1
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Thomas BB, Rajendran Nair DS, Rahimian M, Hassan AK, Tran TL, Seiler MJ. Animal models for the evaluation of retinal stem cell therapies. Prog Retin Eye Res 2025; 106:101356. [PMID: 40239758 DOI: 10.1016/j.preteyeres.2025.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Retinal degeneration (RD) diseases leading to severe vision loss can affect photoreceptors (PRs) that are responsible for phototransduction, or retinal pigmented epithelium (RPE) providing support for PRs. Human pluripotent stem cell (hPSC)-based therapies are a potential approach for restoration of retinal structure in patients with currently incurable RD diseases. Currently, there are two targeted hPSC therapeutics: PR rescue and PR replacement. PR rescue involves the transplantation of RPE or other neural progenitors into the subretinal space to slow down or prevent further RD. RPE transplantation plays a critical role in preserving photoreceptors by providing trophic support and maintaining retinal integrity, particularly in diseases like age-related macular degeneration (AMD). Advances in RPE transplantation methods, such as polarized monolayer cultures and scaffold-based approaches, have shown promise in enhancing graft survival and integration. However, limitations include inconsistent integration, variable neurotrophic factor secretion, and immune rejection risks in non-autologous transplants. In PR replacement, stem cell-derived photoreceptor-like cells or photoreceptor progenitors (PRP) obtained are transplanted into the eye. While PRPs are commonly obtained from retinal organoids (ROs), alternative sources, such as early differentiation stages or direct differentiation protocols, are also utilized to enhance the efficiency and scalability of PRP generation. Challenges include achieving proper integration, forming outer segments, rosette formation, and avoiding immune rejection or tumorigenicity. Various animal models that simulate human RD diseases are being used for establishing surgical feasibility, graft survival and visual functional recovery but fail to replicate clinical immune challenges. Rodent models lack macula-like structures and have limited reliability in detecting subtle functional changes, while larger animal models pose ethical, logistical, and financial challenges. Immunocompromised models have been developed for minimizing xenograft issues. Visual functional testing for efficacy includes optokinetic testing (OKN), electroretinography (ERG), and electrophysiological recordings from the retina and brain. These tests often fail to capture the complexity of human visual recovery, highlighting the need for advanced models and improved functional testing techniques. This review aims to aggregate current knowledge about approaches to stem cell transplantation, requirements of animal models chosen for validating vision benefits of transplantation studies, advantages of using specific disease models and their limitations. While promising strides have been made, addressing these limitations remains essential for translating stem cell-based therapies into clinical success.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Deepthi S Rajendran Nair
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Mana Rahimian
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Amr K Hassan
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States
| | - Thuy-Linh Tran
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Magdalene J Seiler
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States; Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States; Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
3
|
McDowall S, Bagda V, Hodgetts S, Mastaglia F, Li D. Controversies and insights into PTBP1-related astrocyte-neuron transdifferentiation: neuronal regeneration strategies for Parkinson's and Alzheimer's disease. Transl Neurodegener 2024; 13:59. [PMID: 39627843 PMCID: PMC11613593 DOI: 10.1186/s40035-024-00450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Promising therapeutic strategies are being explored to replace or regenerate the neuronal populations that are lost in patients with neurodegenerative disorders. Several research groups have attempted direct reprogramming of astrocytes into neurons by manipulating the expression of polypyrimidine tract-binding protein 1 (PTBP1) and claimed putative converted neurons to be functional, which led to improved disease outcomes in animal models of several neurodegenerative disorders. However, a few other studies reported data that contradict these claims, raising doubt about whether PTBP1 suppression truly reprograms astrocytes into neurons and the therapeutic potential of this approach. This review discusses recent advances in regenerative therapeutics including stem cell transplantations for central nervous system disorders, with a particular focus on Parkinson's and Alzheimer's diseases. We also provide a perspective on this controversy by considering that astrocyte heterogeneity may be the key to understanding the discrepancy in published studies, and that certain subpopulations of these glial cells may be more readily converted into neurons.
Collapse
Affiliation(s)
- Simon McDowall
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Department of Anatomy and Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vaishali Bagda
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stuart Hodgetts
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.
- Centre for Neuromuscular and Neurological Disorders, Nedlands, WA, Australia.
- Department of Neurology and Stephen and Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Ren Q, Lu F, Hao R, Chen Y, Liang C. Subretinal microglia support donor photoreceptor survival in rd1 mice. Stem Cell Res Ther 2024; 15:436. [PMID: 39563450 PMCID: PMC11575076 DOI: 10.1186/s13287-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE To investigate the potential relationship between subretinal microglia and transplanted donor photoreceptors. METHODS Photoreceptor precursors were transplanted into wild-type mice and rd1 mice by trans-scleral injection. Immunohistochemistry was employed to detect microglia and macrophages. PlX5622 feed was used to achieve microglia depletion and microglia repopulation. RNA-seq and qPCR were utilized to evaluate gene expression. Confocal microscopy was used to observe the interaction between microglia and donor photoreceptors. RESULTS Donor photoreceptors survived in rd1 mice but not in wild-type mice after trans-scleral injection. The microglial cells closely interacted with donor cells. While donor cells failed to survive in rd1 mice after microglia depletion, they could survive following microglia repopulation. The RNA-seq analysis showed a pro-neurodevelopmental effect of sub-retinal microglia/RPE tissue in rd1 mice. CONCLUSIONS Subretinal microglia supported donor photoreceptor survival in rd1 mice.
Collapse
Affiliation(s)
- Qinjia Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Ruwa Hao
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Chen Liang
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China.
| |
Collapse
|
5
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Chang SH, Park CG. Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity. Immune Netw 2023; 23:e44. [PMID: 38188600 PMCID: PMC10767552 DOI: 10.4110/in.2023.23.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Chung Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
7
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
8
|
Moghadam Fard A, Mirshahi R, Naseripour M, Ghasemi Falavarjani K. Stem Cell Therapy in Stargardt Disease: A Systematic Review. J Ophthalmic Vis Res 2023; 18:318-327. [PMID: 37600916 PMCID: PMC10432931 DOI: 10.18502/jovr.v18i3.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/26/2023] [Indexed: 08/22/2023] Open
Abstract
This article aimed to review current literature on the safety and efficacy of stem cell therapy in Stargardt disease. A comprehensive literature search was performed, and two animal and eleven human clinical trials were retrieved. These studies utilized different kinds of stem cells, including human or mouse embryonic stem cells, mesenchymal stem cells, bone marrow mononuclear fraction, and autologous bone marrow-derived stem cells. In addition, different injection techniques including subretinal, intravitreal, and suprachoroidal space injections have been evaluated. Although stem cell therapy holds promise in improving visual function in patients with Stargardt disease, further investigation is needed to determine the long-term benefits, safety, and efficacy in determining the best delivery method and selecting the most appropriate stem cell type.
