1
|
Duque-Granda D, Vivero-Gómez RJ, González Ceballos LA, Junca H, Duque SR, Aroca Aguilera MC, Castañeda-Espinosa A, Cadavid-Restrepo G, Gómez GF, Moreno-Herrera CX. Exploring the Diversity of Microbial Communities Associated with Two Anopheles Species During Dry Season in an Indigenous Community from the Colombian Amazon. INSECTS 2025; 16:269. [PMID: 40266732 PMCID: PMC11942818 DOI: 10.3390/insects16030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 04/25/2025]
Abstract
Malaria disease affects millions of people annually, making the Amazon Basin a major hotspot in the Americas. While traditional control strategies rely on physical and chemical methods, the Anopheles microbiome offers a promising avenue for biological control, as certain bacteria can inhibit parasite development and alter vector immune and reproductive systems, disrupting the transmission cycle. For this reason, this study aimed to explore the bacterial communities in An. darlingi and An. triannulatus s.l., including breeding sites, immature stages, and adults from San Pedro de los Lagos (Leticia, Amazonas) through next-generation sequencing of the 16S rRNA gene. The results revealed a higher bacterial genus richness in the L1-L2 larvae of An. triannulatus s.l. Aeromonas and Enterobacter were prevalent in most samples, with abundances of 52.51% in L3-L4 larvae and 48.88% in pupae of An. triannulatus s.l., respectively. In breeding site water, Verrucomicrobiota bacteria were the most dominant (52.39%). We also identified Delftia (15.46%) in An. triannulatus s.l. pupae and Asaia (98.22%) in An. triannulatus, linked to Plasmodium inhibition, and Elizabethkingia, in low abundances, along with Klebsiella and Serratia, known for paratransgenesis potential. Considering the high bacterial diversity observed across the different mosquito life stages, identifying bacterial composition is the first step towards developing new strategies for malaria control. However, the specific roles of these bacteria in anophelines and the malaria transmission cycle remain to be elucidated.
Collapse
Affiliation(s)
- Daniela Duque-Granda
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| | - Rafael José Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| | - Laura Alejandra González Ceballos
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, Chia 250008, Colombia;
| | - Santiago R. Duque
- Grupo de Limnología Amazónica, Universidad Nacional de Colombia at Amazonía, Kilómetro 2, Vía Tarapacá, Leticia 910001, Colombia; (S.R.D.); (M.C.A.A.)
| | - María Camila Aroca Aguilera
- Grupo de Limnología Amazónica, Universidad Nacional de Colombia at Amazonía, Kilómetro 2, Vía Tarapacá, Leticia 910001, Colombia; (S.R.D.); (M.C.A.A.)
| | - Alejandro Castañeda-Espinosa
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| | - Giovan F. Gómez
- Grupo de Artropodología Básica y Aplicada, Universidad Nacional de Colombia at La Paz, Kilómetro 9, Vía Valledupar, La Paz 202010, Colombia;
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Laboratorio de Procesos Moleculares, Facultad de Ciencias, Universidad Nacional de Colombia at Medellín, Street 59A #63-20, Medellín 050003, Colombia; (D.D.-G.); (L.A.G.C.); (A.C.-E.); (G.C.-R.)
| |
Collapse
|
2
|
Bhattacharyya J, Roelke DL. Wolbachia-based mosquito control: Environmental perspectives on population suppression and replacement strategies. Acta Trop 2025; 262:107517. [PMID: 39740726 DOI: 10.1016/j.actatropica.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens. This review evaluates the effectiveness of different Wolbachia strains transinfected into mosquitoes in reducing mosquito-borne diseases. It explores how Wolbachia contributes to mosquito population control and pathogen interference, highlighting the importance of mathematical models in understanding Wolbachia transmission dynamics. Additionally, the review addresses the potential impact on arboviral transmission and the challenges posed by environmental fluctuations in mosquito control programs.
Collapse
Affiliation(s)
- Joydeb Bhattacharyya
- Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal 741152, India.
