1
|
Zhi Y, Qiaoyun T. Screening of pivotal oncogenes modulated by DNA methylation in hepatocellular carcinoma and identification of atractylenolide I as an anti-cancer drug. Hum Cell 2025; 38:97. [PMID: 40325252 DOI: 10.1007/s13577-025-01224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
This study was performed to identify crucial oncogenes modulated by DNA methylation in hepatocellular carcinoma (HCC) and look for new drugs for HCC treatment. The data of TCGA-LIHC cohort were obtained from UCSC database. Weighted gene co-expression network analysis and multiple machine learning algorithms were applied to screen the crucial prognosis-related genes in HCC. Then these genes were further screened by DNA methylation status. Ten-eleven translocation 1 (TET1) was overexpressed in HCC cell lines, and its biological functions and regulatory effects on the oncogenes were explored by qPCR, methylation-specific polymerase chain reaction, cell viability assay, Western blot, etc. Molecular docking was applied to evaluate the binding affinity between atractylenolide I (AT-I) and TET1, and the tumor-suppressive functions of AT-I were examined with both in vitro and in vivo models. In this work, 12 crucial genes related to HCC prognosis were obtained, among which six genes were with differential methylation status in HCC tissues, including AKR1B10, ALPK3, NQO1, NT5DC2, SFN, and SPP1. The expression levels of ALPK3 and NT5DC2 were positively regulated by TET1, the crucial mediator of demethylation. TET1 overexpression increased the viability and stemness of HCC cells. AT-I had good binding affinity with TET1, and repressed its activity. AT-I promoted the methylation of ALPK3 and NT5DC2 promoter regions, and reduced their expression, and repressed the growth of HCC cells. In summary, DNA methylation contributes to HCC progression, and AT-I represses the malignancy of HCC cells by inhibiting TET1-mediated abnormal DNA demethylation.
Collapse
Affiliation(s)
- Yang Zhi
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Digestive Disease, Affiliated Central People's Hospital of China Three Gorges University, China Three Gorges University, Yichang, China
- Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China
| | - Tong Qiaoyun
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
- Institute of Digestive Disease, Affiliated Central People's Hospital of China Three Gorges University, China Three Gorges University, Yichang, China.
- Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
2
|
Liu Y, Chen L, Chang L, Wang S. EZH1-DNMT1 axis inhibits the expression of TFPI2 to promote osteogenic differentiation of periosteum-derived stem cells and accelerate fracture repair. Tissue Cell 2025; 93:102759. [PMID: 39892329 DOI: 10.1016/j.tice.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The periosteum lies in a dynamic environment with a niche of periosteum-derived stem cells (PDSCs) for their reparative needs. Here, we report that epigenetic repression of tissue factor pathway inhibitor 2 (TFPI2) mediates the osteogenic potential of PDSCs and the ensuing fracture repair. METHODS Significantly overexpressed TFPI2 after fracture was screened using the GSE152677 dataset, and the expression of TFPI2 in bone tissues of post-fracture mice was verified by RT-qPCR and immunohistochemistry. Loss- and gain-of-function assays were conducted using adenoviruses. Primary mouse PDSCs were extracted, and their osteogenic potential was assessed using ALP staining, alizarin red staining, and western blot analysis. The epigenetic modifiers of TFPI2 were verified using ChIP-qPCR, Co-IP, and qMSP. RESULTS TFPI2 expression was elevated after fracture, whereas enhancer of zeste homolog 1 (EZH1) expression was significantly downregulated. Inhibition of TFPI2 expression promoted fracture repair in mice, which was correlated with enhanced osteogenic differentiation of PDSCs. EZH1 repressed TFPI2 expression by modifying trimethylation of histone H3 at lysine 27 (H3K27me3). EZH1 promoted TFPI2 promoter DNA methylation by recruiting DNA-methyltransferase 1 (DNMT1), leading to transcriptional repression of TFPI2. Overexpression of DNMT1 and EZH1 significantly promoted recovery in fractured mice, which was reversed by inhibition of TFPI2. CONCLUSIONS These results suggest that artificial overexpression EZH1 mediates TFPI2 inhibition by recruiting DNMT1, promoting osteogenic differentiation of PDSCs to accelerate fracture repair.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Lu Chen
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Liang Chang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Shuren Wang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China.
| |
Collapse
|
3
|
Cui X, Xu L, Tian N, Peng J. Effects of Treatment with a DNA Methyltransferase Inhibitor 5-aza-dC on Sex Differentiation in Medaka ( Oryzias latipes). Int J Mol Sci 2025; 26:3280. [PMID: 40244149 PMCID: PMC11989820 DOI: 10.3390/ijms26073280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a common epigenetic modification of DNA levels in the genome of eukaryotic cells, and an aberrant elevation of DNA methylation in gene promoter regions can inhibit gene expression. DNA methyltransferases (DNMTs) are involved in genomic DNA methylation, divided into maintenance DNA methyltransferases and de novo methylases, which are expressed to different degrees in the testis and ovaries. 5-aza-2'-deoxycytidine (5-aza-dC) is a cytidine analog with a strong methylation inhibition. In this experiment, medaka fish fries were treated with 5-aza-dC at 0 μg/L, 50 μg/L, and 100 μg/L. It was found that 100 g/L concentration of 5-aza-dC inhibited both body length and body weight of the adult fish, while 50 g/L concentration had no significant difference. In addition, paraffin section observation and gonad index statistics showed that after 100 g/L concentration of 5-aza-dC treatment, the gonad index of female fish increased significantly, but the gonad index of male fish had no significant difference. And the development of sperms and ovaries was normal without significant difference. Finally, we found that 5-aza-dC not only significantly decreased the transcription levels of dnmt1 and dnmt3bb.1, but also significantly increased the expression levels of female-related genes such as foxl2, cyp19a1 and wnt4, and significantly decreased the expression levels of male-related genes such as dmrt1, sox9a and amh. The DNA methylation patterns of foxl2 and dmrt1 genes were altered. This work provides more references for understanding the mechanism of DNA methylation affecting sex determination in fish.
