules.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
- Correspondence: ; Tel.: +82-31-290-6251; Fax: +82-290-6269
| |
Collapse
|
11
|
Jia R, Yang F, Yan P, Ma L, Yang L, Li L. Paricalcitol inhibits oxidative stress-induced cell senescence of the bile duct epithelium dependent on modulating Sirt1 pathway in cholestatic mice. Free Radic Biol Med 2021; 169:158-168. [PMID: 33872698 DOI: 10.1016/j.freeradbiomed.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical studies indicate that vitamin D receptor (VDR) expression is reduced in primary biliary cirrhosis patient livers. However, the mechanism by which activated VDR effect cholestatic liver injury remains unclear. METHODS Mice were injected intraperitoneally with the VDR agonist paricalcitol or a vehicle 3 days prior to bile duct ligation (BDL) and for 5 or 28 days after surgery. The analyses of liver morphology and necrotic areas were based on H&E staining. Serum biochemical indicators of liver damage were analyzed by commercial kits. The mechanisms of paricalcitol on cholestatic liver injury were determined by Western blot analysis. RESULTS Paricalcitol ameliorated the BDL-induced liver damage in mice. Paricalcitol increased the proliferation of BECs to promote the repair of the bile duct. Paricalcitol also reduced the BDL-induced oxidative stress level in the mice. Mechanistic analysis revealed that paricalcitol decreased the number of SA-β-gal-positive cells and downregulated the expression of p53, p21 and p16 proteins which was associated with reducing oxidative stress. Additionally, paricalcitol exerted the inhibitory effect of cell senescence was through reducing DNA damage and promoting DNA repair. Interesting, we found that paricalcitol prevented the downregulation of oxidative stress-induced Sirt1 expression in the BDL mice and t-BHP-induced BECs models. Moreover, paricalcitol suppressed cell senescence through a Sirt1-dependent pathway. These results were confirmed by antioxidant ALCAR and the Sirt1 inhibitor EX-527. CONCLUSION Paricalcitol alleviated cholestatic liver injury through promoting the repair of damaged bile ducts and reducing oxidative stress-induced cell senescence of the bile duct via modulating Sirt1 pathway.
Collapse
Affiliation(s)
- Rongjun Jia
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China; Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Fan Yang
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Pengfei Yan
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Liman Ma
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, PR China.
| | - Lihua Li
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| |
Collapse
|
12
|
Wu YJ, He Q, Shang M, Yin YX, Li Y, Du X, Li XR. The NF-κB signalling pathway and TM7SF3 contribute to liver fibrosis caused by secreted phospholipase A2 of Clonorchis sinensis. Parasit Vectors 2021; 14:152. [PMID: 33691755 PMCID: PMC7945307 DOI: 10.1186/s13071-021-04663-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background The NF-κB signalling pathway has been reported to be related to liver fibrosis, and we investigated whether the NF-κB signalling pathway is involved in liver fibrosis caused by secreted phospholipase A2 of Clonorchis sinensis (CssPLA2). Furthermore, expression of the receptor of CssPLA2 on the cell surface of hepatic stellate cells (HSCs) may greatly contribute to liver fibrosis. Methods CssPLA2 was administered to BALB/c mice by abdominal injection. The levels of markers of NF-κB signalling pathway activation in mouse liver tissue were measured by quantitative RT-PCR, ELISA and western blot. Additionally, HSCs were incubated with CssPLA2, and an NF-κB signalling inhibitor (BAY 11-7082) was applied to test whether the NF-κB signalling pathway plays a role in the effect of CssPLA2. Then, the interaction between CssPLA2 and its receptor transmembrane 7 superfamily member 3 (TM7SF3) was confirmed by co-immunoprecipitation (co-IP) and GST pull-down. To determine how TM7SF3 influences the ability of CssPLA2 to cause liver fibrosis, a TM7SF3 antibody was used to block TM7SF3. Results The levels of the NF-ΚB signalling pathway activation markers TNF-α, IL-1β and phospho-p65 were increased by CssPLA2 in the context of liver fibrosis. In addition, the interaction between TM7SF3 and CssPLA2 was confirmed by co-IP and GST pull-down. When TM7SF3 was blocked by an antibody targeting 1–295 amino acids of TM7SF3, activation of HSCs caused by CssPLA2 was alleviated. Conclusions The NF-ΚB signalling pathway is involved in the activation of HSCs by CssPLA2. TM7SF3, the receptor of CssPLA2, plays important roles in liver fibrosis caused by CssPLA2.![]()
