1
|
Lanna MF, Resende LA, De Luca PM, Goes WM, Zaldívar MF, Costa AT, Dutra WO, Reis AB, Martins-Filho OA, Gollob KJ, de Moura SAL, Dias ES, Monteiro ÉM, Silveira-Lemos D, Giunchetti RC. Application of the Sponge Model Implants in the Study of Vaccine Memory in Mice Previously Immunized with LBSap. Vaccines (Basel) 2024; 12:1322. [PMID: 39771984 PMCID: PMC11680354 DOI: 10.3390/vaccines12121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen. The LBSap vaccine (composed of Leishmania braziliensis antigens associated with saponin adjuvant) was used in the sponge model to assess the antigen-specific immunological biomarker, including memory generation after initial contact with the antigen. METHODS Mice strains (Swiss, BALB/c, and C57BL/6) were previously immunized using LBSap vaccine, followed by an antigenic booster performed inside the sponge implant. The sponge implants were assessed after 72 h, and the immune response pattern was analyzed according to leukocyte immunophenotyping and cytokine production. RESULTS After LBSap vaccination, the innate immune response of the antigenic booster in the sponge implants demonstrated higher levels in the Ly+ neutrophils and CD11c+ dendritic cells with reduced numbers of F4/80+ macrophages. Moreover, the adaptive immune response in Swiss mice demonstrated a high CD3+CD4+ T-cell frequency, consisting of an effector memory component, in addition to a cytoxicity response (CD3+CD8+ T cells), displaying the central memory biomarker. The major cell surface biomarker in the BALB/c mice strain was related to CD3+CD4+ effector memory, while the increased CD3+CD8+ effector memory was highlighted in C57/BL6. The cytokine profile was more inflammatory in Swiss mice, with the highest levels of IL-6, TNF, IFN-g, and IL-17, while the same cytokine was observed in in C57BL/6 yet modulated by enhanced IL-10 levels. Similar to Swiss mice, BALB/c mice triggered an inflammatory environment after the antigenic booster in the sponge implant with the increased levels in the ILL-6, TNF, and IFN-g. CONCLUSIONS The findings emphasized the impact of genetic background on the populations engaged in immune responses, suggesting that this model can be utilized to enhance and track both innate and adaptive immune responses in vaccine candidates. Consequently, these results may inform the selection of the most suitable experimental model for biomolecule testing, taking into account how the unique characteristics of each mouse strain affect the immune response dynamics.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, RJ, Brazil
| | - Wanessa Moreira Goes
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - André Tetzl Costa
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Alexandre Barbosa Reis
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Kenneth Jhon Gollob
- Albert Einstein Israeli Institute of Education and Research, Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Edelberto Santos Dias
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Érika Michalsky Monteiro
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Denise Silveira-Lemos
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Department of Medicine, José Rosário Vellano University, Belo Horizonte Campus, Belo Horizonte 31270-020, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| |
Collapse
|
2
|
Suckow MA, Bolton ID, McDowell MA. Overview and Approaches for Handling of Animal Models of Leishmaniasis. Comp Med 2024; 74:148-155. [PMID: 39107941 PMCID: PMC11267445 DOI: 10.30802/aalas-cm-24-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Iris D Bolton
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
3
|
Marcano-Gómez EC, de Souza ABF, Machado-Junior PA, Rodríguez-Herrera AJ, Castro TDF, da Silva SPG, Vieira RG, Talvani A, Nogueira KDOPC, de Oliveira LAM, Bezerra FS. N-acetylcysteine modulates redox imbalance and inflammation in macrophages and mice exposed to formaldehyde. Free Radic Res 2023; 57:444-459. [PMID: 37987619 DOI: 10.1080/10715762.2023.2284636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the protective role of N-acetylcysteine (NAC) in cells and mice exposed to formaldehyde. For the in vitro study, J774A.1 macrophages cells were incubated for 8, 16 and 24 h with formaldehyde or NAC to assess cell viability and reactive oxygen species (ROS). In the in vivo study, C57BL/6 mice (n = 48) were divided into 6 groups: control (CG), vehicle (VG) that received saline by orogastric gavage, a group exposed to formaldehyde 1% (FG) and formaldehyde exposed groups that received NAC at doses of 100, 150 and 200 mg/Kg (FN100, FN150 and FN200) for a period of 5 days. In vitro, formaldehyde promoted a decrease in cell viability and increased ROS, while NAC reduced formaldehyde-induced ROS production. Animals exposed to formaldehyde presented higher leukocyte counts in the blood and in the bronchoalveolar lavage fluid, and promoted secretion of inflammatory markers IL-6, IL-15, and IL-10. The exposure to formaldehyde also promoted redox imbalance and oxidative damage characterized by increased activities of superoxide dismutase, catalase, decreased GSH/GSSG ratio, as well as it increased levels of protein carbonyls and lipid peroxidation. NAC administration after formaldehyde exposure attenuated oxidative stress markers, secretion of inflammatory mediators and lung inflammation. In conclusion, both in in vitro and in vivo models, NAC administration exerted protective effects, which modulated the inflammatory response and redox imbalance, thus preventing the development airway injury induced by formaldehyde exposure.
Collapse
Affiliation(s)
- Elena Cecilia Marcano-Gómez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Andrea Jazel Rodríguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sirlaine Pio Gomes da Silva
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ramony Gonzaga Vieira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Laser Antônio Machado de Oliveira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| |
Collapse
|
4
|
Março KS, da Silva Borégio J, Jussiani GG, de Souza Ferreira LFE, Flores GVA, Pacheco CMS, Laurenti MD, Machado GF. Thymic alterations resulting from experimental visceral leishmaniasis in a Syrian hamster (Mesocricetus auratus). Vet Immunol Immunopathol 2023; 257:110558. [PMID: 36758455 DOI: 10.1016/j.vetimm.2023.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The thymus is a lymphoid organ responsible for the development and maturation of T cells, which are part of the Th1, Th2, Th17, and Treg immune responses triggered by visceral leishmaniasis. The maturation and immunological development of T lymphocytes require a bidirectional interaction between the thymic microenvironment of epithelial cells, dendritic cells, and macrophages and the extracellular matrix with differentiating lymphocytes. OBJECTIVES We evaluated the morphological characteristics and tissue distribution of hematopoietic and stromal cells in the thymuses of hamsters experimentally infected with Leishmania infantum, aiming to gain an insight into the pathophysiology of the disease. METHODS Fifteen hamsters were subjected to intraperitoneal experimental infection with 107L. infantum promastigotes (MHOM/BR/1972/BH46). The animals were divided into three groups, each comprising five infected hamsters, and were then euthanized 15, 60, and 120 days postinfection. The control groups consisted of three groups of five healthy hamsters euthanized simultaneously with the infected ones. Thymic morphology was evaluated through histopathology and the cell composition through immunohistochemistry. We used antibodies to mark mesenchymal cells (anti-vimentin), epithelial cells (anti-cytokeratin), macrophages (anti-MAC387), B lymphocytes (anti-CD79a), and T lymphocytes (anti-CD3). Immunohistochemistry was also used to mark the parasite in the thymus. RESULTS Infected and control hamsters showed no difference in thymic morphology and degree of atrophy. After 15 days of infection, CD3 + T lymphocytes in the thymus showed an increase that stabilized over time. At 120 days of infection, we detected a significant decrease in CD79a+ B lymphocytes. The parasite was present in the medullary and corticomedullary regions of 9 out of 15 hamsters. These findings confirm that the presence of a parasite can cause changes in a thymus cell population. However, further studies are needed to evaluate these changes' effects on the immune response of infected animals.
