1
|
Davis J, Maranto M, Kennedy J, Wang X, Azhar M, Jain A, Evans CE. Transforming Growth Factors in Venous Thrombus Formation and Resolution. Arterioscler Thromb Vasc Biol 2025; 45:643-653. [PMID: 40109257 PMCID: PMC12018122 DOI: 10.1161/atvbaha.124.322395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Deep vein thrombosis (DVT) and pulmonary embolism are vascular occlusive disorders categorized under the term venous thromboembolism. Venous thromboembolism affects ≈900 000 people per year in the United States alone. Understanding of the multifaceted process of DVT has improved in recent years, and current DVT treatments reduce thrombus propagation, but they also increase bleeding risk and fail to accelerate natural venous thrombus resolution. Multiple inflammatory cytokines regulate the development and subsequent resolution of DVT. One family of cytokines involved in DVT and venous thrombus resolution is the TGF-β (transforming growth factor-β) family. A comprehensive understanding of the control of venous thrombus formation and resolution by the TGF-β family could lead to the development of novel treatments for DVT that target ≥1 of the TGF-β isoforms. The aim of this review is to describe studies of the roles of the TGF-β isoforms in venous thrombus formation and resolution and to highlight opportunities for future research. TGF-β isoforms include TGF-β1, TGF-β2, and TGF-β3. TGF-β1 has a well-characterized role in the positive regulation of venous thrombus formation and the negative regulation of venous thrombus resolution. Further research is necessary, however, to understand the potential roles of TGF-β2 and TGF-β3 in venous thrombus formation and resolution. Given that TGF-β1 expression increases during venous thrombosis and that inhibition or knockdown of TGF-β1 reduces thrombus burden, TGF-β1 represents a potential diagnostic marker for DVT and a putative target for therapies that aim to prevent or treat DVT.
Collapse
Affiliation(s)
- Jonathan Davis
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Molly Maranto
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jonathan Kennedy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Colin E. Evans
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, USA
- Institute on Cardiovascular Disease Research, University of South Carolina, Columbia, USA
| |
Collapse
|
2
|
Imiela AM, Kucharska J, Kukliński F, Fernandez Moreno T, Dzik K, Pruszczyk P. Advanced Research in the Pathophysiology of Venous Thromboembolism-Acute Pulmonary Embolism. Biomedicines 2025; 13:906. [PMID: 40299499 PMCID: PMC12025274 DOI: 10.3390/biomedicines13040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
According to the literature, cardiovascular diseases (CVDs)-including myocardial infarction, stroke, and venous thromboembolism (VTE)-are among the leading causes of mortality and morbidity worldwide. Evidence suggests that CVDs share common risk factors and pathophysiological mechanisms. Similar to the Mosaic Theory of Hypertension proposed by Irvine Page in 1949, the pathophysiology of VTE is multifactorial, involving multiple interacting processes. The concept of immunothrombosis, introduced by Engelmann and Massberg in 2009, describes the interplay between the immune system and thrombosis. Both thrombosis and hemostasis share core mechanisms, including platelet activation and fibrin formation. Additionally, immune mediators-such as monocytes, neutrophil extracellular traps (NETs), lymphocytes, selectins, and various molecular factors-play a critical role in thrombus formation. This review highlights inflammation as a key risk factor for pulmonary embolism (APE). Immunity is central to the complex interactions among the coagulation cascade, platelets, endothelium, reactive oxygen species (ROS), and genetic factors. Specifically, we examine the roles of the endothelium, immune cells, and microRNAs (miRNAs) in the pathophysiology of APE and explore potential therapeutic targets. This review aims to elucidate the roles of the endothelium, immune cells, and miRNAs in the pathophysiology of APE and explore potential future perspective.
Collapse
Affiliation(s)
- Anna M. Imiela
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Joanna Kucharska
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Franciszek Kukliński
- Department of Intensive Cardiac Care, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Teresa Fernandez Moreno
- Department of Intensive Cardiac Care, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Konrad Dzik
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| | - Piotr Pruszczyk
- Department of Internal Diseases and Cardiology, Infant Jesus Clinical Hospital, Medical University of Warsaw, Lindleya 4 Street, 02-005 Warsaw, Poland
| |
Collapse
|
3
|
Huang X, He R, Jiang Y, Tang J, Xu X, Laoguo S, Chen G, Ma J. Neutrophil extracellular traps: potential thrombotic markers and therapeutic targets in colorectal cancer. J Leukoc Biol 2025; 117:qiae235. [PMID: 39454636 DOI: 10.1093/jleuko/qiae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are promising promoters in venous thromboembolism (VTE). In the present study, we have investigated the potential thrombogenic role of NETs in colorectal cancer (CRC). A total of 583 patients with gastrointestinal malignancies who were diagnosed with or without VTE by extremities arteriovenous ultrasound and computed tomography were enrolled. The incidence of VTE in CRC was as high as 17.53%. In serological ELISA experiments, Cit-H3, myeloperoxidase, and cfDNA were significantly overexpressed in CRC patients with VTE compared with CRC patients without VTE and healthy individuals. Neutrophils from CRC patients with VTE produced appreciable amounts of NETs after stimulation with phorbol-12-myristate-13-acetate, which were lacking in CRC patients without VTE and healthy individuals. CfDNA was positively correlated with plasmin-α2-antiplasmin complex and tissue plasmin activator inhibitor-1 complex, and Cit-H3 was positively correlated with plasmin-α2-antiplasmin complex, suggesting that NETs are associated with increased fibrinolytic activity. We screened some NETs-related genes by analyzing several high-throughput sequencing datasets of VTE and NETs. FCGR1A was identified as the optimal target gene by pan-cancer expression analysis and survival analysis. FCGR1A was significantly overexpressed in the peripheral blood of CRC patients without VTE compared with healthy individuals and showed a positive correlation with cfDNA. Neutrophil-derived NETs were significantly reduced by FCGR1A inhibitor exposure. These findings indicate that NETs are actively involved in VTE in CRC. NETs are promising thrombotic marker and therapeutic target in CRC to prevent the thrombotic consequences of cancer.
Collapse
Affiliation(s)
- Xianye Huang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Rongquan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yanfeng Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jing Tang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiaoyu Xu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Shixue Laoguo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
4
|
Haysen SR, Nielsen ALL, Qvist P, Kragstrup TW. Investigating associations between JAK inhibition and venous thromboembolism by systematic mining of large-scale datasets. Inflammopharmacology 2025; 33:1425-1434. [PMID: 39994070 PMCID: PMC11913929 DOI: 10.1007/s10787-025-01677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
Janus kinase inhibitors (JAKi) have been associated with an increased risk of venous thromboembolism (VTE) limiting the use of JAKi-based therapy. To improve risk stratification and drug development, it is crucial to understand the implication of dysregulated JAK-Signal Transducers and Activators of Transcription (STAT) signaling in the pathogenesis of VTE. The objective of this study is to clarify the putative genomic vulnerability to dysregulated JAK-STAT signaling in VTE through systematic mining of large-scale datasets generated from studies comparing VTE patients with healthy controls. Particularly, we assess the representation of entities of the JAK-STAT signaling pathway including STAT target genes among sets of miRNA, mRNA, and proteins differentially abundant in VTE patients, and we explore the putative cumulative genetic association of JAK-STAT signaling gene sets to VTE. Genes related to the JAK-STAT pathway were found significantly altered in VTE patients compared to healthy controls, indicating that genes under transcriptional control of STAT may be dysregulated in VTE. In support of this notion, we find a significant overrepresentation of predicted STAT target genes among genes downregulated in VTE patients, and promoter sequences of differentially regulated genes were significantly enriched with STAT transcription factor binding site motifs. Further linking STAT signaling to the molecular signature of VTE, genes targeted by miRNAs differentially regulated in patients are significantly enriched with STAT target genes and genes acting in the JAK-STAT signaling pathway. Together, our findings indicate that disruptions in the JAK-STAT pathway contribute to the molecular profile of VTE. This offers hope for identifying ways to interact with the JAK-STAT pathway that do not carry the risk of VTE.
Collapse
Affiliation(s)
| | | | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Rheumatology Sector, Medical Diagnostic Center, Silkeborg Regional Hospital, Silkeborg, Denmark.
| |
Collapse
|
5
|
Danesh Yazdi M, Sonntag A, Kosheleva A, Nassan FL, Wang C, Xu Z, Wu H, Laurent LC, DeHoff P, Comfort NT, Vokonas P, Wright R, Weisskopf M, Baccarelli AA, Schwartz JD. The association between toenail metals and extracellular MicroRNAs (ex-miRNAs) among the participants of the Normative Aging study (NAS). ENVIRONMENTAL RESEARCH 2024; 261:119761. [PMID: 39122161 PMCID: PMC11578093 DOI: 10.1016/j.envres.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mechanistic studies of the effects of environmental risk factors have been exploring the potential role of microRNA(miRNAs) as a possible pathway to clinical disease. In this study we examine whether levels of toenail metals are associated with changes in extracellular miRNA(ex-miRNA) expression. METHODS We used data derived from the Normative Aging Study from 1996 to 2014 to conduct our analyses. We looked at associations between measured toenail metals: arsenic, cadmium, lead, manganese, and mercury and 282 ex-miRNAs in this population using canonical correlation analyses (CCAs) and longitudinal median regression. We adjusted for covariates such as age, education, body mass index, drinking and smoking behaviors, diabetes, and where available, seafood consumption. The p-values obtained from regression analyses were corrected for multiple comparisons. Ex-miRNAs identified to be associated with toenail metal levels were further examined using pathway analyses. RESULTS Our dataset included 937 observations from 589 men with an average age of 72.9 years at baseline. Both our correlation and regression analyses identified lead and cadmium as exposures most strongly associated with ex-miRNA expression. Numerous ex-miRNAs were identified as being associated with toenail metal levels. miR-27b-3p, in particular, was found to have high correlation with the first canonical dimension in the CCA and was significantly associated with cadmium in the regression analysis. Pathway analyses revealed messenger RNA (mRNA) targets for the ex-miRNAs that were associated with a number of clinical disorders including cancer, cardiovascular disease, and neurological disorders, etc. CONCLUSION: Toenail metals were associated with changes in ex-miRNA levels in both correlational and regression analyses. The ex-miRNAs identified can be linked to a variety of clinical disorders. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Allison Sonntag
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Feiby L Nassan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Chobanian and Avidisian School of Medicine, Boston University, Boston, MA, USA
| | - Robert Wright
- Institute for Exposomic Research, Mount Sinai School of Medicine, New York, NY, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
de Oliveira Vaz C, Cardoso Jacintho B, de Mello Santos G, de Oliveira JD, Moraes Mazetto B, Vieira Geraldo M, Orsi FA. Identification of common MicroRNAs expression signatures in antiphospholipid syndrome and thromboembolic disease: A scoping review. Lupus 2024; 33:1455-1465. [PMID: 39328152 DOI: 10.1177/09612033241286601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Antiphospholipid syndrome (APS) is an acquired autoimmune disorder characterized by distinct pathophysiological mechanisms leading to heterogeneous manifestations, including venous and arterial thrombosis. Despite the lack of specific markers of thrombosis risk in APS, some of the mechanisms responsible for thrombosis in APS may overlap with those of other thromboembolic diseases. Understanding these similarities is important for improving the assessment of thrombosis risk in APS. MicroRNAs (MiRNAs) are RNA molecules that regulate gene expression and may influence the autoimmune response and coagulation. PURPOSE In this scoping review we aimed to investigate shared miRNAs profiles associated with APS and other thromboembolic diseases as a means of identifying markers indicative of a pro-thrombotic profile among patients with APS. DATA COLLECTION AND RESULTS Through a comprehensive search of scientific databases, 45 relevant studies were identified out of 1020 references. miRs-124-3p, 125b-5p, 125a-5p, and 17-5p, were associated with APS and arterial thrombosis, while miRs-106a-5p, 146b-5p, 15a-5p, 222-3p, and 451a were associated with APS and venous thrombosis. Additionally, miR-126a-3p was associated with APS and both arterial and venous thrombosis. CONCLUSION We observed that APS shares a common miRNAs signature with non-APS related thrombosis, suggesting that miRNA expression profiles may serve as markers of thrombotic risk in APS. Further validation of a pro-thrombotic miRNA signature in APS is warranted to improve risk assessment, diagnosis, and management of APS.
