1
|
Santiago J, Pocevičiūtė D, The Netherlands Brain Bank, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2025; 35:e13304. [PMID: 39251230 PMCID: PMC11835440 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | | | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
2
|
Zhao B, Zang P, Quan M, Wang Q, Guo D, Jia J, Wang W. The Effect of APOE ε4 on Alzheimer's Disease Fluid Biomarkers: A Cross-Sectional Study Based on the COAST. CNS Neurosci Ther 2025; 31:e70202. [PMID: 39749650 PMCID: PMC11696244 DOI: 10.1111/cns.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
AIMS To analyze the effect of APOE ε4 on fluid biomarkers and the correlations between blood molecules and CSF biomarkers in AD patients. METHODS This study enrolled 575 AD patients, 131 patients with non-AD dementia, and 112 cognitively normal (CN) participants, and AD patients were divided into APOE ε4 carriers and non-carriers. Cerebrospinal fluid (CSF) biomarkers and blood-derived biomolecules were compared between AD and CN groups, between non-AD dementia and CN groups, as well as within APOE ε4 subgroups of AD patients. Utilizing Spearman's correlation analysis and quantile regression analysis, the relationships between blood-derived biomolecules and CSF biomarkers were analyzed in APOE ε4 carriers and non-carriers. RESULTS The levels of CSF biomarkers and blood molecules exhibited significant differences between the AD and CN groups, including Aβ42, t-tau, p-tau 181, high-density lipoprotein, low-density lipoprotein (LDL), and uric acid. In AD patients, APOE ε4 carriers had increased levels of CSF t-tau, p-tau 181, and plasma LDL. In the correlation and regression analyses, the negative relationships between plasma TG and t-tau, between plasma TG and p-tau 181 levels, as well as the positive relationship between serum IgA and CSF Aβ42, were observed significantly in APOE ε4+ AD groups, but not in APOE ε4- AD group. CONCLUSION APOE ε4 is associated with accelerated progression of AD pathology. The blood-derived biomolecules correlated with CSF biomarkers in APOE ε4 carriers are related to neuroinflammation and lipid metabolism, which may indicate the role of APOE ε4 in AD pathophysiology and offer insights for diagnostic and therapeutic strategies for AD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03653156.
Collapse
Affiliation(s)
- Bote Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| | - Peixi Zang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of NeurologyGansu Provincial HospitalLanzhou CityGansu ProvinceChina
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| | - Qianqian Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| | - Dongmei Guo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Center for Neurological Disorders and National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersBeijingChina
| |
Collapse
|
3
|
Knecht L, Dalsbøl K, Simonsen AH, Pilchner F, Ross JA, Winge K, Salvesen L, Bech S, Hejl AM, Løkkegaard A, Hasselbalch SG, Dodel R, Aznar S, Waldemar G, Brudek T, Folke J. Autoantibody profiles in Alzheimer´s, Parkinson´s, and dementia with Lewy bodies: altered IgG affinity and IgG/IgM/IgA responses to alpha-synuclein, amyloid-beta, and tau in disease-specific pathological patterns. J Neuroinflammation 2024; 21:317. [PMID: 39627772 PMCID: PMC11613470 DOI: 10.1186/s12974-024-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative disorders marked by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to maintain homeostasis and were previously found altered in AD and PD patients, among others. MAIN TEXT We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and affinity correlations were identified, highlighting altered immune responses. CONCLUSION This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies against pathological proteins. These insights into the autoreactive immune system's role in neurodegeneration suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding and possibly diagnosing these conditions.
Collapse
Affiliation(s)
- Luisa Knecht
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Katrine Dalsbøl
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
| | - Falk Pilchner
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Jean Alexander Ross
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Kristian Winge
- Odense University Hospital, University of Southern Denmark, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 7, Copenhagen, NV, DK-2400, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Richard Dodel
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø, DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, Entrance 11B, 2. floor, Copenhagen, NV, DK-2400, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, Copenhagen, NV, DK-2400, Denmark.