Collapse
Affiliation(s)
- Yin-Juan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mei Shang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ying-Xuan Yin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Ye Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xue Du
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xue-Rong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
13
|
Porras-Silesky C, Mejías-Alpízar MJ, Mora J, Baneth G, Rojas A. Spirocerca lupi Proteomics and Its Role in Cancer Development: An Overview of Spirocercosis-Induced Sarcomas and Revision of Helminth-Induced Carcinomas. Pathogens 2021; 10:pathogens10020124. [PMID: 33530324 PMCID: PMC7911836 DOI: 10.3390/pathogens10020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Spirocerca lupi is a parasitic nematode of canids that induces a myriad of clinical manifestations in its host and, in 25% of infections, leads to the formation of sarcomas. The description of the protein composition of the excretory and secretory products (Sl-ESP) of S. lupi has shed light on its possible interactions with the host environment, including migration within the host and mechanisms of immunomodulation. Despite this, the process by which S. lupi induces cancer in the dog remains poorly understood, and some hypotheses have arisen regarding these possible mechanisms. In this review, we discuss the role of specific ESP from the carcinogenic helminths Clonorchis sinensis, Opisthorchis viverrini and Schistosoma haematobium in inducing chronic inflammation and cancer in their host’s tissues. The parasitic worms Taenia solium, Echinococcus granulosus, Heterakis gallinarum, Trichuris muris and Strongyloides stercoralis, which have less-characterized mechanisms of cancer induction, are also analyzed. Based on the pathological findings in spirocercosis and the mechanisms by which other parasitic helminths induce cancer, we propose that the sustained inflammatory response in the dog´s tissues produced in response to the release of Sl-ESP homologous to those of other carcinogenic worms may lead to the malignant process in infected dogs.
Collapse
Affiliation(s)
- Catalina Porras-Silesky
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - María José Mejías-Alpízar
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
- Correspondence: ; Tel.: +506-2511-8644
| |
Collapse
|
14
|
Yan C, Koda S, Wu J, Zhang BB, Yu Q, Netea MG, Tang RX, Zheng KY. Roles of Trained Immunity in the Pathogenesis of Cholangiopathies: A Therapeutic Target. Hepatology 2020; 72:1838-1850. [PMID: 32463941 DOI: 10.1002/hep.31395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jing Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
15
|
Li B, Yan C, Wu J, Stephane K, Dong X, Zhang YZ, Zhang Y, Yu Q, Zheng KY. Clonorchis sinensis ESPs enhance the activation of hepatic stellate cells by a cross-talk of TLR4 and TGF-β/Smads signaling pathway. Acta Trop 2020; 205:105307. [PMID: 31862462 DOI: 10.1016/j.actatropica.2019.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
Excretory/Secretory products (ESPs) from Clonorchis sinensis-a fluke dwelling on the biliary ducts-promote the activation of hepatic stellate cells (HSCs) and lead to hepatic fibrosis ultimately, although the mechanisms that are responsible for CsESPs-induced activation of HSCs are largely unknown. In the present study, we investigated the underlying mechanism of TLR4 in the regulation of the activation of HSCs caused by CsESPs. We found that the expression of TLR4 was significantly increased in the HSCs with CsESPs for 24 h, compared to the control group. However, the activation of HSCs induced by CsESPs was inhibited by interfering with TGF-β/Smad pathway using a TGF-β receptor I inhibitor LY2157299, indicating that TGF-β induced signaling pathway was involved in CsESPs-caused the activation of HSCs. In addition, the activation of HSCs caused by CsESPs was remarkably inhibited by a TLR4 specific inhibitor (VIPER), and phosphorylation of Smad2/3 was significantly attenuated but the expression of the pseudoreceptor of TGF-β-type I receptor (BAMBI) was obviously increased when TLR4 signaling pathway was blocked. The results of the present study demonstrate that activation of HSCs caused by CsESPs is mediated by a cross-talk between TLR4 and TGF-β/Smads signaling pathway, and may provide a potential treatment strategy to interrupt the process of liver fibrosis caused by C. sinensis.