Collapse
Affiliation(s)
| | | | - Gabrielle de Mello Santos
- Hospital das Clínicas of University of São Paulo Medical School, University of São Paulo, Sao Paulo, Brazil
| | | | | | | | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Helin TA, Lemponen M, Immonen K, Lakkisto P, Joutsi-Korhonen L. Circulating microRNAs targeting coagulation and fibrinolysis in patients with severe COVID-19. Thromb J 2024; 22:80. [PMID: 39237986 PMCID: PMC11375984 DOI: 10.1186/s12959-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) frequently causes coagulation disturbances. Data remains limited on the effects of microRNAs (miRNAs) on coagulation during COVID-19 infection. We aimed to analyze the comprehensive miRNA profile as well as coagulation markers and blood count in hospitalized COVID-19 patients. METHODS Citrated plasma samples from 40 patients (24 men and 16 women) hospitalized for COVID-19 were analyzed. Basic coagulation tests, von Willebrand factor (VWF), ADAMTS13, blood count, C-reactive protein, and 27 miRNAs known to associate with thrombosis or platelet activation were analyzed. MiRNAs were analyzed using quantitative reverse transcription polymerase chain reaction (RT qPCR), with 10 healthy controls serving as a comparator. RESULTS Among the patients, 15/36 (41%) had platelet count of over 360 × 109/L and 10/36 (28%) had low hemoglobin of < 100 g/L, while 26/37 (72%) had high VWF of over 200 IU/dL. Patients had higher levels of the miRNAs miR-27b-3p, miR-320a-3p, miR-320b-3p, and miR-424-5p, whereas levels of miR-103a-3p and miR-145-5p were lower than those in healthy controls. In total, 11 miRNAs were associated with platelet count. Let-7b-3p was associated with low hemoglobin levels of < 100 g/L. miR-24-3p, miR-27b-3p, miR-126-3p, miR-145-5p and miR-338-5p associated with high VWF. CONCLUSION COVID-19 patients differentially express miRNAs with target genes involved in fibrinolysis inhibition, coagulation activity, and increased inflammatory response. These findings support the notion that COVID-19 widely affects hemostasis, including platelets, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Tuukka A Helin
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland.
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| |
Collapse
|
8
|
Tsuboi Y, Yamada H, Fujii R, Yamazaki M, Munetsuna E, Ando Y, Ohashi K, Ishikawa H, Okumiyama H, Nakae M, Shimoda H, Sakata K, Suzuki K. High circulating microRNA-197 levels are associated with an increased risk of incident stroke among elderly survivors of the Great East Japan Earthquake. Biomarkers 2024; 29:368-375. [PMID: 39206818 DOI: 10.1080/1354750x.2024.2394109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Incidence of ischemic stroke increased after natural disasters. Therefore, it is important to establish a means of identifying high-risk populations for incident stroke. We performed a prospective cohort study to examine whether these three cardiovascular disease-related miRNAs (miR-126, miR-197, and miR-223) are associated with incident stroke among elderly survivors of the Great East Japan Earthquake. METHOD This cohort study was conducted using the data of 1192 survivors of the Great East Japan Earthquake over 60-years old who underwent a health check-up in December 2011. We followed up participants to record stroke cases until the end of 2016. We measured serum miRNAs by quantitative real-time polymerase chain reaction. HRs for incident stroke were estimated by Cox proportional hazard regression analyses. RESULT The serum miR-197 level was significantly associated with the incident stroke; the HR per one standard deviation change in the miR-197 level was 1.65 (95% confidence interval: 1.19 - 2.30). In contrast, the levels of miR-126 and miR-223 were not associated with the incident stroke. CONCLUSION We found that a higher miR-197 level is associated with an increased risk of incident stroke; thus, miR-197 is expected to be useful as a predictive biomarker.
Collapse
Affiliation(s)
- Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroshi Okumiyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Masaya Nakae
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Haruki Shimoda
- Department of Hygiene and Preventive Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Kiyomi Sakata
- Department of Hygiene and Preventive Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
9
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Plasma microRNA Environment Linked to Tissue Factor Pathway and Cancer-Associated Thrombosis: Prognostic Significance in Ovarian Cancer. Biomolecules 2024; 14:928. [PMID: 39199316 PMCID: PMC11352941 DOI: 10.3390/biom14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Ovarian cancer (OC) is a leading cause of death among gynaecological malignancies. The haemostatic system, which controls blood flow and prevents clotting disorders, paradoxically drives OC progression while increasing the risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) have emerged as crucial in understanding VTE pathogenesis. Exploring the connection between cancer and thrombosis through these RNAs could lead to novel biomarkers of cancer-associated thrombosis (CAT) and OC, as well as potential therapeutic targets for tumour management. Thus, this study examined the impact of eight plasma miRNAs targeting the tissue factor (TF) coagulation pathway-miR-18a-5p, -19a-3p, -20a-5p, -23a-3p, -27a-3p, -103a-3p, -126-5p and -616-3p-in 55 OC patients. Briefly, VTE occurrence post-OC diagnosis was linked to shorter disease progression time (log-rank test, p = 0.024) and poorer overall survival (OS) (log-rank test, p < 0.001). High pre-chemotherapy levels of miR-20a-5p (targeting coagulation factor 3 (F3) and tissue factor pathway inhibitor 2 (TFPI2)) and miR-616-3p (targeting TFPI2) predicted VTE after OC diagnosis (χ2, p < 0.05). Regarding patients' prognosis regardless of VTE, miR-20a-5p independently predicted OC progression (adjusted hazard ratio (aHR) = 6.13, p = 0.005), while miR-616-3p significantly impacted patients' survival (aHR = 3.72, p = 0.020). Further investigation is warranted for their translation into clinical practice.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
10
|
Shi R, Gao S, Huang H, Jiang K, Wang D. Integrating network pharmacology with microRNA microarray analysis to identify the role of miRNAs in thrombosis treated by the Dahuang Zhechong pill. Comput Biol Med 2024; 173:108338. [PMID: 38531252 DOI: 10.1016/j.compbiomed.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Thrombotic diseases are the leading causes of death worldwide, urging for improvements in treatment strategies. Dahuang Zhechong pill (DHZCP) is a traditional Chinese medicine widely used for treating thrombotic diseases; however, the underlying mechanisms remain unclear. This study aimed to explore the potential mechanisms of DHZCP in treating thrombosis with a focus on bioinformatics and miRNAs. METHODS We used network pharmacology to explore the targets of thrombosis treated with DHZCP and performed microarray analysis to acquire miRNA profiles and predict the target genes in thrombin-stimulated MEG-01 cells treated with DHZCP. Based on the overlapping of targets, we carried out a component-target-miRNA network and enrichment analysis and validated the selected miRNAs and mRNAs using quantitative reverse transcription-polymerase chain reaction. RESULTS Our data showed 850 targets of 230 active ingredients of DHZCP and 1214 thrombosis-related genes; 235 targets were common. We identified 32 miRNAs that were regulated by thrombin stimulation but regulated reversely by DHZCP treatment in MEG-01 cells, and predicted 1846 targets with function annotation. We analyzed conjointly 23 integrating targets from network pharmacology and microarray. HIF1A, PIK3CA, MAPK1 and BCL2L1 emerged as key nodes in the network diagrams. We confirmed the differential expression of seven miRNAs, one mRNA (BCL2L1) and platelet surface protein. CONCLUSIONS This study showed that miRNAs and their targets, such as BCL2L1, played crucial roles in platelet activation during DHZCP intervention in thrombosis, highlighting their potential to alleviate platelet activation and increase cell apoptosis. The study's findings could help develop new strategies for improving thrombosis treatment.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Shan Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ke Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Zöller B. miR-145 and incident thromboembolism. Blood 2024; 143:1686-1687. [PMID: 38662387 PMCID: PMC11443562 DOI: 10.1182/blood.2023023798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
|
12
|
Morelli VM, Snir O, Hindberg KD, Hveem K, Brækkan SK, Hansen JB. High microRNA-145 plasma levels are associated with decreased risk of future incident venous thromboembolism: the HUNT study. Blood 2024; 143:1773-1781. [PMID: 38211336 DOI: 10.1182/blood.2023022285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT MicroRNA-145 (miR-145) has been reported to downregulate the expression of tissue factor and factor XI in vitro and decrease venous thrombus formation in animal models. However, the association between miR-145 and risk of future venous thromboembolism (VTE) in the general population remains unknown. We investigated the association between plasma levels of miR-145 and risk of future VTE in a case-cohort study. Incident VTE cases (n = 510) and a subcohort (n = 1890) were derived from the third survey of the Trøndelag Health Study (HUNT3), a population-based cohort. The expression levels of miR-145 were measured in plasma samples obtained at baseline. The study population was divided into quartiles based on miR-145 levels in participants in the subcohort, and weighted Cox regression was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). Plasma levels of miR-145 were inversely associated with VTE risk. Participants with miR-145 levels in the highest quartile had a 49% lower risk of VTE (HR, 0.51; 95% CI, 0.38-0.68) than those with miR-145 in the lowest quartile in age- and sex-adjusted analysis, and the inverse association was most pronounced for unprovoked VTE (HR, 0.39; 95% CI, 0.25-0.61). Risk estimates remained virtually the same after further adjustment for body mass index, and cancer and arterial cardiovascular disease at baseline. In conclusion, elevated expression levels of miR-145 in plasma were associated with decreased risk of future incident VTE. The protective role of miR-145 against VTE is consistent with previous experimental data and suggests that miR-145 has the potential to be a target for VTE prevention.