Collapse
Affiliation(s)
| | | | | | - Jianjun Peng
- College of Life Sciences and Health, Hunan University of Science and Technology, Xiangtan 411201, China; (X.C.); (L.X.); (N.T.)
| |
Collapse
|
4
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. Genome Med 2025; 17:32. [PMID: 40156071 PMCID: PMC11951614 DOI: 10.1186/s13073-025-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS. During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene (KLF4) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. METHODS We profiled the DNA methylome and transcriptome of KLF4-induced ADM in transgenic mice at various timepoints during and after recovery from ADM. We validated the identified DNA methylation and transcriptomic signatures in the widely used caerulein model of inducible pancreatitis. RESULTS We identified differential DNA methylation at Kras-downstream PI3K and Rho/Rac/Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members. CONCLUSIONS Our comprehensive study of DNA methylation in the acinar-ductal metaplasia transition state links epigenetic memory to cancer-related cell plasticity even in the absence of oncogenic mutation.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA.
| |
Collapse
|
5
|
Nik Amirah Auni NMA, Mohd Redzwan N, Fauzi AN, Yahya MM, Wong KK. Hypomethylating agents as emerging therapeutics for triple-negative breast cancer. Life Sci 2025; 363:123403. [PMID: 39824347 DOI: 10.1016/j.lfs.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties. In this review, the efficacy and anti-tumor immune responses triggered by HMAs in TNBC are presented and discussed. Essentially, overexpression of DNMTs is associated with poor prognosis and reduced TNBC survival rates, and these effects are negated by HMAs. In particular, HMAs could reverse epigenetic silencing of tumor suppressor genes and enhance immune recognition of TNBC cells. Clinical trials of HMAs in TNBCs are limited but early-stage trials indicate that HMAs are safe and tolerable. More clinical studies are required to establish the effectiveness of HMAs against the disease, as supported by preclinical data substantiating their effectiveness especially guadecitabine. Future research should focus on optimizing dosing and exploring combinations with immunotherapies to maximize the potential of HMAs in TNBC treatment.
Collapse
Affiliation(s)
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
6
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
7
|
Alalhareth IS, Alyami SM, Alshareef AH, Ajeibi AO, Al Munjem MF, Elfifi AA, Alsharif MM, Alzahrani SA, Alqaad MA, Bakir MB, Abdel-Wahab BA. Cellular Epigenetic Targets and Epidrugs in Breast Cancer Therapy: Mechanisms, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2025; 18:207. [PMID: 40006021 PMCID: PMC11858621 DOI: 10.3390/ph18020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering potential new diagnostic and prognostic markers, treatment efficacy predictors, and therapeutic agents. Key modifications include DNA cytosine methylation and the covalent modification of histone proteins. Unlike genetic mutations, reprogramming the epigenetic landscape of the cancer epigenome is a promising targeted therapy for the treatment and reversal of drug resistance. Epidrugs, which target DNA methylation and histone modifications, can provide novel options for the treatment of breast cancer by reversing the acquired resistance to treatment. Currently, the most promising approach involves combination therapies consisting of epidrugs with immune checkpoint inhibitors. This review examines the aberrant epigenetic regulation of breast cancer initiation and progression, focusing on modifications related to estrogen signaling, drug resistance, cancer progression, and the epithelial-mesenchymal transition (EMT). It examines existing epigenetic drugs for treating breast cancer, including agents that modify DNA, inhibitors of histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethyltransferases. It also delves into ongoing studies on combining epidrugs with other therapies and addresses the upcoming obstacles in this field.
Collapse
Affiliation(s)
- Ibrahim S. Alalhareth
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Saleh M. Alyami
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Ali H. Alshareef
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Ahmed O. Ajeibi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Manea F. Al Munjem
- King Khaled Hospital -Najran Health Cluster, Najran 66261, Saudi Arabia;
| | - Ahmad A. Elfifi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Meshal M. Alsharif
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Seham A. Alzahrani
- Pharmacy Department, Khamis Mushait General Hospital, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Saudi Arabia;
| | - Mohammed A. Alqaad
- Department of Pharmaceutical Care Services, Al Noor Specialized Hospital, Makkah Health, Cluster, Makkah 24241, Saudi Arabia;
| | - Marwa B. Bakir
- Department of Medical Education, College of Medicine, Najran University, Najran 1988, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| |
Collapse
|
8
|
Renzi G, Vlassakev I, Hansen M, Higos R, Lecoutre S, Elmastas M, Hodek O, Moritz T, Alaeddine LM, Frendo-Cumbo S, Dahlman I, Kerr A, Maqdasy S, Mejhert N, Rydén M. Epigenetic suppression of creatine kinase B in adipocytes links endoplasmic reticulum stress to obesity-associated inflammation. Mol Metab 2025; 92:102082. [PMID: 39675471 PMCID: PMC11731883 DOI: 10.1016/j.molmet.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In white adipose tissue, disturbed creatine metabolism through reduced creatine kinase B (CKB) transcription contributes to obesity-related inflammation. However, the mechanisms regulating CKB expression in human white adipocytes remain unclear. By screening conditions perturbed in obesity, we identified endoplasmic reticulum (ER) stress as a key suppressor of CKB transcription across multiple cell types. Through follow-up studies, we found that ER stress through the IRE1-XBP1s pathway, promotes CKB promoter methylation via the methyltransferase DNMT3A. This epigenetic change represses CKB transcription, shifting metabolism towards glycolysis and increasing the production of the pro-inflammatory chemokine CCL2. We validated our findings in vivo, demonstrating that individuals living with obesity show an inverse relationship between CKB expression and promoter methylation in white adipocytes, along with elevated CCL2 secretion. Overall, our study uncovers a regulatory axis where ER stress drives inflammation in obesity by reducing CKB abundance, and consequently altering the bioenergetic state of the cell.