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA
| |
Collapse
|
3
|
Liang Y, Liu J, Wu Y, Wu Y, Xi Z. Stable introduction of Wolbachia wPip into invasive Anopheles stephensi for potential malaria control. PLoS Negl Trop Dis 2024; 18:e0012523. [PMID: 39325838 PMCID: PMC11460690 DOI: 10.1371/journal.pntd.0012523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The spread and invasion of the urban malaria vector Anopheles stephensi has emerged as a significant threat to ongoing malaria control and elimination efforts, particularly in Africa. The successful use of the maternally inherited endosymbiotic bacterium Wolbachia for arbovirus control has inspired the exploration of similar strategies for managing malaria vectors, necessitating the establishment of a stable Wolbachia-Anopheles symbiosis. In this study, we successfully transferred Wolbachia wPip into An. stephensi, resulting in the establishment of a stable transinfected HP1 line with 100% maternal transmission efficiency. We demonstrate that wPip in the HP1 line induces nearly complete unidirectional cytoplasmic incompatibility (CI) and maintains high densities in both somatic and germline tissues. Despite a modest reduction in lifespan and female reproductive capacity, our results suggest the Wolbachia infection in the HP1 line has little impact on life history traits, body size, and male mating competitiveness, as well as the ability of its larvae to tolerate rearing temperatures up to 38°C, although wPip densities moderately decrease when larvae are exposed to a constant 33°C and diurnal cyclic temperatures of 27-36°C and 27-38°C. These findings highlight the potential of the HP1 line as a robust candidate for further development in malaria control.
Collapse
Affiliation(s)
- Yongkang Liang
- Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, China
| | - Julian Liu
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, China
| | - YiLian Wu
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, China
| | - Yu Wu
- Department of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Xi
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, China
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
4
|
Wijegunawardana NDAD, Gunawardene YINS, Abeyewickreme W, Chandrasena TGAN, Thayanukul P, Kittayapong P. Diversity of Wolbachia infections in Sri Lankan mosquitoes with a new record of Wolbachia Supergroup B infecting Aedes aegypti vector populations. Sci Rep 2024; 14:11966. [PMID: 38796552 PMCID: PMC11127934 DOI: 10.1038/s41598-024-62476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Wolbachia bacteria are common endosymbionts of insects and have recently been applied for controlling arboviral vectors, especially Aedes aegypti mosquito populations. However, several medically important mosquito species in Sri Lanka were present with limited information for the Wolbachia infection status. Therefore, the screening of Wolbachia in indigenous mosquitoes is required prior to a successful application of Wolbachia-based vector control strategy. In this study, screening of 78 mosquito species collected from various parts of the country revealed that 13 species were positive for Wolbachia infection, giving ~ 17% infection frequency of Wolbachia among the Sri Lankan mosquitoes. Twelve Wolbachia-positive mosquito species were selected for downstream Wolbachia strain genotyping using Multi Locus Sequencing Type (MLST), wsp gene, and 16S rRNA gene-based approaches. Results showed that these Wolbachia strains clustered together with the present Wolbachia phylogeny of world mosquito populations with some variations. Almost 90% of the mosquito populations were infected with supergroup B while the remaining were infected with supergroup A. A new record of Wolbachia supergroup B infection in Ae. aegypti, the main vectors of dengue, was highlighted. This finding was further confirmed by real-time qPCR, revealing Wolbachia density variations between Ae. aegypti and Ae. albopictus (p = 0.001), and between males and females (p < 0.05). The evidence of natural Wolbachia infections in Ae. aegypti populations in Sri Lanka is an extremely rare incident that has the potential to be used for arboviral vector control.
Collapse
Affiliation(s)
- N D A D Wijegunawardana
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Phayathai, Thailand
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | | | - W Abeyewickreme
- Department of Parasitology, Faculty of Medicine, General Sir Johan Kotelawala Defence University, Dehiwala-Mount Lavinia, Sri Lanka
| | - T G A N Chandrasena
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - P Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand.
- Department of Biology, Faculty of Science, Mahidol University, Phayathai, Thailand.
| | - P Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Thailand
| |
Collapse
|
5
|
Mushtaq I, Sarwar MS, Chaudhry A, Shah SAH, Ahmad MM. Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions. Front Cell Infect Microbiol 2024; 14:1330475. [PMID: 38716193 PMCID: PMC11074371 DOI: 10.3389/fcimb.2024.1330475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.
Collapse
|
6
|
Vandana V, Dong S, Sheth T, Sun Q, Wen H, Maldonado A, Xi Z, Dimopoulos G. Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLoS Pathog 2024; 20:e1012145. [PMID: 38598552 PMCID: PMC11034644 DOI: 10.1371/journal.ppat.1012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.
