1
|
Shivyari FT, Pakniat H, Nooshabadi MR, Rostami S, Haghighian HK, Shiri-Shahsavari MR. Examining the oleoylethanolamide supplement effects on glycemic status, oxidative stress, inflammation, and anti-mullerian hormone in polycystic ovary syndrome. J Ovarian Res 2024; 17:111. [PMID: 38778429 PMCID: PMC11110282 DOI: 10.1186/s13048-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE This clinical trial was designed and conducted due to the anti-inflammatory potential of Oleoylethanolamide (OEA) to examine the effect of OEA supplement on glycemic status, oxidative stress, inflammatory factors, and anti-Mullerian hormone (AMH) in women with polycystic ovary syndrome (PCOS). METHOD This study was a randomized clinical trial, double-blinded, placebo-controlled that was carried out on 90 women with PCOS. Patients were divided into two groups: receiving an OEA supplement (n = 45) or a placebo (n = 45). The intervention group received 125 mg/day OEA and the placebo group received the wheat flour for 8 weeks. Demographic data were collected through questionnaires. Fasting blood sugar (FBS), insulin resistance (IR), total antioxidant capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and AMH were measured before and after the study. RESULTS Data analysis of food recall and physical activity questionnaires, showed no significant differences between the two groups (p > 0.05). Biochemical factors including glycemic status, MDA, inflammatory factors, and AMH decreased significantly (p < 0.05). TAC increased remarkably (p < 0.05) in comparison between the two groups, after the intervention. CONCLUSION OEA supplement with anti-inflammatory characteristics could be efficient independent of diet changes and physical activity in improving disrupted biochemical factors, so both supplementation or food resources of this fatty acid could be considered as a compensatory remedy in patients with PCOS. TRIAL REGISTRATION This study was retrospectively (09-01-2022) registered in the Iranian website ( www.irct.ir ) for registration of clinical trials (IRCT20141025019669N20).
Collapse
Affiliation(s)
| | - Hamideh Pakniat
- Clinical Research Development Unit, Kowsar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Shaghayegh Rostami
- Clinical Research Development Unit, Kowsar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | | |
Collapse
|
2
|
Melini S, Lama A, Comella F, Opallo N, Del Piano F, Annunziata C, Mollica MP, Ferrante MC, Pirozzi C, Mattace Raso G, Meli R. Targeting liver and adipose tissue in obese mice: Effects of a N-acylethanolamine mixture on insulin resistance and adipocyte reprogramming. Biomed Pharmacother 2024; 174:116531. [PMID: 38574624 DOI: 10.1016/j.biopha.2024.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.
Collapse
Affiliation(s)
- S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - N Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Annunziata
- Department of Bioscience and Nutrition Karolinska Institute Neo Building, Huddinge 14152, Sweden
| | - M P Mollica
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - G Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
3
|
Zare F, Ghafouri-Fard S, Shamosi A, Pahlavan S, Mahboudi H, Tavasoli A, Eslami S. Oleoylethanolamide protects mesenchymal stem/stromal cells (MSCs) from oxidative stress and reduces adipogenic related genes expression in adipose-derived MSCs undergoing adipocyte differentiation. Mol Biol Rep 2023; 51:33. [PMID: 38155334 DOI: 10.1007/s11033-023-08929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) are known for their pronounced therapeutic potential; however, they are still applied in limited clinical cases for several reasons. ROS-mediated oxidative stress is among the chief causes of post-transplantation apoptosis and death of hMSCs. It has been reported that a strategy to protect hMSCs against ROS is to pretreat them with antioxidants. Oleoylethanolamide (OEA) is a monounsaturated fatty acid derived from oleic acid and it has many protective properties, including anti-obesity, anti-inflammatory, and antioxidant effects. OEA is also used as a weight loss supplement; due to its high affinity for the PPAR-α receptor, OEA increases the fat metabolism rate. METHODS AND RESULTS This study hence assessed the effects of OEA pretreatment on the in vitro survival rate and resistance of hMSCs under oxidative stress as well as the cellular and molecular events in the biology of stem/stromal cells affected by oxidative stress and free radicals. Considering the role of MSCs in adipogenesis and obesity, the expression of the main genes involved in adipogenesis was also addressed in this study. Results revealed that OEA increases the in vitro proliferation of MSCs and inhibits cell apoptosis by reducing the induction of oxidative stress. The results also indicated that OEA exerts its antioxidant properties by both activating the Nrf2/NQO-1/HO-1 signaling pathway and directly combating free radicals. Moreover, OEA can reduce adipogenesis through reducing the expression of PPARγ, leptin and CEBPA genes in hMSCs undergoing adipocyte differentiation. CONCLUSIONS Thus, OEA protects hMSCs from oxidative stress and reduces adipogenic related genes expression and can be regarded as a therapeutic agent for this purpose.