Collapse
Affiliation(s)
- Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Mattias Hansen
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France
| | - Merve Elmastas
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn M Alaeddine
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| |
Collapse
|
9
|
Larsson L, Giraldo-Osorno P, Garaicoa-Pazmino C, Giannobile W, Asa’ad F. DNA and RNA Methylation in Periodontal and Peri-implant Diseases. J Dent Res 2025; 104:131-139. [PMID: 39629934 PMCID: PMC11752639 DOI: 10.1177/00220345241291533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Periodontal and peri-implant diseases are primarily biofilm-induced pathologies in susceptible hosts affecting the periodontium and dental implants. Differences in disease susceptibility, severity, and patterns of progression have been attributed to immune regulatory mechanisms such as epigenetics. DNA methylation is an essential epigenetic mechanism governing gene expression that plays pivotal roles in genomic imprinting, chromosomal stability, apoptosis, and aging. Clinical studies have explored DNA methylation inhibitors for cancer treatment and predictive methylation profiles for disease progression. In periodontal health, DNA methylation has emerged as critical, evidenced by clinical studies unraveling its complex interplay with inflammatory genes and its regulatory role in periodontitis contributing to disease severity. Human studies have shown that methylation enzymes associated with gene reactivation (e.g., ten-eleven translocation-2) are elevated in periodontitis compared with gingivitis. Dysregulation of these genes can lead to the production of inflammatory cytokines and an altered initial response to bacteria via the toll-like receptor signaling pathway in periodontal diseases. In addition, in peri-implant diseases, this dysregulation can result in altered DNA methylation levels and enzymatic activity influenced by the properties of the titanium surface. Beyond traditional perspectives, recent evidence highlights the involvement of RNA methylation (e.g., N6-methyladenosine [m6A], N6,2'-0-dimethyladenosine [m6Am]) in periodontitis and peri-implantitis lesions, playing vital roles in the innate immune response, production of inflammatory cytokines, and activation of dendritic cells. Both DNA and RNA methylation can influence the gene expression, virulence, and bacterial behavior of well-known periodontal pathogens such as Porphyromonas gingivalis. Alterations in bacterial methylation patterns result in changes in the metabolism, drug resistance, and gene expression related to survival in the host, thereby promoting tissue degradation and chronic inflammatory responses. In summary, the present state-of-the-art review navigates the evolving landscape of DNA and RNA methylation in periodontal and peri-implant diseases, integrating recent developments and mechanisms to reshape the understanding of epigenetic dynamics in oral health.
Collapse
Affiliation(s)
- L. Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - P.M. Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - C. Garaicoa-Pazmino
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, Iowa, USA
- Research Center, School of Dentistry, Universidad de Especialidades Espiritu Santo, Samborondón, Ecuador
| | - W.V. Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - F. Asa’ad
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
10
|
Dong J, Shelp GV, Poole EM, Cook WJJ, Michaud J, Cho CE. Prenatal choline supplementation enhances metabolic outcomes with differential impact on DNA methylation in Wistar rat offspring and dams. J Nutr Biochem 2025; 136:109806. [PMID: 39547266 DOI: 10.1016/j.jnutbio.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Choline is an essential nutrient required for proper functioning of organs and serves as a methyl donor. In liver where choline metabolism primarily occurs, glucose homeostasis is regulated through insulin receptor substrates (IRS) 1 and 2. The objective of this research was to determine the role of prenatal choline as a modulator of metabolic health and DNA methylation in liver of offspring and dams. Pregnant Wistar rat dams were fed an AIN-93G diet and received drinking water either with supplemented 0.25% choline (w/w) as choline bitartrate or untreated control. All offspring were weaned to a high-fat diet for 12 weeks. Prenatal choline supplementation led to higher insulin sensitivity in female offspring at weaning as well as lower body weight and food intake and higher insulin sensitivity in female and male adult offspring compared to offspring from untreated dams. Higher hepatic betaine concentrations were observed in dams and female offspring of choline-supplemented dams at weaning and higher glycerophosphocholine in female and male offspring at postweaning compared to the untreated control, suggestive of sustaining different choline pathways. Hepatic gene expression of Irs2 was higher in dams at weaning and female offspring at weaning and postweaning, whereas Irs1 was lower in male offspring at postweaning. Gene-specific DNA methylation of Irs2 was lower in female offspring at postweaning and Irs1 methylation was higher in male offspring at postweaning that exhibited an inverse relationship between methylation and gene expression. In conclusion, prenatal choline supplementation contributes to improved parameters of insulin signaling but these effects varied across time and offspring sex.
Collapse
Affiliation(s)
- Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth M Poole
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - William J J Cook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jana Michaud
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
11
|
Oviedo JM, Cortes-Selva D, Marchetti M, Gordon L, Gibbs L, Maschek JA, Cox J, Frietze S, Amiel E, Fairfax KC. Schistosoma mansoni antigen induced innate immune memory features mitochondrial biogenesis and can be inhibited by ovarian produced hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632838. [PMID: 39868249 PMCID: PMC11761400 DOI: 10.1101/2025.01.14.632838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We have previously identified that S. mansoni infection induces a unique form of myeloid training that protects male but not female mice from high fat diet induced disease. Here we demonstrate that ovarian derived hormones account for this sex specific difference. Ovariectomy of females prior to infection permits metabolic reprogramming of the myeloid lineage, with BMDM exhibiting carbon source flexibility for cellular respiration, and mice protected from systemic metabolic disease. The innate training phenotype of infection can be replicated by in vivo injection of SEA, and by exposure of bone marrow to SEA in culture prior to macrophage differentiation (Day 0). This protective phenotype is linked to increased chromatin accessibility of lipid and mitochondrial pathways in BMDM including Nrf1 and Tfam, as well as mitochondrial biogenesis. This work provides evidence that S. mansoni antigens induce a unique form of innate training inhibited by ovarian-derived hormones in females.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Marco Marchetti
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - J. Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City UT, 84112
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Keke C. Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| |
Collapse
|
12
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
13
|
Zand H, Hosseini SA, Cheraghpour M, Alipour M, Sedaghat F. TNF-α-Induced NF-κB Alter the Methylation Status of Some Stemness Genes in HT-29 Human Colon Cancer Cell. Adv Biomed Res 2024; 13:114. [PMID: 39717245 PMCID: PMC11665177 DOI: 10.4103/abr.abr_75_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 12/25/2024] Open
Abstract
Background Acquisition of stem-like properties requires overcoming the epigenetic barrier of differentiation and re-expression of several genes involved in stemness and the cell cycle. DNA methylation is the classic epigenetic mechanism for de/differentiation. The writers and erasers of DNA methylation are not site-specific enzymes for altering specific gene methylation. Thus, the aim of the present study is investigation of the in vitro interaction of ten eleven translocations (TETs) with nuclear factor kappa B (NF-κB) in hypomethylation of stemness genes. Materials and Methods This experimental study was performed on HT-29 cells as human colorectal cancer cell lines. The interaction between TETs and DNA-methyltransferases 3 beta (DNMT3s) with p65 was achieved by coimmunoprecipitation. TETs were knocked down using siRNA, and the efficacy was analyzed by reverse-transcriptase polymerase chain reaction. The promoter methylation status of the target genes (NANOG, MYC) was determined by the methylation-sensitive high-resolution melting method. Results TET3 and DNMT3b functionally interacted with p65 in samples through 25 ng/ml TNF-α treatment for 48 h in HT-29 cells. Transfection with siRNA significantly decreased the expression of TET enzymes after 72 h. Interestingly, treatment with TET siRNAs enhanced methylation of MYC and NANOG genes in samples with 25 ng/ml TNF-α treatment for 72 h in HT-29 cells. Moreover, methylation effects of TET3 were stronger than those of TET1 and TET2. Conclusions These results suggest that inflammation may alter the methylation status of genes required for stemness and predispose the cells to neoplastic alterations.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Makan Cheraghpour
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Fatemeh Sedaghat
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620414. [PMID: 39553977 PMCID: PMC11565792 DOI: 10.1101/2024.10.26.620414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS . During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene ( KLF4 ) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. We identified differential DNA methylation at Kras-downstream PI3K and Rho / Rac / Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members, linking epigenetic memory to cancer cell plasticity even in the absence of oncogene mutation.
Collapse
|
15
|
Wang K, He Z, Jin G, Jin S, Du Y, Yuan S, Zhang J. Targeting DNA methyltransferases for cancer therapy. Bioorg Chem 2024; 151:107652. [PMID: 39024804 DOI: 10.1016/j.bioorg.2024.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
DNA methyltransferases (DNMTs) play a crucial role in genomic DNA methylation. In mammals, DNMTs regulate the dynamic patterns of DNA methylation in embryonic and adult cells. Abnormal functions of DNMTs are often indicative of cancers, including overall hypomethylation and partial hypermethylation of tumor suppressor genes (TSG), which accelerate the malignancy of tumors, worsen the condition of patients, and significantly exacerbate the difficulty of cancer treatment. Currently, nucleoside DNMT inhibitors such as Azacytidine and Decitabine have been approved by the FDA and EMA for the treatment of acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), and myelodysplastic syndrome (MDS). Therefore, targeting DNMTs is a very promising anti-tumor strategy. This review mainly summarizes the therapeutic effects of DNMT inhibitors on cancers. It aims to provide more possibilities for the treatment of cancers by discovering more DNMT inhibitors with high activity, high selectivity, and good drug-like properties in the future.
Collapse
Affiliation(s)
- Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Sasa Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Yuanbing Du
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, PR China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| |
Collapse
|
16
|
Wang L, Xu S, Chen R, Ding Y, Liu M, Hou C, Wu Z, Men X, Bao M, He B, Li S. Exploring the causal association between epigenetic clocks and menopause age: insights from a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1429514. [PMID: 39247918 PMCID: PMC11377254 DOI: 10.3389/fendo.2024.1429514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Evidence suggests a connection between DNA methylation (DNAm) aging and reproductive aging. However, the causal relationship between DNAm and age at menopause remains uncertain. Methods Employing established DNAm epigenetic clocks, such as DNAm Hannum age acceleration (Hannum), Intrinsic epigenetic age acceleration (IEAA), DNAm-estimated granulocyte proportions (Gran), DNAm GrimAge acceleration (GrimAgeAccel), DNAm PhenoAge acceleration (PhenoAgeAccel), and DNAm-estimated plasminogen activator inhibitor-1 levels (DNAmPAIadjAge), a bidirectional Mendelian randomization (MR) study was carried out to explore the potential causality between DNAm and menopausal age. The primary analytical method used was the inverse variance weighted (IVW) estimation model, supplemented by various other estimation techniques. Results DNAm aging acceleration or deceleration, as indicated by Hannum, IEAA, Gran, GrimAgeAccel, PhenoAgeAccel, and DNAmPAIadjAge, did not exhibit a statistically significant causal effect on menopausal age according to forward MR analysis. However, there was a suggestive positive causal association between age at menopause and Gran (Beta = 0.0010; 95% confidence interval (CI): 0.0004, 0.0020) in reverse MR analysis. Conclusion The observed increase in granulocyte DNAm levels in relation to menopausal age could potentially serve as a valuable indicator for evaluating the physiological status at the onset of menopause.
Collapse
Affiliation(s)
- Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Ferchiou S, Caza F, Sinha K, Sauvageau J, St-Pierre Y. Assessing marine ecosystem health using multi-omic analysis of blue mussel liquid biopsies: A case study within a national marine park. CHEMOSPHERE 2024; 362:142714. [PMID: 38950751 DOI: 10.1016/j.chemosphere.2024.142714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Marine ecosystems are under escalating threats from myriad environmental stressors, necessitating a deeper understanding of their impact on biodiversity and the health of sentinel organisms. In this study, we carried out a spatiotemporal multi-omic analysis of liquid biopsies collected from mussels (Mytilus spp.) in marine ecosystems of a national park. We delved into the epigenomic, transcriptomic, glycomic, proteomic, and microbiomic profiles to unravel the intricate interplay between ecosystem biodiversity and mussels' biological response to their environments. Our analysis revealed temporal fluctuations in the alpha diversity of the circulating microbiome associated with human activities. Analysis of the hemolymphatic circulating cell-free DNA (ccfDNA) provided information on the biodiversity and the presence of potential pathogens. Epigenomic analysis revealed widespread hypomethylation sites within the mitochondrial (mtDNA). Comparative transcriptomic and glycomic analyses highlighted differences in metabolic pathways and genes associated with immune and wound healing functions. This study demonstrates the potential of multi-omic analysis of liquid biopsy in sentinel to provide a holistic view of human activities' environmental impacts on marine coastal ecosystems. Overall, this approach has the potential to enhance the effectiveness and efficiency of various conservation efforts, leading to more informed decision-making and better outcomes for biodiversity and ecosystem conservation.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | - France Caza
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | - Kumardip Sinha
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Yves St-Pierre
- INRS-Center Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, Canada, H7V 1B7.