Collapse
Affiliation(s)
- Vânia M Morelli
- Thrombosis Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Dalsbø Hindberg
- Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Levanger, Norway
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Sigrid K Brækkan
- Thrombosis Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - John-Bjarne Hansen
- Thrombosis Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
13
|
Sun L, Wang J, Lei J, Zhang Y, Zhang Y, Zhang Y, Xing S. Differential gene expression and miRNA regulatory network in coronary slow flow. Sci Rep 2024; 14:8419. [PMID: 38600259 PMCID: PMC11006858 DOI: 10.1038/s41598-024-58745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Coronary slow flow (CSF) is characterized by slow progression of coronary angiography without epicardial stenosis. The aim of this study was to explore the potential biomarkers and regulatory mechanism for CSF. Peripheral blood mononuclear cells from 3 cases of CSF and 3 healthy controls were collected for high-throughput sequencing of mRNA and miRNA, respectively. The differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) was identified. A total of 117 DE-mRNAs and 32 DE-miRNAs were obtained and they were mainly enriched in immune and inflammatory responses. Twenty-six DE-mRNAs were the predicted target genes for miRNAs by RAID, and then the regulatory network of 15 miRNAs were constructed. In addition, through the PPI network, we identified the three genes (FPR1, FPR2 and CXCR4) with larger degrees as hub genes. Among them, FPR1 was regulated by hsa-miR-342-3p, hsa-let-7c-5p and hsa-miR-197-3p and participated in the immune response. Finally, we validated the differential expression of hub genes and key miRNAs between 20 CSF and 20 control. Moreover, we found that miR-342-3p has a targeted regulatory relationship with FPR1, and their expression is negatively correlated. Then we established a hypoxia/reoxygenation (H/R) HUVEC model and detected FPR1, cell proliferation and apoptosis. Transfection with miR-342-3p mimics can significantly promote the proliferation of HUVEC under H/R conditions. FPR1 were associated with CSF as a biomarker and may be regulated by miR-342-3p potential biomarkers.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Jimin Lei
- Department of Cardiology, Zhongshan Boai Hospital Affiliated to South Medical University, No. 6, Chenggui Road, Zhongshan, 528405, Guangdong, China
| | - Ying Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yue Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Yaling Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China
| | - Shifeng Xing
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 Henan West Road, Xinshi District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
14
|
Srivastava S, Garg I, Ghosh N, Varshney R. Therapeutic implication of MicroRNA-320a antagonist in attenuating blood clots formed during venous thrombosis. J Thromb Thrombolysis 2024; 57:699-709. [PMID: 38393674 DOI: 10.1007/s11239-024-02947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Venous thrombosis (VT) is a complex multi-factorial disease and a major health concern worldwide. Its clinical implications include deep vein thrombosis (DVT) and pulmonary embolism (PE). VT pathogenesis involves intricate interplay of various coagulants and anti-coagulants. Growing evidences from epidemiological studies have shown that many non-coding microRNAs play significant regulatory role in VT pathogenesis by modulating expressions of large number of gene involved in blood coagulation. Present study aimed to investigate the effect of human micro RNA (hsa-miR)-320a antagonist on thrombus formation in VT. Surgery was performed on Sprague-Dawley (SD) rats, wherein the inferior vena cava (IVC) was ligated to introduce DVT. Animals were divided into four groups (n = 5 in each group); Sham controls (Sham), IVC ligated-DVT (DVT), IVC ligated-DVT + transfection reagent (DVT-NC) and IVC ligated-DVT + miR320a antagonist (DVT-miR-320a antagonist). IVC was dissected after 6 h and 24 h of surgery to estimate thrombus weight and coagulatory parameters such as levels of D-dimer, clotting time and bleeding time. Also, ELISA based biochemical assays were formed to assess toxicity of miRNA antagonist in animals. Our experimental analysis demonstrated that there was a marked reduction in size of thrombus in hsa-miR-320a antagonist treated animals, both at 6 h and 24 h. There was a marked reduction in D-dimer levels in hsa-miR-320a antagonist treated animals. Also, blood clotting time was delayed and bleeding time was increased significantly in hsa-miR-320a antagonist treated rats compared to the non-treated and Sham rats. There was no sign of toxicity in treated group compared to control animals. Hsa-miR-320a antagonist could be promising therapeutic target for management of VT.
Collapse
Affiliation(s)
- Swati Srivastava
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Iti Garg
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
15
|
Zhou K, Li N, Qi J, Tu P, Yang Y, Duan H. Diagnostic and prognostic potential of long non-coding RNA NORAD in patients with acute deep vein thrombosis and its role in endothelial cell function. Thromb J 2024; 22:3. [PMID: 38167080 PMCID: PMC10763087 DOI: 10.1186/s12959-023-00575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) is the common clinical cardiovascular disease, and easily develops into post-thrombotic syndrome (PTS). The study aimed to examine the clinical value of long non-coding RNA NORAD gene in the development of DVT and PTS. In vitro, the underlying mechanism was explored. METHODS Serum levels of lncRNA NORAD gene in 85 DVT cases and 85 healthy individuals were tested. The role of lncRNA NORAD gene in human umbilical vein endothelial cells (HUVECs) proliferation, migration and inflammation was examined. The candidate downstream target gene was predicted via bioinformatic analysis. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were done for the function annotation and pathway enrichment. RESULTS LncRNA NORAD gene was at high expression in the serum of DVT patients, it can distinguish DVT patients from healthy controls with the area under the curve of 0.919. Elevated expression of lncRNA NORAD gene in PTS patients was detected, DVT cases with high expression of lncRNA NORAD gene were more susceptible to PTS. LncRNA NORAD gene knockdown promoted HUVECs' proliferation, migration while suppressing cell apoptosis and inflammation. MiR-93-5p served as a target of lncRNA NORAD gene, and its overexpression reversed the role of lncRNA NORAD gene in the biological function of HUVECs. The target genes of miR-93-5p were enriched in HIF-1 signaling, TGF-beta signaling and PI3K-Akt signaling, protein-protein interaction (PPI) network indicated STAT3, MAPK1 to be the key targets. CONCLUSIONS Upregulation of expression of lncRNA NORAD gene was a potential diagnostic biomarker for DVT and related to the development of PTS. LncRNA NORAD/miR-93-5p axis was involved in the progress of DVT through regulating endothelial cell function.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Na Li
- Department of Hematology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Jia Qi
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Pingping Tu
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Yan Yang
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Hui Duan
- Department of Emergency, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, No.32, Renmin South Road, 442000, Shiyan, Huibei Province, China.
| |
Collapse
|
16
|
Masoudikabir P, Shirazy M, Taghizadeh FS, Gheydari ME, Hamidpour M. Platelet-enriched microRNAs as novel biomarkers in atherosclerotic and cardiovascular disease patients. ARYA ATHEROSCLEROSIS 2024; 20:47-67. [PMID: 39717424 PMCID: PMC11663285 DOI: 10.48305/arya.2024.41664.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 12/25/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a global health challenge. Various studies have shown that genetic and environmental factors play roles in the development and progression of CVD. Small non-coding RNAs, namely microRNAs (miRs), regulate gene expression and have key roles in essential cellular processes such as apoptosis, cell cycle, differentiation, and proliferation. Currently, clinical studies highlight the critical role of platelets and miRs in coronary thrombosis, atherosclerosis, and CVD. METHODS Using search engines such as PubMed and Scopus, articles studying platelet miRs and their effects on atherosclerosis and cardiovascular disease were reviewed. RESULTS This article presents a comprehensive analysis of the association of platelet-related miRs as prognostic, diagnostic, and therapeutic biomarkers with the pathogenesis of atherosclerosis and cardiovascular disease. CONCLUSION Taken together, data show that platelet-related miRs not only play important roles in the initial development of atherosclerosis and cardiovascular disease (CVD), but they are also considered prognostic and diagnostic biomarkers in CVD.
Collapse
Affiliation(s)
- Parisa Masoudikabir
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shirazy
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohamad Esmail Gheydari
- Department of Cardiology, Taleghani General Hospital. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic stem cell Research Centre- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Imiela AM, Mikołajczyk TP, Pruszczyk P. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0021. [PMID: 39466143 DOI: 10.2478/aite-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024]
Abstract
Accumulating data have shown a pathophysiological association between inflammatory pathways and thrombosis. Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and acute pulmonary embolism (APE), is a significant health burden. It involves not only hemodynamic disturbances due to the emboli occluding the pulmonary arteries, but also platelet activation, endothelial dysfunction, and "firing up" of the inflammatory cascade. In humans, the systemic inflammatory state can also be evaluated using plasma levels of C-reactive protein (CRP) and interleukin (IL)-6, which correlate with venous obstruction, thrombus extension, and clinical VTE complications such as postthrombotic syndrome, recurrent thromboembolism, worse quality of life, and functional impairment. The exaggerated inflammatory state during postthrombotic syndrome aligns with severe alterations in endothelial function, such as activation of intercellular adhesion molecule (ICAM)-1 and E-selectin, as well as vascular proteolysis and fibrinolysis. Moreover, a hypercoagulable state, indicated by higher levels of von Willebrand factor (vWF) and factor VIII, is closely associated with the inflammatory response. We aimed to describe the role of basic inflammatory markers in daily clinical practice as well as the most important cytokines (IL-1β, IL-6, IL-8, tumor necrosis factor-a [TNF-α], growth differentiation factor-15 [GDF-15]). These markers could provide valuable insight into the interplay between thrombosis and inflammation, helping inform better management and treatment strategies.
