1
|
Hameed MS, Cao H, Guo L, Ren Y. Functional characterization of GAPDH2 through overexpression and dsRNA-mediated RNA interference in Synechocystis. Int J Biol Macromol 2025; 298:139967. [PMID: 39826747 DOI: 10.1016/j.ijbiomac.2025.139967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2) plays a vital role in cell growth, stress responses, and various cellular processes in organisms. However, its functional characterization in cyanobacteria, particularly in Synechocystis sp. PCC 6803, remains largely unexplored, especially concerning its overexpression and RNA interference (RNAi) via double-stranded RNA (dsRNA). This study aimed to investigate the biological role of GAPDH2 in Synechocystis sp. PCC 6803 by cloning its complete coding sequence (SyGAPDH2). The SyGAPDH2 protein comprises 350 amino acids with a molecular weight of 86.480 kDa and an isoelectric point of 5.03. The sequence alignment analysis revealed two conserved domains: NADH (Nicotinamide Adenine Dinucleotide)-quinone oxidoreductase subunit NuoI and NADH-ubiquinone/plastoquinone oxidoreductase chain 6. Similarly, Phylogenetic analysis demonstrated high sequence similarity of 96 % and 94 % with Coliform (Gammaproteobacteria bacterium), respectively. We further explored the functional significance of SyGAPDH2 through overexpression using the PpsbAII+SyGAPDH2 vector and double stranded RNA (dsRNA)-mediated silencing with dsGAPDH2. Overexpression significantly enhanced cell growth, while dsRNA-mediated suppression resulted in reduced cell proliferation, with effects observed 12 h post-treatment and persisting up to 36 h. These findings emphasize the essential regulatory role of SyGAPDH2 in cellular development and stress response. This study contributes to our understanding of GAPDH2 functional importance in cyanobacteria, providing a foundation for future investigations into its subcellular localization, additional functional roles, and broader regulatory mechanisms within cyanobacterial cellular processes.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Hongxuan Cao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, PR China
| | - Yanliang Ren
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Adedeji EO, Ogunlana OO, Oduselu GO, Koenig R, Adebiyi E, Soremekun OS, Fatumo S. Molecular docking and molecular dynamics simulation studies of inhibitor candidates against Anopheles gambiae 3-hydroxykynurenine transaminase and implications on vector control. Heliyon 2025; 11:e41633. [PMID: 39866405 PMCID: PMC11759636 DOI: 10.1016/j.heliyon.2025.e41633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of Anopheles gambiae 3HKT (Ag3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against Anopheles gambiae 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4. The top three identified hits were subjected to 300 ns molecular dynamics simulation using AMBER 18 and ADMET analysis using SWISSADME predictor and ADMETSAR. Replacement of alkyl attachment on C5 of isoxazole or oxadiazole derivative with a cycloalkyl group yielded compounds with lower binding energy than their straight chain counterparts. The top three compounds were brominated compounds, 2-[3-(4-bromophenyl)-1,2-oxazol-5-yl]cyclopentane-1-carboxylic acid, 2-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, 3-[3-(4-bromo-2-methylphenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, and they had binding energies of -8.58, -8.25, and -8.18 kcal/mol in virtual screening against 2CH2 protein target, respectively. These compounds were predicted to be less toxic than temephos, a standard larvicide and more biodegradable than previously reported inhibitors. The three compounds exhibited a greater stabilizing effect on 2CH2 protein target than 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid, a previously reported inhibitor candidate with good larvicidal activity on Aedes aegypti. Further thermodynamic calculations revealed that the top three compounds possessed total binding energies (ΔGbind) of -26.64 kcal/mol, -24.26 kcal/mol and -14.11 kcal/mol, respectively, as compared to -12.02 kcal/mol for 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid. These compounds could be better larvicides than previously reported isoxazole or oxadiazole derivatives and safer than temephos.
