1
|
Lin W, Zhang X, Liu Z, Huo H, Chang Y, Zhao J, Gong S, Zhao G, Huo J. Isoform-resolution single-cell RNA sequencing reveals the transcriptional panorama of adult Baoshan pig testis cells. BMC Genomics 2025; 26:459. [PMID: 40340725 DOI: 10.1186/s12864-025-11636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND As the primary organ of the male reproductive system, the testis facilitates spermatogenesis and androgen secretion. Due to the complexity of spermatogenesis, elucidating cellular heterogeneity and gene expression dynamics within the porcine testis is critical for advancing reproductive biology. Nevertheless, the cellular composition and regulatory mechanisms of porcine testes remain insufficiently characterized. In this study, we applied integrated long-read (Nanopore) and short-read (Illumina) scRNA-seq to Baoshan pig testes, establishing a comprehensive transcriptional profile to delineate cellular heterogeneity and molecular regulation. RESULTS Through systematic analysis of testicular architecture and the temporal progression of spermatogenesis, we characterized 11,520 single cells and 23,402 genes, delineating germ cell developmental stages: proliferative-phase spermatogonia (SPG), early-stage spermatocytes (Early SPC) and late-stage spermatocytes (Late SPC) during meiosis, and spermiogenic-phase round spermatids (RS) followed by elongating/elongated spermatids (ES), culminating in mature spermatozoa (Sperm). We further identified nine distinct testicular cell types, with germ cells spanning all developmental stages and somatic components comprising Sertoli cells, macrophages, and peritubular myoid cells as microenvironmental constituents, revealing the cellular heterogeneity of testicular tissue and dynamic characteristics of spermatogenesis. We obtained the dynamic expression changes of 16 vital marker genes during spermatogenesis and performed immunofluorescence validation on 7 marker genes. Gene ontology analysis revealed that germ cells at various stages were involved in specific biological processes, while cell communication networks highlighted eight pivotal signaling pathways, including MIF, NRG, WNT, VEGF, BMP, CCL, PARs, and ENHO pathways. Long-read sequencing further captured the full integrity and diversity of RNA transcripts, identifying 60% of the novel annotated isoforms and revealing that FSM isoforms exhibited longer transcript lengths, longer coding sequences, longer open reading frames, and a great number of exons, suggesting the complexity of isoforms within the testicular microenvironment. CONCLUSIONS Our results provide insight into the cellular heterogeneity, intercellular communication, and gene expression/transcript diversity in porcine testes, and offer a valuable resource for understanding the molecular mechanisms of porcine spermatogenesis.
Collapse
Affiliation(s)
- Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, 033001, Shanxi, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, 650500, Yunnan, China
| | - Yongcheng Chang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiading Zhao
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Shaorong Gong
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Rhon-Calderon EA, Hemphill CN, Savage AJ, Riesche L, Schultz RM, Bartolomei MS. In vitro fertilization induces reproductive changes in male mouse offspring and has multigenerational effects. JCI Insight 2025; 10:e188931. [PMID: 40036079 PMCID: PMC12016927 DOI: 10.1172/jci.insight.188931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
In vitro fertilization (IVF) is a noncoital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated 3 developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF-conceived and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal-to-placental weight ratios and changes in placenta gene expression and morphology regardless of sex. At 12 weeks of age, offspring showed higher body weights and differences in glucose, triglyceride, insulin, total cholesterol, HDL-C, and LDL/VLDL-C levels. Both sexes showed changes in gene expression in liver, testes, and ovaries and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations with a multigenerational impact.
Collapse
Affiliation(s)
- Eric A. Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassidy N. Hemphill
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Savage
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laren Riesche
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Women’s Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Caballero-Campo P, Lira-Albarrán S, Amaral A, Hong C, Shah N, Carles A, Li D, Barrera D, Hernández-Silva G, Ramalho-Santos J, Wang T, Hirst M, Larrea F, Costello J, Rinaudo P, Chirinos M. Integrative Molecular and Functional Analysis of Human Sperm Subpopulations to Identify New Biomarkers of Fertilization Potential. Arch Med Res 2025; 56:103210. [PMID: 40168948 DOI: 10.1016/j.arcmed.2025.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/28/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Human ejaculates are composed of sperm subsets with heterogeneous characteristics. Comparative studies of sperm subpopulations with differences in motility may serve to investigate the functional and molecular features that are crucial for reaching the oocyte and fertilizing. OBJECTIVE To identify functional and molecular markers that characterize sperm subpopulations with high and low motility. MATERIALS AND METHODS Semen samples from 11 donors with proven fertility were processed by density gradient centrifugation to isolate high (F1) and low (F2) motility sperm subpopulations. Besides motility, we evaluated viability, chromatin integrity, mitochondrial membrane potential, capacitation, and acrosomal status. F1 and F2 were subjected to comparative methylome and transcriptome analyses by whole-genome bisulfite sequencing and RNA sequencing, respectively. Further validation of candidate biomarkers at the RNA and protein levels was performed with semen samples from six normozoospermic volunteers using quantitative PCR and Western blotting. RESULTS Spermatozoa from the F1 fractions exhibited higher mitochondrial membrane potential and viability than F2. Comparative methylome and transcriptome analyses of F1 and F2 identified 271 differentially methylated genes and 82 differentially expressed genes. Notably, CEP128 and CSTPP1 were downregulated and differentially methylated in the F2 fraction. Quantitative PCR confirmed the downregulation of these two genes in F2, and the downregulation of CEP128 was further validated at the protein level by Western blotting. CONCLUSION F1 spermatozoa are characterized by elevated mitochondrial membrane potential, viability, and higher expression of CEP128 and CSTPP1. Future studies should evaluate the potential of these functional variables and genes as biomarkers of fertility, either individually or in combination.