Collapse
Affiliation(s)
- Anna M Imiela
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College
| | - Piotr Pruszczyk
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Tavares V, Neto BV, Marques IS, Assis J, Pereira D, Medeiros R. Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway? Biochim Biophys Acta Rev Cancer 2024; 1879:189053. [PMID: 38092078 DOI: 10.1016/j.bbcan.2023.189053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Cancer patients are often diagnosed with venous thromboembolism (VTE), a cardiovascular disease that substantially decreases their quality of life and survival rate. Haemostasis in these patients is deregulated, which is reflected in the common presentation of a blood hypercoagulation state. Despite the inconsistent results, existing evidence suggests that the expression of microRNAs (miRNAs) is deregulated in the context of venous thrombogenesis in the general population. However, few miRNAs are known to be linked to cancer-associated VTE due to the lack of studies with oncological patients. Parallelly, coagulation factor III, also known as tissue factor (TF), tissue factor pathway inhibitor 1 (TFPI1) and tissue factor pathway inhibitor 2 (TFPI2) have been proposed to have a central role in cancer-associated VTE and tumour progression. Yet, contrary to what was expected, the role of miRNAs targeting the TF coagulation pathway (or extrinsic coagulation pathway) is poorly explored in cancer-induced thrombogenesis. In this review, in addition to miRNAs implicated in VTE, TF and TFPI1/2-targeting miRNAs were revised. Future studies should clarify the implications of these non-coding RNAs in tumour coagulome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal; Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| |
Collapse
|
19
|
Gumiężna K, Bednarek A, Sygitowicz G, Maciejak-Jastrzębska A, Baruś P, Hunia J, Klimczak-Tomaniak D, Kochman J, Grabowski M, Tomaniak M. Platelet microRNAs as Potential Novel Biomarkers for Antiplatelet Therapy with P2Y 12 Inhibitors and Their Association with Platelet Function. J Clin Med 2023; 13:63. [PMID: 38202070 PMCID: PMC10780110 DOI: 10.3390/jcm13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) require dual antiplatelet therapy (DAPT). However, the response to treatment can vary considerably. Certain platelet microRNAs (miRs) are suspected to predict DAPT response and influence platelet function. This study aimed to analyze selected miRs' expressions and compare them among patients treated with different P2Y12 inhibitors while assessing their association with platelet activity and turnover parameters. MATERIALS AND METHODS We recruited 79 ACS patients post-PCI treated with clopidogrel, ticagrelor, or prasugrel, along with 18 healthy volunteers. Expression levels of miR-126-3p, miR223-3p, miR-21-5p, miR-197-3p, and miR-24-3p, as well as immature platelet fraction (IPF) and ADP-induced platelet reactivity, were measured and compared between groups. RESULTS Analyses revealed significantly lower expressions of miR-126-3p, miR-223-3p, miR-21-5p, and miR-197-3p in patients treated with ticagrelor, compared to clopidogrel (fold changes from -1.43 to -1.27, p-values from 0.028 to 0.048). Positive correlations were observed between platelet function and the expressions of miR-223-3p (r = 0.400, p = 0.019) and miR-21-5p (r = 0.423, p = 0.013) in patients treated with potent drugs. Additionally, miR-24-3p (r = 0.411, p = 0.012) and miR-197-3p (r = 0.333, p = 0.044) showed correlations with IPF. CONCLUSIONS The identified platelet miRs hold potential as biomarkers for antiplatelet therapy. (ClinicalTrials.gov number, NCT06177587).
Collapse
Affiliation(s)
- Karolina Gumiężna
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Adrian Bednarek
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Grażyna Sygitowicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw, 02-097 Warsaw, Poland; (G.S.); (A.M.-J.)
| | - Agata Maciejak-Jastrzębska
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw, 02-097 Warsaw, Poland; (G.S.); (A.M.-J.)
| | - Piotr Baruś
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Jaromir Hunia
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.G.)
| |
Collapse
|
20
|
Wang X, Memon AA, Hedelius A, Grundberg A, Elf JL, Svensson PJ, Sundquist J, Sundquist K. Association of Circulating Long Noncoding 7S RNA with Deep Vein Thrombosis. Semin Thromb Hemost 2023; 49:702-708. [PMID: 37611624 DOI: 10.1055/s-0043-1772705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Mitochondrial dysfunction is a recognized factor in the pathogenesis of deep vein thrombosis (DVT). The role of 7S RNA, a long noncoding RNA that plays an important role in mitochondrial function, in DVT remains unclear. In this study, we aimed to investigate the potential use of 7S RNA as a biomarker in DVT. Plasma samples were obtained from 237 patients (aged 16-95 years) with suspected DVT recruited in a prospective multicenter management study (SCORE) where 53 patients were objectively confirmed with a diagnosis of DVT and the rest were diagnosed as non-DVT. 7S RNA was measured using quantitative real-time polymerase chain reaction in plasma samples. The plasma expression of 7S RNA was significantly lower in DVT compared with non-DVT (0.50 vs. 0.95, p = 0.043). With the linear regression analysis, we showed that the association between the plasma expression of 7S RNA and DVT (β = -0.72, p = 0.007) was independent of potential confounders. Receiver-operating characteristic curve analysis showed the area under the curve values of 0.60 for 7S RNA. The findings of the present study showed a notable association between 7S RNA and DVT. However, further investigations are needed to fully elucidate the exact role of 7S RNA in the pathophysiology of DVT and its diagnostic value.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Ashfaque A Memon
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Anna Hedelius
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Anton Grundberg
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Johan L Elf
- Department of Coagulation Disorders, Lund University, Malmö, University Hospital, Malmö, Sweden
| | - Peter J Svensson
- Department of Coagulation Disorders, Lund University, Malmö, University Hospital, Malmö, Sweden
| | - Jan Sundquist
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Functional Pathology, School of Medicine, Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Shimane, Japan
| | - Kristina Sundquist
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Functional Pathology, School of Medicine, Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Shimane, Japan
| |
Collapse
|
21
|
Ten Cate V, Rapp S, Schulz A, Pallares Robles A, Jurk K, Koeck T, Espinola-Klein C, Halank M, Seyfarth HJ, Beutel ME, Schuster AK, Marini F, Hobohm L, Lankeit M, Lackner KJ, Ruf W, Münzel T, Andrade-Navarro MA, Prochaska JH, Konstantinides SV, Wild PS. Circulating microRNAs predict recurrence and death following venous thromboembolism. J Thromb Haemost 2023; 21:2797-2810. [PMID: 37481073 DOI: 10.1016/j.jtha.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Recurrent events frequently occur after venous thromboembolism (VTE) and remain difficult to predict based on established genetic, clinical, and proteomic contributors. The role of circulating microRNAs (miRNAs) has yet to be explored in detail. OBJECTIVES To identify circulating miRNAs predictive of recurrent VTE or death, and to interpret their mechanistic involvement. METHODS Data from 181 participants of a cohort study of acute VTE and 302 individuals with a history of VTE from a population-based cohort were investigated. Next-generation sequencing was performed on EDTA plasma samples to detect circulating miRNAs. The endpoint of interest was recurrent VTE or death. Penalized regression was applied to identify an outcome-relevant miRNA signature, and results were validated in the population-based cohort. The involvement of miRNAs in coregulatory networks was assessed using principal component analysis, and the associated clinical and molecular phenotypes were investigated. Mechanistic insights were obtained from target gene and pathway enrichment analyses. RESULTS A total of 1950 miRNAs were detected across cohorts after postprocessing. In the discovery cohort, 50 miRNAs were associated with recurrent VTE or death (cross-validated C-index, 0.65). A weighted miRNA score predicted outcome over an 8-year follow-up period (HRSD, 2.39; 95% CI, 1.98-2.88; P < .0001). The independent validation cohort validated 20 miRNAs (ORSD for score, 3.47; 95% CI, 2.37-5.07; P < .0001; cross-validated-area under the curve, 0.61). Principal component analysis revealed 5 miRNA networks with distinct relationships to clinical phenotype and outcome. Mapping of target genes indicated regulation via transcription factors and kinases involved in signaling pathways associated with fibrinolysis. CONCLUSION Circulating miRNAs predicted the risk of recurrence or death after VTE over several years, both in the acute and chronic phases.
Collapse
Affiliation(s)
- Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany. https://twitter.com/cesm_mainz
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alejandro Pallares Robles
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Koeck
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christine Espinola-Klein
- Department of Angiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Halank
- Department of Internal Medicine I and Pulmonology, Carl Gustav Carus Hospital, University of Dresden, Dresden, Germany
| | | | - Manfred E Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander K Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lukas Hobohm
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mareike Lankeit
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Internal Medicine and Cardiology, Campus Virchow Klinikum (CVK), Charité - University Medicine Berlin, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wolfram Ruf
- Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Thomas Münzel
- Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany; Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany
| | - Stavros V Konstantinides
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum (CVK), Charité - University Medicine Berlin, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Partner Site Rhine-Main, German Centre for Cardiovascular Research (DZHK), Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
22
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
23
|
Kotlyar MJ, Krebs M, Solimando AG, Marquardt A, Burger M, Kübler H, Bargou R, Kneitz S, Otto W, Breyer J, Vergho DC, Kneitz B, Kalogirou C. Critical Evaluation of a microRNA-Based Risk Classifier Predicting Cancer-Specific Survival in Renal Cell Carcinoma with Tumor Thrombus of the Inferior Vena Cava. Cancers (Basel) 2023; 15:cancers15071981. [PMID: 37046643 PMCID: PMC10093292 DOI: 10.3390/cancers15071981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
(1) Background: Clear cell renal cell carcinoma extending into the inferior vena cava (ccRCCIVC) represents a clinical high-risk setting. However, there is substantial heterogeneity within this patient subgroup regarding survival outcomes. Previously, members of our group developed a microRNA(miR)-based risk classifier—containing miR-21-5p, miR-126-3p and miR-221-3p expression—which significantly predicted the cancer-specific survival (CSS) of ccRCCIVC patients. (2) Methods: Examining a single-center cohort of tumor tissue from n = 56 patients with ccRCCIVC, we measured the expression levels of miR-21, miR-126, and miR-221 using qRT-PCR. The prognostic impact of clinicopathological parameters and miR expression were investigated via single-variable and multivariable Cox regression. Referring to the previously established risk classifier, we performed Kaplan–Meier analyses for single miR expression levels and the combined risk classifier. Cut-off values and weights within the risk classifier were taken from the previous study. (3) Results: miR-21 and miR-126 expression were significantly associated with lymphonodal status at the time of surgery, the development of metastasis during follow-up, and cancer-related death. In Kaplan–Meier analyses, miR-21 and miR-126 significantly impacted CSS in our cohort. Moreover, applying the miR-based risk classifier significantly stratified ccRCCIVC according to CSS. (4) Conclusions: In our retrospective analysis, we successfully validated the miR-based risk classifier within an independent ccRCCIVC cohort.