Collapse
Affiliation(s)
- Karen Santos Março
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Jaqueline da Silva Borégio
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Giulia Gonçalves Jussiani
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Laura Flávia Esperança de Souza Ferreira
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Gabriela Venicia Araujo Flores
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Carmen Maria Sandoval Pacheco
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Marcia Dalastra Laurenti
- Laboratory of Infectious Disease Pathology (LIM/50), Department of Pathology, Faculty of Medicine, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Gisele Fabrino Machado
- Laboratory of Applied Pathology (LAPAP), Department of Animal Clinical, Surgical and Reproductive Medicine, Faculty of Veterinary Medicine, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| |
Collapse
|
5
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
A new immunochemotherapy schedule for visceral leishmaniasis in a hamster model. Parasitol Res 2022; 121:2849-2860. [PMID: 35997843 DOI: 10.1007/s00436-022-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of the treatment with a recombinant cysteine proteinase from Leishmania, rldccys1, associated with allopurinol or miltefosine on Leishmania (Leishmania) infantum chagasi-infected hamsters. Golden Syrian hamsters infected with L. (L.) infantum chagasi were treated with either miltefosine (46 mg/kg) or allopurinol (460 mg/kg) alone by oral route or associated with rldccys1 (150 µg/hamster) by subcutaneous route for 30 days. Infected hamsters were also treated with miltefosine (46 mg/kg) plus rldccys1 (150 µg/hamster) for 30 days (phase 1) followed by two additional doses of rldccys1 (250 µg/hamster) (phase 2). After the end of treatment, the animals were analyzed for parasite load, body weight, serum levels of immunoglobulins, cytokine expression, and drug toxicity. The data showed a significant decrease of parasite load in infected hamsters treated with allopurinol or miltefosine alone or associated with rldccys1, as well as in those treated with rldccys1 alone. Significantly lower levels of serum IgG were detected in hamsters treated with allopurinol plus rldccys1. The treatment with miltefosine associated with rldccys1 prevented relapse observed in animals treated with miltefosine alone. A significant loss of body weight was detected only in some hamsters treated with miltefosine for 1 month and deprived of this treatment for 15 days. There were no significant differences in transcript expression of IFN-γ and IL-10 in any of treated groups. Neither hepatotoxicity nor nephrotoxicity was observed among controls and treated groups. These findings open perspectives to further explore this immunochemotherapeutic schedule as an alternative for treatment of visceral leishmaniasis.
Collapse
|
7
|
Immunoprophylaxis using polypeptide chimera vaccines plus adjuvant system promote Th1 response controlling the spleen parasitism in hamster model of visceral leishmaniasis. Vaccine 2022; 40:5494-5503. [PMID: 35963820 DOI: 10.1016/j.vaccine.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.
Collapse
|
8
|
Barros-Gonçalves TDD, Saavedra AF, da Silva-Couto L, Ribeiro-Romão RP, Bezerra-Paiva M, Gomes-Silva A, Carvalho VF, Da-Cruz AM, Pinto EF. Increased levels of cortisol are associated with the severity of experimental visceral leishmaniasis in a Leishmania (L.) infantum-hamster model. PLoS Negl Trop Dis 2021; 15:e0009987. [PMID: 34813597 PMCID: PMC8651114 DOI: 10.1371/journal.pntd.0009987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/07/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background Several infectious diseases are associated with hypothalamic-pituitary-adrenal (HPA) axis disorders by elevating circulating glucocorticoids (GCs), which are known to have an immunosuppressive potential. We conducted this study in golden hamsters, a suitable model for human visceral leishmaniasis (VL), to investigate the relationship of Leishmania (L.) infantum infection on cortisol production and VL severity. Methods L. infantum-infected (n = 42) and uninfected hamsters (n = 30) were followed-up at 30, 120, and 180 days post-infection (dpi). Plasma cortisol was analyzed by radioimmunoassay and cytokines, inducible nitric oxide synthase (iNOS), and arginase by RT-qPCR. Results All hamsters showed splenomegaly at 180 dpi. Increased parasite burden was associated with higher arginase expression and lower iNOS induction. Cortisol levels were elevated in infected animals in all-time points evaluated. Except for monocytes, all other leucocytes showed a strong negative correlation with cortisol, while transaminases were positively correlated. Immunological markers as interleukin (IL)-6, IL-1β, IL-10, and transforming growth-factor-β (TGF-β) were positively correlated to cortisol production, while interferon-γ (IFN-γ) presented a negative correlation. A network analysis showed cortisol as an important knot linking clinical status and immunological parameters. Conclusions These results suggest that L. infantum increases the systemic levels of cortisol, which showed to be associated with hematological, biochemical, and immunological parameters associated to VL severity. Visceral leishmaniasis (VL) is an infectious disease that is common in most tropical countries. VL has high morbidity and leads to death if not properly treated. In Brazil, Leishmania (Leishmania) infantum is the main causative agent of VL. Golden hamsters have proven to be a suitable model for VL. Despite the importance of hypothalamic-pituitary-adrenal (HPA) axis disturbances in infectious disease, few studies have addressed this issue in VL. In this study, we showed that L. infantum-infected hamsters present augmented levels of plasmatic cortisol in association with increased spleen parasite burden. Indeed, a strong positive correlation was observed between cortisol and biochemical parameters (AST/ALT/ALP) related to liver damage, as well as pro-inflammatory cytokines (IL-6 and IL-1β), anti-inflammatory cytokines (IL-10 and TGF-β), and the arginase enzyme that may favor the progression of infection. On the other side, cortisol was negatively correlated with leucocytes, except monocytes, and with IFN-γ and iNOS, which are involved in parasite-killing macrophage function. These results shed light on an unexplored aspect of VL pathogenesis, which is the importance of cortisol production in the disease-associated immune dysfunction.