Collapse
|
16
|
Shang M, Sun H, Wu Y, Gong Y, Tang Z, Meng F, He L, Yu X, Huang Y, Li X. In vivo and in vitro studies using Clonorchis sinensis adult-derived total protein (CsTP) on cellular function and inflammatory effect in mouse and cell model. Parasitol Res 2020; 119:1641-1652. [PMID: 32285266 DOI: 10.1007/s00436-020-06651-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Clonorchis sinensis (C. sinensis) can induce a food-borne parasitic disease (clonorchiasis). Numerous studies have analyzed functional proteins, immunologic factors, pro-inflammatory cytokines, and cell signaling transduction that promote the development of clonorchiasis. In a previous study, it was shown that C. sinensis adult-derived total protein (CsTP) might be involved in the pathogenesis and development of liver fibrosis via bringing about Th2 immune response. In the present study, further investigation of CsTP on cellular function and inflammatory effect in vitro and in vivo has been elicited. CsTP induced inflammation and autophagy as evidenced by upregulation of TNF-α, IFN-γ, and autophagic markers LC3B and P62. Exposed to CsTP upregulated the antiapoptotic gene Bcl-2 expression, diminished the apoptosis induced by H2O2, but promoted the proliferation and migration of LX-2 cells in proper concentration range. Additionally, the protein levels of p-AKT and p-mTOR were repressed in response to CsTP, suggesting a correlation of blocking the activation of mTOR/AKT signaling pathway. These results revealed that CsTP might exacerbate hepatic pathological changes by regulating cell proliferation, apoptosis, autophagy, and inflammation in the liver and LX-2 cells. Some effects might be partially involved in the mTOR and AKT pathways.
Collapse
Affiliation(s)
- Mei Shang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hengchang Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yu Gong
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
17
|
Kang JM, Yoo WG, Lê HG, Lee J, Sohn WM, Na BK. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-κB-dependent MAPK pathways. Parasit Vectors 2020; 13:20. [PMID: 31931867 PMCID: PMC6958574 DOI: 10.1186/s13071-020-3882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background MF6p/host defense molecules (HDMs) are a broad family of small proteins secreted by helminth parasites. Although the physiological role of MF6p/HDMs in trematode parasites is not fully understood, their potential biological function in maintaining heme homeostasis and modulating host immune response has been proposed. Methods A gene encoding the MF6p/HDM of Clonorchis sinensis (CsMF6p/HDM) was cloned. Recombinant CsMF6p/HDM (rCsMF6p/HDM) was expressed in Escherichia coli. The biochemical and immunological properties of rCsMF6/HDM were analyzed. CsMF6p/HDM induced pro-inflammatory response in RAW 264.7 cells was analyzed by cytokine array assay, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. The structural feature of CsMF6p/HDM was analyzed by three-dimensional modeling and molecular docking simulations. Results The CsMF6p/HDM shares a high level of amino acid sequence similarity with orthologs from other trematodes and is expressed in diverse developmental stages of the parasite. The rCsMF6p/HDM bound to bacteria-derived lipopolysaccharide (LPS), without effectively neutralizing LPS-induced inflammatory response in RAW 264.7 macrophage cells. Rather, the rCsMF6p/HDM induced pro-inflammatory immune response, which is characterized by the expression of TNF-α and IL-6, in RAW 264.7 cells. The rCsMF6p/HDM-induced pro-inflammatory immune response was regulated by JNK and p38 MAPKs, and was effectively down-regulated via inhibition of NF-κB. The structural analysis of CsMF6p/HDM and the docking simulation with LPS suggested insufficient capture of LPS by CsMF6p/HDM, which suggested that rCsMF6p/HDM could not effectively neutralize LPS-induced inflammatory response in RAW 264.7 cells. Conclusions Although rCsMF6p/HDM binds to LPS, the binding affinity may not be sufficient to maintain a stable complex of rCsMF6p/HDM and LPS. Moreover, the rCsMF6p/HDM-induced pro-inflammatory response is characterized by the release of IL-6 and TNF-α in RAW 264.7 macrophage cells. The pro-inflammatory response induced by rCsMF6p/HDM is mediated via NF-κB-dependent MAPK signaling pathway. These results collectively suggest that CsMF6p/HDM mediates C. sinensis-induced inflammation cascades that eventually lead to hepatobiliary diseases.![]()
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
18
|
Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:379-387. [PMID: 31533404 PMCID: PMC6753296 DOI: 10.3347/kjp.2019.57.4.379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/23/2023]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including TGF-β receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) as well as anti-inflammatory cytokines (IL-10, TGF-β1, and TGF-β2) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in TGF-β1, ~30-fold in TGF-β2, and ~3-fold in TNF-α compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea.,Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P.R. China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| |
Collapse
|
19
|
Xu L, Li Y, Zhou L, Dorfman RG, Liu L, Cai R, Jiang C, Tang D, Wang Y, Zou X, Wang L, Zhang M. SIRT3 elicited an anti-Warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis. Cancer Med 2019; 8:2380-2391. [PMID: 30993888 PMCID: PMC6536927 DOI: 10.1002/cam4.2089] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/06/2019] [Accepted: 02/23/2019] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an extremely invasive malignancy with late diagnosis and unfavorable prognosis. Surgery and chemotherapy are still not effective in improving outcomes in CCA patients. It is crucial to explore a novel therapeutic target for treating CCA. An NAD‐dependent deacetylase also known as Sirtuin‐3 (SIRT3) has been shown to regulate cellular metabolism in various cancers dynamically. However, the biological function of SIRT3 in CCA remains unclear. In this study, bioinformatics analyses were performed to identify the differentially expressed genes and pathways enriched. CCA samples were collected for immunohistochemical analysis. Three human CCA cell lines (HuCCT1, RBE, and HCCC9810) were used to explore the molecular mechanism of SIRT3 regulation of metabolic reprogramming and malignant behavior in CCA. A CCA xenograft model was then established for further validation in vivo. The data showed that SIRT3 expression was decreased and glycolysis was enhanced in CCA. Similar metabolic reprogramming was also observed in SIRT3 knockout mice. Furthermore, we demonstrated that SIRT3 could play an anti‐Warburg effect by inhibiting the hypoxia‐inducible factor‐1α (HIF1α)/pyruvate dehydrogenase kinase 1 (PDK1)/pyruvate dehydrogenase (PDHA1) pathway in CCA cells. CCA cell proliferation and apoptosis were regulated by SIRT3‐mediated metabolic reprogramming. These findings were further confirmed in CCA clinical samples and the xenograft model. Collectively, this study suggests that in the inhibition of CCA progression, SIRT3 acts through an anti‐Warburg effect on the downstream pathway HIF1α/PDK1/PDHA1.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yang Li
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lixing Zhou
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | | | - Li Liu
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Rui Cai
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chenfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Mingming Zhang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Kim EM, Bae YM, Choi MH, Hong ST. Connexin 43 plays an important role in the transformation of cholangiocytes with Clonochis sinensis excretory-secretory protein and N-nitrosodimethylamine. PLoS Negl Trop Dis 2019; 13:e0006843. [PMID: 30943209 PMCID: PMC6464552 DOI: 10.1371/journal.pntd.0006843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/15/2019] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Clonorchis sinensis is a group I bio-carcinogen responsible for cholangiocarcinoma (CHCA) in humans. However, the mechanism by which C. sinensis promotes carcinogenesis is unclear. Methodology Using the human cholangiocyte line H69, we investigated cell proliferation and gap junction protein expression after stimulation with the hepatotoxin N-nitrosodimethylamine (NDMA) and/or excretory-secretory products (ESP) of C. sinensis, which induce inflammation. NDMA and ESP treatment increased proliferation by 146% and the proportion of cells in the G2/M phase by 37%. Moreover, the expression of the cell proliferation-related proteins E2F1, Ki-67, and cancer related protein cytokeratin 19 and Cox-2 increased in response to combined treatment with NDMA and ESP. The gap-junction proteins connexin (Cx) 43 and Cx26 increased. In contrast, Cx32 expression decreased in cells treated with NDMA and ESP. Silencing of Cx43 reduced cell proliferation and significantly suppressed Cx26 and Cox-2 expression. Conclusions These results suggest that Cx43 is an important factor in CHCA induced by C. sinensis ESP and NDMA and further investigations targeting this pathway may allow prevention of this deadly disease. Clonorchis sinensis, a human fluke, resides in the liver of humans and is commonly found in the common bile duct and gall bladder. This parasite is the main cause of cholangiocarcinoma, also called bile duct cancer, in humans. Of note, the excretory-secretory products (ESP) of C. sinensis are known to cause inflammation in the biliary epithelium, which