1
|
Yang S, Soheilmoghaddam F, Pivonka P, Li J, Rudd S, Yeo T, Tu J, Zhu Y, Cooper-White JJ. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Prolif 2025:e70046. [PMID: 40389238 DOI: 10.1111/cpr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.
Collapse
Affiliation(s)
- Sidong Yang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, China
- Hebei International Joint Research Centre for Spine Diseases, Shijiazhuang, China
| | - Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Pivonka
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Joan Li
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Trifanny Yeo
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Allouh MZ, Rizvi SFA, Alamri A, Jimoh Y, Aouda S, Ouda ZH, Hamad MIK, Perez-Cruet M, Chaudhry GR. Mesenchymal stromal/stem cells from perinatal sources: biological facts, molecular biomarkers, and therapeutic promises. Stem Cell Res Ther 2025; 16:127. [PMID: 40055783 PMCID: PMC11889844 DOI: 10.1186/s13287-025-04254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs. We reviewed the main biological and therapeutic aspects of perinatal MSCs in a three-part article. In the first part, we revised the main biological features and characteristics of MSCs and the advantages of perinatal MSCs over other types of SCs. In the second part, we provided a detailed molecular background for the main biomarkers that can be used to identify MSCs. In the final part, we appraised the therapeutic application of perinatal MSCs in four major degenerative disorders: degenerative disc disease, retinal degenerative diseases, ischemic heart disease, and neurodegenerative diseases. In conclusion, there is no single specific molecular marker to identify MSCs. We recommend using at least two positive markers of stemness (CD29, CD73, CD90, or CD105) and two negative markers (CD34, CD45, or CD14) to exclude the hematopoietic origin. Moreover, utilizing perinatal MSCs for managing degenerative diseases presents a promising therapeutic approach. This review emphasizes the significance of employing more specialized progenitor cells that originated from the perinatal MSCs. The review provides scientific evidence from the literature that applying these progenitor cells in therapeutic procedures provides a greater regenerative capacity than the original primitive MSCs. Finally, this review provides a valuable reference for researchers exploring perinatal MSCs and their therapeutic applications.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE.
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Syed Faizan Ali Rizvi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Ali Alamri
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Yusuf Jimoh
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Salma Aouda
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Zakaria H Ouda
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mohammad I K Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mick Perez-Cruet
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Corewell Health, Royal Oak, MI, USA
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
3
|
Wang X, Huang Y, Yang Y, Tian X, Jin Y, Jiang W, He H, Xu Y, Liu Y. Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration. Mater Today Bio 2025; 30:101395. [PMID: 39759846 PMCID: PMC11699348 DOI: 10.1016/j.mtbio.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP). These materials have demonstrated the capacity to support cell viability, facilitate matrix production, and alleviate inflammation in vitro and in vivo, thus supporting tissue regeneration and restoring disc function in comparison to conventional treatment. Furthermore, polysaccharide-based hydrogels have demonstrated the potential to deliver bioactive molecules, including growth factors, cytokines and anti-inflammatory drugs, directly to the degenerated disc environment, thereby enhancing therapeutic outcomes. Therefore, polysaccharide-based materials provide structural support and facilitate the regeneration of native tissue, representing a versatile and effective approach for the treatment of IVDD. Despite their promise, challenges such as limited long-term stability, potential immunogenicity, and the difficulty in scaling up production for clinical use remain. This review delineates the potential of various polysaccharides during the fabrication of hydrogels and scaffolds for disc regeneration, guiding and inspiring future research to focus on optimizing these materials for clinical translation for IVDD repair and regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yixue Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Yesheng Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hanliang He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
4
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
6
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
7
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Zhang W, Li Z. Umbilical cord mesenchymal stem cells for regenerative treatment of intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1215698. [PMID: 37601097 PMCID: PMC10439242 DOI: 10.3389/fcell.2023.1215698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Intervertebral disc degeneration is thought to be a major contributor to low back pain, the etiology of which is complex and not yet fully understood. To compensate for the lack of drug and surgical treatment, mesenchymal stem cells have been proposed for regenerative treatment of intervertebral discs in recent years, and encouraging results have been achieved in related trials. Mesenchymal stem cells can be derived from different parts of the body, among which mesenchymal stem cells isolated from the fetal umbilical cord have excellent performance in terms of difficulty of acquisition, differentiation potential, immunogenicity and ethical risk. This makes it possible for umbilical cord derived mesenchymal stem cells to replace the most widely used bone marrow-derived and adipose tissue derived mesenchymal stem cells as the first choice for regenerating intervertebral discs. However, the survival of umbilical cord mesenchymal stem cells within the intervertebral disc is a major factor affecting their regenerative capacity. In recent years biomaterial scaffolds in tissue engineering have aided the survival of umbilical cord mesenchymal stem cells by mimicking the natural extracellular matrix. This seems to provide a new idea for the application of umbilical cord mesenchymal stem cells. This article reviews the structure of the intervertebral disc, disc degeneration, and the strengths and weaknesses of common treatment methods. We focus on the cell source, cell characteristics, mechanism of action and related experiments to summarize the umbilical cord mesenchymal stem cells and explore the feasibility of tissue engineering technology of umbilical cord mesenchymal stem cells. Hoping to provide new ideas for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
8
|
Zhao X, Yuan J, Jia J, Zhang J, Liu J, Chen Q, Li T, Wu Z, Wu H, Miao X, Wu T, Li B, Cheng X. Role of non‑coding RNAs in cartilage endplate (Review). Exp Ther Med 2023; 26:312. [PMID: 37273754 PMCID: PMC10236100 DOI: 10.3892/etm.2023.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwen Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Ma B, Wang T, Li J, Wang Q. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Res Ther 2022; 13:327. [PMID: 35851415 PMCID: PMC9290299 DOI: 10.1186/s13287-022-03009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVβ3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.