Collapse
Affiliation(s)
- Eunice O. Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- Department of Biology, University of York, York, United Kingdom
| | - Olubanke O. Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Covenant University, Ota, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systems Biology), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, 10218, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Opeyemi S. Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- Precision Healthcare University Research Institute, Queen Mary University of London, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| |
Collapse
|
3
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
Affiliation(s)
| | - Scott Ballantyne
- Department of Biology, University of Wisconsin River Falls, River Falls, WI, USA
| | | | | | | | | | | | - Christopher M. Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Thea M. Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Katy Klymus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Yale J. Passamaneck
- Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA
| | - Mauro F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Tufan-Cetin O, Cetin H. Use of micro and macroalgae extracts for the control of vector mosquitoes. PeerJ 2023; 11:e16187. [PMID: 37842039 PMCID: PMC10569164 DOI: 10.7717/peerj.16187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mosquitoes are one of the most dangerous vectors of human diseases such as malaria, dengue, chikungunya, and Zika virus. Controlling these vectors is a challenging responsibility for public health authorities worldwide. In recent years, the use of products derived from living organisms has emerged as a promising approach for mosquito control. Among these living organisms, algae are of great interest due to their larvicidal properties. Some algal species provide nutritious food for larvae, while others produce allelochemicals that are toxic to mosquito larvae. In this article, we reviewed the existing literature on the larvicidal potential of extracts of micro- and macroalgae, transgenic microalgae, and nanoparticles of algae on mosquitoes and their underlying mechanisms. The results of many publications show that the toxic effects of micro- and macroalgae on mosquitoes vary according to the type of extraction, solvents, mosquito species, exposure time, larval stage, and algal components. A few studies suggest that the components of algae that have toxic effects on mosquitoes show through synergistic interaction between components, inhibition of feeding, damage to gut membrane cells, and inhibition of digestive and detoxification enzymes. In conclusion, algae extracts, transgenic microalgae, and nanoparticles of algae have shown significant larvicidal activity against mosquitoes, making them potential candidates for the development of new mosquito control products.
Collapse
Affiliation(s)
- Ozge Tufan-Cetin
- Department of Environmental Protection Technology, Vocational School of Technical Sciences, Akdeniz University, Antalya, Türkiye
| | - Huseyin Cetin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
6
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Ding J, Cui C, Wang G, Wei G, Bai L, Li Y, Sun P, Dong L, Liu Z, Yun J, Li F, Li K, He L, Wang S. Engineered Gut Symbiotic Bacterium-Mediated RNAi for Effective Control of Anopheles Mosquito Larvae. Microbiol Spectr 2023; 11:e0166623. [PMID: 37458601 PMCID: PMC10433860 DOI: 10.1128/spectrum.01666-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/25/2023] [Indexed: 08/19/2023] Open
Abstract
Anopheles mosquitoes are the primary vectors for the transmission of malaria parasites, which poses a devastating burden on global public health and welfare. The recent invasion of Anopheles stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. To address this issue, we developed a new approach for mosquito larvae control using gut microbiota-mediated RNA interference (RNAi). We engineered a mosquito symbiotic gut bacterium, Serratia fonticola, by deleting its RNase III gene to produce double-stranded RNAs (dsRNAs) in the mosquito larval gut. We found that the engineered S. fonticola strains can stably colonize mosquito larval guts and produce dsRNAs dsMet or dsEcR to activate RNAi and effectively suppress the expression of methoprene-tolerant gene Met and ecdysone receptor gene EcR, which encode receptors for juvenile hormone and ecdysone pathways in mosquitoes, respectively. Importantly, the engineered S. fonticola strains markedly inhibit the development of A. stephensi larvae and leads to a high mortality, providing an effective dsRNA delivery system for silencing genes in insects and a novel RNAi-mediated pest control strategy. Collectively, our symbiont-mediated RNAi (smRNAi) approach offers an innovative and sustainable method for controlling mosquito larvae and provides a promising strategy for combating malaria. IMPORTANCE Mosquitoes are vectors for various diseases, imposing a significant threat to public health globally. The recent invasion of A. stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. RNA interference (RNAi) is a promising approach that uses dsRNA to silence specific genes in pests. This study presents the use of a gut symbiotic bacterium, Serratia fonticola, as an efficient delivery system of dsRNA for RNAi-mediated pest control. The knockout of RNase III, a dsRNA-specific endonuclease gene, in S. fonticola using CRISPR-Cas9 led to efficient dsRNA production. Engineered strains of S. fonticola can colonize the mosquito larval gut and effectively suppress the expression of two critical genes, Met and EcR, which inhibit mosquito development and cause high mortality in mosquito larvae. This study highlights the potential of exploring the mosquito microbiota as a source of dsRNA for RNAi-based pest control.
Collapse
Affiliation(s)
- Jinjin Ding
- School of Life Science, East China Normal University, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ge Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Bai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Peilu Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zicheng Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Yun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Lin Z, Huang Y, Liu S, Huang Q, Zhang B, Wang T, Zhang Z, Zhu X, Liao C, Han Q. Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti. BMC Genomics 2023; 24:301. [PMID: 37270481 DOI: 10.1186/s12864-023-09403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated protein‒protein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RT‒PCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.