Collapse
Affiliation(s)
| | - Andrea F. Saavedra
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luzinei da Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel P. Ribeiro-Romão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Milla Bezerra-Paiva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), CNPq, Rio de Janeiro, Brazil
- Disciplina de Parasitologia-DMIP, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
| | - Eduardo F. Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
9
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
10
|
Modabberi F, Ghadimi SN, Shahriarirad R, Nadimi E, Karbalay-Doust S, Rashidi S, Sarkari B. Stereological analysis of liver, spleen and bone of Leishmania infantum-experimentally infected hamsters. Exp Parasitol 2021; 228:108137. [PMID: 34298076 DOI: 10.1016/j.exppara.2021.108137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is remaining as one of the important health problems of many countries around the world. The histopathology of the disease and the effects of the parasite on various tissues have not yet been fully elucidated. The current study aimed to evaluate the stereological features of the liver, spleen, and bone of hamsters infected with Leishmania infantum. In this experimental study, the L. infantum parasite was mass cultivated in a culture medium. Then, 15 golden hamsters were selected, of which 5 animals were considered as controls and another 10 animals were injected intravenously, with 1 × 108 promastigotes of L. infantum. Four months later, the hamsters were euthanized and impression smears were prepared from the liver and spleen. Moreover, pathology slides were prepared from the spleen, liver, and femur. The orientated method was used to obtain isotropic uniform random (IUR) sections. For stereological evaluation, the tissues were fixed with formalin buffer, and sections (4 and 25 μm thick) were prepared and stained with Heidenhain's AZAN trichrome and hematoxylin-eosin, respectively. The tissue samples were examined by stereological methods and all changes in the samples of the infected hamsters were compared with the control group. The number of hepatocyte and their nuclei volumes were significantly decreased in the Leishmania-infected group, compared to the control group. The number of Kupffer cells and their volume in the liver of the Leishmania-infected group was higher than that of the control group, and the differences were statistically significant. The volume of trabeculae and central arteries in the spleen of the Leishmania-infected group was lower than that of the control group and the number of lymphocytes and macrophages in the spleen of the Leishmania-infected group was increased compared to the control group. The trabecular volume and the number of osteoblasts and osteoclasts of the femur in Leishmania-infected animals decreased, whereas the volume of bone marrow was significantly raised. Leishmaniasis leads to changes in tissue structure and their function in the host by the involvement of various organs of the immune system including the liver, spleen, and bone. Understanding these changes are important in identifying the effective mechanisms of the parasite and host interaction.
Collapse
Affiliation(s)
- F Modabberi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S N Ghadimi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Shahriarirad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - E Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Repositioning of Tamoxifen in Surface-Modified Nanocapsules as a Promising Oral Treatment for Visceral Leishmaniasis. Pharmaceutics 2021; 13:pharmaceutics13071061. [PMID: 34371752 PMCID: PMC8309129 DOI: 10.3390/pharmaceutics13071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Standards of care for human visceral leishmaniasis (VL) are based on drugs used parenterally, and oral treatment options are urgently needed. In the present study, a repurposing strategy was used associating tamoxifen (TMX) with polyethylene glycol-block-polylactide nanocapsules (NC) and its anti-leishmanial efficacy was reported in vivo. Stable surface modified-NC (5 mg/mL of TMX) exhibited 200 nm in size, +42 mV of zeta potential, and 98% encapsulation efficiency. Atomic force microscopy evidenced core-shell-NC. Treatment with TMX-NC reduced parasite-DNA quantified in liver and spleen compared to free-TMX; and provided a similar reduction of parasite burden compared with meglumine antimoniate in mice and hamster models. Image-guided biodistribution showed accumulation of NC in liver and spleen after 30 min post-administration. TMX-NC reduced the number of liver granulomas and restored the aspect of capsules and trabeculae in the spleen of infected animals. TMX-NC was tested for the first time against VL models, indicating a promising formulation for oral treatment.
Collapse
|
12
|
Preclinical Assessment of Ursolic Acid Loaded into Nanostructured Lipid Carriers in Experimental Visceral Leishmaniasis. Pharmaceutics 2021; 13:pharmaceutics13060908. [PMID: 34205283 PMCID: PMC8235317 DOI: 10.3390/pharmaceutics13060908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ursolic acid, a triterpene produced by plants, displayed leishmanicidal activity in vitro and in vivo; however, the low solubility of this triterpene limits its efficacy. To increase the activity of ursolic acid (UA), this triterpene was entrapped in nanostructured lipid carriers (UA-NLC), physical-chemical parameters were estimated, the toxicity was assayed in healthy golden hamsters, and the efficacy of UA-NLC was studied in experimental visceral leishmanisis. UA-NLC exhibited a spherical shape with a smooth surface with a size of 266 nm. UA-NLC displayed low polydispersity (PDI = 0.18) and good colloidal stability (-29.26 mV). Hamsters treated with UA-NLC did not present morphological changes in visceral organs, and the levels of AST, ALT, urea and creatinine were normal. Animals infected with Leishmania (Leishmania) infantum and treated with UA-NLC showed lower parasitism than the infected controls, animals treated with UA or Amphotericin B (AmB). The therapeutic activity of UA-NLC was associated with the increase in a protective immune response, and it was associated with a high degree of spleen and liver preservation, and the normalization of hepatic and renal functions. These data indicate that the use of lipid nanoparticles as UA carriers can be an interesting strategy for the treatment of leishmaniasis.