Collapse
Affiliation(s)
- Beilei Ma
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
12
|
Ge D, O'Brien MJ, Savoie FH, Gimble JM, Wu X, Gilbert MH, Clark-Patterson GL, Schuster JD, Miller KS, Wang A, Myers L, You Z. Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys. NPJ Regen Med 2021; 6:82. [PMID: 34848747 PMCID: PMC8633050 DOI: 10.1038/s41536-021-00192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Localized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael J O'Brien
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Felix H Savoie
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | | | - Jason D Schuster
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Alun Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
13
|
Ekram S, Khalid S, Bashir I, Salim A, Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem 2021; 476:3191-3205. [PMID: 33864569 DOI: 10.1007/s11010-021-04155-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-β1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-β1, TGF-β2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-β1, and TGF-β2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Imtiaz Bashir
- Zainab Panjwani Memorial Hospital, Mohammadali Habib Road, Numaish Karachi, 74800, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
15
|
Shim J, Kim K, Kim KG, Choi U, Kyung JW, Sohn S, Lim SH, Choi H, Ahn T, Choi HJ, Shin D, Han I. Safety and efficacy of Wharton's jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: A phase I/IIa study. Stem Cells Transl Med 2021; 10:554-567. [PMID: 33326694 PMCID: PMC7980202 DOI: 10.1002/sctm.20-0308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) are serious health problems. We conducted a randomized, open-label, phase I/IIa study to determine the feasibility, safety, and effectiveness of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) and teriparatide (parathyroid hormone 1-34) in OVCFs. Twenty subjects with recent OVCFs were randomized to teriparatide (20 μg/day, daily subcutaneous injection for 6 months) treatment alone or combined treatment of WJ-MSCs (intramedullary [4 × 107 cells] injection and intravenous [2 × 108 cells] injection after 1 week) and teriparatide (20 μg/day, daily subcutaneous injection for 6 months). Fourteen subjects (teriparatide alone, n = 7; combined treatment, n = 7) completed follow-up assessment (visual analog scale [VAS], Oswestry Disability Index [ODI], Short Form-36 [SF-36], bone mineral density [BMD], bone turnover measured by osteocalcin and C-terminal telopeptide of type 1 collagen, dual-energy x-ray absorptiometry [DXA], computed tomography [CT]). Our results show that (a) combined treatment with WJ-MSCs and teriparatide is feasible and tolerable for the patients with OVCFs; (b) the mean VAS, ODI, and SF-36 scores significantly improved in the combined treatment group; (c) the level of bone turnover markers were not significantly different between the two groups; (d) BMD T-scores of spine and hip by DXA increased in both control and experimental groups without a statistical difference; and (e) baseline spine CT images and follow-up CT images at 6 and 12 months showed better microarchitecture in the combined treatment group. Our results indicate that combined treatment of WJ-MSCs and teriparatide is feasible and tolerable and has a clinical benefit for fracture healing by promoting bone architecture. Clinical trial registration: https://nedrug.mfds.go.kr/, MFDS: 201600282-30937.
Collapse
Affiliation(s)
- JeongHyun Shim
- Department of NeurosurgeryShim Jeong HospitalSeoulSouth Korea
| | - Kyoung‐Tae Kim
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Department of NeurosurgeryKyungpook National University HospitalDaeguSouth Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, College of MedicineGachon UniversitySeongnam‐siSouth Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST)Gachon UniversitySeongnam‐siSouth Korea
| | - Un‐Yong Choi
- Department of NeurosurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Jae Won Kyung
- Department of NeurosurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Seil Sohn
- Department of NeurosurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Sang Heon Lim
- Department of Biomedical Engineering, College of MedicineGachon UniversitySeongnam‐siSouth Korea
| | - Hyemin Choi
- Department of NeurosurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Tae‐Keun Ahn
- Department of Orthopedic SurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Hye Jeong Choi
- Department of RadiologyCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Dong‐Eun Shin
- Department of Orthopedic SurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| | - