1
|
Fan K, Gao Q, Cai C, Xie Y, Qi Z, Sun Z, Xie J, Gao J. Cloning and expression analysis of Janus activated kinase family genes from spotted seabass (Lateolabrax maculatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105169. [PMID: 38522714 DOI: 10.1016/j.dci.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Janus kinases (JAKs) are important components of the JAK-STAT signaling pathway and play vital roles in innate immunity, autoimmune diseases, and inflammation. However, information about JAKs remains largely unknown in the spotted seabass, a fish species of Perciformes with great commercial value in the aquaculture industry. The aims of this study are to obtain the complete cDNA sequences of JAKs (JAK1, JAK2A, JAK2B, JAK3 and TYK2) from spotted seabass and to investigate their roles upon stimulation with lipopolysaccharides (LPS) and Edwardsiella tarda, using RT-PCR, PCR and qRT-PCR methods. All five JAK genes from the spotted seabass, each encode more than 1100 amino acids residues. JAK1 and JAK3 consist of 24 exons and 23 introns, whereas JAK2A, JAK2B and TYK2 consist of 23 exons and 22 introns. Furthermore, these five spotted seabass JAKs share high sequence identities with those of other fish species in protein domain analysis, synteny analysis, and phylogenetic analysis. Moreover, these five JAK genes were ubiquitously expressed in all tissues examined from healthy fish, and inducible expressions of JAKs were observed in the intestine, gill, head kidney, and spleen following LPS treatment or E. tarda infection. These findings indicate that all these JAK genes are involved in the antibacterial immunity of the spotted seabass and provide a basis for further understanding the mechanism of JAKs antibacterial response in the spotted sea bass.
Collapse
Affiliation(s)
- Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Yushuai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Zhitao Qi
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Zhejiang, 315211, China
| | - Jiaqi Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| |
Collapse
|
2
|
Saleh M, Hummel K, Schlosser S, Razzazi-Fazeli E, Bartholomew JL, Holzer A, Secombes CJ, El-Matbouli M. The myxozoans Myxobolus cerebralis and Tetracapsuloides bryosalmonae modulate rainbow trout immune responses: quantitative shotgun proteomics at the portals of entry after single and co-infections. Front Cell Infect Microbiol 2024; 14:1369615. [PMID: 38803570 PMCID: PMC11129561 DOI: 10.3389/fcimb.2024.1369615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.
Collapse
Affiliation(s)
- Mona Saleh
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Karin Hummel
- VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid Holzer
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, United Kingdom
| | | |
Collapse
|
3
|
Akram N, El-Matbouli M, Saleh M. The Immune Response to the Myxozoan Parasite Myxobolus cerebralis in Salmonids: A Review on Whirling Disease. Int J Mol Sci 2023; 24:17392. [PMID: 38139218 PMCID: PMC10743445 DOI: 10.3390/ijms242417392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly susceptible host. Upon entering to the host's body, the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several efforts have been undertaken to investigate the role of various immune modulatory molecules and immune regulatory genes using advanced molecular methods including flow cytometry and transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins (Nramp) in WD have significantly contributed to our understanding of the immune regulation mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research and discusses potential future directions for understanding the molecular immune response of salmonids and the possible development of prophylactic approaches against WD.
Collapse
Affiliation(s)
| | | | - Mona Saleh
- Division of Fish Health, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (N.A.)
| |
Collapse
|
4
|
Kang G, Woo WS, Kim KH, Son HJ, Sohn MY, Kong HJ, Kim YO, Kim DG, Kim EM, Noh ES, Park CI. Identification of Potential Hazards Associated with South Korean Prawns and Monitoring Results Targeting Fishing Bait. Pathogens 2023; 12:1228. [PMID: 37887744 PMCID: PMC10610149 DOI: 10.3390/pathogens12101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
This study detected two potential pathogens, Vibro parahaemolyticus, which causes acute hepatopancreatic necrosis disease (AHPND), and white spot syndrome virus (WSSV), in fishing bait in South Korea. However, their infectious nature was not confirmed, possibly due to the degradation caused by freezing/thawing or prolonged storage under frozen conditions. While infectivity was not confirmed in this study, there is still a significant risk of exposure to these aquatic products. Furthermore, fishing bait and feed should be handled with caution as they are directly exposed to water, increasing the risk of disease transmission. In Australia, cases of WSSV infection caused by imported shrimp intended for human consumption have occurred, highlighting the need for preventive measures. While freezing/thawing is a method for inactivating pathogens, there are still regulatory and realistic issues to be addressed.