| |
Collapse
|
18
|
Arruda AL, Katsoula G, Chen S, Reimann E, Kreitmaier P, Zeggini E. The Genetics and Functional Genomics of Osteoarthritis. Annu Rev Genomics Hum Genet 2024; 25:239-257. [PMID: 39190913 DOI: 10.1146/annurev-genom-010423-095636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Georgia Katsoula
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
| | - Ene Reimann
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Kreitmaier
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
19
|
Kim A, Benavente CA. Oncogenic Roles of UHRF1 in Cancer. EPIGENOMES 2024; 8:26. [PMID: 39051184 PMCID: PMC11270427 DOI: 10.3390/epigenomes8030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer. Under physiological conditions, UHRF1 protein levels are cell cycle-dependent and are post-translationally regulated by proteasomal degradation. Conversely, UHRF1 is overexpressed and serves as an oncogenic driver in multiple cancers. This review focuses on the functional domains of UHRF1, highlighting its key interacting proteins and oncogenic roles in solid tumors including retinoblastoma, osteosarcoma, lung cancer, and breast cancer. Additionally, current therapeutic strategies targeting UHRF1 domains or its interactors are explored, providing an insight on potential clinical applications.
Collapse
Affiliation(s)
- Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
22
|
Brockman QR, Rytlewski JD, Milhem M, Monga V, Dodd RD. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis Oncol 2024; 8:e2300325. [PMID: 38820476 PMCID: PMC11552688 DOI: 10.1200/po.23.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION These results might have broad implications for the clinical management and surveillance of sarcoma.
Collapse
Affiliation(s)
- Qierra R. Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Jeffrey D. Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
23
|
Scelfo A, Barra V, Abdennur N, Spracklin G, Busato F, Salinas-Luypaert C, Bonaiti E, Velasco G, Bonhomme F, Chipont A, Tijhuis AE, Spierings DC, Guérin C, Arimondo P, Francastel C, Foijer F, Tost J, Mirny L, Fachinetti D. Tunable DNMT1 degradation reveals DNMT1/DNMT3B synergy in DNA methylation and genome organization. J Cell Biol 2024; 223:e202307026. [PMID: 38376465 PMCID: PMC10876481 DOI: 10.1083/jcb.202307026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Viviana Barra
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George Spracklin
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florence Busato
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | | | - Elena Bonaiti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | - Frédéric Bonhomme
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | - Anna Chipont
- Cytometry Platform, Institut Curie, Paris, France
| | - Andréa E. Tijhuis
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Coralie Guérin
- Cytometry Platform, Institut Curie, Paris, France
- Université Paris Cité, INSERM, Paris, France
| | - Paola Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jӧrg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| |
Collapse
|
24
|
Xiong X, Chen H, Zhang Q, Liu Y, Xu C. Uncovering the roles of DNA hemi-methylation in transcriptional regulation using MspJI-assisted hemi-methylation sequencing. Nucleic Acids Res 2024; 52:e24. [PMID: 38261991 PMCID: PMC10954476 DOI: 10.1093/nar/gkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Hemi-methylated cytosine dyads widely occur on mammalian genomic DNA, and can be stably inherited across cell divisions, serving as potential epigenetic marks. Previous identification of hemi-methylation relied on harsh bisulfite treatment, leading to extensive DNA degradation and loss of methylation information. Here we introduce Mhemi-seq, a bisulfite-free strategy, to efficiently resolve methylation status of cytosine dyads into unmethylation, strand-specific hemi-methylation, or full-methylation. Mhemi-seq reproduces methylomes from bisulfite-based sequencing (BS-seq & hpBS-seq), including the asymmetric hemi-methylation enrichment flanking CTCF motifs. By avoiding base conversion, Mhemi-seq resolves allele-specific methylation and associated imprinted gene expression more efficiently than BS-seq. Furthermore, we reveal an inhibitory role of hemi-methylation in gene expression and transcription factor (TF)-DNA binding, and some displays a similar extent of inhibition as full-methylation. Finally, we uncover new hemi-methylation patterns within Alu retrotransposon elements. Collectively, Mhemi-seq can accelerate the identification of DNA hemi-methylation and facilitate its integration into the chromatin environment for future studies.
Collapse
Affiliation(s)
- Xiong Xiong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hengye Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zhu YN, Pan F, Gan XW, Liu Y, Wang WS, Sun K. The Role of DNMT1 and C/EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology 2023; 165:bqad195. [PMID: 38146648 DOI: 10.1210/endocr/bqad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
- Center for Reproductive Medicine, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yun Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
26
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
27
|
Shao D, Liu C, Wang Y, Lin J, Cheng X, Han P, Li Z, Jian D, Nie J, Jiang M, Wei Y, Xing J, Guo Z, Wang W, Yi X, Tang H. DNMT1 determines osteosarcoma cell resistance to apoptosis by associatively modulating DNA and mRNA cytosine-5 methylation. FASEB J 2023; 37:e23284. [PMID: 37905981 DOI: 10.1096/fj.202301306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Cellular apoptosis is a central mechanism leveraged by chemotherapy to treat human cancers. 5-Methylcytosine (m5C) modifications installed on both DNA and mRNA are documented to regulate apoptosis independently. However, the interplay or crosstalk between them in cellular apoptosis has not yet been explored. Here, we reported that promoter methylation by DNMT1 coordinated with mRNA methylation by NSun2 to regulate osteosarcoma cell apoptosis. DNMT1 was induced during osteosarcoma cell apoptosis triggered by chemotherapeutic drugs, whereas NSun2 expression was suppressed. DNMT1 was found to repress NSun2 expression by methylating the NSun2 promoter. Moreover, DNMT1 and NSun2 regulate the anti-apoptotic genes AXL, NOTCH2, and YAP1 through DNA and mRNA methylation, respectively. Upon exposure to cisplatin or doxorubicin, DNMT1 elevation drastically reduced the expression of these anti-apoptotic genes via enhanced promoter methylation coupled with NSun2 ablation-mediated attenuation of mRNA methylation, thus rendering osteosarcoma cells to apoptosis. Collectively, our findings establish crosstalk of importance between DNA and RNA cytosine methylations in determining osteosarcoma resistance to apoptosis during chemotherapy, shedding new light on future treatment of osteosarcoma, and adding additional layers to the control of gene expression at different epigenetic levels.