Collapse
Affiliation(s)
- Atousa Moghadam Fard
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Aweidah H, Matsevich C, Khaner H, Idelson M, Ejzenberg A, Reubinoff B, Banin E, Obolensky A. Survival of Neural Progenitors Derived from Human Embryonic Stem Cells Following Subretinal Transplantation in Rodents. J Ocul Pharmacol Ther 2023. [PMID: 37140896 DOI: 10.1089/jop.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Purpose: To examine the survival of neural progenitors (NPs) cells derived from human embryonic stem cells (hESCs) following subretinal (SR) transplantation in rodents. Methods: hESCs engineered to express enhanced green fluorescent protein (eGFP) were differentiated in vitro toward an NP fate using a 4-week protocol. State of differentiation was characterized by quantitative-PCR. NPs in suspension (75,000/μl) were transplanted to the SR-space of Royal College of Surgeons (RCS) rats (n = 66), nude-RCS rats (n = 18), and NOD scid gamma (NSG) mice (n = 53). Success of engraftment was determined at 4 weeks post-transplant by in vivo visualization of GFP-expression using a properly filtered rodent fundus camera. Transplanted eyes were examined in vivo at set time points using the fundus camera, and in select cases, by optical coherence tomography imaging, and after enucleation, by retinal histology and immunohistochemistry. Results: In RCS rats, cell rejection was observed in 29% of eyes at 6 weeks, rising to 92% at 8 weeks. In the more immunodeficient nude-RCS rats, the rejection rate was still high reaching 62% of eyes at 6 weeks post-transplant. Following transplantation in highly immunodeficient NSG mice, survival of the hESC-derived NPs was much improved, with 100% survival at 9 weeks and 72% at 20 weeks. A small number of eyes that were followed past 20 weeks showed survival also at 22 weeks. Conclusions: Immune status of recipient animals influences transplant survival. Highly immunodeficient NSG mice provide a better model for studying long-term survival, differentiation, and possible integration of hESC-derived NPs. Clinical Trial Registration numbers: NCT02286089, NCT05626114.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Chen Matsevich
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hanita Khaner
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Masha Idelson
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Johnson TV, Calkins DJ, Fortune B, Goldberg JL, La Torre A, Lamba DA, Meyer JS, Reh TA, Wallace VA, Zack DJ, Baranov P. The importance of unambiguous cell origin determination in neuronal repopulation studies. iScience 2023; 26:106361. [PMID: 37009209 PMCID: PMC10060674 DOI: 10.1016/j.isci.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Neuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer. In addition, labeling transplanted and endogenously transdifferentiated neurons through viral vector transduction can yield misexpression in host cells in some circumstances. These issues can confound the tracking and evaluation of repopulated neurons in regenerative experimental paradigms. Using the retina as an example, we discuss common reasons for artifactual labeling of endogenous host neurons with donor cell reporters and suggest strategies to prevent erroneous conclusions based on misidentification of cell origin.
Collapse
Affiliation(s)
- Thomas V. Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J. Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology & Human Anatomy, University of California Davis, Davis, CA, USA
| | - Deepak A. Lamba
- Department of Ophthalmology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jason S. Meyer
- Departments of Medical & Molecular Genetics, Ophthalmology (Glick Eye Institute), Pharmacology & Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Departments of Laboratory Medicine & Pathobiology, and Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Donald J. Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
12
|
Ripolles-Garcia A, Dolgova N, Phillips MJ, Savina S, Ludwig AL, Stuedemann SA, Nlebedum U, Wolfe JH, Garden OA, Maminishkis A, Amaral J, Bharti K, Gamm DM, Aguirre GD, Beltran WA. Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Reports 2022; 17:1824-1841. [PMID: 35905738 PMCID: PMC9391525 DOI: 10.1016/j.stemcr.2022.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Regenerative therapies aimed at replacing photoreceptors are a promising approach for the treatment of otherwise incurable causes of blindness. However, such therapies still face significant hurdles, including the need to improve subretinal delivery and long-term survival rate of transplanted cells, and promote sufficient integration into the host retina. Here, we successfully delivered in vitro-derived human photoreceptor precursor cells (PRPCs; also known as immature photoreceptors) to the subretinal space of seven normal and three rcd1/PDE6B mutant dogs with advanced inherited retinal degeneration. Notably, while these xenografts were rejected in dogs that were not immunosuppressed, transplants in most dogs receiving systemic immunosuppression survived up to 3-5 months postinjection. Moreover, differentiation of donor PRPCs into photoreceptors with synaptic pedicle-like structures that established contact with second-order neurons was enhanced in rcd1/PDE6B mutant dogs. Together, our findings set the stage for evaluating functional vision restoration following photoreceptor replacement in canine models of inherited retinal degeneration.
Collapse
Affiliation(s)
- Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Dolgova
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Svetlana Savina
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison L Ludwig
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sara A Stuedemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Uchenna Nlebedum
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John H Wolfe
- Walter Flato Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Oliver A Garden
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Amaral
- Office of Scientific Director, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Abud MB, Baranov P, Patel S, Hicks CA, Isaac DLC, Louzada RN, Dromel P, Singh D, Sinden J, Ávila MP, Young M. In vivo study to assess dosage of allogeneic pig retinal progenitor cells: Long-term survival, engraftment, differentiation and safety. J Cell Mol Med 2022; 26:3254-3268. [PMID: 35481949 PMCID: PMC9170813 DOI: 10.1111/jcmm.17332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/02/2022] Open
Abstract
Despite notable efforts and significant therapeutical advances, age‐related macular degeneration remains the single most common reason for vision loss. Retinal progenitor cells (RPCs) are considered promising candidates for cellular treatments that repair and restore vision. In this allogenic study, the phenotypic profile of pig and human RPCs derived using similar manufacturing processes is compared. The long‐term (12‐week) survival of green fluorescent protein‐pig retinal progenitor cells GFP‐pRPC after subretinal transplantation into normal miniature pig (mini‐pig) retina is investigated. Human eyes are both anatomically and physiologically mimicked by pig eyes, so the pig is an ideal model to show an equivalent way of delivering cells, immunological response and dosage. The phenotypic equivalency of porcine and clinically intended human RPCs was established. Thirty‐nine mini‐pigs are used in this study, and vehicle‐injected eyes and non‐injected eyes serve as controls. Six groups are given different dosages of pRPCs, and the cells are found to survive well in all groups. At 12 weeks, strong evidence of integration is indicated by the location of the grafted cells within the neuro‐retina, extension of processes to the plexiform layers and expression of key retinal markers such as recoverin, rhodopsin and synaptophysin. No immunosuppression is used, and no immune response is found in any of the groups. No pRPC‐related histopathology findings are reported in the major organs investigated. An initial dose of 250 k cells in 100 µl of buffer is established as an appropriate initial dose for future human clinical trials.