Collapse
Affiliation(s)
- Vandana Vandana
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tanaya Sheth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amanda Maldonado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Walker T. Detection of Natural Wolbachia Strains in Anopheles Mosquitoes. Methods Mol Biol 2024; 2739:205-218. [PMID: 38006554 DOI: 10.1007/978-1-0716-3553-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects many insect species, including mosquitoes that transmit human diseases. Wolbachia strains have been shown to inhibit the transmission of both arboviruses and malaria Plasmodium parasites. The existence of natural strains in wild Anopheles (An.) mosquitoes, the vectors of malaria parasites, in an endosymbiotic relationship is still to be fully determined. Although Wolbachia has been reported to be present in wild populations of the An. gambiae complex, the primary vectors of malaria in Sub-Saharan Africa, Wolbachia DNA sequence density and infection frequencies are low. As most studies have used highly sensitive nested PCR as the only detection method, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Techniques such as fluorescent in situ hybridization, microbiome sequencing, and Wolbachia whole genome sequencing have provided concrete evidence for genuine Wolbachia strains in two mosquito species: An. moucheti and An. demeilloni. In this chapter, the current methodology used to determine if resident strains exist in Anopheles mosquitoes will be reviewed, including both PCR- and non-PCR-based protocols.
Collapse
Affiliation(s)
- Thomas Walker
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
8
|
Minwuyelet A, Petronio GP, Yewhalaw D, Sciarretta A, Magnifico I, Nicolosi D, Di Marco R, Atenafu G. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects. Front Microbiol 2023; 14:1267832. [PMID: 37901801 PMCID: PMC10612335 DOI: 10.3389/fmicb.2023.1267832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Daria Nicolosi
- Department of Pharmaceutical and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Getnet Atenafu
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
9
|
Li Y, Sun Y, Zou J, Zhong D, Liu R, Zhu C, Li W, Zhou Y, Cui L, Zhou G, Lu G, Li T. Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China. Parasit Vectors 2023; 16:128. [PMID: 37060070 PMCID: PMC10103416 DOI: 10.1186/s13071-023-05719-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.
Collapse
Affiliation(s)
- Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Sun
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Jiaquan Zou
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Yanhe Zhou
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China.
- The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Academician Workstation of Hainan Province, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
10
|
Waymire E, Duddu S, Yared S, Getachew D, Dengela D, Bordenstein SR, Balkew M, Zohdy S, Irish SR, Carter TE. Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern Ethiopia. Parasit Vectors 2022; 15:178. [PMID: 35610655 PMCID: PMC9128127 DOI: 10.1186/s13071-022-05293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern and central Ethiopia and is capable of transmitting both P. falciparum and P. vivax. The detection of this vector in the Horn of Africa (HOA) coupled with widespread insecticide resistance requires that new methods of vector control be investigated in order to control the spread of malaria. Wolbachia, a naturally occurring endosymbiotic bacterium of mosquitoes, has been identified as a potential vector control tool that can be explored for the control of malaria transmission. Wolbachia could be used to control the mosquito population through suppression or potentially decrease malaria transmission through population replacement. However, the presence of Wolbachia in wild An. stephensi in eastern Ethiopia is unknown. This study aimed to identify the presence and diversity of Wolbachia in An. stephensi across eastern Ethiopia. METHODS DNA was extracted from An. stephensi collected from eastern Ethiopia in 2018 and screened for Wolbachia using a 16S targeted PCR assay, as well as multilocus strain typing (MLST) PCR assays. Haplotype and phylogenetic analysis of the sequenced 16S amplicons were conducted to compare with Wolbachia from countries across Africa and Asia. RESULTS Twenty out of the 184 mosquitoes screened were positive for Wolbachia, with multiple haplotypes detected. In addition, phylogenetic analysis revealed two superclades, representing Wolbachia supergroups A and B (bootstrap values of 81 and 72, respectively) with no significant grouping of geographic location or species. A subclade with a bootstrap value of 89 separates the Ethiopian haplotype 2 from other sequences in that superclade. CONCLUSIONS These findings provide the first evidence of natural Wolbachia populations in wild An. stephensi in the HOA. They also identify the need for further research to confirm the endosymbiotic relationship between Wolbachia and An. stephensi and to investigate its utility for malaria control in the HOA.