Collapse
Affiliation(s)
- Gyoungsik Kang
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Won-Sik Woo
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Kyung-Ho Kim
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Ha-Jeong Son
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Min-Young Sohn
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun Mi Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| |
Collapse
|
5
|
Qin J, Meng F, Wang G, Chen Y, Zhang F, Li C, Dong X, Huang J. Coinfection with Yellow Head Virus Genotype 8 (YHV-8) and Oriental Wenrivirus 1 (OWV1) in Wild Penaeus chinensis from the Yellow Sea. Viruses 2023; 15:v15020361. [PMID: 36851575 PMCID: PMC9964421 DOI: 10.3390/v15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
At present, there are few studies on the epidemiology of diseases in wild Chinese white shrimp Penaeus chinensis. In order to enrich the epidemiological information of the World Organisation for Animal Health (WOAH)-listed and emerging diseases in wild P. chinensis, we collected a total of 37 wild P. chinensis from the Yellow Sea in the past three years and carried out molecular detection tests for eleven shrimp pathogens. The results showed that infectious hypodermal and hematopoietic necrosis virus (IHHNV), Decapod iridescent virus 1 (DIV1), yellow head virus genotype 8 (YHV-8), and oriental wenrivirus 1 (OWV1) could be detected in collected wild P. chinensis. Among them, the coexistence of IHHNV and DIV1 was confirmed using qPCR, PCR, and sequence analysis with pooled samples. The infection with YHV-8 and OWV1 in shrimp was studied using molecular diagnosis, phylogenetic analysis, and transmission electron microscopy. It is worth highlighting that this study revealed the high prevalence of coinfection with YHV-8 and OWV1 in wild P. chinensis populations and the transmission risk of these viruses between the wild and farmed P. chinensis populations. This study enriches the epidemiological information of WOAH-listed and emerging diseases in wild P. chinensis in the Yellow Sea and raises concerns about biosecurity issues related to wild shrimp resources.
Collapse
Affiliation(s)
- Jiahao Qin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
| | - Fanzeng Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
| | - Guohao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
| | - Yujin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Fan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266110, China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
| | - Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266110, China
- Correspondence: (X.D.); (J.H.)
| | - Jie Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok 10900, Thailand
- Correspondence: (X.D.); (J.H.)
| |
Collapse
|
6
|
Gao XC, Huang Y, Ren HT, Gao SY. Identification of SOCS5 Gene in the Chinese Giant Salamander (Andrias davidianus) and Expression Profiles in Response to Citrobacter freundii Challenge. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sudhagar A, El-Matbouli M, Kumar G. Genome-wide alternative splicing profile in the posterior kidney of brown trout (Salmo trutta) during proliferative kidney disease. BMC Genomics 2022; 23:446. [PMID: 35710345 PMCID: PMC9204890 DOI: 10.1186/s12864-022-08685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The cnidarian myxozoan parasite Tetracapsuloides bryosalmonae causes chronic proliferative kidney disease (PKD) in salmonids. This parasite is a serious threat to wild and cultured salmonids. T. bryosalmonae undergoes intra-luminal sporogonic development in the kidney of brown trout (Salmo trutta) and the viable spores are released via urine. We investigated the alternative splicing pattern in the posterior kidney of brown trout during PKD. RESULTS RNA-seq data were generated from the posterior kidney of brown trout collected at 12 weeks post-exposure to T. bryosalmonae. Subsequently, this data was mapped to the brown trout genome. About 153 significant differently expressed alternatively spliced (DEAS) genes, (delta PSI = 5%, FDR P-value < 0.05) were identified from 19,722 alternatively spliced events. Among the DEAS genes, the least and most abundant alternative splicing types were alternative 5' splice site (5.23%) and exon skipping (70.59%), respectively. The DEAS genes were