Collapse
Affiliation(s)
- Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Fundación Tambre, Madrid, Spain
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Alexandra Amaral
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Chibo Hong
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Nakul Shah
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daofeng Li
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joao Ramalho-Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ting Wang
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joe Costello
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Paolo Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
4
|
Tesarik J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int J Mol Sci 2025; 26:2797. [PMID: 40141439 PMCID: PMC11943017 DOI: 10.3390/ijms26062797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Current lifestyles bring about an increasing prevalence of unhealthy habits that can negatively affect male fertility. Cigarette smoking, alcohol intake, stress, inadequate physical activity, an unequilibrated diet leading to obesity, and use of mobile telephones and portable electronic devices can affect the male reproductive system through multiple mechanisms. Moreover, the modern man is often exposed to environmental factors independent of his will, such as air pollution, exposure to heat or toxicants in his workplace, or the presence of harmful chemicals in food, beverages, agricultural and industrial products, etc. The susceptibility to these factors depends on genetic and epigenetic predisposition, potentially present systemic disease and medication, and local affections of the genitourinary system. The multifaceted nature of both the causative factors and the susceptibility background makes the resulting fertility disturbance highly individual and variable among different men exposed to the same conditions. This paper critically reviews the current knowledge of different causative and susceptibility factors with a special attention to the molecular mechanisms of their action. Finally, strategies for the prevention of abnormalities due to lifestyle and environmental factors and available treatment modalities for already-present abnormalities are exposed.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen (Molecular Assisted Reproduction and Genetics) Clinic, Calle Gracia 36, 18002 Granada, Spain
| |
Collapse
|
5
|
Su L, Dreyfuss JM, Ferraz Bannitz R, Wolfs D, Hansbury G, Richardson L, Charmant C, Patel J, Ginsburg ES, Racowsky C, Fore R, Efthymiou V, Desmond J, Goldfine A, Ferguson-Smith A, Pan H, Hivert MF, Isganaitis E, Patti ME. Type 2 diabetes impacts DNA methylation in human sperm. Clin Epigenetics 2025; 17:49. [PMID: 40108650 PMCID: PMC11924665 DOI: 10.1186/s13148-025-01853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
AIMS/HYPOTHESIS Disorders of the reproductive system, including hypogonadism and reduced fertility, are an under-recognized complication of diabetes. Based on experimental data in mice, hyperglycemia and obesity may modify epigenetic marks in sperm and impact health and development of offspring, but data are more limited in humans. Thus, we sought to study the impact of type 2 diabetes and glycemic control on sperm quality and DNA methylation. METHODS In this prospective cohort study, we recruited 40 men with BMI greater than 25 kg/m2 including 18 with type 2 diabetes, 6 with prediabetes, and 16 normoglycemic controls. Assessments were repeated after 3 months in 9 men with type 2 diabetes and 7 controls. We analyzed reproductive hormones, sperm concentration and motility, and sperm DNA methylation (MethylationEPIC BeadChip). RESULTS Men with type 2 diabetes had higher levels of follicle-stimulating hormone (FSH), but similar testosterone levels and sperm quality as controls. Sperm DNA methylation was stable with repeat sampling at 3 months in men with and without type 2 diabetes. We identified differential methylation at 655 of 745,804 CpG sites in men with type 2 diabetes versus controls (FDR < 0.05). Of these, 96.5% showed higher methylation in type 2 diabetes, with a mean difference in DNA methylation (beta value, β) of 0.16 ± 0.004 (16 ± 0.4%). Ontology analysis of differentially methylated loci revealed annotation to genes regulating synaptic signaling, actin, cAMP-dependent pathways, and G protein-coupled receptor pathways. 24% of probes differentially regulated in men with type 2 diabetes versus control overlapped with probes associated with HbA1c, suggesting additional factors beyond glycemic control contributed to diabetes-associated differences in DNA methylation. CONCLUSIONS/INTERPRETATION Men with type 2 diabetes showed higher DNA methylation levels in sperm relative to normoglycemic controls with similar BMI. Whether these differences are reversible with glucose-lowering treatment or may contribute to post-fertilization transcriptional regulation warrants further investigation. TRIAL REGISTRATION NCT03860558.