Collapse
Affiliation(s)
- Fereshteh Zare
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shamosi
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahrzad Pahlavan
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Mahboudi
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Cai W, Li Y, Guo K, Wu X, Chen C, Lin X. Association of glycemic variability with death and severe consciousness disturbance among critically ill patients with cerebrovascular disease: analysis of the MIMIC-IV database. Cardiovasc Diabetol 2023; 22:315. [PMID: 37974159 PMCID: PMC10652479 DOI: 10.1186/s12933-023-02048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The association of glycemic variability with severe consciousness disturbance and in-hospital all-cause mortality in critically ill patients with cerebrovascular disease (CVD) remains unclear, This study aimed to investigate the association of glycemic variability with cognitive impairment and in-hospital death. METHOD We extracted all blood glucose measurements of patients diagnosed with CVD from the Medical Information Mart for Intensive Care IV (MIMIC-IV). Glycemic variability was defined as the coefficient of variation (CV), which was determined using the ratio of standard deviation and the mean blood glucose levels. Cox hazard regression models were applied to analyze the link between glycemic variability and outcomes. We also analyzed non-linear relationship between outcome indicators and glycemic variability using restricted cubic spline curves. RESULTS The present study included 2967 patients diagnosed with cerebral infarction and 1842 patients diagnosed with non-traumatic cerebral hemorrhage. Log-transformed CV was significantly related to cognitive impairment and in-hospital mortality, as determined by Cox regression. Increasing log-transformed CV was approximately linearly with the risk of cognitive impairment and in-hospital mortality. CONCLUSION High glycemic variability was found to be an independent risk factor for severe cognitive decline and in-hospital mortality in critically ill patients with CVD. Our study indicated that enhancing stability of glycemic variability may reduced adverse outcomes in patients with severe CVD.
Collapse
Affiliation(s)
- Weimin Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaling Li
- Department Health Management Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31000, China
| | - Kun Guo
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| | - Xinran Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Kra G, Daddam JR, Moallem U, Kamer H, Mualem B, Levin Y, Kočvarová R, Nemirovski A, Contreras AG, Tam J, Zachut M. Alpha-linolenic acid modulates systemic and adipose tissue-specific insulin sensitivity, inflammation, and the endocannabinoid system in dairy cows. Sci Rep 2023; 13:5280. [PMID: 37002295 PMCID: PMC10066235 DOI: 10.1038/s41598-023-32433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Metabolic disorders are often linked to alterations in insulin signaling. Omega-3 (n-3) fatty acids modulate immunometabolic responses; thus, we examined the effects of peripartum n-3 on systemic and adipose tissue (AT)-specific insulin sensitivity, immune function, and the endocannabinoid system (ECS) in dairy cows. Cows were supplemented peripartum with saturated fat (CTL) or flaxseed supplement rich in alpha-linolenic acid (ALA). Blood immunometabolic biomarkers were examined, and at 5-8 d postpartum (PP), an intravenous glucose-tolerance-test (GTT) and AT biopsies were performed. Insulin sensitivity in AT was assessed by phosphoproteomics and proteomics. Peripartum n-3 reduced the plasma concentrations of Interleukin-6 (IL-6) and IL-17α, lowered the percentage of white blood cells PP, and reduced inflammatory proteins in AT. Systemic insulin sensitivity was higher in ALA than in CTL. In AT, the top canonical pathways, according to the differential phosphoproteome in ALA, were protein-kinase-A signaling and insulin-receptor signaling; network analysis and immunoblots validated the lower phosphorylation of protein kinase B (Akt), and lower abundance of insulin receptor, together suggesting reduced insulin sensitivity in ALA AT. The n-3 reduced the plasma concentrations of ECS-associated ligands, and lowered the abundances of cannabinoid-1-receptor and monoglycerol-lipase in peripheral blood mononuclear cells PP. Peripartum ALA supplementation in dairy cows improved systemic insulin sensitivity and immune function, reduced ECS components, and had tissue-specific effects on insulin-sensitivity in AT, possibly counter-balancing the systemic responses.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Hadar Kamer
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Batel Mualem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Radka Kočvarová
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andres G Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel.
| |
Collapse
|
6
|
Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023; 15:nu15010224. [PMID: 36615882 PMCID: PMC9824542 DOI: 10.3390/nu15010224] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical value. The positive effects of olive oil have often been attributed to its minor components; however, its oleic acid (OA) content (70-80%) is responsible for its many health properties. OA is an effective biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways, and gene expression. OA may directly regulate both the synthesis and activities of antioxidant enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor. OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating microRNA expression. In this review, we examine the cellular reactions and intracellular processes triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune modulation exerted by OA.
Collapse
Affiliation(s)
- Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Seville, 41012 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Soledad López-Enríquez
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Sergio Montserrat-de la Paz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Manuela Moreno
- Departamento de Farmacia y Nutrición, Hospital Costa del Sol, 29603 Málaga, Spain
| | - Francisca Palomares
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Gonzalo Alba
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| |
Collapse
|