significantly enriched for sodium-potassium transporter activity and ion homeostasis (ahcyl1, atp1a3a, atp1a1a.1, and atp1a1a.5). The protein-protein interaction network analysis enriched two local network clusters namely cation transporting ATPase C-terminus and Sodium/potassium ATPase beta chain cluster, and mixed inclusion of Ion homeostasis and EF-hand domain cluster. Furthermore, the human disease-related salmonella infection pathway was significantly enriched in the protein-protein interaction network. CONCLUSION This study provides the first baseline information about alternative splicing in brown trout during PKD. The generated data lay a foundation for further functional molecular studies in PKD - brown trout infection model. The information generated from the present study can help to develop therapeutic strategies for PKD in the future.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Peninsular and Marine Fish Genetic Resources Centre, ICAR - National Bureau of Fish Genetic Resources, Kochi, Kerala, 682 018, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
8
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
9
|
Saravanan K, Praveenraj J, Kiruba-Sankar R, Devi V, Biswas U, Kumar TS, Sudhagar A, El-Matbouli M, Kumar G. Co-Infection of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in the Wild Crustaceans of Andaman and Nicobar Archipelago, India. Viruses 2021; 13:v13071378. [PMID: 34372583 PMCID: PMC8310313 DOI: 10.3390/v13071378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was intended to screen the wild crustaceans for co-infection with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in Andaman and Nicobar Archipelago, India. We screened a total of 607 shrimp and 110 crab samples using a specific polymerase chain reaction, and out of them, 82 shrimps (13.5%) and 5 (4.5%) crabs were found positive for co-infection of IHHNV and WSSV. A higher rate of co-infection was observed in Penaeus monodon and Scylla serrata than other shrimp and crab species. The nucleotide sequences of IHHNV and WSSV obtained from crab in this present study exhibited very high sequence identity with their counterparts retrieved from various countries. Histopathological analysis of the infected shrimp gill sections further confirmed the eosinophilic intra-nuclear cowdry type A inclusion bodies and basophilic intra-nuclear inclusion bodies characteristics of IHHNV and WSSV infections, respectively. The present study serves as the first report on co-infection of WSSV and IHHNV in Andaman and Nicobar Archipelago, India and accentuates the critical need for continuous monitoring of wild crustaceans and appropriate biosecurity measures for brackishwater aquaculture.
Collapse
Affiliation(s)
- Kandasamy Saravanan
- Division of Fisheries Science, Indian Council of Agricultural Research-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; (J.P.); (R.K.-S.); (V.D.); (U.B.)
- Correspondence: (K.S.); (G.K.)
| | - Jayasimhan Praveenraj
- Division of Fisheries Science, Indian Council of Agricultural Research-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; (J.P.); (R.K.-S.); (V.D.); (U.B.)
| | - Rajendran Kiruba-Sankar
- Division of Fisheries Science, Indian Council of Agricultural Research-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; (J.P.); (R.K.-S.); (V.D.); (U.B.)
| | - Varsha Devi
- Division of Fisheries Science, Indian Council of Agricultural Research-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; (J.P.); (R.K.-S.); (V.D.); (U.B.)
| | - Utpal Biswas
- Division of Fisheries Science, Indian Council of Agricultural Research-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; (J.P.); (R.K.-S.); (V.D.); (U.B.)
| | - Thangaraj Sathish Kumar
- Aquatic Animal Health and Environment Division, Indian Council of Agricultural Research-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Chennai 600028, Tamil Nadu, India;
| | - Arun Sudhagar
- Peninsular and Marine Fish Genetic Resources Centre, Indian Council of Agricultural Research-National Bureau of Fish Genetic Resources, Ernakulam North P.O., Kochi 682018, Kerala, India;
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Veterinarplatz 1, 1210 Vienna, Austria;
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Veterinarplatz 1, 1210 Vienna, Austria;
- Correspondence: (K.S.); (G.K.)