may ultimately result in neoplasms via production of reactive oxygen species and subsequent DNA damage. Together with N-nitrosodimethylamine (NDMA), a potent hepatotoxin that can cause fibrosis and tumors in the liver, ESP led to an increase in the growth and proliferation of cholangiocytes. Our results showed that examination of changes in the expression of gap junction proteins, which are related to tumorigenesis, showed that connexin 43 was upregulated with ESPs from C. sinensis and NDMA. Together, our results suggest that exposure to C. sinensis, in addition to low levels of carcinogen could promote carcinogenesis in the bile duct epithelium via uncontrolled cell-to-cell communication. Moreover, silencing of Cx43 reduced cancer related protein. Therefore, Cx 43 can serve as a potential target for developing a therapeutic strategy for the treatment of cholangiocarcinoma in humans.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Mee Bae
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Ho Choi
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
The Regulatory Roles of Toll-Like Receptor 4 in Secretions of Type 1/Type 2 Relative Cytokines by Splenocytes and Dendritic Cells Exposed to Clonorchis sinensis Excretory/Secretory Products. Inflammation 2018; 41:213-220. [PMID: 29047038 DOI: 10.1007/s10753-017-0679-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The roles of TLR4 in mediation of innate immune response and in regulation of adaptive immune responses triggered by Clonorchis sinensis remain unknown. In the present study, splenocytes derived from C3H/HeN (TLR4 wild ) and C3H/Hej mice (TLR4 mut ) that were infected with 45 metacercariae of C. sinensis were harvested, then stimulated by C. sinensis excretory/secretory products (ESP) or medium (control) for 48 h, respectively. Meanwhile, bone marrow-derived dendritic cells (BMDCs) from normal C3H/HeN and C3H/Hej mice were prepared and stimulated with medium, ESP, LPS, or ESP+LPS for 24 h, respectively. The supernatants were collected, and the concentrations of type 1 and type 2 relative cytokines were determined by ELISA. The maturation of BMDCs indicated by surface markers of CD80, CD86, and MHC II was evaluated by flow cytometry. The results showed that the levels of IFN-γ, IL-6, TNF-α, and IL-10 in the splenocytes from C. sinensis-infected TLR4 mut mice were significantly lower than those from TLR4 wild mice when they were further exposed to ESP. For BMDCs, the productions of the cytokines IL-12p70 and IL-10, but not IL-4, in the BMDCs from TLR4 mutation mice were predominantly decreased compared with those from TLR4 wild mice when the BMDCs were co-stimulated by ESP combined with LPS. Flow cytometry analysis showed that ESP could significantly decrease the high levels of CD80, CD86, and MHC II which were elevated by LPS. In conclusion, these data suggest that TLR4 may play a regulatory role in type 1 immune responses during C. sinensis infection.
Collapse
|
22
|
Viseshakul N, Dechkhajorn W, Benjathummarak S, Nuamtanong S, Maneerat Y. Excretory-secretory product of third-stage Gnathostoma spinigerum larvae induces apoptosis in human peripheral blood mononuclear cells. Parasitol Res 2017; 116:2783-2794. [PMID: 28836111 DOI: 10.1007/s00436-017-5589-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
Abstract
Human gnathostomiasis caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3) is an important zoonotic disease in tropical areas of the world. The excretory-secretory products (ES) that are excreted by infective larva play a significant role in host immune evasion and tissue destruction. To investigate the poorly understood mechanisms of G. spinigerum L3 pathogenesis, we focused on the potential effect of ES on inducing apoptosis in human immune cells by using human peripheral blood mononuclear cells (PBMCs) as a model. Early and late apoptosis of PBMCs were assessed following the exposure of these cells to G. spinigerum L3 ES (0.1, 0.5, and 1.0 μg/ml) for 6-48 h. The apoptotic cells were identified by flow cytometric staining of PBMC with FITC-annexin V and propidium iodide. The expression of regulatory genes related to apoptosis mechanisms in ES-treated PBMCs was investigated using a Human Apoptosis RT2 Profiler™ PCR Array. The results showed significant levels of early phase apoptosis at 18 h and of late phase apoptosis at 24 h. We speculate that this apoptosis in PBMCs occurs via the extrinsic pathway. Apoptosis in the ES-induced PBMCs was observed as quickly as 90 min after exposure, and the highest effect was observed at 18-24 h. Furthermore, ES can trigger apoptosis lasting for 48 h. Our findings expand the understanding of one of the mechanisms involved, immune-evasive strategy mechanism used by G. spinigerum larvae during human gnathostomiasis.