Collapse
Affiliation(s)
- Lei Su
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Rafael Ferraz Bannitz
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Danielle Wolfs
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Georgia Hansbury
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Lauren Richardson
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Charnice Charmant
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jay Patel
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth S Ginsburg
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Ruby Fore
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Vissarion Efthymiou
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jessica Desmond
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Allison Goldfine
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Hui Pan
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Elvira Isganaitis
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| | - Mary Elizabeth Patti
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Soubry A. Introducing artificial intelligence and sperm epigenetics in the fertility clinic: a novel foundation for diagnostics and prediction modelling. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 7:1506312. [PMID: 40083331 PMCID: PMC11903727 DOI: 10.3389/frph.2025.1506312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/30/2025] [Indexed: 03/16/2025] Open
Abstract
Worldwide, infertility is a rising problem. A couple's lifestyle, age and environmental exposures can interfere with reproductive health. The scientific field tries to understand the various processes how male and female factors may affect fertility, but translation to the clinic is limited. I here emphasize potential reasons for failure in optimal treatment planning and especially why current prediction modelling falls short. First, Assisted Reproductive Technology (ART) has become a mainstream solution for couples experiencing infertility, while potential causes of infertility remain unexplored or undetermined. For instance, the role of men is generally left out of preconceptional testing and care. Second, regularly used statistical or computational methods to estimate pregnancy outcomes miss important biological and environmental factors, including features from the male side (e.g., age, smoking, obesity status, alcohol use and occupation), as well as genetic and epigenetic characteristics. I suggest using an integrated approach of biostatistics and machine learning methods to improve diagnostics and prediction modelling in the fertility clinic. The novelty of this concept includes the use of empirically collected information on the sperm epigenome combined with readily available data from medical records from both partners and lifestyle factors. As the reproductive field needs well-designed models at different levels, derivatives are needed. The objectives of patients, clinicians, and embryologists differ slightly, and mathematical models need to be adapted accordingly. A multidisciplinary approach where patients are seen by both, clinicians and biomedically skilled counsellors, could help provide evidence-based assistance to improve pregnancy success. Next, when it concerns factors that may change the ability to produce optimal embryos in ART, the embryologist would benefit from a personalized prediction model, including medical history of the patient as well as genetic and epigenetic data from easily accessible germ cells, such as sperm.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epigenetic Epidemiology Lab, Department of Human Genetics, Faculty of Medicine, KU Leuven—University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Ravi PM, Kisliouk T, Druyan S, Haron A, Cline MA, Gilbert ER, Meiri N. Embryonic heat conditioning induces paternal heredity of immunological cross- tolerance: coordinative role of CpG DNA methylation and miR-200a regulation. Front Immunol 2025; 16:1487135. [PMID: 39991150 PMCID: PMC11842353 DOI: 10.3389/fimmu.2025.1487135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background Enhancing an organism's survival hinges on the development of balanced and adaptable stress response systems. While the initial stress-response set-points in the hypothalamus may be genetically determined, they are further influenced by epigenetic factors during embryonic development. A debate persists regarding the heritability of such behavioral traits. The chick in ovo heat conditioning model offers a unique insight into this fundamental question, where manipulation during embryonic development can induce heat resilience and even cross-tolerance to promote immunological resilience. In this study, we conducted an analysis of thermal manipulation during embryogenesis to demonstrate paternal heredity and investigate its transmission through sperm DNA methylation in coordination with miR-200a action. Result First-generation embryos underwent in ovo heat conditioning (EHC), creating a cohort of embryonic EHC and control chicks. These chicks were then subjected to an intracranial lipopolysaccharide (LPS) challenge. Conditioning rendered the chicks immune resilient, as evidenced by their fibril effect. Male offspring were raised to maturity, and their sperm was analyzed for methylome patterns, revealing significant differences between treatments, particularly in immune and development related genes. Additionally, sperm from EHC males was used for artificial insemination of naïve Cobb hens, resulting in untreated offspring that displayed immune resilience upon LPS challenge, indicating transgenerational effects. Overlap analysis of sperm methylome and differentially methylated sites (DMS) of offspring hypothalamus revealed inheritance of altered methylation associated with specific genes. Several of these genes are potential effectors of miR-200a, whose expression profile in the hypothalamus during LPS challenge was conserved across both generations. To evaluate the role of miR-200a in cross-tolerance acquisition, miR-200a was intracranially injected, and RNA-seq analysis of the hypothalamus revealed genes involved in the regulation of developmental and metabolic processes, stress, and immune response. Conclusion This study demonstrates paternal trait heredity by revealing that EHC induces cross-tolerance with the immunological system, rendering chicks resilient to LPS that transgenerationally transmit this to untreated offspring. Additionally, analysis of sperm methylation patterns in EHC mature chicks led to identification of genes associated with neuronal development and immune response, indicating potential neural network reorganization. Finally, miR-200a emerges as a regulator potentially involved in mediating the cross-tolerance effect.
Collapse
Affiliation(s)
- Padma Malini Ravi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZiyyon, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZiyyon, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZiyyon, Israel
| | - Amit Haron
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZiyyon, Israel
| | - Mark A. Cline
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | | | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZiyyon, Israel
| |
Collapse
|
8
|
Khambata K, Raut S, Parte P, Balasinor NH. Estrogen Receptor Signaling Alters Sperm DNA Methylation Landscape in Adult Male Rats. Endocrinology 2025; 166:bqaf017. [PMID: 39865879 DOI: 10.1210/endocr/bqaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Because the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing in caudal sperm DNA was performed. The differentially methylated CpG (DMC) sites were validated by pyrosequencing, and the expression of differentially methylated genes (DMGs) was evaluated in testis by quantitative RT-PCR. Activation of ERα signaling brought about large-scale changes in the sperm DNA methylome compared to ERβ. There were 28074 DMCs and 5189 DMGs obtained after ERα agonist 4,4',4''-(4-Propyl-[1H] pyrazole-1,3,5-triyl) (PPT) treatment, whereas 1492 DMCs and 336 DMGs for ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). In genic regions, most of the DMCs were intronic, followed by promoter and upstream regions. DMCs were distributed around the transcription start site and in transcription factor-binding regions, implicating their plausible role in gene expression regulation. Genes important for spermatogenesis were identified and validated which showed a similar trend of differential methylation as obtained by whole genome-bisulfite sequencing. The expression of the DMGs was also found to be altered in the testis. There was a considerable overlap (14% to 50%) of PPT DMGs with the DMGs reported to be affected in clinical conditions of male infertility. This study highlights the role of ERs in shaping the sperm epigenome and that aberrant estrogen signaling could be a contributing factor in clinical conditions of male infertility.