Collapse
Affiliation(s)
- Mischa J. Kotlyar
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus Krebs
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - André Marquardt
- Department of Pathology, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St. Josef, University of Regensburg Medical Center, 93053 Regensburg, Germany
| | - Hubert Kübler
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry I, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Wolfgang Otto
- Department of Urology, Caritas St. Josef, University of Regensburg Medical Center, 93053 Regensburg, Germany
| | - Johannes Breyer
- Department of Urology, Caritas St. Josef, University of Regensburg Medical Center, 93053 Regensburg, Germany
| | - Daniel C. Vergho
- Department of Urology, Caritas St. Josef, University of Regensburg Medical Center, 93053 Regensburg, Germany
| | - Burkhard Kneitz
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-201-32001
| |
Collapse
|
24
|
Anijs RJS, Nguyen YN, Cannegieter SC, Versteeg HH, Buijs JT. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J Thromb Haemost 2023; 21:7-17. [PMID: 36695398 DOI: 10.1016/j.jtha.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with gene regulatory functions and are commonly dysregulated in disease states. As miRNAs are relatively stable, easily measured, and accessible from plasma or other body fluids, they are promising biomarkers for the diagnosis and prediction of cancer and cardiovascular diseases. Venous thromboembolism (VTE) is the third most common cardiovascular disease worldwide with high morbidity and mortality. The suggested roles of miRNAs in regulating the pathophysiology of VTE and as VTE biomarkers are nowadays more evidenced. Patients with cancer are at increased risk of developing VTE compared to the general population. However, current risk prediction models for cancer-associated thrombosis (CAT) perform suboptimally, and novel biomarkers are therefore urgently needed to identify which patients may benefit the most from thromboprophylaxis. This review will first discuss how miRNAs mechanistically contribute to the pathophysiology of VTE. Next, the potential use of miRNAs as predictive biomarkers for VTE in subjects without cancer is reviewed, followed by an in-depth focus on CAT. Several of the identified miRNAs in CAT were found to be differentially regulated in VTE as well, giving clues on the pathophysiology of CAT. We propose that subsequent studies should be adequately sized to determine which panel of miRNAs best predicts VTE and CAT. Thereafter, validation studies using comparable patient populations are required to ultimately unveil whether miRNAs-as standalone or incorporated into existing risk models-are promising valuable VTE and CAT biomarkers.
Collapse
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yen Nhi Nguyen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
25
|
Doncheva AI, Romero S, Ramirez‐Garrastacho M, Lee S, Kolnes KJ, Tangen DS, Olsen T, Drevon CA, Llorente A, Dalen KT, Hjorth M. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol (Oxf) 2022; 236:e13862. [PMID: 36377504 PMCID: PMC9788120 DOI: 10.1111/apha.13862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/29/2023]
Abstract
Extracellular vesicles induced by exercise have emerged as potential mediators of tissue crosstalk. Extracellular vesicles and their cargo miRNAs have been linked to dysglycemia and obesity in animal models, but their role in humans is unclear. AIM The aim of the study was to characterize the miRNA content in plasma extracellular vesicle isolates after acute and long-term exercise and to study associations between extracellular vesicle miRNAs, mRNA expression in skeletal muscle and adipose tissue, and cardiometabolic risk factors. METHODS Sedentary men with or without dysglycemia and overweight underwent an acute bicycle test and a 12-week exercise intervention with extensive metabolic phenotyping. Gene expression in m. vastus lateralis and subcutaneous adipose tissue was measured with RNA sequencing. Extracellular vesicles were purified from plasma with membrane affinity columns or size exclusion chromatography. RESULTS Extracellular vesicle miRNA profiling revealed a transient increase in the number of miRNAs after acute exercise. We identified miRNAs, such as miR-652-3p, that were associated to insulin sensitivity and adiposity. By performing explorative association analyses, we identified two miRNAs, miR-32-5p and miR-339-3p, that were strongly correlated to an adipose tissue macrophage signature. CONCLUSION Numerous miRNAs in plasma extracellular vesicle isolates were increased by exercise, and several miRNAs correlated to insulin sensitivity and adiposity. Our findings warrant future studies to characterize exercise-induced extracellular vesicles and cargo miRNA to clarify where exercise-induced extracellular vesicles originate from, and to determine whether they influence metabolic health or exercise adaptation.
Collapse
Affiliation(s)
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | | | - Sindre Lee
- Department of Transplantation, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Kristoffer J. Kolnes
- Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark,Department of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | | | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway,Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
26
|
[Research progress of Molecular diagnostic technique in Venous Thromboembolism]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:964-968. [PMID: 36709191 PMCID: PMC9808858 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Cellular microRNAs correlate with clinical parameters in multiple injury patients. J Trauma Acute Care Surg 2022; 93:427-438. [PMID: 35797620 PMCID: PMC9488942 DOI: 10.1097/ta.0000000000003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The pathophysiology of the inflammatory response after major trauma is complex, and the magnitude correlates with severity of tissue injury and outcomes. Study of infection-mediated immune pathways has demonstrated that cellular microRNAs may modulate the inflammatory response. The authors hypothesize that the expression of microRNAs would correlate to complicated recoveries in polytrauma patients (PtPs). METHODS Polytrauma patients enrolled in the prospective observational Tissue and Data Acquisition Protocol with Injury Severity Score of >15 were selected for this study. Polytrauma patients were divided into complicated recoveries and uncomplicated recovery groups. Polytrauma patients' blood samples were obtained at the time of admission (T0). Established biomarkers of systemic inflammation, including cytokines and chemokines, were measured using multiplexed Luminex-based methods, and novel microRNAs were measured in plasma samples using multiplex RNA hybridization. RESULTS Polytrauma patients (n = 180) had high Injury Severity Score (26 [20-34]) and complicated recovery rate of 33%. MicroRNAs were lower in PtPs at T0 compared with healthy controls, and bivariate analysis demonstrated that variations of microRNAs correlated with age, race, comorbidities, venous thromboembolism, pulmonary complications, complicated recovery, and mortality. Positive correlations were noted between microRNAs and interleukin 10, vascular endothelial growth factor, Acute Physiology and Chronic Health Evaluation, and Sequential Organ Failure Assessment scores. Multivariable Lasso regression analysis of predictors of complicated recovery based on microRNAs, cytokines, and chemokines revealed that miR-21-3p and monocyte chemoattractant protein-1 were predictive of complicated recovery with an area under the curve of 0.78. CONCLUSION Systemic microRNAs were associated with poor outcomes in PtPs, and results are consistent with previously described trends in critically ill patients. These early biomarkers of inflammation might provide predictive utility in early complicated recovery diagnosis and prognosis. Because of their potential to regulate immune responses, microRNAs may provide therapeutic targets for immunomodulation. LEVEL OF EVIDENCE Diagnostic Tests/Criteria; Level II.
Collapse
|
28
|
Tian X, Liu J, Jia W, Jiang P, Cheng Z, Zhang Y, Li J, Liu X, Tian C. MiR-197-3p affects angiogenesis and inflammation of endothelial cells by targeting CXCR2/COX2 axis. Am J Transl Res 2022; 14:4666-4677. [PMID: 35958438 PMCID: PMC9360832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Decreased circulating miR-197-3p was found in patients with recurrent deep vein thrombosis (DVT), but the specific role of miR-197-3p needs further exploration. MATERIALS AND METHODS Venous blood samples were collected from DVT patients and healthy controls, and peripheral blood mononuclear cells (PBMCs) were isolated to examine the expression patterns of miR-197-3p, CXCR2 and COX2 by qRT-PCR. Human umbilical vein endothelial cells (HUVECs) were further used as a cellular model to investigate the role of the miR-197-3p/CXCR2/COX2 axis in regulating cell viability, angiogenesis, and inflammation, which were determined by MTT assay, Matrigel-based tube formation assay, and enzyme-linked immunosorbent assay, respectively. Dual-luciferase reporter assay was used to examine the interactions between miR-198-3p and CXCR2. Expression of NF-κB p65 was examined by western blot to investigate whether the NF-κB pathway was involved in the regulatory effect of miR-197-3p on DVT. RESULTS miR-197-3p was decreased in PBMCs of patients with DVT, while CXCR2 and COX2 were increased compared to the healthy controls. In HUVECs, overexpression of miR-197-3p reduced CXCR2 levels and inhibited cell viability, angiogenesis, and release of inflammatory cytokines including TNF-α, IL-1β, and IL-6, which were reversed by miR-197-3p inhibition. Dual-luciferase reporter assay indicated miR-197-3p directly bound to CXCR2. CXCR2 further upregulated the expression of COX2 and activated the NF-κB pathway, promoting cell viability, angiogenesis and release of inflammatory cytokines in HUVECs. The effect of miR-197-3p inhibition on cell viability, angiogenesis and inflammation of HUVECs could be reversed by CXCR2 silencing. CONCLUSION MiR-197-3p affected viability, angiogenesis and inflammation of endothelial cells by targeting CXCR2/COX2 axis in vitro. Our findings provided a novel theoretical basis to investigate more effective therapies for DVT.