Collapse
Affiliation(s)
| | - Sowmya Duddu
- Department of Biology, Baylor University, Waco, TX USA
| | | | | | - Dereje Dengela
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | | | - Meshesha Balkew
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | - Sarah Zohdy
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Seth R. Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | |
Collapse
|
11
|
Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLoS Negl Trop Dis 2021; 15:e0009942. [PMID: 34928947 PMCID: PMC8722730 DOI: 10.1371/journal.pntd.0009942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/03/2022] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Secondary symbionts of insects include a range of bacteria and fungi that perform various functional roles on their hosts, such as fitness, tolerance to heat stress, susceptibility to insecticides and effects on reproduction. These endosymbionts could have the potential to shape microbial communites and high potential to develop strategies for mosquito-borne disease control. Methodology/Principal findings The relative frequency and molecular phylogeny of Wolbachia, Microsporidia and Cardinium were determined of phlebotomine sand flies and mosquitoes in two regions from Colombia. Illumina Miseq using the 16S rRNA gene as a biomarker was conducted to examine the microbiota. Different percentages of natural infection by Wolbachia, Cardinium, and Microsporidia in phlebotomines and mosquitoes were detected. Phylogenetic analysis of Wolbachia shows putative new strains of Lutzomyia gomezi (wLgom), Brumptomyia hamata (wBrham), and a putative new group associated with Culex nigripalpus (Cnig) from the Andean region, located in Supergroup A and Supergroup B, respectively. The sequences of Microsporidia were obtained of Pi. pia and Cx. nigripalpus, which are located on phylogeny in the IV clade (terrestrial origin). The Cardinium of Tr. triramula and Ps. shannoni were located in group C next to Culicoides sequences while Cardinium of Mi. cayennensis formed two putative new subgroups of Cardinium in group A. In total were obtained 550 bacterial amplicon sequence variants (ASVs) and 189 taxa to the genus level. The microbiota profiles of Sand flies and mosquitoes showed mainly at the phylum level to Proteobacteria (67.6%), Firmicutes (17.9%) and Actinobacteria (7.4%). High percentages of relative abundance for Wolbachia (30%-83%) in Lu. gomezi, Ev. dubitans, Mi. micropyga, Br. hamata, and Cx. nigripalpus were found. ASVs assigned as Microsporidia were found in greater abundance in Pi. pia (23%) and Cx. nigripalpus (11%). An important finding is the detection of Rickettsia in Pi. pia (58,8%) and Bartonella sp. in Cx. nigripalpus. Conclusions/Significance We found that Wolbachia infection significantly decreased the alpha diversity and negatively impacts the number of taxa on sand flies and Culex nigripalpus. The Principal Coordinate Analysis (PCoA) is consistent, which showed statistically significant differences (PERMANOVA, F = 2.4744; R2 = 0.18363; p-value = 0.007) between the microbiota of sand flies and mosquitoes depending on its origin, host and possibly for the abundance of some endosymbionts (Wolbachia, Rickettsia). The secondary endosymbionts can positively influence the metabolism of many compounds essential for the survival of the insect vectors, provide resistance to pathogens and impact susceptibility to insecticides, as also the tolerance to heat stress. We provide information from new records of natural infection of secondary endosymbionts, such as Wolbachia, Cardinium, Microsporidia, Flavobacterium, and Rickettsia in phlebotomine sand flies and mosquitoes from Colombia. An important finding is the detection of Bartonella sp. in Cx. nigripalpus. Clear differences were found in the composition and diversity of microbiota at the intra-specific and interspecific levels in sand flies and Cx. nigripalpus, which may depend in the of the load of natural infection of endosymbionts (as Wolbachia), the geographical distribution and host.
Collapse
|
12
|
Wolbachia Detection in Field-Collected Mosquitoes from Cameroon. INSECTS 2021; 12:insects12121133. [PMID: 34940221 PMCID: PMC8704151 DOI: 10.3390/insects12121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Wolbachia bacteria from different strains, carried by many insects and nematodes, can interact in many ways with their hosts by changing their biology in different ways, including by suppressing vector population and reducing parasite transmission. Consequently, Wolbachia play an important role in vector control strategies. This study assessed the prevalence of natural Wolbachia infections in mosquitoes collected in Cameroon. Despite the low prevalence that was revealed, Wolbachia spp. were found in eight species of field-collected mosquitoes and are closely related to clades A and B. Aedes aegypti and A. gambiae sl., the main vectors of dengue and malaria, respectively, were not infected in this study, while C. moucheti recorded a high prevalence (46.67%). Future characterisation of the Wolbachia bacteria obtained is needed. Abstract Wolbachia spp., known to be maternally inherited intracellular bacteria, are widespread among arthropods, including mosquitoes. Our study assessed the presence and prevalence of Wolbachia infection in wild mosquitoes collected in Cameroon, using the combination of 23s rRNA Anaplasmatacea and 16s rRNA Wolbachia genes. Mosquitoes that were positive for Wolbachia were sequenced for subsequent phylogenetic analysis. Out of a total of 1740 individual mosquitoes belonging to 22 species and five genera screened, 33 mosquitoes (1.87%) belonging to eight species (namely, Aedes albopictus, A. contigus, Culex quinquefasciatus, C. perfuscus, C. wigglesworthi, C. duttoni, Anopheles paludis and Coquillettidia sp.) were found to be positive for Wolbachia infections. Wolbachia spp. were absent in A. gambiae and A. aegypti, the main vectors of malaria and dengue, respectively. Phylogenetic analysis of the 16S RNA sequences showed they belong mainly to two distinct subgroups (A and B). This study reports the presence of Wolbachia in about eight species of mosquitoes in Cameroon and suggests that future characterisation of the strains is needed.