Collapse
Affiliation(s)
- Kushaan Khambata
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Sanketa Raut
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Priyanka Parte
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Nafisa H Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| |
Collapse
|
9
|
Wang RQ, Deng ZM, Chen GT, Dai FF, Xia LB. Obesity and recurrent spontaneous abortion: the crucial role of weight management in pregnancy. Reprod Biol Endocrinol 2025; 23:10. [PMID: 39844265 PMCID: PMC11752768 DOI: 10.1186/s12958-024-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous abortion (RSA), characterized by the loss of two or more pregnancies, impacts approximately 1-2% of couples and poses a significant challenge for individuals of childbearing age. The precise mechanisms underlying RSA remain incompletely understood. Concurrently, the global prevalence of obesity is on the rise, with obesity being closely associated with female reproductive disorders and infertility. This study initially examines the pathways through which obesity contributes to RSA, encompassing factors such as embryonic euploid miscarriage, endometrial development, immune function, among others. Furthermore, adipokines and the fat mass and obesity-related (FTO) are identified as potential contributors to RSA. The study also explores the enhancement of pregnancy outcomes through various weight management strategies, with a particular focus on the roles of dietary interventions, physical activity, and weight control during pregnancy. Obesity is closely related to RSA in multiple aspects. Additional clinical prospective and experimental studies are required to explore its precise pathogenesis. Through this review, we aim to provide strategies for improvement and treatment approaches for RSA related to obesity. Through this review, we suggest potential clinical management strategies and research avenues aimed at offering enhancements and therapeutic insights for miscarriages linked to obesity and its associated risk factors.
Collapse
Affiliation(s)
- Rui-Qi Wang
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Zhi-Min Deng
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Fang-Fang Dai
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| | - Liang-Bin Xia
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| |
Collapse
|
10
|
Santillán JAG, Mezo-González CE, Gourdel M, Croyal M, Bolaños-Jiménez F. Diet-Induced Obesity in the Rat Impairs Sphingolipid Metabolism in the Brain and This Metabolic Dysfunction Is Transmitted to the Offspring via Both the Maternal and the Paternal Lineage. J Neurochem 2025; 169:e16307. [PMID: 39831759 DOI: 10.1111/jnc.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.
Collapse
Affiliation(s)
| | | | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | |
Collapse
|
11
|
Kampmann U, Suder LB, Nygaard M, Geiker NRW, Nielsen HS, Almstrup K, Bruun JM, Magkos F, Ovesen P, Catalano P. Prepregnancy and Gestational Interventions to Prevent Childhood Obesity. J Clin Endocrinol Metab 2024; 110:e8-e18. [PMID: 39401333 DOI: 10.1210/clinem/dgae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 12/19/2024]
Abstract
Childhood obesity is a significant global health issue with complex and multifactorial origins, often beginning before conception and influenced by both maternal and paternal health. The increased prevalence of prepregnancy obesity and gestational diabetes mellitus in women of reproductive age contributes to a heightened risk of metabolic dysfunction in offspring. Current clinical practices often implement lifestyle interventions after the first trimester and have limited success, implying that they miss a critical window for effective metabolic adjustments. This review examines the limitations of lifestyle interventions during pregnancy in improving perinatal outcomes and highlights the importance of initiating such interventions before conception to positively impact parental health and fetal development. A re-evaluation of strategies is needed to enhance the metabolic health of prospective parents as a preventive measure against childhood obesity.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Louise Birk Suder
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Malene Nygaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | | | - Henriette Svarre Nielsen
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Hvidovre, DK 2650, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Kristian Almstrup
- Department of Growth and reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | - Per Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Patrick Catalano
- Division of Reproductive Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Kaltsas A, Zikopoulos A, Kojovic V, Dimitriadis F, Sofikitis N, Chrisofos M, Zachariou A. Paternal Contributions to Recurrent Pregnancy Loss: Mechanisms, Biomarkers, and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1920. [PMID: 39768802 PMCID: PMC11677278 DOI: 10.3390/medicina60121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Recurrent pregnancy loss (RPL) affects numerous couples worldwide and has traditionally been attributed mainly to maternal factors. However, recent evidence highlights significant paternal influences on pregnancy viability and outcomes. This review aims to comprehensively examine male contributions to pregnancy loss, focusing on underlying mechanisms, novel biomarkers, and integrated strategies for improved reproductive success. Materials and Methods: A comprehensive narrative review was conducted by searching databases including PubMed and Embase for the literature published from January 2004 to October 2024. Studies focusing on paternal influences in RPL-encompassing oxidative stress, genetic and epigenetic mechanisms, health conditions, lifestyle factors, environmental exposures, and advancements in sperm proteomics-were included. Inclusion criteria were peer-reviewed articles in English that directly addressed paternal factors in RPL; studies not meeting these criteria were excluded. Results: The review identified that paternal factors such as advanced age, metabolic and cardiovascular health issues, chronic diseases, lifestyle habits (e.g., smoking, alcohol consumption, poor diet), and environmental exposures significantly affect sperm integrity through mechanisms like oxidative stress, DNA fragmentation, and epigenetic alterations. Advanced paternal age and poor health conditions are associated with increased risks of miscarriage and adverse pregnancy outcomes. Novel sperm proteomic biomarkers have been identified, offering potential for enhanced diagnostics and personalized interventions. Integrated approaches involving multidisciplinary assessments, preventive strategies, and genetic counseling are essential for effectively addressing RPL. Conclusions: Integrating paternal factors into clinical evaluations is crucial for effectively addressing recurrent pregnancy loss. Recognizing and modifying paternal risk factors through lifestyle changes, medical interventions, and environmental management can improve pregnancy outcomes. The findings underscore the need for incorporating paternal assessments into standard care and highlight the importance of future research focusing on standardizing diagnostic protocols, expanding studies on paternal contributions, and integrating proteomic biomarkers into clinical practice to facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Truro TR1 3LJ, UK;
| | - Vladimir Kojovic
- Department of Urology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
13
|
Rhon-Calderon EA, Hemphill CN, Savage AJ, Riesche L, Schultz RM, Bartolomei MS. In Vitro Fertilization induces reproductive changes in male mouse offspring and has multigenerational effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622317. [PMID: 39574745 PMCID: PMC11580855 DOI: 10.1101/2024.11.06.622317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
In vitro fertilization (IVF) is a non-coital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring life. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated three developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal weight-to-placental weight ratios and changes in placenta morphology regardless of sex. At 12-weeks-of-age, offspring showed higher body weights and differences in glucose, triglycerides, insulin, total cholesterol, HDL and LDL/VLDL levels. Both sexes showed changes in gene expression in liver, testes and ovaries, and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations and transmit defects multigenerationally.