Collapse
Affiliation(s)
- Xuan Tian
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Jianlong Liu
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Wei Jia
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Peng Jiang
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Zhiyuan Cheng
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Yunxin Zhang
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Jinyong Li
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Xiao Liu
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| | - Chenyang Tian
- Department of Vascular Surgery, Beijing Jishuitan Hospital Beijing 100035, China
| |
Collapse
|
29
|
Onuoha CP, Ipe J, Simpson E, Liu Y, Skaar T, Kreutz RP. MicroRNA
sequencing in patients with coronary artery disease – considerations for use as biomarker for thrombotic risk. Clin Transl Sci 2022; 15:1946-1958. [PMID: 35643946 PMCID: PMC9372418 DOI: 10.1111/cts.13307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs integral in the regulation of gene expression. Analysis of circulating miRNA levels may identify patients with coronary artery disease (CAD) at risk for recurrent myocardial infarction (MI) after percutaneous coronary interventions (PCIs). Subjects with CAD were selected from the GENCATH cardiac catheterization biobank. Subjects with recurrent MI after PCI were compared with those without recurrent MI during follow‐up in the initial (n = 48) and replication cohort (n = 67). Next generation MiRNA sequencing was performed on plasma samples and whole blood samples fixed with PAXGENE tubes upon collection. Overall, 164 miRNAs derived from whole blood were differentially expressed in the replication cohort between subjects with and without recurrent MI events (p < 0.05), with 69 remaining significant after false‐discovery rate (FDR) correction. None of the miRNAs in plasma was significantly different by FDR among subjects with and without MI. Overall, correlation between direction of effects between plasma and whole blood assays was variable, and only two miRNAs were concordant and significant in both. Associations of miRNA with vascular disease, MI, and thrombosis were further explored. MiRNA profiling has potential as the future biomarker for disease prognosis and treatment response marker in secondary treatment of patients with CAD after PCI. Whole blood may be the preferred sample source as compared to plasma.
Collapse
Affiliation(s)
- Chimnonso P. Onuoha
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Joseph Ipe
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Edward Simpson
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Yunlong Liu
- Center for Medical Genomics Indiana University School of Medicine Indianapolis Indiana USA
| | - Todd C. Skaar
- Department of Medicine/Clinical Pharmacology Indiana University School of Medicine Indianapolis Indiana USA
| | - Rolf P. Kreutz
- Department of Medicine/Cardiology Indiana University School of Medicine Indianapolis Indiana USA
| |
Collapse
|
30
|
Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Prietl B, Prüller F, von Lewinski D, De Rosa S, Siller-Matula JM, Postula M, Sourij H. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol 2022; 21:79. [PMID: 35596173 PMCID: PMC9123651 DOI: 10.1186/s12933-022-01517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) an association between severe hypoglycaemic episodes and the risk of cardiovascular (CV) morbidity and mortality has been previously established. METHODS We aimed to investigate the influence of hypoglycaemia on several diabetes-related and platelet-related miRNAs selected based on bioinformatic analysis and literature search, including hsa-miR-16, hsa-miR-34a, hsa-miR-129-2, hsa-miR-15a, hsa-miR-15b, hsa-miR-106a, miR-223, miR-126. Selected miRNAs were validated by qRT-PCR in 14 patients with T2DM on metformin monotherapy, without established CV disease and antiplatelet therapy during a stepwise hypoglycaemic clamp experiment and a follow-up 7 days after the clamp event. In order to identify which pathways and phenotypes are associated with validated miRNAs we performed target prediction on genes expressed with high confidence in platelets. RESULTS Circulating levels of miR-106a-5p, miR-15b, miR-15a, miR-16-5p, miR-223 and miR-126 were increased after euglycaemic clamp followed by hypoglycaemic clamp, each with its distinctive time trend. On the contrary, miR-129-2-3p, miR-92a-3p and miR-34a-3p remained unchanged. MiR-16-5p was negatively correlated with interleukin (IL)-6, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) (p = 0.002, p < 0.001, p = 0.016, respectively), whereas miR-126 was positively correlated with VCAM (p < 0.001). There were negative correlations between miR-16-5p, miR-126 and coagulation factors, including factor VIII and von Willebrand factor (vWF). Among all studied miRNAs, miR-126, miR-129-2-3p and miR-15b showed correlation with platelet function. Bioinformatic analysis of platelet-related targets of analyzed miRNAs showed strong enrichment of IL-2 signaling. We also observed significant enrichment of pathways and diseases related to cancer, CV diseases, hyperglycemia, and neurological diseases. CONCLUSIONS Hypoglycaemia can significantly influence the expression of platelet-enriched miRNAs, with a time trend paralleling the time course of platelet activation. This suggests miRNAs could be exploited as biomarkers for platelet activation in response to hypoglycaemia, as they are probably released by platelets upon activation by hypoglycaemic episodes. Should they hold their promise in clinical endpoint studies, platelet-derived miRNAs might become helpful markers of CV risk in subjects with diabetes. Trial registration The study was registered at clinical trials.gov; Impact of Hypoglycaemia in Patients With DIAbetes Mellitus Type 2 on PLATElet Activation (Diaplate), trial number: NCT03460899.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Faisal Aziz
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Norbert J Tripolt
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
32
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
33
|
Sobrero M, Montecucco F, Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4180215. [PMID: 35047634 PMCID: PMC8763471 DOI: 10.1155/2022/4180215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Venous thromboembolism (VTE) represents the third most frequent cause of acute cardiovascular syndrome. Among VTE, acute pulmonary embolism (APE) is the most life-threatening complication. Due to the low specificity of symptoms clinical diagnosis of APE may be sometimes very difficult. Accordingly, the latest European guidelines only suggest clinical prediction tests for diagnosis of APE, eventually associated with D-dimer, a biomarker burdened by a very low specificity. A growing body of evidence is highlighting the role of miRNAs in hemostasis and thrombosis. Due to their partial inheritance and susceptibility to the environmental factors, miRNAs are increasingly described as active modifiers of the classical Virchow's triad. Clinical evidence on deep venous thrombosis reported specific miRNA signatures associated to thrombosis development, organization, recanalization, and resolution. Conversely, data of miRNA profiling as a predictor/diagnostic marker of APE are still preliminary. Here, we have summarized clinical evidence on the potential role of miRNA in diagnosis of APE. Despite some intriguing insight, miRNA assay is still far from any potential clinical application. Especially, the small sample size of cohorts likely represents the major limitation of published studies, so that extensive analysis of miRNA profiles with a machine learning approach are warranted in the next future. In addition, the cost-benefit ratio of miRNA assay still has a negative impact on their clinical application and routinely test.
Collapse
Affiliation(s)
- Matteo Sobrero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
34
|
Identification of four hub genes in venous thromboembolism via weighted gene coexpression network analysis. BMC Cardiovasc Disord 2021; 21:577. [PMID: 34861826 PMCID: PMC8642897 DOI: 10.1186/s12872-021-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background The pathogenic mechanisms of venous thromboembolism (VT) remain to be defined. This study aimed to identify differentially expressed genes (DEGs) that could serve as potential therapeutic targets for VT. Methods Two human datasets (GSE19151 and GSE48000) were analyzed by the robust rank aggregation method. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were conducted for the DEGs. To explore potential correlations between gene sets and clinical features and to identify hub genes, we utilized weighted gene coexpression network analysis (WGCNA) to build gene coexpression networks incorporating the DEGs. Then, the levels of the hub genes were analyzed in the GSE datasets. Based on the expression of the hub genes, the possible pathways were explored by gene set enrichment analysis and gene set variation analysis. Finally, the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) analysis in the GEO database. Results In this study, we identified 54 upregulated and 10 downregulated genes that overlapped between normal and VT samples. After performing WGCNA, the magenta module was the module with the strongest negative correlation with the clinical characteristics. From the key module, FECH, GYPA, RPIA and XK were chosen for further validation. We found that these genes were upregulated in VT samples, and high expression levels were related to recurrent VT. Additionally, the four hub genes might be highly correlated with ribosomal and metabolic pathways. The ROC curves suggested a diagnostic value of the four genes for VT. Conclusions These results indicated that FECH, GYPA, RPIA and XK could be used as promising biomarkers for the prognosis and prediction of VT. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02409-4.
Collapse
|
35
|
Zhang Q, Zhu F, Luo Y, Liao J, Cao J, Xue T. Platelet miR-107 Participates in Clopidogrel Resistance after PCI Treatment by Regulating P2Y12. Acta Haematol 2021; 145:46-53. [PMID: 34474410 DOI: 10.1159/000517811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/11/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION High platelet reactivity (HPR) caused by clopidogrel tolerance is an adverse reaction of acute coronary syndrome (ACS) patients who receive clopidogrel antiplatelet therapy after percutaneous coronary intervention (PCI) surgery. Platelet microRNA (miRNA) is related to platelet reactivity. This study explored the mechanism of platelet miRNA in regulating platelet reactivity. METHODS We recruited 50 ACS/PCI patients and divided them into the HPR group (P2Y12 reaction units [PRU] ≥300) and the LPR group (PRU < 170) according to the PRU through the VerifyNow P2Y12 assay. P2Y12-related miRNAs were screened by TargetScan, miRWalk, and Gene Expression Omnibus. The expressions of P2Y12 and miRNAs in the HPR group and the LPR group were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Pearson correlation analysis was used to determine the correlation between P2Y12 and miRNAs. The interactions between P2Y12 and miR-107 were predicted by TargetScan and verified by dual-luciferase reporter assay. The regulation of miR-107 mimic or inhibitor on P2Y12 expression was detected by qRT-PCR and Western blot. RESULTS There were 22 patients in the LPR group and 28 patients in the HPR group. PY212 was highly expressed in the HPR group compared with the LPR group. We screened the P2Y12-related miRNAs (miR-145-5p, miR-4701-3p, miR-107, and miR-15b-5p), but only miR-107 and miR-15b-5p expressions were downregulated in the HPR group and were negatively correlated with PY212 expression. P2Y12 was the target gene of miR-107. PY212 expression was inhibited by miR-107 overexpression but suppressed by miR-107 silencing. CONCLUSION Platelet miR-107 participated in clopidogrel resistance in ACS/PCI patients by regulating P2Y12 expression.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Fan Zhu
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Yuyin Luo
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jun Liao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jiancheng Cao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Tao Xue
- Department of Medical Therapeutics, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| |
Collapse
|
36
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
37
|
Rossetti P, Goldoni M, Pengo V, Vescovini R, Mozzoni P, Tassoni MI, Lombardi M, Rubino P, Bernuzzi G, Verzicco I, Manotti C, Quintavalla R. MiRNA 126 as a New Predictor Biomarker in Venous Thromboembolism of Persistent Residual Vein Obstruction: A Review of the Literature Plus a Pilot Study. Semin Thromb Hemost 2021; 47:982-991. [PMID: 34243207 DOI: 10.1055/s-0041-1726341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Venous thromboembolism (VTE) is the third most common cardiovascular disease. Interleukins (ILs) and micro-ribonucleic acids (miRNAs) have been proposed as molecules able to modulate endothelial inflammation and platelet hyperactivity. At present, no early biomarkers are available to predict the outcome of VTE. We investigated in a pilot study a selected number of miRNAs and ILs as prognostic VTE biomarkers and reviewed literature in this setting. Twenty-three patients (aged 18-65) with a new diagnosis of non-oncological VTE and free from chronic inflammatory diseases were enrolled. Twenty-three age- and sex-matched healthy blood donors were evaluated as control subjects. Serum miRNAs (MiRNA 126, 155, 17.92, 195), inflammatory cytokines (IL-6, tumor necrosis factor-α, IL-8), and lymphocyte subsets were evaluated in patients at enrolment (T0) and in controls. In VTE patients, clinical and instrumental follow-up were performed assessing residual vein obstruction, miRNA and ILs evaluation at 3 months' follow-up (T1). At T0, IL-8, activated T lymphocytes, Treg lymphocytes, and monocytes were higher in patients compared with healthy controls, as were miRNA 126 levels. Moreover, miRNA 126 and IL-6 were significantly increased at T0 compared with T1 evaluation in VTE patients. Higher levels of MiR126 at T0 correlated with a significant overall thrombotic residual at follow-up. In recent years an increasing number of studies (case-control studies, in vivo studies in animal models, in vitro studies) have suggested the potential role of miRNAs in modulating the cellular and biohumoral responses involved in VTE. In the frame of epidemiological evidence, this pilot study with a novel observational approach supports the notion that miRNA can be diagnostic biomarkers of VTE and first identifies miRNA 126 as a predictor of outcome, being associated with poor early recanalization.