- Chair of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Hufelandstraße 55, DE-45147, Essen, Germany.
| |
Collapse
|
4
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
5
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
6
|
Pocevičiūtė D, Roth B, Ohlsson B, Wennström M. Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. Int J Mol Sci 2024; 25:7665. [PMID: 39062913 PMCID: PMC11276895 DOI: 10.3390/ijms25147665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreas-derived islet amyloid polypeptide (IAPP) aggregates and deposits in the pancreas and periphery of Type 2 Diabetes (T2D) patients, contributing to diabetic complications. The excess IAPP can be removed by autoantibodies, and increased levels of immunoglobulin (Ig) G against IAPP have been reported in T2D patients. However, whether other Ig classes are also affected and if the levels can be managed is less known. This pre-post study examines IgA levels against IAPP oligomers (IAPPO-IgA) in T2D patients and assesses the impact of the Okinawa-based Nordic (O-BN) diet-a low-carbohydrate, high-fiber diet-on these levels after following the diet for 3 months. IAPP, IAPPO-IgA, and total IgA levels were measured in plasma and fecal samples from n = 30 T2D patients collected at baseline, after 3 months of diet, and after additional 4 months of unrestricted diets (a clinical follow-up). The IAPP and IAPPO-IgA levels were significantly lower after 3 months, with the latter also being significantly reduced at the clinical follow-up. The reduction in plasma IAPP and IAPPO-IgA levels correlated with reductions in plasma levels of metabolic and inflammatory markers. Hence, following the O-BN diet for at least 3 months is sufficient to reduce circulating IAPP and IAPPO-IgA levels, which may be principal in managing T2D.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, 205 02 Malmö, Sweden; (B.R.); (B.O.)
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| |
Collapse
|
7
|
Almeida FC, Patra K, Giannisis A, Niesnerova A, Nandakumar R, Ellis E, Oliveira TG, Nielsen HM. APOE genotype dictates lipidomic signatures in primary human hepatocytes. J Lipid Res 2024; 65:100498. [PMID: 38216055 PMCID: PMC10875595 DOI: 10.1016/j.jlr.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.
Collapse
Affiliation(s)
- Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Kalicharan Patra
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anezka Niesnerova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, USA
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, (CLINTEC), Division of Transplantation surgery, Karolinska Institutet and ME Transplantation, Karolinska University Hospital, Huddinge, Sweden
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, Braga, Portugal.
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
8
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Role of Bmal1 and Gut Microbiota in Alzheimer's Disease and Parkinson's Disease Pathophysiology: The Probable Effect of Melatonin on Their Association. ACS Chem Neurosci 2023; 14:3883-3893. [PMID: 37823531 DOI: 10.1021/acschemneuro.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Faculty of Pharmacy. Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| |
Collapse
|
9
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Pocevičiūtė D, Roth B, Schultz N, Nuñez-Diaz C, Janelidze S, The Netherlands Brain Bank , Olofsson A, Hansson O, Wennström M. Plasma IAPP-Autoantibody Levels in Alzheimer's Disease Patients Are Affected by APOE4 Status. Int J Mol Sci 2023; 24:ijms24043776. [PMID: 36835187 PMCID: PMC9960837 DOI: 10.3390/ijms24043776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Pancreas-derived islet amyloid polypeptide (IAPP) crosses the blood-brain barrier and co-deposits with amyloid beta (Aβ) in brains of type 2 diabetes (T2D) and Alzheimer's disease (AD) patients. Depositions might be related to the circulating IAPP levels, but it warrants further investigation. Autoantibodies recognizing toxic IAPP oligomers (IAPPO) but not monomers (IAPPM) or fibrils have been found in T2D, but studies on AD are lacking. In this study, we have analyzed plasma from two cohorts and found that levels of neither immunoglobulin (Ig) M, nor IgG or IgA against IAPPM or IAPPO were altered in AD patients compared with controls. However, our results show significantly lower IAPPO-IgA levels in apolipoprotein E (APOE) 4 carriers compared with non-carriers in an allele dose-dependent manner, and the decrease is linked to the AD pathology. Furthermore, plasma IAPP-Ig levels, especially IAPP-IgA, correlated with cognitive decline, C-reactive protein, cerebrospinal fluid Aβ and tau, neurofibrillary tangles, and brain IAPP exclusively in APOE4 non-carriers. We speculate that the reduction in IAPPO-IgA levels may be caused by increased plasma IAPPO levels or masked epitopes in APOE4 carriers and propose that IgA and APOE4 status play a specific role in clearance of circulatory IAPPO, which may influence the amount of IAPP deposition in the AD brain.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Lund University, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Nina Schultz
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | - Cristina Nuñez-Diaz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | | | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 212 24 Malmö, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Correspondence:
| |
Collapse
|