Collapse
|
13
|
Vasconcelos Gomes de Oliveira V, Angela Aranda de Souza M, Ramos Mororó Cavalcanti R, Veríssimo de Oliveira Cardoso M, Lima Leite AC, de Figueiredo RCBQ, Rogério de Freitas Silva S, Câmara Alves L, Amaro da Silva Junior V. Study of acute oral toxicity of the thiazole derivative N-(1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine in a Syrian hamster. Toxicol Mech Methods 2021; 31:197-204. [PMID: 33349088 DOI: 10.1080/15376516.2020.1867681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The thiazole derivative N-1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine was used to evaluate the acute oral toxicity in Syrian hamsters. The concentration of the doses (300 mg/kg and 2000 mg/kg) were based on the "Class Acute Toxicity Method" displayed in the OECD-423 guide. In addition, renal and liver biochemical tests were performed, as well as histopathological analysis. Our results showed that the compound's lethal dose (LD50) was 1000 mg/kg and classified as category 4 according to the criteria adopted in the experiment's protocol. Biochemical analysis of the liver function's parameters showed that the LD50 values in all animals were higher than the reference values. However, the analyze of the kidney injury parameters showed an increase in the urea's dosage but a decrease in the albumin's dosage in all animals when compared to the reference values. Kidney biochemical analysis also showed that creatinine's level was only higher than the reference values in one animal. Massive damages in the liver were observed, such as hypertrophy and hyperplasia of the hepatocyte, coagulation necrosis, the presence of mononuclear cells in the sinusoidal capillaries, steatosis, cholestasis, and congestion of sinusoidal capillaries and central-lobular veins. The animals presented renal injuries related to congestion of glomerular and interstitial capillaries, nephrosis of contorted proximal and distal tubules and congestion in the medullary region. In conclusion, the thiazole derivative was well tolerated although it caused acute liver and kidney damages. Therefore, these results showed the need of further investigation of this compound in vivo to evaluate the potential therapeutic effects with chronic models.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brasil.,Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brasil
| | | | | | | | | | | | | | - Leucio Câmara Alves
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | |
Collapse
|
14
|
Matta CBBD, Santos-Júnior PFDS, Gonçalves VT, Araújo MVD, Queiroz ACD, Silva JKS, Silva JFMD, Padilha RJR, Alves LC, Santos FABD, Barcellos LT, Silva-Júnior EFD, Araújo-Júnior JXD, Costa JBND, Sant’Anna CMR, Alexandre-Moreira MS. In vitro and in vivo evaluation of dialkylphosphorylhydrazones against Leishmania chagasi promastigotes and amastigotes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our study, two new dialkylphosphorylhydrazones have been designed targeting activity against L. braziliensis and L. amazonensis parasites, and their mechanism of action, as well as their leishmanicidal activity against L. chagasi, was evaluated.
Collapse
Affiliation(s)
- Carolina Barbosa Brito da Matta
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | | | - Vinícius Tomaz Gonçalves
- Federal Center for Technology Education Celso Suckow da Fonseca (CEFET/RJ), Itaguaí 20271-110, RJ, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Flávio Monteiro da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Rafael José Ribeiro Padilha
- Laboratory of Immunopathology Keizo Asami (LIKA) and Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Luiz Carlos Alves
- Laboratory of Immunopathology Keizo Asami (LIKA) and Aggeu Magalhães Research Center, CPqAM/FIOCRUZ, Federal University of Pernambuco, Av. Moraes Rego s/n, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Fábio André Brayner dos Santos
- Laboratory of Immunopathology Keizo Asami (LIKA) and Aggeu Magalhães Research Center, CPqAM/FIOCRUZ, Federal University of Pernambuco, Av. Moraes Rego s/n, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Lucas Tricarico Barcellos
- Rural Federal University of Rio de Janeiro, Institute of Chemistry, Seropédica 23970-000, RJ, Brazil
| | | | - João Xavier de Araújo-Júnior
- Rural Federal University of Rio de Janeiro, Institute of Chemistry, Seropédica 23970-000, RJ, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | | | | | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
15
|
Carvalho LM, Ferreira FC, Gusmão MR, Costa AFP, de Brito RCF, Aguiar-Soares RDDO, Reis AB, Cardoso JMDO, Carneiro CM, Roatt BM. Heterologous vaccine therapy associated with half course of Miltefosine promote activation of the proinflammatory response with control of splenic parasitism in a hamster model of visceral leishmaniasis. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:194-201. [PMID: 35492387 PMCID: PMC9040144 DOI: 10.1016/j.crimmu.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Visceral leishmaniasis (VL) is a serious and neglected disease present worldwide. Chemotherapy using pentavalent antimony (SbV) is the most practical and inexpensive strategy available for the VL treatment today, however, it has high toxicity. Alternatively, other drugs are used as viable leishmanicidal therapeutic options. Miltefosine is the only anti-leishmanial agent administered orally, however, it has been reducing its effectiveness. In this sense, there is no ideal therapy for VL since the drugs currently used trigger severe side effects causing discontinuation of treatment, which carries an imminent risk for the emergence of parasite resistance. With that, other therapeutic strategies are gaining prominence. Among them, immunotherapy and/or immunochemotherapy, which the activation/modulation of the immune system can redirect the host's immune response to an effective therapeutic result. Therefore, this work was designed to assess an immunochemotherapy protocol composed of half course of Miltefosine associated with LBSap vaccine (Milt+LBSap) using the hamster Mesocricetus auratus as an experimental model for VL treatment. When evaluating the main hematobiochemical, immunological and therapeutic efficacy parameters, it was demonstrated that the treatment with Milt+LBSap showed restoration of hematobiochemical condition and reduced serum levels of IgG-anti-Leishmania compared to animals infected non treated (INT). Beyond that, an increase in the number of CD4+ lymphocytes producers of IFN-γ in relation to INT or to animals treated with miltefosine during 28 days, and TNF-α increased compared to INT were observed. Also, it was found a reduction of IL-10-production in relation to INT, or animals that received LBSap vaccine only, or miltefosine, following by a reduction in the splenic parasitic burden. These results demonstrate that the immunochemotherapy protocol used can stimulate the immune response, inducing an expressive cellular response sufficient to control spleen parasitism, standing out as a promising proposal for the VL treatment. New therapy protocols for treatment of visceral leishmaniasis are requested. Immunochemotherapy can strengthen the immune response concomitant with a direct action of the drug against L.infantum. Immunochemotherapy with miltefosine plus LBSap vaccine against VL induces activation of cellular response immune.