Collapse
|
13
|
Ali R, Jayaraj J, Mohammed A, Chinnaraja C, Carrington CVF, Severson DW, Ramsubhag A. Characterization of the virome associated with Haemagogus mosquitoes in Trinidad, West Indies. Sci Rep 2021; 11:16584. [PMID: 34400676 PMCID: PMC8368243 DOI: 10.1038/s41598-021-95842-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.
Collapse
Affiliation(s)
- Renee Ali
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Jayaraman Jayaraj
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Azad Mohammed
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Chinnadurai Chinnaraja
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Christine V. F. Carrington
- grid.430529.9Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - David W. Severson
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago ,grid.131063.60000 0001 2168 0066Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN USA ,grid.257425.30000 0000 8679 3494Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN USA
| | - Adesh Ramsubhag
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| |
Collapse
|
14
|
Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, Bamou R, Kristan M, Messenger LA, Gidley A, Hornett EA, Anderson ER, Cansado-Utrilla C, Hegde S, Bantuzeko C, Stevenson JC, Lobo NF, Wagstaff SC, Nkondjio CA, Irish SR, Heinz E, Hughes GL. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol 2021; 31:2310-2320.e5. [PMID: 33857432 PMCID: PMC8210651 DOI: 10.1016/j.cub.2021.03.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria. High-density Wolbachia strains found in An. moucheti and An. demeilloni mosquitoes Infections are visualized in the ovaries, and maternal transmission was observed Sequencing at depths and coverages comparable to other known Wolbachia strains Homologs of cytoplasmic incompatibility factor genes are present in both genomes
Collapse
Affiliation(s)
- Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Vishaal Dhokiya
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Roland Bamou
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon; Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Alexandra Gidley
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK; Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chimanuka Bantuzeko
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Jennifer C Stevenson
- Macha Research Trust, Choma District, Zambia; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Simon C Wagstaff
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christophe Antonio Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon
| | - Seth R Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
15
|
Jeffries CL, Cansado-Utrilla C, Beavogui AH, Stica C, Lama EK, Kristan M, Irish SR, Walker T. Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202032. [PMID: 33868697 PMCID: PMC8025300 DOI: 10.1098/rsos.202032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and prevalence rates require confirmation. In this study, wild Anopheles mosquitoes collected from two regions of Guinea were investigated. In contrast with previous studies, RNA was extracted from adult females (n = 516) to increase the chances for the detection of actively expressed Wolbachia genes, determine Wolbachia prevalence rates and estimate relative strain densities. Molecular confirmation of mosquito species and Wolbachia multilocus sequence typing (MLST) were carried out to analyse phylogenetic relationships of mosquito hosts and newly discovered Wolbachia strains. Strains were detected in An. melas (prevalence rate of 11.6%-16/138) and hybrids between An. melas and An. gambiae sensu stricto (prevalence rate of 40.0%-6/15) from Senguelen in the Maferinyah region. Furthermore, a novel high-density strain, termed wAnsX, was found in an unclassified Anopheles species. The discovery of novel Wolbachia strains (particularly in members, and hybrids, of the An. gambiae complex) provides further candidate strains that could be used for future Wolbachia-based malaria biocontrol strategies.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Cintia Cansado-Utrilla
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Abdoul H. Beavogui
- Centre National de Formation et de Recherche en Santé Rurale de Mafèrinyah B.P. 2649, Conakry, Guinea
| | - Caleb Stica
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Eugene K. Lama
- Programme National de Lutte contre le Paludisme, Guinée, B.P. 6339 Conakry, Guinea
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Seth R. Irish
- The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
16
|
Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021; 10:39. [PMID: 33419044 PMCID: PMC7825316 DOI: 10.3390/pathogens10010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.