Collapse
Affiliation(s)
- Murilo Batista Abud
- Federal University of Goias, Goiania, GO, Brazil.,Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ricardo Noguera Louzada
- Federal University of Goias, Goiania, GO, Brazil.,Postgraduate Program in Surgical Science, School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pierre Dromel
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Deepti Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Michael Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wang J, Tao Z, Deng H, Cui Y, Xu Z, Lyu Q, Zhao J. Therapeutic implications of nanodrug and tissue engineering for retinal pigment epithelium-related diseases. NANOSCALE 2022; 14:5657-5677. [PMID: 35352082 DOI: 10.1039/d1nr08337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The retinal pigment epithelium (RPE), as a single layer of cells that performs multiple functions posteriorly in the eye, is a promising target site for the prevention and treatment of several clinical diseases, including proliferative diabetic retinopathy, age-related macular degeneration, chorionic neovascularization, and retinitis pigmentosa. In recent decades, several nanodrug delivery platforms and tissue-engineered RPE have been widely developed to treat RPE-related diseases. This work summarizes the recent advances in nanoplatforms and tissue engineering scaffolds developed in these fields. The diseases associated with pathological RPE and their common therapy strategies are first introduced. Then, the recent progress made with a variety of drug delivery systems is presented, with an emphasis on the modification strategies of nanomaterials for targeted delivery. Tissue engineering-mediated RPE transplantation for treating these diseases is subsequently described. Finally, the clinical translation challenges in these fields are discussed in depth. This article will offer readers a better understanding of emerging nanotechnology and tissue engineering related to the treatment of RPE-related diseases and could facilitate their widespread use in experiments in vivo and in clinical applications.
Collapse
Affiliation(s)
- Jiao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Zhengyang Tao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Hongwei Deng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Zhirong Xu
- Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Qinghua Lyu
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen 518000, China.
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
15
|
Abd Rashid M, Chenshen L, Ee Hwan AK, AlSaeedy H, Mok PL, Subbiah SK, Isa HM, Yong TK, Nizam Harun MH, B S Mohamad SMS, Min Hwei AN, Luu CD, Catherine Bastion ML. Rescue of photoreceptor with human mesenchyme stem cell and human mesenchyme stem cell expressing erythropoietin in total degeneration of retina animal model. Indian J Ophthalmol 2022; 70:921-929. [PMID: 35225544 PMCID: PMC9114553 DOI: 10.4103/ijo.ijo_472_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: This study aimed to investigate the efficacy of human-derived umbilical cord mesenchymal stem cells (HDUMSC) and human-derived umbilical cord mesenchymal stem cells expressing erythropoietin (HDUMSC-EPO) to rescue total degenerated retina in a rat model. Methods: The study included four treatment groups, namely negative control using normal saline (HBSS) injection, positive control using sodium iodide 60 mg/kg (SI), SI treated with HDUMSC, and SI treated with HDUMSC-EPO given via subretinal and intravenous routes, to test the efficacy of retinal regeneration following SI-induced retinal degeneration. Retinal function in both phases was tested via electroretinography (ERG) and histological staining examining the outer nuclear layer (ONL). Results: There was a statistically significant result (P < 0.05) in the SI treated with HDUMSC-EPO only when comparing day 11 (mean = 23.6 μv), day 18 (mean = 25.2 μv), day 26 (mean = 26.3 μv), and day 32 (mean = 28.2 μv) to the b-wave ERG on day 4 rescue injection day (mean = 12.5 μv). The SI treated with HDUMSC-EPO showed significant improvement in b-wave ERG readings in the Sprague–Dawley (SD) rat but did not restore baseline readings prior to degeneration (day 0). Both treated groups’ ONL thicknesses did not show significant changes compared to the negative control group (HBSS) following rescue therapy. Conclusion: Total retinal degeneration following intravenous SI injection was observed at 60 mg/kg. SI treated with HDUMSC and HDUMSC-EPO showed no regenerative potential compared to baseline in SI-induced total retina degeneration on ERG or histology, whereas SI treated with HDUMSC-EPO group showed a substantial increase in b-wave ERG amplitude over time.
Collapse
Affiliation(s)
- Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Lam Chenshen
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Avin Koh Ee Hwan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba AlSaeedy
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia; Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Hazlita Md Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Then Kong Yong
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre; Brighton Healthcare, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Syed Mohamed Suhail B S Mohamad
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Angela Ng Min Hwei
- Tissue Engineering Centre, UKM Medical Centre, Cheras, Kuala Lumpur,, Malaysia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| |
Collapse
|
16
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
17
|
Nair DSR, Seiler MJ, Patel KH, Thomas V, Camarillo JCM, Humayun MS, Thomas BB. Tissue Engineering Strategies for Retina Regeneration. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 35251703 PMCID: PMC8896578 DOI: 10.3390/app11052154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Magdalene J. Seiler
- Departments of Physical Medicine & Rehabilitation, Ophthalmology, Anatomy & Neurobiology, Sue and Bill Gross Stem Cell Research Centre, University of California, Irvine, CA 92697-1705, USA
| | - Kahini H. Patel
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vinoy Thomas
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Juan Carlos Martinez Camarillo
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
18
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Lam C, Alsaeedi HA, Koh AEH, Harun MHN, Hwei ANM, Mok PL, Luu CD, Yong TK, Subbiah SK, Bastion MLC. Human Dental Pulp Stem Cells (DPSCs) Therapy in Rescuing Photoreceptors and Establishing a Sodium Iodate-Induced Retinal Degeneration Rat Model. Tissue Eng Regen Med 2021; 18:143-154. [PMID: 33415670 DOI: 10.1007/s13770-020-00312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model. METHODS Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology. RESULTS No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups. CONCLUSION Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.