Collapse
Affiliation(s)
- Lívia Mendes Carvalho
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Francielle Carvalho Ferreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Miriã Rodrigues Gusmão
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Flávia Pereira Costa
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rory Cristiane Fortes de Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Brazil
- Corresponding author. Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, CEP 35400-000, Brazil.
| |
Collapse
|
16
|
Resende LA, Aguiar-Soares RDDO, Moreira NDD, Ferreira SDA, Lanna MF, Cardoso JMDO, Mathias FAS, Coura-Vital W, Mariano RMDS, Leite JC, Silveira P, de Carvalho TF, Santos RL, da Silveira-Lemos D, Martins-Filho OA, Dutra WO, Reis AB, Giunchetti RC. In vitro Infectivity of Strains Isolated From Dogs Naturally Infected With Leishmania infantum Present a Distinct Pathogenic Profile in Hamsters. Front Med (Lausanne) 2020; 7:496. [PMID: 32984376 PMCID: PMC7483547 DOI: 10.3389/fmed.2020.00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum. Dogs are the parasite's main reservoir, favoring its transmission in the urban environment. The analysis of L. infantum from infected dogs contributes to the identification of more virulent parasites, thereby supporting basic and applied studies such as vaccinal and therapeutic strategies. We proposed the in vitro and in vivo characterization of L. infantum strains from naturally infected dogs from a VL endemic area based on an infectivity and pathogenicity analysis. DH82 canine macrophages were infected in vitro with different strains for infectivity analysis, showing distinct infectivity profiles. The strains that showed greater and lesser infectivity using in vitro analyses (616 and 614, respectively) were used to infect hamsters for pathogenicity analysis. The group infected with strain 616 showed 100% survival while the group infected with strain 614 showed 50% after seven months of follow up. Furthermore, the 614 strain induced more noticeable clinicopathological changes and biochemical abnormalities in liver function, along with high inflammation and parasite load in the liver and spleen. We confirmed high variability of infectivity and pathogenicity in L. infantum strains from infected dogs. The results support the belief that screening for L. infantum infectivity using in vitro experiments is inadequate when it comes to selecting the most pathogenic strain.
Collapse
Affiliation(s)
- Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas (Cipharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Sidney de Almeida Ferreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Laboratório de Biologia Parasitária, Faculdade de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brazil
| | - Mariana Ferreira Lanna
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas (Cipharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Laboratório de Pesquisa em Epidemiologia e Citologia, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane Furtado de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise da Silveira-Lemos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil.,Departamento de Medicina, Universidade José Do Rosário Vellano, UNIFENAS, Belo Horizonte, Brazil
| | | | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas (Cipharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms 2020; 8:microorganisms8091440. [PMID: 32962237 PMCID: PMC7563294 DOI: 10.3390/microorganisms8091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.
Collapse
|
18
|
Experimental infection of Leishmania (Mundinia) martiniquensis in BALB/c mice and Syrian golden hamsters. Parasitol Res 2020; 119:3041-3051. [PMID: 32779021 DOI: 10.1007/s00436-020-06842-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2020] [Indexed: 01/27/2023]
Abstract
Our objective was to investigate clinical progression, presence of parasites and DNAs, parasite loads, and histological alterations in BALB/c mice and Syrian golden hamsters after intraperitoneal inoculation with Leishmania (Mundinia) martiniquensis promastigotes with a goal to choosing an appropriate animal model for visceral leishmaniasis. Infections were monitored for 16 weeks. Infected BALB/c mice were asymptomatic during the infection course. Parasite DNAs were detected in the liver at week 8 of infection, followed by clearance in most animals at week 16; whereas in the spleen, parasite DNAs were detected until week 16. These results are correlated to those obtained measuring parasite loads in both organs. No parasite DNA and no alteration in the bone marrow were observed indicating that no dissemination occurred. These results suggest the control of visceralization of L. martiniquensis by BALB/c mice. In hamsters, weight loss, cachexia, and fatigue were observed after week 11. Leishmania martiniquensis parasites were observed in tissue smears of the liver, spleen, and bone marrow by week 16. Parasite loads correlated with those from the presence of parasites and DNAs in the examined tissues. Alterations in the liver with nuclear destruction and cytoplasmic degeneration of infected hepatocytes, presence of inflammatory infiltrates, necrosis of hepatocytes, and changes in splenic architecture and reduction and deformation of white pulp in the spleen were noted. These results indicate a chronic form of visceral leishmaniasis indicating that the hamster is a suitable animal model for the study of pathological features of chronic visceral leishmaniasis caused by L. martiniquensis.
Collapse
|
19
|
Silva LP, Paciello MO, Aviz Teixeira WP, Rivas AV, Agular RWS, Cangussu ASR, Barbosa LCB, Marchetto R, Giunchetti RC, Viana KF. Immunogenicity of HLA-DR1 and HLA-A2 peptides derived from Leishmania major Gp63 in golden hamsters. Parasite Immunol 2020; 42:e12780. [PMID: 32738171 DOI: 10.1111/pim.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to evaluate the toxicity and humoral and cellular immune response of three heterologous vaccines against Leishmania infantum, yet containing synthetic peptides from Leishmania major in the experimental model in hamsters. METHODS AND RESULTS Through bioinformatics analyses, two Leishmania major Gp63 peptides were predicted and selected for vaccine formulations. Hamsters were divided into four groups, with each group receiving doses of three vaccine formulations containing HLA-DR1 or HLA-A2 peptides plus MontanideTM or both associated with the adjuvant. The animals received three vaccine doses and were evaluated for toxicity after each dose, in addition to being analysed for the production of antibodies and lymphoproliferation on day 211 after the last vaccine dose. Peptides predicted in association with oily adjuvant induced a humoral response and strong lymphoproliferation to Leishmania infantum antigen-specific stimulation.
Collapse
Affiliation(s)
- Larissa Pinheiro Silva
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil
| | - Mauricio Oviedo Paciello
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil
| | - Wéllida Patricia Aviz Teixeira
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil
| | - Açucena Veleh Rivas
- Postgraduate Program in Biosciences, Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu, PR, Brazil
| | - Raimundo Wagner Souza Agular
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil
| | - Alex Sander Rodrigues Cangussu
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil
| | - Luiz Carlos Bertucci Barbosa
- Bioprocess Engineering and Biotechnology, Institute of Natural Resources, Federal University of Itajubá, Itajubá, Brazil
| | - Reinaldo Marchetto
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Morphology Department, Institute of Biological Science, Federal University of Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Kelvinson Fernandes Viana
- Laboratory of Biomolecules and Vaccines, Postgraduate Program in Biotechnology, Agrarian Sciences and Technologic Department, Federal University of Tocantins (UFT), Gurupi, Brazil.,Postgraduate Program in Biosciences, Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu, PR, Brazil
| |
Collapse
|
20
|
Jiménez-Antón MD, Grau M, Corral MJ, Olías-Molero AI, Alunda JM. Efficient infection of hamster with Leishmania donovani by retro-orbital inoculation. Virulence 2020; 10:711-718. [PMID: 31389288 PMCID: PMC8647847 DOI: 10.1080/21505594.2019.1649587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- M D Jiménez-Antón
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - M Grau
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - M J Corral
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - A I Olías-Molero
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| | - J M Alunda
- a Departamento de Sanidad Animal, Research group ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid , Spain.,b Instituto de Investigación Hospital 12 de Octubre , Madrid , Spain
| |
Collapse
|
21
|
Saini S, Rai AK. Hamster, a close model for visceral leishmaniasis: Opportunities and challenges. Parasite Immunol 2020; 42:e12768. [DOI: 10.1111/pim.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| | - Ambak K. Rai
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| |
Collapse
|
22
|
AHMADI-HAMEDANI M, HOSSEINPOUR H, ESKAFIAN H, DAVARPANAH S. The Hematological and Biochemical Manifestations of Cutaneous Leishmaniasis in a Shih Tzu-Terrier Dog with Severe Infection: A Case Report. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:457-462. [PMID: 33082813 PMCID: PMC7548457 DOI: 10.18502/ijpa.v15i3.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022]
Abstract
Cutaneous involvement in canine leishmaniasis, caused by Leishmania infantum, is the most frequent clinical manifestation of the zoonotic infectious disease. A 4-month-old female Shih Tzu-terrier dog with significant weight loss and depression and chronic erosive skin lesions around eyes and the area above the nose was presented to the Semnan University Veterinary Hospital teaching, Semnan, Iran. The main clinicopathological findings included marked leukocytosis, neutrophilia, left shift, monocytosis, mild hypoproteinemia, and hypoalbuminemia. The diagnosis of leishmaniasis was performed based on the presence of a large number of Leishmania amastigotes in skin Fine Needle Aspiration (FNA). The dog was euthanized and sent to the autopsy department for further investigation.