Collapse
Affiliation(s)
- Dongxing Shao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Cihang Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Lin
- Department of Laboratory Medicine, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Pei Han
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Dongdong Jian
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junwei Nie
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | | | - Yuanzhi Wei
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Ashokan M, Jayanthi KV, Elango K, Sneha K, Ramesha KP, Reshma RS, Saravanan KA, Naveen KGS. Biological methylation: redefining the link between genotype and phenotype. Anim Biotechnol 2023; 34:3174-3186. [PMID: 35468300 DOI: 10.1080/10495398.2022.2065999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The central dogma of molecular biology is responsible for the crucial flow of genetic information from DNA to protein through the transcription and translation process. Although the sequence of DNA is constant in all organs, the difference in protein and variation in the phenotype is mainly due to the quality and quantity of tissue-specific gene expression and methylation pattern. The term methylation has been defined and redefined by various scientists in the last fifty years. There is always huge excitement around this field because the inheritance of something is beyond its DNA sequence. Advanced gene methylation studies have redefined molecular genetics and these tools are considered de novo in alleviating challenges of animal disease and production. Recent emerging evidence has shown that the impact of DNA, RNA, and protein methylation is crucial for embryonic development, cell proliferation, cell differentiation, and phenotype production. Currently, many researchers are focusing their work on methylation to understand its significant role in expression, disease-resistant traits, productivity, and longevity. The main aim of the present review is to provide an overview of DNA, RNA, and protein methylation, current research output from different sources, methodologies, factors responsible for methylation of genes, and future prospects in animal genetics.
Collapse
Affiliation(s)
- M Ashokan
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K V Jayanthi
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Raj S Reshma
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumar G S Naveen
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| |
Collapse
|
29
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
30
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
31
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
32
|
Salz L, Seitz A, Schäfer D, Franzen J, Holzer T, Garcia-Prieto CA, Bürger I, Hardt O, Esteller M, Wagner W. Culture expansion of CAR T cells results in aberrant DNA methylation that is associated with adverse clinical outcome. Leukemia 2023; 37:1868-1878. [PMID: 37452103 PMCID: PMC10457202 DOI: 10.1038/s41375-023-01966-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Chimeric antigen receptor (CAR) T cells provide new perspectives for treatment of hematological malignancies. Manufacturing of these cellular products includes culture expansion procedures, which may affect cellular integrity and therapeutic outcome. In this study, we investigated culture-associated epigenetic changes in CAR T cells and found continuous gain of DNAm, particularly within genes that are relevant for T cell function. Hypermethylation in many genes, such as TCF7, RUNX1, and TOX, was reflected by transcriptional downregulation. 332 CG dinucleotides (CpGs) showed an almost linear gain in methylation with cell culture time, albeit neighboring CpGs were not coherently regulated on the same DNA strands. An epigenetic signature based on 14 of these culture-associated CpGs predicted cell culture time across various culture conditions. Notably, even in CAR T cell products of similar culture time higher DNAm levels at these CpGs were associated with significantly reduced long-term survival post transfusion. Our data demonstrate that cell culture expansion of CAR T cells evokes DNA hypermethylation at specific sites in the genome and the signature may also reflect loss of potential in CAR T cell products. Hence, reduced cultivation periods are beneficial to avoid dysfunctional methylation programs that seem to be associated with worse therapeutic outcome.
Collapse
Affiliation(s)
- Lucia Salz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alexander Seitz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Daniel Schäfer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Julia Franzen
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Tatjana Holzer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Carlos A Garcia-Prieto
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
33
|
Regmi S, Giha L, Ali A, Siebels-Lindquist C, Davis TL. Methylation is maintained specifically at imprinting control regions but not other DMRs associated with imprinted genes in mice bearing a mutation in the Dnmt1 intrinsically disordered domain. Front Cell Dev Biol 2023; 11:1192789. [PMID: 37601113 PMCID: PMC10436486 DOI: 10.3389/fcell.2023.1192789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Differential methylation of imprinting control regions in mammals is essential for distinguishing the parental alleles from each other and regulating their expression accordingly. To ensure parent of origin-specific expression of imprinted genes and thereby normal developmental progression, the differentially methylated states that are inherited at fertilization must be stably maintained by DNA methyltransferase 1 throughout subsequent somatic cell division. Further epigenetic modifications, such as the acquisition of secondary regions of differential methylation, are dependent on the methylation status of imprinting control regions and are important for achieving the monoallelic expression of imprinted genes, but little is known about how imprinting control regions direct the acquisition and maintenance of methylation at these secondary sites. Recent analysis has identified mutations that reduce DNA methyltransferase 1 fidelity at some genomic sequences but not at others, suggesting that it may function differently at different loci. We examined the impact of the mutant DNA methyltransferase 1 P allele on methylation at imprinting control regions as well as at secondary differentially methylated regions and non-imprinted sequences. We found that while the P allele results in a major reduction in DNA methylation levels across the mouse genome, methylation is specifically maintained at imprinting control regions but not at their corresponding secondary DMRs. This result suggests that DNA methyltransferase 1 may work differently at imprinting control regions or that there is an alternate mechanism for maintaining methylation at these critical regulatory regions and that maintenance of methylation at secondary DMRs is not solely dependent on the methylation status of the ICR.