Collapse
Affiliation(s)
- Chenshen Lam
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Hairul Nizam Harun
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Angela Ng Min Hwei
- Tissue Engineering Centre, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, 3002, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, 3010, Australia
| | - Then Kong Yong
- Brighton Healthcare Suite G-2, Ground Floor, Bio X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Mae-Lynn Catherine Bastion
- Faculty of Medicine, Department of Ophthalmology, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
21
|
Huang L, You J, Yao Y, Xie M. Interleukin-13 Gene Modification Enhances Grafted Mesenchymal Stem Cells Survival After Subretinal Transplantation. Cell Mol Neurobiol 2020; 40:725-735. [PMID: 31792777 PMCID: PMC11448798 DOI: 10.1007/s10571-019-00768-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great potential for cell- and gene-based therapies for retinal degeneration. Limited survival is the main obstacle in achieving successful subretinal transplantation of MSCs. The present study sought to evaluate the effect of interleukin-13 (IL-13) gene modification on the phenotypic alteration of retinal microglia (RMG) and the survival of MSCs following subretinal grafting. In this study, LPS-activated RMG were cocultured with MSCs or IL-13-expressing MSCs (IL-13-MSCs) for 24 h, and activated phenotypes were detected in vitro. Western blotting was performed to quantify cytokine secretion by light-injured retinas following subretinal transplantation. The numbers of activated RMG and surviving grafted cells were analysed, and the integrity of the blood-retinal barrier (BRB) was examined in vivo. We found that, compared with normal MSCs, cocultured IL-13-MSCs suppressed the expression of pro-inflammatory factors and major histocompatibility complex II, promoted the expression of anti-inflammatory cytokines by activated RMG and simultaneously inhibited the proliferation of and phagocytosis by RMG. The subretinal transplantation of IL-13-MSCs increased the expression of neurotrophic factors, IL-13 and tight junction proteins in the host retina, decreased the number of phagocytic RMG and improved the survival of grafted cells. Furthermore, IL-13-MSCs alleviated BRB breakdown induced by subretinal injection. Our results demonstrate that IL-13-MSCs can polarize activated RMG to the neuroprotective M2 phenotype and enhance the survival of grafted MSCs against the damage stress induced by subretinal transplantation.
Collapse
Affiliation(s)
- Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Junmei You
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China.
| |
Collapse
|
22
|
A Strategy for Personalized Treatment of iPS-Retinal Immune Rejections Assessed in Cynomolgus Monkey Models. Int J Mol Sci 2020; 21:ijms21093077. [PMID: 32349277 PMCID: PMC7247695 DOI: 10.3390/ijms21093077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022] Open
Abstract
Recently, we successfully transplanted an autograft, or major histocompatibility complex (MHC)-matched allografts, from induced-pluripotent-stem-cell-derived retinal pigment epithelial (iPSC-RPE) cells in patients with age-related macular degeneration. However, there was an issue regarding immune rejection after transplantation. In this study, we established a preoperational in vitro "drug-lymphocytes-grafts immune reaction (Drug-LGIR)" test to determine the medication for immune rejection using host immunocompetent cells (lymphocytes) and transplant cells (target iPSC-RPE cells) together with different medications. The adequacy of the test was assessed by in vivo transplantation in monkey models together with medication based on in vitro data. In the results of Drug-LGIR tests, some drugs exhibited significant suppression of RPE cell-related allogeneic reactions, while other drugs did not, and the efficacy of each drug differed among the recipient monkeys. Based on the results of Drug-LGIR, we applied cyclosporine A or local steroid (triamcinolone) therapy to two monkeys, and successfully suppressed RPE-related immune rejections with RPE grafts, which survived without any signs of rejection under drug administration. We propose that our new preoperational in vitro Drug-LGIR test, which specifies the most efficacious medication for each recipient, is useful for controlling immune attacks with personalized treatment for each patient after retinal transplantation.
Collapse
|
23
|
Haworth R, Sharpe M. Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 2020; 49:1308-1316. [PMID: 32319357 DOI: 10.1177/0192623320918241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.
Collapse
|
24
|
Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, Zhang L, Su T, Zhang J, Chen J. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther 2020; 11:98. [PMID: 32131893 PMCID: PMC7055119 DOI: 10.1186/s13287-020-01608-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background Retinitis pigmentosa (RP) is an inherited retinal disease characterized by progressive loss of photoreceptor cells. This study aim at exploring the effect of retinal pigment epithelium (RPE) derived from human-induced pluripotent stem cell (hiPSC-RPE) on the retina of retinal degeneration 10 (rd10) mice, which are characterized with progressive photoreceptor death. Methods We generated RPE from hiPSCs by sequential supplementation with retinal-inducing factors and RPE specification signaling factors. The three-dimensional (3D) spheroid culture method was used to obtain optimal injectable hiPSC-RPE cells. Subretinal space transplantation was conducted to deliver hiPSC-RPE cells into the retina of rd10 mice. Neurotrophic factor secretion from transplanted hiPSC-RPE cells was detected by enzyme-linked immunosorbent assay (ELISA). Immunostaining, Western blotting, electroretinography (ERG), and visual behavior testing were performed to determine the effects of hiPSC-RPE on the retinal visual function in rd10 mice. Results Our data demonstrated that hiPSC-RPE cells exhibited classic RPE properties and phenotype after the sequential RPE induction from hiPSCs. hiPSC-RPE cells co-cultured with mouse retinal explants or retinal ganglion cells 5 (RGC5) exhibited decreased apoptosis. The viability and functional properties of hiPSC-RPE cells were enhanced by 3D spheroid culture. Transplanted hiPSC-derived RPE cells were identified by immunostaining with human nuclear antigen staining in the retina of rd10 14 days after subretinal space injection. The pigment epithelium-derived factor level was increased significantly. The expression of CD68, microglial activation marker, reduced after transplantation. The light avoidance behavior and ERG visual function in rd10 mice improved by the transplantation of hiPSC-RPE cells. Conclusion Our findings suggest that injectable hiPSC-RPE cells after 3D spheroid culture can rescue the structure and function of photoreceptors by sub-retinal transplantation, which lay the foundation for future clinical cell therapy to treat RP and other retinal degeneration diseases.
Collapse
Affiliation(s)
- Deliang Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, China
| | - Fabian Gademann
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jixing Cao
- Eye Institute, Medical College of Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Eye Institute, Medical College of Jinan University, Guangzhou, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Lan Zhang
- Eye Institute, Medical College of Jinan University, Guangzhou, China
| | - Ting Su
- Eye Institute, Medical College of Jinan University, Guangzhou, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, China.