Collapse
Affiliation(s)
- Luísa Maria Inácio da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| |
Collapse
|
17
|
Adams KL, Abernathy DG, Willett BC, Selland EK, Itoe MA, Catteruccia F. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat Microbiol 2021; 6:1575-1582. [PMID: 34819638 PMCID: PMC8612931 DOI: 10.1038/s41564-021-00998-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022]
Abstract
Wolbachia, a maternally inherited intracellular bacterial species, can manipulate host insect reproduction by cytoplasmic incompatibility (CI), which results in embryo lethality in crosses between infected males and uninfected females. CI is encoded by two prophage genes, cifA and cifB. Wolbachia, coupled with the sterile insect technique, has been used in field trials to control populations of the dengue vector Aedes albopictus, but CI-inducing strains are not known to infect the malaria vector Anopheles gambiae. Here we show that cifA and cifB can induce conditional sterility in the malaria vector An. gambiae. We used transgenic expression of these Wolbachia-derived genes in the An. gambiae germline to show that cifB is sufficient to cause embryonic lethality and that cifB-induced sterility is rescued by cifA expression in females. When we co-expressed cifA and cifB in male mosquitoes, the CI phenotype was attenuated. In female mosquitoes, cifB impaired fertility, which was overcome by co-expression of cifA. Our findings pave the way towards using CI to control malaria mosquito vectors.
Collapse
Affiliation(s)
- Kelsey L. Adams
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Daniel G. Abernathy
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Bailey C. Willett
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Emily K. Selland
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maurice A. Itoe
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Tongkrajang N, Ruenchit P, Tananchai C, Chareonviriyaphap T, Kulkeaw K. Molecular identification of native Wolbachia pipientis in Anopheles minimus in a low-malaria transmission area of Umphang Valley along the Thailand-Myanmar border. Parasit Vectors 2020; 13:579. [PMID: 33198811 PMCID: PMC7670599 DOI: 10.1186/s13071-020-04459-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background Wolbachia, obligate intracellular bacteria, infect the majority of arthropods, including many mosquito species of medical importance. Some Wolbachia strains interfere with the development of Plasmodium parasites in female Anopheles, a major vector of malaria. The use of Wolbachia as a means to block malaria transmission is an emerging vector control strategy in highly endemic areas. Hence, identification of native Wolbachia strains in areas where malaria transmission is low may uncover a particular Wolbachia strain capable of Plasmodium interference. This study aims to identify native Wolbachia strains in female Anopheles spp. that are predominant in a low-malaria transmission area in mainland Southeast Asia. Methods Following a 2-year survey of malaria vectors in Umphang Valley of Tak Province, Thailand, DNA extracts of female An. minimus, An. peditaeniatus, and An. maculatus were subjected to amplification of the conserved region of the 16S rRNA-encoding gene. The DNA sequences of the amplicons were phylogenetically compared with those of known Wolbachia strains. Results Among three Anopheles spp., amplification was detected in only the DNA samples from An. minimus. The DNA sequencing of amplicons revealed 100% similarity to Wolbachia pipientis, confirming the specificity of amplification. The Wolbachia-positive An. minimus samples were devoid of Plasmodium 18S rRNA amplification. The phylogenetic trees indicate a close relationship with Wolbachia strains in subgroup B. Conclusion To the best of our knowledge, the data presented herein provide the first molecular evidence of a Wolbachia strain in An. minimus, hereinafter named wAnmi, in a low-malaria transmission area in the Umphang Valley of western Thailand. Further biological characterization is required to examine its potential for malaria transmission control in the field. ![]()
Collapse
Affiliation(s)
- Nongnat Tongkrajang
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Chatchai Tananchai
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 2nd floor, Jarad Sunthornsingh Building, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 2nd floor, Jarad Sunthornsingh Building, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
19
|
Wu W, Li S, Yang M, Lin Y, Zheng K, Akutse KS. Citronellal perception and transmission by Anopheles gambiae s.s. (Diptera: Culicidae) females. Sci Rep 2020; 10:18615. [PMID: 33122679 PMCID: PMC7596511 DOI: 10.1038/s41598-020-75782-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022] Open
Abstract
Anopheles gambiae s.s. is a key vector of Plasmodium parasites. Repellents, which may be a promising alternative to pesticides used to control malaria mosquitoes. Although citronellal is a known mosquito repellent, its repellency characteristics are largely unknown. Determining the specific odorant-binding proteins (OBPs) and odorant receptors (ORs) that detect and transfer the citronellal molecule in A. gambiae s.s. will help to define the mode of action of this compound. In this research, we assessed the repellent activity of citronellal in A. gambiae s.s. using a Y-tube olfactory meter, screened candidate citronellal-binding OBPs and ORs using reverse molecular docking, clarified the binding properties of predicted proteins for citronellal using fluorescence competition binding assay. Results showed that citronellal had a dosage effect on repelling A. gambiae s.s.. The 50% repellent rate was determined to be 4.02 nmol. Results of simulated molecular docking showed that the only proteins that bound tightly with citronellal were AgamOBP4 and AgamORC7. Fluorescence competitive binding assays confirmed the simulations. This research determined that citronellal was captured by AgamOBP4 and transmitted to AgamORC7 in A. gambiae s.s.. Our study will be beneficial in the further understanding the repellent mechanism of citronellal against A. gambiae s.s..