| |
Collapse
|
10
|
Cranial Mandibular Fibrosis Syndrome in Adult Farmed Rainbow Trout Oncorhynchus mykiss. Pathogens 2021; 10:pathogens10050542. [PMID: 33946332 PMCID: PMC8145062 DOI: 10.3390/pathogens10050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
An unusual condition affecting market size rainbow trout was investigated. This condition was prevalent for several years at low levels but affected a large proportion of stock during 2018 and 2019. Chronic fibrosis affecting cranial tissues and the jaw was observed in samples collected in 2018. A larger sampling was then conducted in 2019 to investigate the presence of an infectious agent(s). An extensive inflammatory response in the mandibular region was the main finding, however infectious agents in the lesions were not identified through classical virology and bacteriology analysis. Tetracapsuloides bryosalmonae infection, calcinosis, and a Gram-positive bacterial infection of a single fish cardiac tissue was observed, however, a correlation of these pathologies and the cranial mandibular fibrosis (CMF) syndrome was not established. The gene expression of a panel of 16 immune-related genes was studied. Among these, tgf-b, sIgM, il11, hspa, and the antimicrobial peptides lys and cath1 were up-regulated in jaw sections of CMF-affected fish, showing a strong positive correlation with the severity of the lesions. Idiopathic chronic fibrosis with the activation of the Tfg-B pathway and local hyper-immunoglobulaemia was therefore diagnosed. Initiating factors and causative agent(s) (biotic or abiotic) of CMF remain, at present, unclear.
Collapse
|
11
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
12
|
Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep 2021; 11:2149. [PMID: 33495500 PMCID: PMC7835236 DOI: 10.1038/s41598-020-77881-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The myxozoan parasite, Tetracapsuloidesbryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T.bryosalmonae-host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T.bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
Collapse
|
13
|
Saleh M, Friedl A, Srivastava M, Secombes CJ, El-Matbouli M. Modulation of local and systemic immune responses in brown trout (Salmo trutta) following exposure to Myxobolus cerebralis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:844-851. [PMID: 32891791 DOI: 10.1016/j.fsi.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Myxobolus cerebralis, the etiological agent of Whirling Disease (WD), is a freshwater myxozoan parasite with considerable economic and ecological relevance for salmonids. There are differences in disease susceptibility between species and strains of salmonids. Recently, we have reported that the suppressor of cytokine signaling SOCS1 and SOCS3 are key in modulating rainbow trout (Oncorhynchus mykiss) immune responses and that resistant fish apparently exhibit effective Th17 cell response after exposure to M. cerebralis. It is unclear whether such molecules and pathways are also involved in the immune response of M. cerebralis infected brown trout (Salmo trutta). Hence, this study aimed to explore their role during immune modulation in infected brown trout, which is considered resistant to this parasite. Fish were exposed to the triactinomyxon (TAM) stages of M. cerebralis and quantitative real-time PCR (RT-qPCR) was carried out to examine local (caudal fin) and systemic (head kidney, spleen) immune transcriptional changes associated with WD over time in infected and control fish. All of the immune genes in the three tissues studied were differentially expressed in infected fish at multiple time points. Brown trout reduced the parasite load and demonstrated effective immune responses, likely by keeping pro-inflammatory and anti-inflammatory cytokines in balance whilst stimulating efficient Th17-mediated immunity. This study increases knowledge on the brown trout immune response to M. cerebralis and helps us to understand the underlying mechanisms of WD resistance.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Adina Friedl
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Mitaly Srivastava
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
14
|
Bailey C, Holland JW, Secombes CJ, Tafalla C. A portrait of the immune response to proliferative kidney disease (PKD) in rainbow trout. Parasite Immunol 2020; 42:e12730. [PMID: 32403171 PMCID: PMC7507176 DOI: 10.1111/pim.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Proliferative kidney disease (PKD), caused by the myxozoan Tetracapsuloides bryosalmonae, is one of the most serious parasitic diseases of salmonids in which outbreaks cause severe economic constraints for the aquaculture industry and declines of wild species throughout Europe and North America. Given that rainbow trout (Oncorhynchus mykiss) is one of the most widely farmed freshwater fish and an important model species for fish immunology, most of the knowledge on how the fish immune response is affected during PKD is from this organism. Once rainbow trout are infected, PKD pathogenesis results in a chronic kidney immunopathology mediated by decreasing myeloid cells and increasing lymphocytes. Transcriptional studies have revealed the regulation of essential genes related to T-helper (Th)-like functions and a dysregulated B-cell antibody type response. Recent reports have discovered unique details of teleost B-cell differentiation and functionality and characterized the differential immunoglobulin (Ig)-mediated response. These studies have solidified the rainbow trout T. bryosalmonae system as a sophisticated disease model capable of feeding key advances into mainstream immunology and have contributed essential information to design novel parasite disease prevention strategies. In our following perspective, we summarize these efforts to evaluate the immune mechanisms of rainbow trout during PKD pathogenesis.