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China. .,Eye Institute, Medical College of Jinan University, Guangzhou, China. .,Aier Eye Institute, Furong Middle Road, Changsha, China.
| |
Collapse
|
25
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
26
|
Ben M’Barek K, Habeler W, Regent F, Monville C. Developing Cell-Based Therapies for RPE-Associated Degenerative Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:55-97. [DOI: 10.1007/978-3-030-28471-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
28
|
Scruggs BA, Jiao C, Cranston CM, Kaalberg E, Wang K, Russell SR, Wiley LA, Mullins RF, Stone EM, Tucker BA, Sohn EH. Optimizing Donor Cellular Dissociation and Subretinal Injection Parameters for Stem Cell-Based Treatments. Stem Cells Transl Med 2019; 8:797-809. [PMID: 31004408 PMCID: PMC6646699 DOI: 10.1002/sctm.18-0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Subretinal delivery of stem cell‐derived retinal cells as a strategy to treat retinal degenerative blindness holds great promise. Currently, two clinical trials are underway in which human fetal retinal progenitor cells (RPCs) are being delivered to patients by intravitreal or subretinal injection to preserve or restore vision, respectively. With the advent of the induced pluripotent stem cell (iPSC), and in turn three‐dimensional derivation of retinal tissue, it is now possible to generate autologous RPCs for cell replacement. The purpose of this study was to evaluate the effect of commonly used cell isolation and surgical manipulation strategies on donor cell viability. iPSC‐RPCs were subjected to various conditions, including different dissociation and isolation methods, injection cannula sizes, and preinjection storage temperatures and times. The effects of commonly used surgical techniques on both host and donor cell viability were evaluated in Yucatan mini‐pigs (n = 61 eyes). We found a significant increase in cell viability when papain was used for RPC isolation. In addition, a significant decrease in cell viability was detected when using the 41G cannula compared with 31G and at storage times of 4 hours compared with 30 minutes. Although 96.4% of all eyes demonstrated spontaneous retinal reattachment following injection, retinal pigment epithelium (RPE) abnormalities were seen more frequently in eyes receiving injections via a 31G cannula; interestingly, eyes that received cell suspensions were relatively protected against such RPE changes. These findings indicate that optimization of donor cell isolation and delivery parameters should be considered when developing a subretinal cell replacement strategy. stem cells translational medicine2019;8:797&809
Collapse
Affiliation(s)
- Brittni A Scruggs
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Chunhua Jiao
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Cathryn M Cranston
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Emily Kaalberg
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R Russell
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Luke A Wiley
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 2019; 11:eaat5580. [PMID: 30651323 PMCID: PMC8784963 DOI: 10.1126/scitranslmed.aat5580] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/14/2018] [Accepted: 12/18/2018] [Indexed: 08/09/2023]
Abstract
Considerable progress has been made in testing stem cell-derived retinal pigment epithelium (RPE) as a potential therapy for age-related macular degeneration (AMD). However, the recent reports of oncogenic mutations in induced pluripotent stem cells (iPSCs) underlie the need for robust manufacturing and functional validation of clinical-grade iPSC-derived RPE before transplantation. Here, we developed oncogenic mutation-free clinical-grade iPSCs from three AMD patients and differentiated them into clinical-grade iPSC-RPE patches on biodegradable scaffolds. Functional validation of clinical-grade iPSC-RPE patches revealed specific features that distinguished transplantable from nontransplantable patches. Compared to RPE cells in suspension, our biodegradable scaffold approach improved integration and functionality of RPE patches in rats and in a porcine laser-induced RPE injury model that mimics AMD-like eye conditions. Our results suggest that the in vitro and in vivo preclinical functional validation of iPSC-RPE patches developed here might ultimately be useful for evaluation and optimization of autologous iPSC-based therapies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir Khristov
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Aaron Rising
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Balendu Shekhar Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Roba Dejene
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Nathan Hotaling
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Casey Stankewicz
- Cellular Dynamics International Inc. (a FUJIFILM company), Madison, WI 53711, USA
| | - Qin Wan
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Connie Zhang
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | - Kiyoharu J Miyagishima
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David McGaughey
- Ophthalmic Genetics and Visual Functional Branch, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mary Mattapallil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Boris Stanzel
- Macula Center Saar, Sulzbach Knappschaft Eye Clinic, Sulzbach/Saar 66280, Germany
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Wai Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Lucas Chase
- Cellular Dynamics International Inc. (a FUJIFILM company), Madison, WI 53711, USA
| | | | - Trevor McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sheldon Miller
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Amaral
- Office of Scientific Director, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Abstract
The availability of noninvasive high-resolution imaging technology, the immune-suppressive nature of the subretinal space, and the existence of surgical techniques that permit transplantation surgery to be a safe procedure all render the eye an ideal organ in which to begin cell-based therapy in the central nervous system. A number of early stage clinical trials are underway to assess the safety and feasibility of cell-based therapy for retinal blindness. Cell-based therapy using embryonic stem cell-derived differentiated cells (e.g., retinal pigment epithelium (RPE)), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells has demonstrated successful rescue and/or replacement in preclinical models of human retinal degenerative disease. Additional research is needed to identify the mechanisms that control synapse formation/disjunction (to improve photoreceptor transplant efficacy), to identify factors that limit RPE survival in areas of geographic atrophy (to improve RPE transplant efficacy in eyes with age-related macular degeneration), and to identify factors that regulate immune surveillance of the subretinal space (to improve long-term photoreceptor and RPE transplant survival).
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
31
|
Tian Y, Davis R, Zonca MR, Stern JH, Temple S, Xie Y. Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation. J Tissue Eng Regen Med 2018; 13:76-86. [DOI: 10.1002/term.2770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Richard Davis
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Michael R. Zonca
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Jeffrey H. Stern
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Sally Temple
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| |
Collapse
|
32
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
33
|
Ben M'Barek K, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, Yang Y, Chatrousse L, Domingues S, Masson Y, Sahel JA, Peschanski M, Goureau O, Monville C. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med 2018; 9:9/421/eaai7471. [PMID: 29263231 DOI: 10.1126/scitranslmed.aai7471] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/06/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Replacing defective retinal pigment epithelial (RPE) cells with those derived from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) is a potential strategy for treating retinal degenerative diseases. Early clinical trials have demonstrated that hESC-derived or hiPSC-derived RPE cells can be delivered safely as a suspension to the human eye. The next step is transplantation of hESC/hiPSC-derived RPE cells as cell sheets that are more physiological. We have developed a tissue-engineered product consisting of hESC-derived RPE cells grown as sheets on human amniotic membrane as a biocompatible substrate. We established a surgical approach to engraft this tissue-engineered product into the subretinal space of the eyes of rats with photoreceptor cell loss. We show that transplantation of the hESC-RPE cell sheets grown on a human amniotic membrane scaffold resulted in rescue of photoreceptor cell death and improved visual acuity in rats with retinal degeneration compared to hESC-RPE cells injected as a cell suspension. These results suggest that tissue-engineered hESC-RPE cell sheets produced under good manufacturing practice conditions may be a useful approach for treating diseases of retinal degeneration.