Collapse
Affiliation(s)
- Weijian Wu
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Shanshan Li
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Min Yang
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Yongwen Lin
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China.
| | - Kaibin Zheng
- Institute of Subtropical Agriculture, Fujian Academy of Agriculture Sciences & Zhangzhou Institute of Technology, Zhangzhou, 363001, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
20
|
Straub TJ, Shaw WR, Marcenac P, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F, Neafsey DE. The Anopheles coluzzii microbiome and its interaction with the intracellular parasite Wolbachia. Sci Rep 2020; 10:13847. [PMID: 32796890 PMCID: PMC7427791 DOI: 10.1038/s41598-020-70745-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Wolbachia, an endosymbiotic alpha-proteobacterium commonly found in insects, can inhibit the transmission of human pathogens by mosquitoes. Biocontrol programs are underway using Aedes aegypti mosquitoes trans-infected with a non-natural Wolbachia strain to reduce dengue virus transmission. Less is known about the impact of Wolbachia on the biology and vectorial capacity of Anopheles mosquitoes, the vectors of malaria parasites. A naturally occurring strain of Wolbachia, wAnga, infects populations of the major malaria vectors Anopheles gambiae and Anopheles coluzzii in Burkina Faso. Previous studies found wAnga infection was negatively correlated with Plasmodium infection in the mosquito and wAnga influenced mosquito egg-laying behavior. Here, we investigate wAnga in natural populations of An. coluzzii and its interactions with other resident microbiota using targeted 16S sequencing. Though we find no major differences in microbiota composition associated with wAnga infection, we do find several taxa that correlate with the presence or absence of wAnga in female mosquitoes following oviposition, with the caveat that we could not rule out batch effects due to the unanticipated impact of wAnga on oviposition timing. These data suggest wAnga may influence or interact with the Anopheles microbiota, which may contribute to the impact of wAnga on Anopheles biology and vectorial capacity.
Collapse
Affiliation(s)
- Timothy J Straub
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02144, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02144, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, Jeyaprakasam NK, Leong CS, Low VL, Vythilingam I. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasit Vectors 2020; 13:414. [PMID: 32787974 PMCID: PMC7425011 DOI: 10.1186/s13071-020-04277-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes. METHODS The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software. RESULTS A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar. CONCLUSIONS Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai Kit Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Cherng Shii Leong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Oliveira TMP, Sanabani SS, Sallum MAM. Bacterial diversity associated with the abdomens of naturally Plasmodium-infected and non-infected Nyssorhynchus darlingi. BMC Microbiol 2020; 20:180. [PMID: 32586275 PMCID: PMC7315559 DOI: 10.1186/s12866-020-01861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterial community present in the abdomen in Anophelinae mosquitoes can influence mosquito susceptibility to Plasmodium infection. Little is known about the bacteria associated with Nyssorhynchus darlingi, a primary malaria vector in the Amazon basin. We investigated the abdominal bacterial community compositions of naturally Plasmodium-infected (P-positive, n = 9) and non-infected (P-negative, n = 7) Ny. darlingi from the Brazilian Amazon region through massive parallel sequencing of the bacterial V4 variable region of the 16S rRNA gene. RESULTS Bacterial richness of Ny. darlingi encompassed 379 operational taxonomic units (OTUs), the majority of them belonging to the Proteobacteria, Firmicutes and Bacteroides phyla. Escherichia/Shigella and Pseudomonas were more abundant in the P-positive and P-negative groups, respectively, than in the opposite groups. Enterobacter was found only in the P-negative group. The results of statistical analyses conducted to compare bacterial abundance and diversity between Plasmodium-infected and Plasmodium-non-infected mosquitoes were not significant. CONCLUSIONS This study increased knowledge about bacterial composition in Ny. darlingi and revealed that Plasmodium-positive and Plasmodium-negative groups share a common core of bacteria. The genera Prevotella 9, Sphingomonas, Bacteroides, and Bacillus were reported for the first time in Ny. darlingi.