Collapse
Affiliation(s)
- Mahmooud AHMADI-HAMEDANI
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Hesamodin ESKAFIAN
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | |
Collapse
|
23
|
Nadaes NR, Silva da Costa L, Santana RC, LaRocque-de-Freitas IF, Vivarini ÁDC, Soares DC, Wardini AB, Gazos Lopes U, Saraiva EM, Freire-de-Lima CG, Decote-Ricardo D, Pinto-da-Silva LH. DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With Leishmania infantum and Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:247. [PMID: 32596164 PMCID: PMC7303514 DOI: 10.3389/fcimb.2020.00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/29/2020] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis is an anthropozoonotic disease, and dogs are considered the main urban reservoir of the parasite. Macrophages, the target cells of Leishmania sp., play an important role during infection. Although dogs have a major importance in the epidemiology of the disease, the majority of the current knowledge about Leishmania–macrophage interaction comes from murine experimental models. To assess whether the canine macrophage strain DH82 is an accurate model for the study of Leishmania interaction, we compared its infection by two species of Leishmania (Leishmania infantum and L. amazonensis) with the murine macrophage cell line (RAW264.7). Our results demonstrated that L. amazonensis survival was around 40% at 24 h of infection inside both macrophage cell lines; however, a reduction of 4.3 times in L. amazonensis infection at 48 h post-infection in RAW 264.7 macrophages was observed. The survival index of L. infantum in DH82 canine macrophages was around 3 times higher than that in RAW264.7 murine cells at 24 and 48 h post-infection; however, at 48 h a reduction in both macrophages was observed. Surprisingly at 24 h post-infection, NO and ROS production by DH82 canine cells stimulated with LPS or menadione or during Leishmania infection was minor compared to murine RAW264.7. However, basal arginase activity was higher in DH82 cells when compared to murine RAW264.7 cells. Analysis of the cytokines showed that these macrophages present a different response profile. L. infantum induced IL-12, and L. amazonensis induced IL-10 in both cell lines. However, L. infantum and L. amazonensis also induced TGF-β in RAW 264.7. CD86 and MHC expression showed that L. amazonensis modulated them in both cell lines. Conversely, the parasite load profile did not show significant difference between both macrophage cell lines after 48 h of infection, which suggests that other mechanisms of Leishmania control could be involved in DH82 cells.
Collapse
Affiliation(s)
- Natalia Rocha Nadaes
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Brito Wardini
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Ulisses Gazos Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
24
|
Comparison Between Immuno-Clinicopathological Features of Experimental and Human Visceral Leishmaniasis by Leishmania donovani. Acta Parasitol 2020; 65:57-67. [PMID: 31578670 DOI: 10.2478/s11686-019-00127-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Current understanding of visceral leishmaniasis (VL) depends upon the experimental model. Different species of mouse and hamster have been used as model for VL. It is already evident that the mouse model of VL is not a true reflection of the pathology of human visceral leishmaniasis (HuVL). On the other hand, hamster is reported to be a better model of VL to study the progressive as well as chronic pathology of the disease. OBJECTIVE To compare immuno-clinicopathological features of experimental VL (ExVL) and HuVL by Leishmania donovani. METHODS Hamsters were infected (15 and 60 days) and their immunological, clinical and biochemical parameters were compared with the cases of HuVL. RESULTS Splenomegaly and hepatomegaly were observed in infected hamster post-infection, which are hallmarks of symptomatic HuVL cases. Clinical, biochemical and pathological manifestations of infected hamsters were consistent with that of HuVL cases, except parameters such as body weight, uric acid, alkaline phosphatase and random glucose. The absence of clear dichotomy between pro- and anti-inflammatory cytokines was also observed after infection at different sites of infection. CONCLUSION Our results suggest that the golden hamster (Mesocricetus auratus), infected via the intracardiac route, constitutes a very good model for the study of experimental Leishmania donovani infections. However, certain differences in clinical presentations of infected hamsters (via intracardiac route) with HuVL suggest further optimization of this animal model like route of infection such as intradermal, which is more close to natural infection.