Collapse
|
14
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
15
|
Zhang Z, Li X, Guo S, Chen X. A Mendelian randomization study on causal relationship between metabolic factors and abnormal spermatozoa. Transl Androl Urol 2024; 13:2005-2015. [PMID: 39434741 PMCID: PMC11491210 DOI: 10.21037/tau-24-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background Male infertility is a global health problem. There is an increasing attention on the association of metabolic status with spermatogenesis. However, the impacts of metabolic factors on semen parameters are still unclear. To provide evidence for developing appropriate interventions on disease screening and prevention, we performed a Mendelian randomization (MR) analysis to assess causality between various metabolic factors and abnormal spermatozoa. Methods We conducted a two-sample MR study to appraise the causal effects of 16 metabolic factors (including indexes of metabolic traits, glucose metabolism, lipid profile, adipokines, uric acid and metabolic diseases) on abnormal spermatozoa from genome-wide association studies (GWASs). Filtering with strict criteria, eligible genetic instruments closely associated with each of the factors were extracted. We employed inverse variance weighted for major analysis, with supplement MR methods including MR-Egger and weighted median. Heterogeneity and pleiotropy tests were further used to detect the reliability of analysis. Results After rigorous quality control in this MR framework, we identified that body fat percentage [odds ratio (OR) =1.49, 95% confidence interval (CI): 1.01-2.20, P=0.046] and resistin (OR =1.55, 95% CI: 1.11-2.19, P=0.01) were causally associated with a higher risk of abnormal spermatozoa. In terms of other indexes of metabolic traits, glucose metabolism, serum lipid profile and uric acid and metabolic diseases including type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD), no causal effects were observed (P>0.05). Conclusions Our MR analysis provides robust evidence that body fat percentage and resistin are risk factors for abnormal spermatozoa, suggesting implications of identifying them for potential interventions and clinical therapies in male infertility. Further investigation in larger-scale GWASs on subgroups of abnormal spermatozoa will verify impacts of metabolic factors on spermatogenesis.
Collapse
Affiliation(s)
- Zhenhui Zhang
- Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xuelan Li
- Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Shuntian Guo
- Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xin Chen
- Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
16
|
Chen X, Zhang X, Jiang T, Xu W. Klinefelter syndrome: etiology and clinical considerations in male infertility†. Biol Reprod 2024; 111:516-528. [PMID: 38785325 DOI: 10.1093/biolre/ioae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent chromosomal disorder occurring in males. It is defined by an additional X chromosome, 47,XXY, resulting from errors in chromosomal segregation during parental gametogenesis. A major phenotype is impaired reproductive function, in the form of low testosterone and infertility. This review comprehensively examines the genetic and physiological factors contributing to infertility in KS, in addition to emergent assisted reproductive technologies, and the unique ethical challenges KS patients face when seeking infertility treatment. The pathology underlying KS is increased susceptibility for meiotic errors during spermatogenesis, resulting in aneuploid or even polyploid gametes. Specific genetic elements potentiating this susceptibility include polymorphisms in checkpoint genes regulating chromosomal synapsis and segregation. Physiologically, the additional sex chromosome also alters testicular endocrinology and metabolism by dysregulating interstitial and Sertoli cell function, collectively impairing normal sperm development. Additionally, epigenetic modifications like aberrant DNA methylation are being increasingly implicated in these disruptions. We also discuss assisted reproductive approaches leveraged in infertility management for KS patients. Application of assisted reproductive approaches, along with deep comprehension of the meiotic and endocrine disturbances precipitated by supernumerary X chromosomes, shows promise in enabling biological parenthood for KS individuals. This will require continued multidisciplinary collaboration between experts with background of genetics, physiology, ethics, and clinical reproductive medicine.
Collapse
Affiliation(s)
- Xinyue Chen
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xueguang Zhang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Jiang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Chengdu 610041, China
| |
Collapse
|
17
|
Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J. Effect of body mass index on semen quality, sperm chromatin integrity and sperm DNA methylation. Obes Res Clin Pract 2024; 18:380-387. [PMID: 39358131 DOI: 10.1016/j.orcp.2024.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Obesity represents a growing problem due to its impacts on human health and reproduction. In this study, we analysed semen quality, sperm DNA integrity and gene-specific CpG methylation in 116 healthy men from normal population. The men were divided into three groups according to their body mass index (BMI), and their ejaculates were analysed using standard methods, sperm chromatin structure assay (SCSA), methylation next generation sequencing (NGS) and amplicon sequencing. The sperm methylation NGS revealed six significantly differentially methylated regions (DMRs). Using subsequent targeted amplicon sequencing in 116 men, two of the DMRs were proved as differentially methylated in sperm of men with normal BMI vs. BMI ≥ 25. The DMRs were located in the EPHA8 and ANKRD11 gene. Also, we detected a significant decline in the EPHA8, ANKRD11 and CFAP46 gene methylation in association with increasing BMI values. The genes EPHA8 and ANKRD11 are involved in the nervous system and brain development; the CFAP46 gene plays a role in a flagellar assembly and is associated with sperm motility. Significantly lower rates of motile and progressive motile sperm were observed in men with BMI ≥ 30. Our results show that excess body weight can modify CpG methylation of specific genes, affect sperm motility, and compromise sperm chromatin integrity. These factors can stand behind the observed reduced fertility in men with obesity. The methylation changes might be transmitted to their offspring through sperm, and become a basis for possible developmental and reproductive issues in the next generation.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic.