Collapse
Affiliation(s)
| | - Sabri Saeed Sanabani
- LIM-3, Hospital das Clínicas da FMUSP (HCFMUSP), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Epis S, Varotto-Boccazzi I, Crotti E, Damiani C, Giovati L, Mandrioli M, Biggiogera M, Gabrieli P, Genchi M, Polonelli L, Daffonchio D, Favia G, Bandi C. Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development. Commun Biol 2020; 3:105. [PMID: 32144396 PMCID: PMC7060271 DOI: 10.1038/s42003-020-0835-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases. Epis and Varotto-Boccazzi et al. show that Wolbachia surface protein (WSP) activates host innate immunity in mosquitoes, inhibiting the development of the heartworm parasite in its insect host. This study suggests the possibility that the WSP-expressing symbiont may be harnessed to control mosquito-borne diseases.
Collapse
Affiliation(s)
- Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Claudia Damiani
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Marco Genchi
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - Guido Favia
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
24
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [PMID: 31828225 PMCID: PMC6892426 DOI: 10.12688/wellcomeopenres.15005.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Natural
Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of
Plasmodium falciparum in the vectors. The occurrence and effects of
Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA
Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of
Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of
Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of
Anopheles-
Wolbachia interactions in Southeast Asia.
Collapse
Affiliation(s)
- Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tee Dah
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thithiworada Kulabkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Monthicha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Muesuwa Trakoolchengkaew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Yanada Akararungrot
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Kyi Oo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
25
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
26
|
Ayala D, Akone‐Ella O, Rahola N, Kengne P, Ngangue MF, Mezeme F, Makanga BK, Nigg M, Costantini C, Simard F, Prugnolle F, Roche B, Duron O, Paupy C. Natural Wolbachia infections are common in the major malaria vectors in Central Africa. Evol Appl 2019; 12:1583-1594. [PMID: 31462916 PMCID: PMC6708434 DOI: 10.1111/eva.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.
Collapse
Affiliation(s)
- Diego Ayala
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
- CIRMFFrancevilleGabon
| | | | - Nil Rahola
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
- CIRMFFrancevilleGabon
| | - Pierre Kengne
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
- CIRMFFrancevilleGabon
| | | | | | | | - Martha Nigg
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
- CIRMFFrancevilleGabon
| | | | - Frédéric Simard
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
| | | | - Benjamin Roche
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
- UMMISCO, IRDMontpellierFrance
| | - Olivier Duron
- MIVEGEC, IRD, CNRSUniversité de MontpellierMontpellierFrance
| | | |
Collapse
|
27
|
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 2019; 37:26-36. [PMID: 31176069 PMCID: PMC6768729 DOI: 10.1016/j.coviro.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Mosquitoes naturally harbor a diverse community of microorganisms that play a crucial role in their biology. Mosquito-microbiota interactions are abundant and complex. They can dramatically alter the mosquito immune response, and impede or enhance a mosquito's ability to transmit medically important arboviral pathogens. Yet critically, given the massive public health impact of arboviral disease, few such interactions have been well characterized. In this review, we describe the current state of knowledge of the role of microorganisms in mosquito biology, how microbial-induced changes to mosquito immunity moderate infection with arboviruses, cases of mosquito-microbial-virus interactions with a defined mechanism, and the molecular interactions that underlie the endosymbiotic bacterium Wolbachia's ability to block virus infection in mosquitoes.
Collapse
Affiliation(s)
- Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
28
|
Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2019; 34:12-20. [PMID: 31247412 DOI: 10.1016/j.cois.2019.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens. Not all mosquito species are naturally infected with Wolbachia: while in Culex pipiens and Aedes albopictus almost all individuals harbor Wolbachia, putative infections have to be further investigated in Anopheles species and in Aedes aegypti. All Wolbachia-based control methods rely on the ability of Wolbachia to induce cytoplasmic incompatibility (CI) resulting in embryonic death in incompatible crossings. Knowledge on CI diversity in mosquito is required to find the better Wolbachia-mosquito associations to optimize the success of both 'sterile insect' and 'pathogen blocking' Wolbachia-based methods.
Collapse
Affiliation(s)
- Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
29
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
30
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed by quantitative real-time PCR. Results: Malaria vectors were identified in the Funestus, Maculatus and Leucosphyrus Groups. Wolbachia were detected in 6/6 Anopheles species and in 5/10 villages. Mean prevalence of Wolbachia infection was 2.7% (95%CI= [1.3; 4.9]). The median Wolbachia load was seven orders of magnitude less in naturally infected malaria vectors than in artificially infected laboratory-reared Aedes aegypti. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in Africa. Conclusion: Natural Wolbachia infections are common and widespread in malaria vectors in Kayin state, Myanmar. Their effects on Anopheles mosquitoes and malaria transmission is yet to be determined.
Collapse
|