Collapse
Affiliation(s)
| | | | | | | | - Tamara L. Davis
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| |
Collapse
|
34
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
35
|
Li L, Diao S, Chen Z, Zhang J, Chen W, Wang T, Chen X, Zhao Y, Xu T, Huang C, Li J. DNMT3a-mediated methylation of TCF21/hnRNPA1 aggravates hepatic fibrosis by regulating the NF-κB signaling pathway. Pharmacol Res 2023; 193:106808. [PMID: 37268177 DOI: 10.1016/j.phrs.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Hepatic fibrosis is caused by liver damage as a consequence of wound healing response. Recent studies have shown that hepatic fibrosis could be effectively reversed, partly through regression of activated hepatic stellate cells (HSCs). Transcription factor 21 (TCF21), a member of the basic helix-loop-helix (bHLH) transcription factor, is involved in epithelial-mesenchymal transformation in various diseases. However, the mechanism by which TCF21 regulates epithelial-mesenchymal transformation in hepatic fibrosis has not been elucidated. In this research, we found that hnRNPA1, the downstream binding protein of TCF21, accelerates hepatic fibrosis reversal by inhibiting the NF-κB signaling pathway. Furthermore, the combination of DNMT3a with TCF21 promoter results in TCF21 hypermethylation. Our results suggest that DNMT3a regulation of TCF21 is a significant event in reversing hepatic fibrosis. In conclusion, this research identifies a novel signaling axis, DNMT3a-TCF21-hnRNPA1, that regulates HSCs activation and hepatic fibrosis reversal, providing a novel treatment strategy for hepatic fibrosis. The clinical trial was registered in the Research Registry (researchregistry9079).
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Zixiang Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jintong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Wei Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tianqi Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Yuxin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University.
| |
Collapse
|
36
|
Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers (Basel) 2023; 15:2683. [PMID: 37345019 PMCID: PMC10216337 DOI: 10.3390/cancers15102683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic mechanisms are gene regulatory processes that control gene expression and cellular identity. Epigenetic factors include the "writers", "readers", and "erasers" of epigenetic modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function. Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2 gene mutations to different types of human disease. Due to the high expression level of MeCP2 in the brain, many studies have focused on its role in neurological and neurodevelopmental disorders. However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis of different types of human cancer, with potential oncogenic properties. It is well documented that aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully investigated until lately. In recent years, a multitude of research studies from independent groups have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role of MeCP2 as an emerging oncogene in different types of human cancer.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 85991-56189, Iran;
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 57157-89400, Iran;
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
37
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
38
|
Magi A, Mattei G, Mingrino A, Caprioli C, Ronchini C, Frigè G, Semeraro R, Bolognini D, Rambaldi A, Candoni A, Colombo E, Mazzarella L, Pelicci PG. High-resolution Nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias. Commun Biol 2023; 6:382. [PMID: 37031307 PMCID: PMC10082806 DOI: 10.1038/s42003-023-04756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy.
- Institute for Biomedical Technologies, National Research Council, Segrate, Milano, Italy.
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandra Mingrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Ronchini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - GianMaria Frigè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Candoni
- Clinica Ematologica, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Emanuela Colombo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Shi D, Huang Y, Bai C. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers (Basel) 2023; 15:polym15071763. [PMID: 37050377 PMCID: PMC10096840 DOI: 10.3390/polym15071763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein–DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome’s dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
40
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
41
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|
42
|
Dye CK, Wu H, Monk C, Belsky DW, Alschuler D, Lee S, O’Donnell K, Scorza P. Mother's childhood adversity is associated with accelerated epigenetic aging in pregnancy and in male newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530806. [PMID: 36945654 PMCID: PMC10028804 DOI: 10.1101/2023.03.02.530806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Background Adverse childhood experiences (ACEs) are correlated with accelerated epigenetic aging, but it is not clear whether altered epigenetic aging from childhood adversities persists into adulthood and can be transmitted to the next generation. Thus, we tested whether mothers' childhood adversity is associated with accelerated epigenetic aging during pregnancy and in their newborn offspring. Methods Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) sub-study, Accessible Resource for Integrated Epigenomic Studies (ARIES). Women provided retrospective self-reports during pregnancy of ACE exposure. DNA methylation was measured in mothers during pregnancy and cord blood at birth. Estimates of epigenetic age acceleration were calculated using Principal Components of Horvath, Hannum skin & blood, GrimAge, PhenoAge, and DunedinPACE epigenetic clocks for mothers; and the Knight and Bohlin cord blood clocks for newborns. Associations between a cumulative maternal ACE score and epigenetic age acceleration were estimated using linear regression models, adjusting for maternal age at pregnancy, smoking during pregnancy, education, and pre-pregnancy BMI. Models for offspring were stratified by sex and additionally adjusted for gestation age. Results Mothers' total ACE score was positively associated with accelerated maternal PhenoAge and GrimAge. In newborn offspring, mothers' total ACE score was positively associated with accelerated epigenetic aging in males using the Bohlin clock, but not in females using either epigenetic clock. We found male offsprings' epigenetic age was accelerated in those born to mothers exposed to neglect using the Knight clock; and parental substance abuse using the Bohlin clock. Conclusion Our results show that mothers' ACE exposure is associated with DNAm age acceleration in male offspring, supporting the notion that DNAm age could be a marker of intergenerational biological embedding of mothers' childhood adversity. This is consistent with findings on vulnerability of male fetuses to environmental insults.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Catherine Monk
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University, New York, New York, USA
| | - Daniel Alschuler
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pamela Scorza
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| |
Collapse
|
43
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
44
|
Lin S, Xu H, Qin L, Pang M, Wang Z, Gu M, Zhang L, Zhao C, Hao X, Zhang Z, Ding W, Ren J, Huang J. UHRF1/DNMT1–MZF1 axis-modulated intragenic site-specific CpGI methylation confers divergent expression and opposing functions of PRSS3 isoforms in lung cancer. Acta Pharm Sin B 2023; 13:2086-2106. [DOI: 10.1016/j.apsb.2023.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 02/05/2023] [Indexed: 04/09/2023] Open
|
45
|
Ke T, Tinkov AA, Skalny AV, Santamaria A, Rocha JBT, Bowman AB, Chen W, Aschner M. Epigenetics and Methylmercury-Induced Neurotoxicity, Evidence from Experimental Studies. TOXICS 2023; 11:toxics11010072. [PMID: 36668798 PMCID: PMC9860901 DOI: 10.3390/toxics11010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
MeHg is an environmental neurotoxin that can adversely affect the development of the nervous system. The molecular integrity of chromatin in the nucleus is an important target of MeHg. Low levels of MeHg trigger epigenetic mechanisms that may be involved in long-lasting and transgenerational neurotoxicity after exposure. Emerging evidence has shown that these mechanisms include histone modification, siRNA, and DNA methylation. The MeHg-induced inhibition of neurodifferentiation and neurogenesis are mechanistically associated with epigenetic alterations in critical genes, such as neurotrophin brain-derived neurotrophic factor (BDNF). Further, MeHg exposure has been shown to alter the activity and/or expression of the upstream regulators of chromatin structure, including histone deacetylases (HDACs) and DNA methyltransferase (DNMTs), which may trigger permanent alterations in histone modifications and DNA methylation. MeHg-exposure also alters several species of miRNA that are associated with neurodevelopment. Genetic studies in the C. elegans model of MeHg-induced toxicity proposes a potential interplay between exogenous RNAi and antioxidant defense. In this review, we discuss the molecular basis for MeHg exposure-induced alterations in chromatin structure and the roles of histone modifications, siRNA, and DNA methylation in MeHg-induced neurotoxic effects.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (T.K.); (M.A.)