Collapse
Affiliation(s)
- Nareerat Viseshakul
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
The roles of Toll-like receptor 4 in the pathogenesis of pathogen-associated biliary fibrosis caused by Clonorchis sinensis. Sci Rep 2017. [PMID: 28634394 PMCID: PMC5478609 DOI: 10.1038/s41598-017-04018-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogen-associated biliary fibrosis (PABF) is a type of liver fibrosis characterized by injuries of cholangiocytes and extra cellular matrix (ECM) deposition around bile ducts caused by various bacteria, fungi, virus and parasites. Recent studies show that TLR4 plays an important role in several other types of liver fibrosis, but the mechanism of TLR4 in PABF is yet really unclear. In the present study, a PABF mouse model was established by a trematode infection-Clonorchis sinensis which dwells in the bile ducts and causes severe biliary fibrosis of mice. The results showed that the levels of collagen depositions, α-SMA and hydroxyproline (Hyp) contents in TLR4mut mice infected by C. sinensis were significantly lower than in those of TLR4wild ones. Furthermore, we found that the activation of TGF-β signaling was impaired in the TLR4mut mice, compared with wild mice when they were challenged to the same dose of C. sinensis metacercariae. Moreover, the mice with TLR4 mutation showed a decreased activation of hepatic stellate cells indicated by the expression of α-SMA, when compared with TLR4wild mice. These data demonstrate that TLR4 contributes to PABF caused by C. sinensis and TLR4 signaling may be a potential medical target for treatment of PABF.
Collapse
|
24
|
Zhou L, Shi M, Zhao L, Lin Z, Tang Z, Sun H, Chen T, Lv Z, Xu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis. Parasit Vectors 2017. [PMID: 28623940 PMCID: PMC5474055 DOI: 10.1186/s13071-017-2228-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. Methods A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Results Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. Conclusions CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 2016; 5:71. [PMID: 27384714 PMCID: PMC4933995 DOI: 10.1186/s40249-016-0166-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/30/2016] [Indexed: 01/14/2023] Open
Abstract
Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.
Collapse
Affiliation(s)
- Ze-Li Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Xin-Bing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
26
|
Yu Q, Li XY, Cheng XD, Shen LP, Fang F, Zhang B, Hua H, Yan C, Tang RX, Zheng KY. Expression and potential roles of IL-33/ST2 in the immune regulation during Clonorchis sinensis infection. Parasitol Res 2016; 115:2299-305. [PMID: 26944417 DOI: 10.1007/s00436-016-4974-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
During clonorchiasis, immune responses of hosts are responsible for the removal of the worms and also are involved in the progress of the pathological damage caused by Clonorchis sinensis. Interleukin-33 (IL-33), a recently described cytokine signaling through the ST2 receptor, has emerged as a potent inducer to bile duct proliferation and fibrosis; however, little is known of this signaling in the pathogen-caused periductal inflammation and fibrosis. In the present study, using immunohistochemistry, real-time PCR, enzyme-linked immunosorbent assay (ELISA), and flow cytometry, we studied the expression of IL-33/ST2 during C. sinensis infection, as well as their potential roles in C. sinensis-induced host immune responses. The results showed that a higher level of IL-33 was detected in the sera of patients of clonorchiasis (n = 45), compared with in those of healthy donors (n = 16). Similarly, in FVB mice experimentally infected with C. sinensis, a higher level of IL-33 was detected at latent stage both in the serum and in the liver, as well as the up-regulated expression of ST2 receptor on the inflammatory cells, especially on CD4(+) T cells in the liver of infected mice. Our results, for the first time, indicated that the increased IL-33/ST2 may be involved in the regulation of immunopathology induced by C. sinensis.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Xiang-Yang Li
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Xiao-Dan Cheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Li-Ping Shen
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Fan Fang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Bo Zhang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Hui Hua
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Chao Yan
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Ren-Xian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China.
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, 221004, Jiangsu Province, People's Republic of China.
| |
Collapse
|