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Vera Kopecka
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Sipek
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
18
|
Lastialno MP, Bashari MH, Ariyanto EF. Current Updates on the Understanding of the Role of DNA Methylation on Obesity. Diabetes Metab Syndr Obes 2024; 17:3177-3186. [PMID: 39220797 PMCID: PMC11365516 DOI: 10.2147/dmso.s471348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is a condition in which there is an accumulation of excess body fat leading to a weight far above the normal range that poses significant health risks. According to WHO, 8 billion people in the world were obese in 2022. Consequently, obesity has become a pandemic with negative impacts on both global health and economies. Obesity is influenced by various factors including environmental influences, lifestyle choices, gut microbiota, genetic factors, and epigenetic mechanisms such as DNA methylation. DNA methylation can affect an individual's phenotype and condition without altering their DNA sequence. It is the most extensively studied epigenetic alteration and it plays an important part in controlling gene activity associated with obesity. Numerous studies have indicated that DNA methylation is implicated in obesity, thus this review aims to elaborate the roles of DNA methylation to inform the development of preventive measures for obesity.
Collapse
Affiliation(s)
- Mohammad Parezal Lastialno
- Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Study Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
19
|
Wu B, Sheng Y, Yu W, Ruan L, Geng H, Xu C, Wang C, Tang D, Lv M, Hua R, Li K. Differential methylation patterns in paternally imprinted gene promoter regions in sperm from hepatitis B virus infected individuals. BMC Mol Cell Biol 2024; 25:19. [PMID: 39090552 PMCID: PMC11295637 DOI: 10.1186/s12860-024-00515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.
Collapse
Affiliation(s)
- Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yuying Sheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Wenwei Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Rong Hua
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
20
|
Crafa A, Cannarella R, Calogero AE, Gunes S, Agarwal A. Behind the Genetics: The Role of Epigenetics in Infertility-Related Testicular Dysfunction. Life (Basel) 2024; 14:803. [PMID: 39063558 PMCID: PMC11277947 DOI: 10.3390/life14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, we have witnessed a progressive decline in male fertility. This is partly related to the increased prevalence of chronic diseases (e.g., obesity and diabetes mellitus) and risky lifestyle behaviors. These conditions alter male fertility through various non-genetic mechanisms. However, there is increasing evidence that they are also capable of causing sperm epigenetic alterations, which, in turn, can cause infertility. Furthermore, these modifications could be transmitted to offspring, altering their general and reproductive health. Therefore, these epigenetic modifications could represent one of the causes of the progressive decline in sperm count recorded in recent decades. This review focuses on highlighting epigenetic modifications at the sperm level induced by non-genetic causes of infertility. In detail, the effects on DNA methylation, histone modifications, and the expression profiles of non-coding RNAs are evaluated. Finally, a focus on the risk of transgenerational inheritance is presented. Our narrative review aims to demonstrate how certain conditions can alter gene expression, potentially leading to the transmission of anomalies to future generations. It emphasizes the importance of the early detection and treatment of reversible conditions (such as obesity and varicocele) and the modification of risky lifestyle behaviors. Addressing these issues is crucial for individual health, in preserving fertility, and in ensuring the well-being of future generations.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Sezgin Gunes
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, 55280 Samsun, Türkiye
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
21
|
Hossain MN, Gao Y, Hatfield MJ, de Avila JM, McClure MC, Du M. Cold exposure impacts DNA methylation patterns in cattle sperm. Front Genet 2024; 15:1346150. [PMID: 38444759 PMCID: PMC10912962 DOI: 10.3389/fgene.2024.1346150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
- Department of Livestock Production and Management, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Michael J. Hatfield
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | | | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
22
|
Schrott R, Feinberg JI, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Fallin MD, Volk HE, Ladd-Acosta C, Feinberg AP. Exposure to air pollution is associated with DNA methylation changes in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae003. [PMID: 38559770 PMCID: PMC10980975 DOI: 10.1093/eep/dvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in neurodevelopment.
Collapse
Affiliation(s)
- Rose Schrott
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA 16802, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA 95616, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
24
|
Feinberg JI, Schrott R, Ladd-Acosta C, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Daniele Fallin M, Feinberg AP, Volk HE. Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Mol Psychiatry 2024; 29:43-53. [PMID: 37100868 DOI: 10.1038/s41380-023-02046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
25
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
26
|
Service CA, Puri D, Al Azzawi S, Hsieh TC, Patel DP. The impact of obesity and metabolic health on male fertility: a systematic review. Fertil Steril 2023; 120:1098-1111. [PMID: 37839720 DOI: 10.1016/j.fertnstert.2023.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The impact of paternal obesity and metabolic disease on semen quality and fertility outcomes is not fully appreciated. With increasing obesity rates, researchers have studied the intricate relationship between paternal body mass index, metabolic health, and male fertility. This systematic review identified 112 articles in the MEDLINE database between 2013 and 2023 that investigated the effects of body mass index, diabetes, metabolic syndrome, exercise, weight loss medication, or bariatric surgery on semen parameters, sperm quality, or fertility outcomes. This review suggests that obesity, diabetes, and metabolic syndrome have a negative impact on various parameters of male fertility, from semen quality to sperm deoxyribonucleic acid integrity. There is also mounting evidence that male obesity is correlated negatively with live births via both natural conception and assisted reproductive technologies. Lifestyle interventions, such as physical exercise, generally appear to improve male fertility markers; however, the type and intensity of exercise may play a crucial role. Pharmacologic treatments for weight loss, such as metformin and glucagon-like peptide 1 agonists, present a more complex picture, with studies suggesting both beneficial and detrimental effects on male reproductive health. Similarly, surgical interventions, such as gastric bypass surgery, show promise in improving hormonal imbalances but have mixed effects on semen parameters. Future research is needed to clarify these associations and inform clinical guidelines. In the interim, health practitioners should incorporate these insights into clinical practices, encouraging proactive lifestyle changes and providing targeted treatments to improve male reproductive health.