Collapse
Affiliation(s)
- Zhinan Lin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Sihan Liu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Qiwen Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Zhu
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
9
|
Yadav M, Dahiya N, Sehrawat N. Mosquito gene targeted RNAi studies for vector control. Funct Integr Genomics 2023; 23:180. [PMID: 37227504 PMCID: PMC10211311 DOI: 10.1007/s10142-023-01072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
10
|
Fei X, Xiao S, Huang X, Li Z, Li X, He C, Li Y, Zhang X, Deng X. Control of Aedes mosquito populations using recombinant microalgae expressing short hairpin RNAs and their effect on plankton. PLoS Negl Trop Dis 2023; 17:e0011109. [PMID: 36701378 PMCID: PMC9904476 DOI: 10.1371/journal.pntd.0011109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
New biocontrol strategies are urgently needed to combat vector-borne infectious diseases. This study presents a low-cost method to produce a potential mosquito insecticide that utilizes the microalgae released into suburban water sources to control mosquito populations. Chlorella microalgae are ubiquitous in local waters, which were chosen as the host for genetic transfection. This species facilitated the recombinant algae to adapt to the prevailing environmental conditions with rapid growth and high relative abundance. The procedure involved microalgae RNAi-based insecticides developed using short hairpin RNAs targeting the Aedes aegypti chitin synthase A (chsa) gene in Chlorella. These insecticides effectively silenced the chsa gene, inhibiting Aedes metamorphosis in the laboratory and simulated-field trials. This study explored the impact of recombinant microalgae on the phytoplankton and zooplankton in suburban waters. High-throughput sequencing revealed that rapid reproduction of recombinant Chlorella indirectly caused the disappearance of some phytoplankton and reduced the protozoan species. This study demonstrated that a recombinant microalgae-based insecticide could effectively reduce the population of Aedes mosquitoes in the laboratory and simulated field trials. However, the impact of this technology on the environment and ecology requires further investigation.
Collapse
Affiliation(s)
- Xiaowen Fei
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Sha Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xiaodan Huang
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Zhijie Li
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xinghan Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Changhao He
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| | - Xiuxia Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| | - Xiaodong Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, China
- * E-mail:
| |
Collapse
|
11
|
Fei X, Huang X, Li Z, Li X, He C, Xiao S, Li Y, Zhang X, Deng X. Effect of marker-free transgenic Chlamydomonas on the control of Aedes mosquito population and on plankton. Parasit Vectors 2023; 16:18. [PMID: 36653886 PMCID: PMC9847121 DOI: 10.1186/s13071-022-05647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND More than half of the world's population suffers from epidemic diseases that are spread by mosquitoes. The primary strategy used to stop the spread of mosquito-borne diseases is vector control. Interference RNA (RNAi) is a powerful tool for controlling insect populations and may be less susceptible to insect resistance than other strategies. However, public concerns have been raised because of the transfer of antibiotic resistance marker genes to environmental microorganisms after integration into the recipient genome, thus allowing the pathogen to acquire resistance. Therefore, in the present study, we modified the 3-hydroxykynurenine transaminase (3hkt) and hormone receptor 3 (hr3) RNAi vectors to remove antibiotic resistance marker genes and retain the expression cassette of the inverse repeat sequence of the 3hkt/hr3 target gene. This recombinant microalgal marker-free RNAi insecticide was subsequently added to the suburban water in a simulated-field trial to test its ability to control mosquito population. METHODS The expression cassette of the 3hkt/hr3 inverted repeat sequence and a DNA fragment of the argininosuccinate lyase gene without the ampicillin resistance gene were obtained using restriction enzyme digestion and recovery. After the cotransformation of Chlamydomonas, the recombinant algae was then employed to feed Aedes albopictus larvae. Ten and 300 larvae were used in small- and large-scale laboratory Ae.albopictus feeding trials, respectively. Simulated field trials were conducted using Meishe River water that was complemented with recombinant Chlamydomonas. Moreover, the impact of recombinant microalgae on phytoplankton and zooplankton in the released water was explored via high-throughput sequencing. RESULTS The marker-free RNAi-recombinant Chlamydomonas effectively silenced the 3hkt/hr3 target gene, resulting in the inhibition of Ae. albopictus development and also in the high rate of Ae. albopictus larvae mortality in the laboratory and simulated field trials. In addition, the results confirmed that the effect of recombinant Chlamydomonas on plankton in the released water was similar to that of the nontransgenic Chlamydomonas, which could reduce the abundance and species of plankton. CONCLUSIONS The marker-free RNAi-recombinant Chlamydomonas are highly lethal to the Ae. albopictus mosquito, and their effect on plankton in released water is similar to that of the nontransgenic algal strains, which reduces the abundance and species of plankton. Thus, marker-free recombinant Chlamydomonas can be used for mosquito biorational control and mosquito-borne disease prevention.
Collapse
Affiliation(s)
- Xiaowen Fei
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xiaodan Huang
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Zhijie Li
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Xinghan Li
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Changhao He
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Sha Xiao
- grid.443397.e0000 0004 0368 7493Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yajun Li
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China
| | - Xiuxia Zhang
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China
| | - Xiaodong Deng
- grid.509158.0Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science and Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China ,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, China ,grid.453499.60000 0000 9835 1415Zhanjiang Experimental Station, CATAS, Zhanjiang, China
| |
Collapse
|