Collapse
Affiliation(s)
- Karim Ben M'Barek
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Walter Habeler
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Alexandra Plancheron
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Mohamed Jarraya
- Banque de tissus humain, Hôpital Saint Louis, AP-HP Paris, France
| | - Florian Regent
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Angélique Terray
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris, France
| | - Ying Yang
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 75012 Paris, France
| | - Laure Chatrousse
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Sophie Domingues
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Yolande Masson
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marc Peschanski
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France.,CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012 Paris, France.
| | - Christelle Monville
- INSERM U861, I-Stem, Association Française contre les Myopathies (AFM), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France. .,UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
| |
Collapse
|
34
|
Yang S, Xian B, Li K, Luo Z, Liu Y, Hu D, Ge J. Alpha 1-antitrypsin inhibits microglia activation and facilitates the survival of iPSC grafts in hypertension mouse model. Cell Immunol 2018; 328:49-57. [DOI: 10.1016/j.cellimm.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/16/2023]
|
35
|
Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, Ali RR, Young M, Xie Y, Temple S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018; 22:834-849. [PMID: 29859174 PMCID: PMC6492284 DOI: 10.1016/j.stem.2018.05.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ocular regenerative therapies are on track to revolutionize treatment of numerous blinding disorders, including corneal disease, cataract, glaucoma, retinitis pigmentosa, and age-related macular degeneration. A variety of transplantable products, delivered as cell suspensions or as preformed 3D structures combining cells and natural or artificial substrates, are in the pipeline. Here we review the status of clinical and preclinical studies for stem cell-based repair, covering key eye tissues from front to back, from cornea to retina, and including bioengineering approaches that advance cell product manufacturing. While recognizing the challenges, we look forward to a deep portfolio of sight-restoring, stem cell-based medicine. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jeffrey H Stern
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - James Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, via G.Gottardi 100, 41125 Modena, Italy
| | - Kang Zhang
- Shiley Eye Institute and Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangzhou Regenerative Medicine and Health Laboratory, Guangzhou 510060, China
| | - Jeffrey L Goldberg
- Byers Eye Institute at Stanford University, 2452 Watson Court, Palo Alto, CA 94303, USA
| | - Robin R Ali
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, an affiliate of Harvard Medical School, Boston, MA 02114, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
36
|
Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ. Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med 2018; 13:219-232. [PMID: 29509072 DOI: 10.2217/rme-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
37
|
Abstract
PURPOSE To develop a novel surgical approach to provide consistent delivery of cell suspension into the subretinal space without cell leakage into the vitreous. METHODS Cell viability was assessed following mock injections to determine the optimal size cannula for delivery of the cells. A pars plana without vitrectomy approach was used to create a subretinal bleb with balanced salt solution using a 41-gauge cannula. GFP-labeled retinal pigment epithelium cells were injected through transretinal (n = 8) and transscleral (n = 16) injection approaches. Optical coherence tomography, fundus photography and autofluorescence, and histological analysis were used to evaluate surgical success. RESULTS The 30-gauge cannula yielded the highest recovery of cells with highest viability. The transretinal approach consistently resulted in transplanted cells in the vitreous, with some cells coming to rest on the inner limiting membrane. Conversely, the transscleral approach resulted in transplantation of cells into the subretinal space in 100% of cases. Histological analysis confirmed these results. CONCLUSION We have developed a novel surgical approach that resulted in encapsulation of transplanted cells into the subretinal space with a 100% success rate. This approach will provide a useful tool for further cell transplantation study and may provide an approach for clinical application of delivering cells to the subretinal space.
Collapse
|
38
|
Thakur A, Mishra S, Pena J, Zhou J, Redenti S, Majeska R, Vazquez M. Collective adhesion and displacement of retinal progenitor cells upon extracellular matrix substrates of transplantable biomaterials. J Tissue Eng 2018; 9:2041731417751286. [PMID: 29344334 PMCID: PMC5764132 DOI: 10.1177/2041731417751286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel. These findings suggest that transplantable biomaterials can be designed to improve cell integration by incorporating extracellular matrix substrates that affect the migratory behaviors of replacement cells.
Collapse
Affiliation(s)
- Ankush Thakur
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Shawn Mishra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Juan Pena
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Jing Zhou
- Department of Biology, Lehman College, Bronx, NY, USA.,Biology, The Graduate Center, The City University of New York, New York, NY, USA
| | - Stephen Redenti
- Department of Biology, Lehman College, Bronx, NY, USA.,Biology, The Graduate Center, The City University of New York, New York, NY, USA.,Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Robert Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.,Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
39
|
McGill TJ, Wilson DJ, Stoddard J, Renner LM, Neuringer M. Cell Transplantation for Retinal Degeneration: Transition from Rodent to Nonhuman Primate Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:641-647. [DOI: 10.1007/978-3-319-75402-4_78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
40
|
Park HH, Lee KY, Park DW, Choi NY, Lee YJ, Son JW, Kim S, Moon C, Kim HW, Rhyu IJ, Koh SH. Tracking and protection of transplanted stem cells using a ferrocenecarboxylic acid-conjugated peptide that mimics hTERT. Biomaterials 2017; 155:80-91. [PMID: 29169040 DOI: 10.1016/j.biomaterials.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
In vivo tracking of transplanted stem cells has been a central aim of stem cell therapy. Although many tracking systems have been introduced, no method has yet been validated for clinical applications. We developed a novel sophisticated peptide (GV1001) that mimics hTERT (human telomerase reverse transcriptase) and analysed its ability to track and protect stem cells after transplantation. Ferrocenecarboxylic acid-conjugated GV1001 (Fe-GV1001) efficiently penetrated stem cells with no adverse effects. Moreover, Fe-GV1001 improved the viability, proliferation, and migration of stem cells under hypoxia. After Fe-GV1001-labelled stem cells were transplanted into the brains of rats after stroke, the labelled cells were easily tracked by MRI. Our findings indicate that Fe-GV1001 can be used for the in vivo tracking of stem cells after transplantation into the brain and can improve the efficacy of stem cell therapy by sustaining and enhancing stem cell characteristics under disease conditions.
Collapse
Affiliation(s)
- Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Dong Woo Park
- Department of Radiology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Na-Young Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Jeong-Woo Son
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea
| | - Sangjae Kim
- Teloid Inc., 920 Westholme Ave, Los Angeles (City), CA 90024, USA
| | - Chanil Moon
- Department of Neuroscience, GemVax & KAEL Co., Ltd., Seoul, South Korea
| | - Hyun-Wook Kim
- Brain Korea 21 PLUS, KU Medical Science Center for Convergent Translational Research, 73 Inchonro, Seongbuk-gu, Seoul, 136-705, South Korea; Department of Anatomy, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
| | - Im Joo Rhyu
- Brain Korea 21 PLUS, KU Medical Science Center for Convergent Translational Research, 73 Inchonro, Seongbuk-gu, Seoul, 136-705, South Korea; Department of Anatomy, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea.