Collapse
|
25
|
Miao J, Chard LS, Wang Z, Wang Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front Immunol 2019; 10:2329. [PMID: 31632404 PMCID: PMC6781508 DOI: 10.3389/fimmu.2019.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases still remain one of the biggest challenges for human health. In order to gain a better understanding of the pathogenesis of infectious diseases and develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable animal model which can represent the characteristics of infectious is required. The Syrian hamster immune responses to infectious pathogens are similar to humans and as such, this model is advantageous for studying pathogenesis of infection including post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and interactions of medications and vaccines for those pathogens. This review summarizes the current status of Syrian hamster models and their use for understanding the underlying mechanisms of pathogen infection, in addition to their use as a drug discovery platform and provides a strong rationale for the selection of Syrian hamster as animal models in biomedical research. The challenges of using Syrian hamster as an alternative animal model for the research of infectious diseases are also addressed.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhimin Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Murillo J, Montoya A, Carrillo-Bonilla L, Rodriguez B, Vélez ID, Robledo SM. Verification and monitoring of visceral leishmaniasis in hamsters caused by Leishmania infantum, using non-invasive approaches involving ultrasound imaging and blood gases. Exp Parasitol 2019; 201:78-89. [PMID: 31047987 DOI: 10.1016/j.exppara.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Hamsters are a suitable experimental model for visceral leishmaniasis (VL) because they mimic the features of the human disease. However, the infection after inoculation can only be verified after sacrifice of the animal or several months following infection, when obvious signs of the disease appear, compromising animal welfare in both cases. Unlike other studies, the present work used an inoculum of 5 × 108 promastigotes to induce Leishmania infantum infection, which are easier to produce than amastigotes, in in vitro culture. The infection in hamsters was detected using non-invasive methods such as ultrasound imaging (USG) and blood gases, in addition to alterations in hematological parameters and weight loss. USG imaging identified changes in the size and echogenicity of the spleen, liver, and kidney as early as week 9 (W9) after experimental inoculation. However, blood gases, specially lactate, was increased in response to the infection, with statistically significant differences between W9 and W0 (before infection) (p < 0.0001). The conventional hematological parameters showed progressive pancytopenia and weight loss of 15% and 10% in infected males and females respectively, at W9 versus W0 (p < 0.0001). Histological changes in the liver, kidney, and spleen correlated with changes detected by USG imaging and the number of parasites increased proportionately to the progression of infection, being higher at W24. In conclusion, USG imaging, lactate levels, hematocrit and hemoglobin parameters, along with weight loss allowed early detection of infection, which was then confirmed by the identification and quantification of parasites in the blood, liver, and spleen by qRT-PCR. In contrast, blood chemistry was not a useful tool in the early detection of VL infection because it did not correlate with alterations evident in other techniques. The use of non-invasive tools eliminates the need for animal sacrifice to confirm infection, thus reducing the number of animals required for a given study and eliminating the need to wait until the appearance of severe signs of infection, which affect animal welfare. These tools are therefore advantageous for use in preclinical studies, for studying pathogenesis as also for vaccine and drug development.
Collapse
Affiliation(s)
- Javier Murillo
- PECET-School of Medicine, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellín, Colombia
| | - Andrés Montoya
- PECET-School of Medicine, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellín, Colombia
| | - Lina Carrillo-Bonilla
- PECET-School of Medicine, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellín, Colombia; Facultad de Ciencias Agrarias, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellin, Colombia
| | - Berardo Rodriguez
- Facultad de Ciencias Agrarias, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellin, Colombia
| | - Iván D Vélez
- PECET-School of Medicine, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET-School of Medicine, Universidad de Antioquia-Udea, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
27
|
Neutrophil properties in healthy and Leishmania infantum-naturally infected dogs. Sci Rep 2019; 9:6247. [PMID: 31000764 PMCID: PMC6472404 DOI: 10.1038/s41598-019-42687-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis is a chronic disease that affects humans and dogs as well. Dogs, the domestic reservoir of Leishmania, play a central role in the transmission of visceral leishmaniasis, the most severe form of this disease. Neutrophils are the most abundant leukocytes in blood and interact with the parasite after infection. Here, we evaluate the effector properties of neutrophils from healthy and naturally Leishmania infantum-infected dogs. Our results showed that the parasite induced neutrophil extracellular trap (NET) release from neutrophils in both groups. Additionally, phagocytosis and NETs contributed differently to parasite killing by neutrophils from healthy and infected animals, and IFN-γ, IL-8, IL-4 and TNF-α production by neutrophils from both groups were differentially modulated by the parasite. Our results contribute to a better understanding of the complex role played by neutrophils in canine visceral leishmaniasis, which may favor the development of more effective therapies.
Collapse
|
28
|
Jiménez-Antón MD, Grau M, Olías-Molero AI, Alunda JM. Syrian Hamster as an Advanced Experimental Model for Visceral Leishmaniasis. Methods Mol Biol 2019; 1971:303-314. [PMID: 30980312 DOI: 10.1007/978-1-4939-9210-2_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models are needed along the development and evaluation of potential chemotherapeutic agents against leishmaniasis. Infections of Syrian hamsters with Leishmania species causing visceral leishmaniasis (VL) closely mimic the disease in the natural hosts, including target organs, lesions, and clinical course. Therefore, despite some shortcomings (e.g., genetic background, price, and scarcity of reagents), it is probably the best laboratory rodent model of VL. However, handling of hamsters can be technically challenging because of their particular anatomy. Here, we describe in detail four different routes to establish an experimental VL in the hamster model using Leishmania promastigotes and amastigotes. Each route requires various manipulations and has different benefits and drawbacks. Choice of the most suitable route should be made by the researcher in accordance with the specific plan and purpose of the study.
Collapse
Affiliation(s)
- María Dolores Jiménez-Antón
- Department of Animal Health, ICPVet Research Group, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Montserrat Grau
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Ana Isabel Olías-Molero
- Department of Animal Health, ICPVet Research Group, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José Mª Alunda
- Department of Animal Health, ICPVet Research Group, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain. .,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| |
Collapse
|
29
|
Hendrickx S, Bulté D, Van den Kerkhof M, Cos P, Delputte P, Maes L, Caljon G. Immunosuppression of Syrian golden hamsters accelerates relapse but not the emergence of resistance in Leishmania infantum following recurrent miltefosine pressure. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 9:1-7. [PMID: 30562667 PMCID: PMC6296292 DOI: 10.1016/j.ijpddr.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
Although miltefosine (MIL) has only been approved for the treatment of visceral leishmaniasis (VL) in 2002, its application in monotherapy already led to the development of two confirmed MIL-resistant isolates by 2009. Although liposomal amphotericin B is recommended as first-line treatment in Europe, MIL is still occasionally used in HIV co-infected patients. Since their immune system is incapable of controlling the infection, high parasite burdens and post-treatment relapses are common. Linked to the particular pharmacokinetic profile of MIL, successive treatment of recurrent relapses could in principle facilitate the emergence of drug resistance. This study evaluated the effect of immunosuppression (cyclophosphamide 150 mg/kg once weekly) on the development of MIL-resistance in Syrian golden hamsters infected with Leishmania infantum. The hamsters were treated with MIL (20 mg/kg orally for 5 days) whenever clinical signs of infection or relapse were observed. The immunosuppression resulted in a significant depletion of CD4+ lymphocytes and MHCII-expressing cells in peripheral blood, and a concomitant increase in tissue parasite burdens and shorter time to relapse, but the strain's susceptibility upon repeated MIL exposure remained unaltered. This study demonstrates that immunosuppression accelerates the occurrence of relapse without expediting MIL resistance development.