Collapse
Affiliation(s)
- Chad Austin Service
- Department of Urology, University of California San Diego Health, San Diego, California.
| | - Dhruv Puri
- Department of Urology, University of California San Diego Health, San Diego, California
| | - Sultan Al Azzawi
- Department of Urology, University of California San Diego Health, San Diego, California
| | - Tung-Chin Hsieh
- Department of Urology, University of California San Diego Health, San Diego, California
| | - Darshan P Patel
- Department of Urology, University of California San Diego Health, San Diego, California
| |
Collapse
|
27
|
Wei S, Luo S, Zhang H, Li Y, Zhao J. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. GENES & NUTRITION 2023; 18:12. [PMID: 37598138 PMCID: PMC10439541 DOI: 10.1186/s12263-023-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Paternal high-fat diet (HFD) can alter the epigenetics of sperm DNA, resulting in the transmission of obesity-related traits to the offspring. Previous studies have mainly focused on the HFD-induced changes in DNA methylation of imprinted genes, overlooking the potential involvement of non-imprinted genes in this process. SETD2, an important epigenetically-regulated gene known for its response to environmental stress, remains poorly understood in the context of high-fat diet-induced epigenetic changes. Here we examined the effect of obesity from a HFD on paternal SETD2 expression and methylation in sperm, and embryos at the blastocyst stage and during subsequent development, to determine the alteration of SETD2 in paternal intergenerational and transgenerational inheritance. The result showed that mice fed with HFD for two months had significantly increased SETD2 expression in testis and sperm. The paternal HFD significantly altered the DNA methylation level with 20 of the 26 CpG sites being changed in sperm from F0 mice. Paternal high-fat diet increased apoptotic index and decreased total cell number of blastocysts, which were closely correlated with DNA methylation level of sperm. Out of the 26 CpG sites, we also found three CpG sites that were significantly changed in the sperm from F1 mice, which meant that the methylation changes at these three CpG sites were maintained.In conclusion, we found that paternal exposure to an HFD disrupted the methylation pattern of SETD2 in the sperm of F0 mice and resulted in perturbed SETD2 expression. Furthermore, the paternal high-fat diet influenced embryo apoptosis and development, possibly through the SETD2 pathway. The altered methylation of SETD2 in sperm induced by paternal HFD partially persisted in the sperm of the F1 generation, highlighting the role of SETD2 as an epigenetic carrier for paternal intergenerational and transgenerational inheritance.
Collapse
Affiliation(s)
- Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiwei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, China
| | - Haifeng Zhang
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.
| | - Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
28
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
29
|
Ribas-Aulinas F, Ribo S, Casas E, Mourin-Fernandez M, Ramon-Krauel M, Diaz R, Lerin C, Kalko SG, Vavouri T, Jimenez-Chillaron JC. Intergenerational Inheritance of Hepatic Steatosis in a Mouse Model of Childhood Obesity: Potential Involvement of Germ-Line microRNAs. Nutrients 2023; 15:nu15051241. [PMID: 36904241 PMCID: PMC10005268 DOI: 10.3390/nu15051241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Childhood obesity increases the risk of developing metabolic syndrome later in life. Moreover, metabolic dysfunction may be inherited into the following generation through non-genomic mechanisms, with epigenetics as a plausible candidate. The pathways involved in the development of metabolic dysfunction across generations in the context of childhood obesity remain largely unexplored. We have developed a mouse model of early adiposity by reducing litter size at birth (small litter group, SL: 4 pups/dam; control group, C: 8 pups/dam). Mice raised in small litters (SL) developed obesity, insulin resistance and hepatic steatosis with aging. Strikingly, the offspring of SL males (SL-F1) also developed hepatic steatosis. Paternal transmission of an environmentally induced phenotype strongly suggests epigenetic inheritance. We analyzed the hepatic transcriptome in C-F1 and SL-F1 mice to identify pathways involved in the development of hepatic steatosis. We found that the circadian rhythm and lipid metabolic process were the ontologies with highest significance in the liver of SL-F1 mice. We explored whether DNA methylation and small non-coding RNAs might be involved in mediating intergenerational effects. Sperm DNA methylation was largely altered in SL mice. However, these changes did not correlate with the hepatic transcriptome. Next, we analyzed small non-coding RNA content in the testes of mice from the parental generation. Two miRNAs (miR-457 and miR-201) appeared differentially expressed in the testes of SL-F0 mice. They are known to be expressed in mature spermatozoa, but not in oocytes nor early embryos, and they may regulate the transcription of lipogenic genes, but not clock genes, in hepatocytes. Hence, they are strong candidates to mediate the inheritance of adult hepatic steatosis in our murine model. In conclusion, litter size reduction leads to intergenerational effects through non-genomic mechanisms. In our model, DNA methylation does not seem to play a role on the circadian rhythm nor lipid genes. However, at least two paternal miRNAs might influence the expression of a few lipid-related genes in the first-generation offspring, F1.