Collapse
Affiliation(s)
- Christyn Bailey
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| | - Jason W. Holland
- Aberdeen Oomycete LaboratoryInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research CentreInstitute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| |
Collapse
|
15
|
STAT3/SOCS3 axis contributes to the outcome of salmonid whirling disease. PLoS One 2020; 15:e0234479. [PMID: 32542025 PMCID: PMC7295227 DOI: 10.1371/journal.pone.0234479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
There are differences in disease susceptibility to whirling disease (WD) among strains of rainbow trout. The North American strain Trout Lodge (TL) is highly susceptible, whereas the German Hofer (HO) strain is more resistant. The suppressor of cytokine signaling (SOCS) proteins are key in inhibiting cytokine signaling. Their role in modulating the immune response against whirling disease is not completely clear. This study aimed at investigating the transcriptional response of SOCS1 and SOCS3 genes to Myxobolus cerebralis along with that of several upstream regulators and immune response genes. M. cerebralis induced the expression of SOCS1, the IL-6-dependent SOCS3, the anti-inflammatory cytokine IL-10 and the Treg associated transcription factor FOXP3 in TL fish at multiple time points, which likely caused a restricted STAT1 and STAT3 activity affecting the Th17/Treg17 balance. The expression of SOCS1 and the IL-6-dependent SOCS3 was induced constraining the activation of STAT1 and STAT3 in TL fish, thereby causing Th17/Treg17 imbalance and leaving the fish unable to establish a protective immune response against M. cerebralis or control inflammatory reactions increasing susceptibility to WD. Conversely, in HO fish, the expression of SOCS1 and SOCS3 was restrained, whereas the expression of STAT1 and IL-23-mediated STAT3 was induced potentially enabling more controlled immune responses, accelerating parasite clearance and elevating resistance. The induced expression of STAT1 and IL-23-mediated STAT3 likely maintained a successful Th17/Treg17 balance and enabled fish to promote effective immune responses favouring resistance against WD. The results provide insights into the role of SOCS1 and SOCS3 in regulating the activation and magnitude of host immunity in rainbow trout, which may help us understand the mechanisms that underlie the variation in resistance to WD.
Collapse
|
16
|
Proliferative kidney disease in Alaskan salmonids with evidence that pathogenic myxozoans may be emerging north. Int J Parasitol 2020; 50:797-807. [PMID: 32479830 DOI: 10.1016/j.ijpara.2020.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Proliferative kidney disease (PKD) of salmonids, a chronic immunopathology caused by the myxozoan parasite Tetracapsuloides bryosalmonae, is exacerbated by increased water temperatures. PKD causes economic concerns to trout farmers and contributes to the decline of wild salmonid populations in North America and Europe. The parasite occurs as far north as Norway and Iceland in Europe and was confirmed from California to southern British Columbia in the American continent. In mid-September 2011 adult chum salmon (Oncorhynchus keta) were sampled from Kantishna River, a tributary to Yukon River in Alaska. Clinical PKD was diagnosed based on the macroscopic appearance of mottled kidneys that were uniformly swollen and by the detection of tumultuous histozoic extrasporogonic and coelozoic sporogonic stages of T. bryosalmonae in renal tissue by histopathology. Archived samples provided the molecular confirmation and local strain identification, representing the first confirmed case of PKD in wild adult chum salmon, also co-infected with Parvicapsula minibicornis that represents another novel myxozoan detection in Alaska. Our investigation was extended to another case from August/September 1997, with mortality following furunculosis and ectoparasite co-infections, in sockeye salmon (Oncorhynchus nerka) pre-smolts net-pen reared in English Bay Lakes, Alaska. Immunohistochemistry on archived histological preparations confirmed T. bryosalmonae sporogonic and extrasporogonic stages, indicating a severe to resolving PKD, with concomitant Chloromyxum spp. infection. Those cases provide the first documentation that this parasite is present in Alaska and causes PKD in wild and cultured salmonids in the region. The known geographic range of T. bryosalmonae can be extended to ~267 km south of the Arctic Circle, representing the northernmost detection in America. Given the vast size of Alaska and small resident population, it is likely that T. bryosalmonae remained undetected, but more recently became evident due to the clinical manifestation of PKD, possibly linked to increasing water temperatures reported at the sample locations.