| |
Collapse
|
41
|
Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology 2017; 134:293-301. [PMID: 28923278 DOI: 10.1016/j.neuropharm.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
In the management of acute ischemic stroke, vessel recanalization correlates with functional status, mortality, cost, and other outcome measures. Thrombolysis with intravenous tissue plasminogen activator has many limitations that restrict its applicability, but recent advances in the development of mechanical thrombectomy devices as well as improved systems of stroke care have resulted in greater likelihood of vessel revascularization. Nonetheless, there remains substantial discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant pharmacological therapy for neuroprotection and/or neurorestoration. Prior clinical trials of such drugs may have failed due to the inability of the agent to access the ischemic tissue beyond the occluded artery. A protocol that couples revascularization with concurrent delivery of a neuroprotectant drug offers the potential to enhance the benefit of thrombolysis. Analogs of activated protein C (APC) exert pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in ischemic stroke and thus appear to be promising candidates for this novel approach. A multicenter, prospective, double-blinded, dose-escalation Phase 2 randomized clinical trial has enrolled 110 patients to assess the safety, pharmacokinetics, and efficacy of human recombinant 3K3A-APC following endovascular thrombolysis. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
42
|
Chao JR, Lamba DA, Klesert TR, Torre AL, Hoshino A, Taylor RJ, Jayabalu A, Engel AL, Khuu TH, Wang RK, Neitz M, Neitz J, Reh TA. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl Vis Sci Technol 2017; 6:4. [PMID: 28516002 PMCID: PMC5433804 DOI: 10.1167/tvst.6.3.4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Previous studies have demonstrated the ability of retinal cells derived from human embryonic stem cells (hESCs) to survive, integrate into the host retina, and mediate light responses in murine mouse models. Our aim is to determine whether these cells can also survive and integrate into the retina of a nonhuman primate, Saimiri sciureus, following transplantation into the subretinal space. METHODS hESCs were differentiated toward retinal neuronal fates using our previously published technique and cultured for 60 to 70 days. Differentiated cells were further treated with 20 μM N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) for a period of 5 days immediately prior to subretinal transplantation. Differentiated cells were labeled with a lentivirus expressing GFP. One million cells (10,000 cells/μL) were injected into the submacular space into a squirrel monkey eye, using an ab externo technique. RESULTS RetCam imaging demonstrated the presence and survival of human donor cells 3 months after transplantation in the S. sciureus eye. Injected cells consolidated in the temporal macula. GFP+ axonal projections were observed to emanate from the central consolidation of cells at 1 month, with some projecting into the optic nerve by 3 months after transplantation. CONCLUSIONS Human ES cell-derived retinal neurons injected into the submacular space of a squirrel monkey survive at least 3 months postinjection without immunosuppression. Some donor cells appeared to integrate into the host inner retina, and numerous donor axonal projections were noted throughout, with some projecting into the optic nerve. TRANSLATIONAL RELEVANCE These data illustrate the feasibility of hESC-derived retinal cell replacement in the nonhuman primate eye.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Todd R Klesert
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Vitreoretinal Associates of Washington, Seattle, WA, USA
| | - Anna La Torre
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Akina Hoshino
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Russell J Taylor
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,University of Wisconsin, Madison, WI, USA
| | - Anu Jayabalu
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Universal Cells, Inc., Seattle, WA, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas H Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Mishra A, Das B, Nath M, Iyer S, Kesarwani A, Bhattacharjee J, Arindkar S, Sahay P, Jain K, Sahu P, Sinha P, Velpandian T, Nagarajan P, Upadhyay P. A novel immunodeficient NOD.SCID -rd1 mouse model of retinitis pigmentosa to investigate potential therapeutics and pathogenesis of retinal degeneration. Biol Open 2017; 6:449-462. [PMID: 28258056 PMCID: PMC5399550 DOI: 10.1242/bio.021618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a common retinal degeneration disease caused by mutation in any gene of the photo transduction cascade and results in photoreceptor dystrophy. Over decades, several animal models have been used to address the need for the elucidation of effective therapeutics and factors regulating retinal degeneration to prohibit or renew the damaged retina. However, controversies over the immune privilege of retina during cell transplantation and the role of immune modulation during RP still remain largely uninvestigated because of the lack of suitable animal models. Here, we have developed an immunocompromised mouse model, NOD.SCID-rd1, for retinitis pigmentosa (RP) by crossing CBA/J and NOD SCID mice and selecting homozygous double mutant animals for further breeding. Characterization of the newly developed RP model indicates a similar retinal degeneration pattern as CBA/J, with a decreased apoptosis rate and rhodopsin loss. It also exhibits loss of T cells, B cells and NK cells. The NOD.SCID-rd1 model is extremely useful for allogenic and xenogenic cell-based therapeutics, as indicated by the higher cell integration capacity post transplantation. We dissect the underlying role of the immune system in the progression of RP and the effect of immune deficiency on immune privilege of the eye using comparative qPCR studies of this model and the immune-competent RP model. Summary: NOD.SCID-rd1 is an immune compromised mouse model of retinitis pigmentosa (RP) to investigate cell-based therapeutics for retinal rescue during RP and to study immunological aspects of its pathogenesis and progression.
Collapse
Affiliation(s)
- Alaknanda Mishra
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Barun Das
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhu Nath
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Srikanth Iyer
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashwani Kesarwani
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jashdeep Bhattacharjee
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailendra Arindkar
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Preeti Sahay
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kshama Jain
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parul Sahu
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakriti Sinha
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Perumal Nagarajan
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pramod Upadhyay
- Product Development Cell-1, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
45
|
Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 2017; 7:199. [PMID: 28298640 PMCID: PMC5428026 DOI: 10.1038/s41598-017-00241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of hereditary retinal diseases characterized by the loss of photoreceptors. Cell transplantation has been clinically applied to treat RP patients. Human retinal progenitor cells (HRPCs) and human bone marrow-derived mesenchymal stem cells (HBMSCs) are the two commonly and practically used stem cells for transplantation. Since combined transplantation could be a promising way to integrate the advantages of both stem cell types, we transplanted HRPCs and HBMSCs into the subretinal space (SRS) of Royal College of Surgeons (RCS) rats. We report that HRPCs/HBMSCs combined transplantation maintains the electroretinogram results much better than HRPCs or HBMSCs single transplantations. The thickness of outer nuclear layer also presented a better outcome in the combined transplantation. Importantly, grafted cells in the combination migrated better, both longitudinally and latitudinally, than single transplantation. The photoreceptor differentiation of grafted cells in the retina of RCS rats receiving combined transplantation also showed a higher ratio than single transplantation. Finally, activation of microglia and the gliosis of Müller cells were more effectively suppressed in combined transplantation, indicating better immunomodulatory and anti-gliosis effects. Taken together, combining the transplantation of HRPCs and HBMSCs is a more effective strategy in stem cell-based therapy for retinal degenerative diseases.