Collapse
Affiliation(s)
- Pietro Rossetti
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Vittorio Pengo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Rosanna Vescovini
- Department of Clinical and Experimental Medicine, University Hospital of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Maria Ilaria Tassoni
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Maria Lombardi
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Pasquale Rubino
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Gino Bernuzzi
- Immunohematology and Transfusion Center, University Hospital of Parma, Parma, Italy
| | - Ignazio Verzicco
- Department of Clinical and Experimental Medicine, University Hospital of Parma, Parma, Italy
| | - Cesare Manotti
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| | - Roberto Quintavalla
- Department of Internal Medicine, Angiology and Coagulation Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
38
|
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism. Sci Rep 2021; 11:14015. [PMID: 34234248 PMCID: PMC8263618 DOI: 10.1038/s41598-021-93390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.
Collapse
|
39
|
MiR-124 and miR-506 are involved in the decline of protein C in children with extra-hepatic portal vein obstruction. Sci Rep 2021; 11:12320. [PMID: 34112885 PMCID: PMC8192904 DOI: 10.1038/s41598-021-91862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
The deficiency of protein C (PROC) can be partly rescued by Rex shunt through restoring portal blood flow in children with extra-hepatic portal venous obstruction (EHPVO). However, the decline of PROC is still found in some patients with a normal portal blood flow after Rex shunt. The aim of this study was to identify the candidate miRNAs involving in the decline of PROC and their mechanism. The protein level of PROC was detected by the ELISA assay, and was compared between sick and healthy groups. The expressions of miRNAs and PROC mRNA were measured using qRT-PCR, and were compared between sick and healthy groups. The correlation between PROC and candidate miRNAs was analysed by a Pearson correlation analysis to identify the most significant miRNAs. The expression of PROC mRNA was detected by qRT-PCR in HL-7702 and LX-2 cells tansfected with miRNAs mimics or inhibitors and negative control (NC) mimics, which was compared among the different groups. The rates of liver cells’ proliferation and apoptosis were detected in HL-7702 and LX-2 cells tansfected with miRNAs mimics or inhibitors or with overexpressing PROC and negative control mimics by CKK8 assay and flow cytometry, which were compared among the different groups. The expressions of COX-2 and VEGF were measured by qRT-PCR, and were compared between the miRNAs groups and NC group. Western blot was assayed for detecting the protein levels of PROC, COX-2, VEGF, Bcl-2 and Bax, which were compared between the miRNAs groups and NC group. The expression of PROC mRNA was lower, and the expressions of miR-506-3p and miR-124-3p were higher in children with EHPVO than healthy group. PROC mRNA was negatively correlated with the expression of miR-506-3p and miR-124-3p. Compared to the NC group, the transcription activity of PROC was lower after exposure of miR-506 and miR-124 mimics in HL-7702 and LX-2 cells, but this phenomenon was reversed after inhibiting miR-506 and miR-124. The rate of cell proliferation was lower after exposure of miR-506 and miR-124 than the NC group, which was increased after inhibiting miR-506 and miR-124 in HL-7702 cells and overexpressing PROC in LX-2 cells. The apoptotic rate was higher after exposure of miR-506 and miR-124 than the NC group, which was decreased after inhibiting miR-506 and miR-124 in HL-7702 cells and overexpressing PROC in LX-2 cells. The mRNA levels of COX-2 and VEGF were significantly higher after exposure of miR-506 and miR-124 mimics than those in the NC group. The protein levels of PROC and Bcl-2 were down-regulated, and the levels of COX-2, Bax and VEGF were up-regulated after exposure of miR-506 and miR-124 in HL-7702 cells, but this phenomenon was reversed after inhibiting miR-506 and miR-124. MiR-506-3p and miR-124-3p may involve in the decline of PROC in protein and transcriptional level, in which the anti-proliferation and pro-apoptosis role of miR-506-3p and miR-124-3p for liver cells may involve in this mechanism.
Collapse
|
40
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
41
|
Ward MP, E Kane L, A Norris L, Mohamed BM, Kelly T, Bates M, Clarke A, Brady N, Martin CM, Brooks RD, Brooks DA, Selemidis S, Hanniffy S, Dixon EP, A O'Toole S, J O'Leary J. Platelets, immune cells and the coagulation cascade; friend or foe of the circulating tumour cell? Mol Cancer 2021; 20:59. [PMID: 33789677 PMCID: PMC8011144 DOI: 10.1186/s12943-021-01347-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells that transit from primary tumours into the circulatory system are known as circulating tumour cells (CTCs). These cancer cells have unique phenotypic and genotypic characteristics which allow them to survive within the circulation, subsequently extravasate and metastasise. CTCs have emerged as a useful diagnostic tool using "liquid biopsies" to report on the metastatic potential of cancers. However, CTCs by their nature interact with components of the blood circulatory system on a constant basis, influencing both their physical and morphological characteristics as well as metastatic capabilities. These properties and the associated molecular profile may provide critical diagnostic and prognostic capabilities in the clinic. Platelets interact with CTCs within minutes of their dissemination and are crucial in the formation of the initial metastatic niche. Platelets and coagulation proteins also alter the fate of a CTC by influencing EMT, promoting pro-survival signalling and aiding in evading immune cell destruction. CTCs have the capacity to directly hijack immune cells and utilise them to aid in CTC metastatic seeding processes. The disruption of CTC clusters may also offer a strategy for the treatment of advance staged cancers. Therapeutic disruption of these heterotypical interactions as well as direct CTC targeting hold great promise, especially with the advent of new immunotherapies and personalised medicines. Understanding the molecular role that platelets, immune cells and the coagulation cascade play in CTC biology will allow us to identify and characterise the most clinically relevant CTCs from patients. This will subsequently advance the clinical utility of CTCs in cancer diagnosis/prognosis.
Collapse
Affiliation(s)
- Mark P Ward
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland.
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland.
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland.
| | - Laura E Kane
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Lucy A Norris
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 8, Ireland
| | - Bashir M Mohamed
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Tanya Kelly
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Mark Bates
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Andres Clarke
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Nathan Brady
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Cara M Martin
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Robert D Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Doug A Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Victoria, 3083, Bundoora, Australia
| | | | - Eric P Dixon
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Sharon A O'Toole
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 8, Ireland
| | - John J O'Leary
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
42
|
Stevens MT, Saunders BM. Targets and regulation of microRNA-652-3p in homoeostasis and disease. J Mol Med (Berl) 2021; 99:755-769. [PMID: 33712860 DOI: 10.1007/s00109-021-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA-miR-652-3p-detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.
Collapse
Affiliation(s)
- Maxwell T Stevens
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
43
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
44
|
Zhou X, Wu Q, Hao T, Xu R, Hu X, Dong L. Expression and diagnostic value of circulating miRNA-190 and miRNA-197 in patients with pulmonary thromboembolism. J Clin Lab Anal 2021; 35:e23574. [PMID: 32920929 PMCID: PMC7843280 DOI: 10.1002/jcla.23574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosing pulmonary thromboembolism (PTE) remains challenging due to the lack of specific clinical symptoms and biomarkers. Circulating microRNAs (miRNAs) have proved to be potential biomarkers for numerous cardiovascular diseases. The aims of this study were to quantitatively analyze the expression of plasma miRNA-190 and miRNA-197 in patients with PTE and to evaluate the diagnostic value for PTE. METHODS Thirty patients diagnosed with PTE by computed tomographic pulmonary angiography at the emergency department were enrolled in this study, and plasma was collected immediately. For comparison, myocardial infarction (MI, n = 45) and healthy participants (NC, n = 45) were recruited as the control groups. Quantitative reverse transcription PCR (qRT-PCR) was conducted to reveal the relative expression levels of miRNA-190 and miRNA-197 in each group. The plasma concentrations of D-dimer were measured by immunoturbidimetric assay. The diagnostic value was evaluated by analyzing the area under the receiver operating characteristic curve (AUC). RESULTS The relative expression levels of miRNA-190 and miRNA-197 in the PTE group were both significantly higher than in the MI group (t = 3.602 t = 4.791, P < .05, respectively) and the healthy control group (t = 5.814, t = 5.886, P < .05, respectively). As diagnostic indicator, the sensitivity and specificity of miRNA-190 were 75.56% and 80%, respectively, with an AUC of 0.7844 (95%CI: 0.6858-0.8831, P < .001). The sensitivity and specificity of miRNA-197 were 73.33% and 86.67%, respectively, with an AUC value of 0.7931 (95%CI: 0.6870-0.8991, P < .001). Combining miRNA-190 and miRNA-197 with D-dimer levels significantly increased the diagnostic power, improving the AUC to 0.9536 (95% CI: 0.9083-0.9989, P < .001). CONCLUSIONS The relative expression levels of miRNA-190 and miRNA-197 in PTE patients were significantly higher than in the MI and healthy control groups, indicating that (a) both may be involved in the pathophysiological process of PTE and (b) both may serve as potential noninvasive diagnostic markers for PTE. The combination of miRNA-190, miRNA-197, and D-dimer levels showed better sensitivity and specificity, which is more conducive to the diagnosis of PTE.