Collapse
|
17
|
Sudhagar A, El-Matbouli M, Kumar G. Identification and Expression Profiling of Toll-Like Receptors of Brown Trout ( Salmo trutta) during Proliferative Kidney Disease. Int J Mol Sci 2020; 21:E3755. [PMID: 32466538 PMCID: PMC7312180 DOI: 10.3390/ijms21113755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Proliferative kidney disease is an emerging disease among salmonids in Europe and North America caused by the myxozoan parasite Tetracapsuloides bryosalmonae. The decline of endemic brown trout (Salmo trutta) in the Alpine streams of Europe is fostered by T. bryosalmonae infection. Toll-like receptors (TLRs) are a family of pattern recognition receptors that acts as sentinels of the immune system against the invading pathogens. However, little is known about the TLRs' response in salmonids against the myxozoan infection. In the present study, we identified and evaluated TLR1, TLR19, and TLR13-like genes of brown trout using data-mining and phylogenetic analysis. The expression pattern of TLRs was examined in the posterior kidney of brown trout infected with T. bryosalmonae at various time points. Typical Toll/interleukin-1 receptor protein domain was found in all tested TLRs. However, TLR13-like chr2 had a short amino acid sequence with no LRR domain. Phylogenetic analysis illustrated that TLR orthologs are conserved across vertebrates. Similarly, a conserved synteny gene block arrangement was observed in the case of TLR1 and TLR19 across fish species. Interestingly, all tested TLRs showed their maximal relative expression from 6 to 10 weeks post-exposure to the parasite. Our results suggest that these TLRs may play an important role in the innate defense mechanism of brown trout against the invading T. bryosalmonae.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.); (M.E.-M.)
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.); (M.E.-M.)
| |
Collapse
|
18
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
19
|
Gorgoglione B, Taylor NGH, Holland JW, Feist SW, Secombes CJ. Immune response modulation upon sequential heterogeneous co-infection with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta). FISH & SHELLFISH IMMUNOLOGY 2019; 88:375-390. [PMID: 30797951 DOI: 10.1016/j.fsi.2019.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous and sequential infections often occur in wild and farming environments. Despite growing awareness, co-infection studies are still very limited, mainly to a few well-established human models. European salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE notifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co-infection model was established to assess if the responses elicited in co-infected fish are modulated, when compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected fish. A typical histophlogosis associated with histozoic extrasporogonic T. bryosalmonae was detected together with acute inflammation, haemorrhaging and necrosis due to the viral infection. The host immune response was measured in terms of key marker genes expression in kidney tissues. During T. bryosalmonae/VHSV-Ia co-infection, modulation of pro-inflammatory and antimicrobial peptide genes was strongly influenced by the viral infection, with a protracted inflammatory status, perhaps representing a negative side effect in these fish. Earlier activation of the cellular and humoral responses was detected in co-infected fish, with a more pronounced upregulation of Th1 and antiviral marker genes. These results reveal that some brown trout immune responses are enhanced or prolonged during PKD/VHS co-infection, relative to single infection.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK.
| | - Nick G H Taylor
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | - Stephen W Feist
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|