Collapse
Affiliation(s)
- S Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - D Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - M Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - L Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - G Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
30
|
Behavior of two Leishmania infantum strains-evaluation of susceptibility to antimonials and expression of microRNAs in experimentally infected J774 macrophages and in BALB/c mice. Parasitol Res 2018; 117:2881-2893. [PMID: 29943317 DOI: 10.1007/s00436-018-5979-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Strains of the same Leishmania parasite species, isolated from different host organisms, may exhibit unique infection profiles and induce a change in the expression of microRNAs among host macrophages and in model host mice. MicroRNAs (MiR) are endogenous molecules of about 22 nucleotides that are involved in many regulatory processes, including the vertebrate host immune response. In this respect, the infectivity and susceptibility to antimonials of two L. infantum strains, BH46, isolated from human, and OP46, isolated from symptomatic dog, were characterized in J774 macrophages and BALB/c mice. Parasite burden was assessed in the liver, spleen, and bone marrow using the serial limiting dilution technique. A higher parasite burden was observed in the spleen and bone marrow of animals infected with OP46 compared to BH46 strain. Our results also showed that OP46 was less susceptible to the antimonials. In addition, miR-122 and miR-155 expression was evaluated in the liver and J774 macrophages, and in spleens from infected animals, respectively. An increase was observed in the expression of miR-155 in J774 macrophages infected with both strains compared to uninfected cells, with a higher expression in cells infected with OP46. However, no difference in the expression of miR-122 and miR-155 was observed in the infected animals. Thus, this study shows that OP46 was more infective for mice, it caused a higher increase in miR-155 expression in infected macrophages and was less susceptible to the antimonials evaluated. These data suggest that alteration in miR-155 level likely plays a role in regulating the response to L. infantum.
Collapse
|
31
|
Achievement amastigotes of Leishmania infantum and investigation of pathological changes in the tissues of infected golden hamsters. J Parasit Dis 2018; 42:187-195. [PMID: 29844622 DOI: 10.1007/s12639-018-0981-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Abstract
Leishmania infantum is an agent of visceral leishmaniasis (VL). Amastigote form is a more appropriate target for investigations on vaccines, treatment, and diagnosis. This study aimed to achieve the amastigotes of L. infantum in the golden hamster and J774 macrophages and report the pathological changes that occur in the liver and spleen of the hamsters with VL. 4 male golden hamsters were infected with L. infantum promastigotes. After 5 months, the hamsters were euthanized and touch and pathology smears were prepared from the livers and spleens. Then, these tissues were homogenized and centrifuged at 100×g. Supernatants were collected and centrifuged at 2000×g and the pellets were collected. In the next part of our study, J774 macrophages were infected with L. infantum promastigotes. Then, the infected macrophages were ruptured. Centrifuge stages were done same the previous part. The amastigotes were observed in touch and pathology smears. A load of amastigotes in the livers was more than the spleens in both types of smears. Although the livers' structure had undergone pathological changes, the spleens were unchanged. Also, the macrophage infectivity ratio was up to 95%. Our results present a simple and accessible way of achieving a lot of pure and real amastigotes for different fields in Leishmania. Also, it seems that the pathological changes occurring in the spleen and the liver of animals with VL are different and probably can be attributed to the genetic and immune process of the infected animals.
Collapse
|
32
|
Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol 2017; 251:17-26. [PMID: 29426471 DOI: 10.1016/j.vetpar.2017.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Wild vertebrates are involved in the transmission cycles of numerous pathogens. Additionally, they can affect the abundance of arthropod vectors. Urbanization, landscape and climate changes, and the adaptation of vectors and wildlife to human habitats represent complex and evolving scenarios, which affect the interface of vector, wildlife and human populations, frequently with a consequent increase in zoonotic risk. While considerable attention has focused on these interrelations with regard to certain major vector-borne pathogens such as Borrelia burgdorferi s.l. and tick-borne encephalitis virus, information regarding many other zoonotic pathogens is more dispersed. In this review, we discuss the possible role of wildlife in the maintenance and spread of some of these neglected zoonoses in Europe. We present case studies on the role of rodents in the cycles of Bartonella spp., of wild ungulates in the cycle of Babesia spp., and of various wildlife species in the life cycle of Leishmania infantum, Anaplasma phagocytophilum and Rickettsia spp. These examples highlight the usefulness of surveillance strategies focused on neglected zoonotic agents in wildlife as a source of valuable information for health professionals, nature managers and (local) decision-makers. These benefits could be further enhanced by increased collaboration between researchers and stakeholders across Europe and a more harmonised and coordinated approach for data collection.
Collapse
|
33
|
Abstract
Cutaneous and visceral leishmaniasis are amongst the most devastating infectious diseases of our time, affecting millions of people worldwide. The treatment of these serious diseases rely on a few chemotherapeutic agents, most of which are of parenteral use and induce severe side-effects. Furthermore, rates of treatment failure are high and have been linked to drug resistance in some areas. Here, we reviewed data on current chemotherapy practice in leishmaniasis. Drug resistance and mechanisms of resistance are described as well as the prospects for applying drug combinations for leishmaniasis chemotherapy. It is clear that efforts for discovering new drugs applicable to leishmaniasis chemotherapy are essential. The main aspects on the various steps of drug discovery in the field are discussed.
Collapse
|
34
|
Goto Y, Cheng J, Omachi S, Morimoto A. Prevalence, severity, and pathogeneses of anemia in visceral leishmaniasis. Parasitol Res 2016; 116:457-464. [PMID: 27822583 DOI: 10.1007/s00436-016-5313-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Anemia is a typical symptom during visceral leishmaniasis (VL). We performed a systematic analysis of the literature on anemia in VL to understand the prevalence, severity, and possible mechanisms. Anemia is very common in VL patients with an overall prevalence higher than 90 %. The degree of anemia in VL is moderate to severe (hemoglobin level ∼7.5 g/dl), and the status can be recovered by treatment with antileishmanial drugs within a certain period of time. Possible pathogeneses of anemia in VL based on clinical observations included anti-RBC antibodies, dysfunction in erythropoiesis, and hemophagocytosis in the bone marrow or spleen, while hemolysis is a more likely cause than dyserythropoiesis. In hamsters with experimental VL, hemophagocytosis induced by immune complex and changes on erythrocyte membrane is speculated as the pathogenesis for anemia. In contrast, our recent study on murine VL indicated that hemophagocytosis contributes to anemia in contrast to lower contribution of anti-RBC antibodies or dysfunction in erythropoiesis. Together, hemophagocytosis is most likely associated with anemia in VL, and elucidation of the immunological mechanisms may lead to development of novel interventions to manage the symptom.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Jingjie Cheng
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Faculty of Medicine, Imperial College London, London, England
| | - Satoko Omachi
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayako Morimoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|