Collapse
|
46
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
47
|
Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther 2016; 7:178. [PMID: 27906070 PMCID: PMC5134260 DOI: 10.1186/s13287-016-0432-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This prospective clinical case series aimed to investigate the safety of subretinal adipose tissue-derived mesenchymal stem cell (ADMSC) implantation in advanced stage retinitis pigmentosa (RP). METHODS This study included 11 patients with end-stage RP who received subretinal implantation of ADMSCs. All patients had a total visual field defect and five of them only had light perception. The best corrected visual acuity (BCVA) in the study was 20/2000. All patients had undetectable electroretinography (ERG). The worst eye of the patient was operated on and, after total vitrectomy with a 23 gauge, ADMSCs were injected subretinally. Patients were evaluated at day 1, at weeks 1-4, and then once a month for 6 months, postoperatively. BCVA, anterior segment and fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography (FFA), perimetry, and ERG recordings were performed before treatment and at the end of month 6, and anytime if necessary during the follow-up. RESULTS All 11 patients completed the 6-month follow-up. None of them had systemic complications. Five patients had no ocular complications. One of the patients experienced choroidal neovascular membrane (CNM) at the implantation site and received an intravitreal anti-vascular endothelial growth factor drug once. Five patients had epiretinal membrane around the transplantation area and at the periphery, and received a second vitrectomy and silicon oil injection. There was no statistically significant difference in BCVA and ERG recordings from baseline. Only one patient experienced an improvement in visual acuity (from 20/2000 to 20/200), visual field, and ERG. Three patients mentioned that the light and some colors were brighter than before and there was a slight improvement in BCVA. The remaining seven patients had no BCVA improvement (five of them only had light perception before surgery). CONCLUSIONS Stem cell treatment with subretinal implantation of ADMSCs seems to have some ocular complications and should be applied with caution. The results of this study provide the first evidence of the short-term safety of ADMSCs in humans, and clarifies the complications of the therapy which would be beneficial for future studies. To optimize the cell delivery technique and to evaluate the effects of this therapy on visual acuity and the quality of life of these patients, future studies with a larger number of cases will be necessary.
Collapse
Affiliation(s)
- Ayse Oner
- Department of Ophthalmology, Erciyes University, Kayseri, Turkey
| | - Z. Burcin Gonen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Neslihan Sinim
- Department of Ophthalmology, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
48
|
Bakondi B, Girman S, Lu B, Wang S. Multimodal Delivery of Isogenic Mesenchymal Stem Cells Yields Synergistic Protection from Retinal Degeneration and Vision Loss. Stem Cells Transl Med 2016; 6:444-457. [PMID: 28191768 PMCID: PMC5442813 DOI: 10.5966/sctm.2016-0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that subretinal injection (SRI) of isogenic mesenchymal stem cells (MSCs) reduced the severity of retinal degeneration in Royal College of Surgeons rats in a focal manner. In contrast, intravenous MSC infusion (MSCIV ) produced panoptic retinal rescue. By combining these treatments, we now show that MSCIV supplementation potentiates the MSCSRI -mediated rescue of photoreceptors and visual function. Electrophysiological recording from superior colliculi revealed 3.9-fold lower luminance threshold responses (LTRs) and 22% larger functional rescue area from combined treatment compared with MSCSRI alone. MSCIV supplementation of sham (saline) injection also improved LTRs 3.4-fold and enlarged rescue areas by 27% compared with saline alone. We confirmed the involvement of MSC chemotaxis for vision rescue by modulating C-X-C chemokine receptor 4 activity before MSCIV but without increased retinal homing. Rather, circulating platelets and lymphocytes were reduced 3 and 7 days after MSCIV , respectively. We demonstrated MSCSRI -mediated paracrine support of vision rescue by SRI of concentrated MSC-conditioned medium and assessed function by electroretinography and optokinetic response. MSC-secreted peptides increased retinal pigment epithelium (RPE) metabolic activity and clearance of photoreceptor outer segments ex vivo, which was partially abrogated by antibody blockade of trophic factors in concentrated MSC-conditioned medium, or their cognate receptors on RPE. These data support multimodal mechanisms for MSC-mediated retinal protection that differ by administration route and synergize when combined. Thus, using MSCIV as adjuvant therapy might improve cell therapies for retinal dystrophy and warrants further translational evaluation. Stem Cells Translational Medicine 2017;6:444-457.
Collapse
Affiliation(s)
- Benjamin Bakondi
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars‐Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
49
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
50
|
Xian B, Zhang Y, Peng Y, Huang J, Li W, Wang W, Zhang M, Li K, Zhang H, Zhao M, Liu X, Huang B. Adult Human Peripheral Blood Mononuclear Cells Are Capable of Producing Neurocyte or Photoreceptor-Like Cells That Survive in Mouse Eyes After Preinduction With Neonatal Retina. Stem Cells Transl Med 2016; 5:1515-1524. [PMID: 27458266 DOI: 10.5966/sctm.2015-0395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
: Adult human peripheral blood mononuclear cells (hPBMCs) exhibit pluripotency in vitro and so may be a valuable cell source for regenerative therapies. The efficacy of such therapies depends on the survival, differentiation, migration, and integration capacity of hPBMCs in specific tissues. In this study, we examined these capacities of transplanted hPBMCs in mouse retina as well functional improvement after transplant. We isolated hPBMCs and preinduced them for 4 days in media preconditioned with postnatal day 1 rat retina explants. Preinduction increased the proportions of hPBMCs expressing neural stem cell, neural progenitor cell, or photoreceptor markers as revealed by immunofluorescent staining, flow cytometry, and quantitative real-time polymerase chain reaction. Preinduced hPBMCs were transplanted into the subretinal space of retinal degenerative slow (RDS) and retinal degeneration 1 (RD1) mice. At 1, 3, and 6 months after transplantation, treated eyes of RDS mice were collected and cell phenotype was studied by immunofluorescent staining. Preinduced hPBMCs survived in the subretinal space; migrated away from the injection site and into multiple retinal layers; and expressed neural stem cell, neuronal, and photoreceptor markers. Finally, we assessed RD1 retinal function after subretinal transplantation and found significant improvement at 3 months after transplantation. The ease of harvesting, viability in vivo, capacity to express neuronal and photoreceptor proteins, and capacity for functional enhancement suggest that hPBMCs are potential candidates for cell replacement therapy to treat retinal degenerative diseases. SIGNIFICANCE This study provides support for the use of peripheral blood mononuclear cells (PBMCs) as a potential source of pluripotent stem cells for treating retinal degeneration. First, this study demonstrated that PBMCs can differentiate into retinal neuron-like cells in vitro and in vivo. Second, some transplanted cells expressed markers for neural progenitors, mature neurons, or photoreceptors at 1, 3, and 6 months after subretinal injection. Finally, this study showed that PBMC transplantation can improve the function of a degenerated retina.
Collapse
Affiliation(s)
- Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yichi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wencong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|