Collapse
Affiliation(s)
- XiaoTing Zhou
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - QiaoZhen Wu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - TianBo Hao
- Department of clinical laboratorySuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - Rui Xu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - XiaoYun Hu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - LingYun Dong
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| |
Collapse
|
45
|
Wang X, Memon AA, Palmér K, Svensson PJ, Sundquist J, Sundquist K. The Association between Blood-Based Global DNA Methylation and Venous Thromboembolism. Semin Thromb Hemost 2020; 47:662-668. [PMID: 33378784 DOI: 10.1055/s-0040-1722271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alterations in DNA methylation patterns have been associated with many diseases. However, the role of DNA methylation in venous thromboembolism (VTE) is not well established. The aim of this study was to investigate a possible association between global DNA methylation and VTE. The study participants consisted of 168 individuals including 74 patients with primary VTE from the Malmö Thrombophilia Study (MATS) and 94 healthy controls. Among 74 primary VTE patients, 37 suffered VTE recurrence during the follow-up period; 37 nonrecurrent VTE patients were included for comparison. Blood-based global DNA methylation was assessed by an enzyme-linked immunosorbent assay. Global DNA methylation was significantly higher in primary VTE patients compared with the healthy controls (median: 0.17 vs. 0.08%; p < 0.001). After stratification of data from primary VTE patients according to sex, the association between higher global DNA methylation and shorter recurrence-free survival time was of borderline statistical significance in males (β = -0.2; p = 0.052) but not in females (β = 0.02; p = 0.90). Our results show that global DNA methylation is associated with primary VTE and that higher levels of global DNA methylation may be associated with early VTE recurrence in males but not in females. Further investigation on the role of DNA methylation as a diagnostic or preventive biomarker in VTE is warranted.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Karolina Palmér
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Peter J Svensson
- Department of Coagulation Disorders, Lund University Hospital, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Izumo, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
46
|
Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
Affiliation(s)
- Ann S Kim
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
47
|
Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics 2020; 113:1233-1246. [PMID: 33164830 DOI: 10.1016/j.ygeno.2020.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is an important cause of disease-related death worldwide. One of its main pathological bases is imbalances in gene expression. Non-coding RNAs are a class of transcripts that do not encode proteins. They include microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA). They have important biological functions such as regulating transcription and translation, as well as interacting with DNA, RNA, and proteins. They are also closely associated with pathological processes in CVD. This review will focus on the expression and function of miRNA, lncRNA, circRNA, as well as on their roles and molecular mechanisms in CVDs such as cardiac hypertrophy, heart failure, arrhythmia, myocardial infarction, atherosclerosis, rheumatic heart disease, myocardial fibrosis, pulmonary arterial hypertension. This review will outline concepts provide bases for early diagnosis and targeted treatment of CVDs.
Collapse
|
48
|
Mussbacher M, Krammer TL, Heber S, Schrottmaier WC, Zeibig S, Holthoff HP, Pereyra D, Starlinger P, Hackl M, Assinger A. Impact of Anticoagulation and Sample Processing on the Quantification of Human Blood-Derived microRNA Signatures. Cells 2020; 9:cells9081915. [PMID: 32824700 PMCID: PMC7464075 DOI: 10.3390/cells9081915] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Blood-derived microRNA signatures have emerged as powerful biomarkers for predicting and diagnosing cardiovascular disease, cancer, and metabolic disorders. Platelets and platelet-derived microvesicles are a major source of microRNAs. We have previously shown that the inappropriate anticoagulation and storage of blood samples causes substantial platelet activation that is associated with the release of platelet-stored molecules into the plasma. However, it is currently unclear if circulating microRNA levels are affected by artificial platelet activation due to suboptimal plasma preparation. To address this issue, we used a standardized RT-qPCR test for 12 microRNAs (thrombomiR®, TAmiRNA GmbH, Vienna, Austria) that have been associated with cardiovascular and thrombotic diseases and were detected in platelets and/other hematopoietic cells. Blood was prevented from coagulating with citrate–theophylline–adenosine–dipyridamole (CTAD), sodium citrate, or ethylenediaminetetraacetic acid (EDTA) and stored for different time periods either at room temperature or at 4 °C prior to plasma preparation and the subsequent quantification of microRNAs. We found that five microRNAs (miR-191-5p, miR-320a, miR-21-5p, miR-23a-3p, and miR-451a) were significantly increased in the EDTA plasma. Moreover, we observed a time-dependent increase in plasma microRNAs that was most pronounced in the EDTA blood stored at room temperature for 24 h. Furthermore, significant correlations between microRNA levels and plasma concentrations of platelet-stored molecules pointed towards in vitro platelet activation. Therefore, we strongly recommend to (i) use CTAD as an anticoagulant, (ii) process blood samples as quickly as possible, and (iii) store blood samples at 4 °C whenever immediate plasma preparation is not feasible to generate reliable data on blood-derived microRNA signatures.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University, Schwarzspanierstrasse 17, 1090 Vienna, Austria; (M.M.); (W.C.S.); (D.P.)
| | - Teresa L. Krammer
- TAmiRNA GmbH, Leberstrasse 20, 1110 Vienna, Austria; (T.L.K.); (M.H.)
| | - Stefan Heber
- Department of Physiology, Center of Physiology and Pharmacology, Medical University, Schwarzspanierstrasse 17, 1090 Vienna, Austria;
| | - Waltraud C. Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University, Schwarzspanierstrasse 17, 1090 Vienna, Austria; (M.M.); (W.C.S.); (D.P.)
| | - Stephan Zeibig
- AdvanceCor GmbH, Fraunhoferstraße 9A, 82152 Planegg, Germany; (S.Z.); (H.-P.H.)
| | - Hans-Peter Holthoff
- AdvanceCor GmbH, Fraunhoferstraße 9A, 82152 Planegg, Germany; (S.Z.); (H.-P.H.)
| | - David Pereyra
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University, Schwarzspanierstrasse 17, 1090 Vienna, Austria; (M.M.); (W.C.S.); (D.P.)
- Department of Surgery, Medical University of Vienna, General Hospital, Spitalgasse 23, 1090 Vienna, Austria;
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Spitalgasse 23, 1090 Vienna, Austria;
| | - Matthias Hackl
- TAmiRNA GmbH, Leberstrasse 20, 1110 Vienna, Austria; (T.L.K.); (M.H.)
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University, Schwarzspanierstrasse 17, 1090 Vienna, Austria; (M.M.); (W.C.S.); (D.P.)
- Correspondence: ; Tel.: +43-1-401-603-1405
| |
Collapse
|
49
|
Cushman M, Barnes GD, Creager MA, Diaz JA, Henke PK, Machlus KR, Nieman MT, Wolberg AS. Venous Thromboembolism Research Priorities: A Scientific Statement From the American Heart Association and the International Society on Thrombosis and Haemostasis. Circulation 2020; 142:e85-e94. [PMID: 32776842 DOI: 10.1161/cir.0000000000000818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Venous thromboembolism is a major cause of morbidity and mortality. The impact of the US Surgeon General's The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism in 2008 has been lower than expected given the public health impact of this disease. This scientific statement highlights future research priorities in venous thromboembolism, developed by experts and a crowdsourcing survey across 16 scientific organizations. At the fundamental research level (T0), researchers need to identify pathobiological causative mechanisms for the 50% of patients with unprovoked venous thromboembolism and to better understand mechanisms that differentiate hemostasis from thrombosis. At the human level (T1), new methods for diagnosing, treating, and preventing venous thromboembolism will allow tailoring of diagnostic and therapeutic approaches to individuals. At the patient level (T2), research efforts are required to understand how foundational evidence impacts care of patients (eg, biomarkers). New treatments, such as catheter-based therapies, require further testing to identify which patients are most likely to experience benefit. At the practice level (T3), translating evidence into practice remains challenging. Areas of overuse and underuse will require evidence-based tools to improve care delivery. At the community and population level (T4), public awareness campaigns need thorough impact assessment. Large population-based cohort studies can elucidate the biological and environmental underpinnings of venous thromboembolism and its complications. To achieve these goals, funding agencies and training programs must support a new generation of scientists and clinicians who work in multidisciplinary teams to solve the pressing public health problem of venous thromboembolism.
Collapse
|
50
|
Jankowska KI, Chattopadhyay M, Sauna ZE, Atreya CD. A Foundational Study for Normal F8-Containing Mouse Models for the miRNA Regulation of Hemophilia A: Identification and Analysis of Mouse miRNAs that Downregulate the Murine F8 Gene. Int J Mol Sci 2020; 21:E5621. [PMID: 32781510 PMCID: PMC7460574 DOI: 10.3390/ijms21165621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hemophilia A (HA) is associated with defects in the F8 gene, encoding coagulation factor VIII (FVIII). Our previous studies show that F8-targeting micro RNAs (miRNAs), a group of small RNAs involved in gene regulation, can downregulate F8 expression causing HA in individuals with normal F8-genotypes and increased HA severity in patients with mutations in F8. Understanding the mechanistic underpinnings of human genetic diseases caused or modulated by miRNAs require a small animal model, such as a mouse model. Here, we report a foundational study to develop such a model system. We identified the mouse 3'untranslated region (3'UTR) on murine F8-mRNA (muF8-mRNA) that can bind to murine miRNAs. We then selected three miRNAs for evaluation: miR-208a, miR-351 and miR-125a. We first demonstrate that these three miRNAs directly target the 3'UTR of muF8-mRNA and reduce the expression of a reporter gene (luciferase) mRNA fused to the muF8-3' UTR in mammalian cells. Furthermore, in mouse cells that endogenously express the F8 gene and produce FVIII protein, the ectopic expression of these miRNAs downregulated F8-mRNA and FVIII protein. These results provide proof-of-concept and reagents as a foundation for using a normal F8-containing mouse as a model for the miRNA regulation of normal F8 in causing or aggravating the genetic disease HA.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| | - Maitreyi Chattopadhyay
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
- OTAT//DCGT/GTB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| |
Collapse
|