Collapse
Affiliation(s)
| | - Sílvia Ribo
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
| | - Eduard Casas
- Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
| | | | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ruben Diaz
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana G. Kalko
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Tanya Vavouri
- Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
| | - Josep C. Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, 08950 Barcelona, Spain
- School of Medicine, University of Barcelona, L’Hospitalet, 08907 Barcelona, Spain
- Correspondence: or ; Tel.: +34-934024267
| |
Collapse
|
30
|
Zhang Y, Qi J, Zhao J, Li M, Zhang Y, Hu H, Wei L, Zhou K, Qin H, Qu P, Cao W, Liu E. Effect of Dietetic Obesity on Testicular Transcriptome in Cynomolgus Monkeys. Genes (Basel) 2023; 14:genes14030557. [PMID: 36980830 PMCID: PMC10048326 DOI: 10.3390/genes14030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity is a metabolic disorder resulting from behavioral, environmental and heritable causes, and can have a negative impact on male reproduction. There have been few experiments in mice, rats, and rabbits on the effects of obesity on reproduction, which has inhibited the development of better treatments for male subfertility caused by obesity. Nonhuman primates are most similar to human beings in anatomy, physiology, metabolism, and biochemistry and are appropriate subjects for obesity studies. In this investigation, we conducted a transcriptome analysis of the testes of cynomolgus monkeys on high-fat, high-fructose, and cholesterol-rich diets to determine the effect of obesity on gene expression in testes. The results showed that the testes of obese monkeys had abnormal morphology, and their testes transcriptome was significantly different from that of non-obese animals. We identified 507 differentially abundant genes (adjusted p value < 0.01, log2 [FC] > 2) including 163 up-regulated and 344 down-regulated genes. Among the differentially abundant genes were ten regulatory genes, including IRF1, IRF6, HERC5, HERC6, IFIH1, IFIT2, IFIT5, IFI35, RSAD2, and UBQLNL. Gene ontology (GO) and KEGG pathway analysis was conducted, and we found that processes and pathways associated with the blood testes barrier (BTB), immunity, inflammation, and DNA methylation in gametes were preferentially enriched. We also found abnormal expression of genes related to infertility (TDRD5, CLCN2, MORC1, RFX8, SOHLH1, IL2RB, MCIDAS, ZPBP, NFIA, PTPN11, TSC22D3, MAPK6, PLCB1, DCUN1D1, LPIN1, and GATM) and down-regulation of testosterone in monkeys with dietetic obesity. This work not only provides an important reference for research and treatment on male infertility caused by obesity, but also valuable insights into the effects of diet on gene expression in testes.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Jia Qi
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Juan Zhao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Miaojing Li
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yulin Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Huizhong Hu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Liangliang Wei
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Kai Zhou
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
| | - Wenbin Cao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an 710049, China
- Correspondence: (W.C.); (E.L.)
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, China
- Correspondence: (W.C.); (E.L.)
| |
Collapse
|
31
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
32
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
33
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
34
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
35
|
Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 2021; 11:metabo11120840. [PMID: 34940598 PMCID: PMC8706114 DOI: 10.3390/metabo11120840] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023] Open
Abstract
In recent decades, the worldwide prevalence of obesity has risen dramatically and is currently estimated to be around 20%. Obesity is linked to an increased risk of comorbidities and premature mortality. Several studies have shown that obesity negatively impacts male fertility through various mechanisms. This review aims to investigate the molecular mechanisms through which obesity impairs male reproduction, including obesity-associated hypogonadism and its effects on spermatogenesis, chronic inflammation, and oxidative stress. Obesity negatively impacts both conventional and biofunctional sperm parameters, and it also induces epigenetic changes that can be transferred to offspring. Moreover, obesity-related diseases are linked to a dysregulation of adipocyte function and micro-environmental inflammatory processes. The dysregulated adipokines significantly influence insulin signaling, and they may also have a detrimental effect on testicular function. Sirtuins can also play an important role in inflammatory and metabolic responses in obese patients. Understanding the molecular mechanisms that are involved in obesity-induced male infertility could increase our ability to identify novel targets for the prevention and treatment of obesity and its related consequences.
Collapse
|
36
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
37
|
Svanes C, Bertelsen RJ, Accordini S, Holloway JW, Júlíusson P, Boateng E, Krauss-Etchmann S, Schlünssen V, Gómez-Real F, Skulstad SM. Exposures during the prepuberty period and future offspring's health: evidence from human cohort studies†. Biol Reprod 2021; 105:667-680. [PMID: 34416759 PMCID: PMC8444705 DOI: 10.1093/biolre/ioab158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that exposures in prepuberty, particularly in fathers-to-be, may impact the phenotype of future offspring. Analyses of the RHINESSA cohort find that offspring of father’s exposed to tobacco smoking or overweight that started in prepuberty demonstrate poorer respiratory health in terms of more asthma and lower lung function. A role of prepuberty onset smoking for offspring fat mass is suggested in the RHINESSA and ALSPAC cohorts, and historic studies suggest that ancestral nutrition during prepuberty plays a role for grand-offspring’s health and morbidity. Support for causal relationships between ancestral exposures and (grand-)offspring’s health in humans has been enhanced by advancements in statistical analyses that optimize the gain while accounting for the many complexities and deficiencies in human multigeneration data. The biological mechanisms underlying such observations have been explored in experimental models. A role of sperm small RNA in the transmission of paternal exposures to offspring phenotypes has been established, and chemical exposures and overweight have been shown to influence epigenetic programming in germ cells. For example, exposure of adolescent male mice to smoking led to differences in offspring weight and alterations in small RNAs in the spermatozoa of the exposed fathers. It is plausible that male prepuberty may be a time window of particular susceptibility, given the extensive epigenetic reprogramming taking place in the spermatocyte precursors at this age. In conclusion, epidemiological studies in humans, mechanistic research, and biological plausibility, all support the notion that exposures in the prepuberty of males may influence the phenotype of future offspring.
Collapse
Affiliation(s)
- Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Oral Health Centre of Expertise Western Norway, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pétur Júlíusson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Health Register Research and Development, National Institute of Public Health, Bergen, Norway
| | - Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Susanne Krauss-Etchmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Vivi Schlünssen
- Department of Public Health-Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|