| | - Alexey A. Tinkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Department of Medical Elementology, RUDN University, 117198 Moscow, Russia
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Medical Elementology, RUDN University, 117198 Moscow, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (T.K.); (M.A.)
| |
Collapse
|
46
|
Chow CN, Yang CW, Chang WC. Databases and prospects of dynamic gene regulation in eukaryotes: A mini review. Comput Struct Biotechnol J 2023; 21:2147-2159. [PMID: 37013004 PMCID: PMC10066511 DOI: 10.1016/j.csbj.2023.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
In eukaryotes, dynamic regulation enables DNA polymerases to catalyze a variety of RNA products in spatial and temporal patterns. Dynamic gene expression is regulated by transcription factors (TFs) and epigenetics (DNA methylation and histone modification). The applications of biochemical technology and high-throughput sequencing enhance the understanding of mechanisms of these regulations and affected genomic regions. To provide a searchable platform for retrieving such metadata, numerous databases have been developed based on the integration of genome-wide maps (e.g., ChIP-seq, whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, DNase-seq, and MNase-seq data) and functionally genomic annotation. In this mini review, we summarize the main functions of TF-related databases and outline the prevalent approaches used in inferring epigenetic regulations, their associated genes, and functions. We review the literature on crosstalk between TF and epigenetic regulation and the properties of non-coding RNA regulation, which are challenging topics that promise to pave the way for advances in database development.
Collapse
|
47
|
Maksimova VP, Usalka OG, Makus YV, Popova VG, Trapeznikova ES, Khayrieva GI, Sagitova GR, Zhidkova EM, Prus AY, Yakubovskaya MG, Kirsanov KI. Aberrations of DNA methylation in cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation is a chromatin modification that plays an important role in the epigenetic regulation of gene expression. Changes in DNA methylation patterns are characteristic of many malignant neoplasms. DNA methylation is occurred by DNA methyltransferases (DNMTs), while demethylation is mediated by TET family proteins. Mutations and changes in the expression profile of these enzymes lead to DNA hypo- and hypermethylation and have a strong impact on carcinogenesis. In this review, we considered the key aspects of the mechanisms of regulation of DNA methylation and demethylation, and also analyzed the role of DNA methyltransferases and TET family proteins in the pathogenesis of various malignant neoplasms.During the preparation of the review, we used the following biomedical literature information bases: Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190). To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka were used. To analyze the mutational profile of epigenetic regulatory enzymes, we used the cBioportal portal (https://www.cbioportal.org / ), data from The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), COSMIC, Clinvar, and The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- V. P. Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. G. Usalka
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - Yu. V. Makus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - V. G. Popova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Mendeleev University of Chemical Technology of Russia
| | - E. S. Trapeznikova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. I. Khayrieva
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. R. Sagitova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. Yu. Prus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| |
Collapse
|
48
|
Symeonidis A, Chatzilygeroudi T, Chondrou V, Sgourou A. Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes. Int J Mol Sci 2022; 23:16069. [PMID: 36555712 PMCID: PMC9785516 DOI: 10.3390/ijms232416069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell disorders with maturation and differentiation defects exhibiting morphological dysplasia in one or more hematopoietic cell lineages. They are associated with peripheral blood cytopenias and by increased risk for progression into acute myelogenous leukemia. Among their multifactorial pathogenesis, age-related epigenetic instability and the error-rate DNA methylation maintenance have been recognized as critical factors for both the initial steps of their pathogenesis and for disease progression. Although lower-risk MDS is associated with an inflammatory bone marrow microenvironment, higher-risk disease is delineated by immunosuppression and clonal expansion. "Epigenetics" is a multidimensional level of gene regulation that determines the specific gene networks expressed in tissues under physiological conditions and guides appropriate chromatin rearrangements upon influence of environmental stimulation. Regulation of this level consists of biochemical modifications in amino acid residues of the histone proteins' N-terminal tails and their concomitant effects on chromatin structure, DNA methylation patterns in CpG dinucleotides and the tissue-specific non-coding RNAs repertoire, which are directed against various gene targets. The role of epigenetic modifications is widely recognized as pivotal both in gene expression control and differential molecular response to drug therapies in humans. Insights to the potential of synergistic cooperations of epigenetic mechanisms provide new avenues for treatment development to comfort human diseases with a known epigenetic shift, such as MDS. Hypomethylating agents (HMAs), such as epigenetic modulating drugs, have been widely used in the past years as first line treatment for elderly higher-risk MDS patients; however, just half of them respond to therapy and are benefited. Rational outcome predictors following epigenetic therapy in MDS and biomarkers associated with disease relapse are of high importance to improve our efforts in developing patient-tailored clinical approaches.
Collapse
Affiliation(s)
- Argiris Symeonidis
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
- Medical School University of Patras, University Campus, 26500 Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
49
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|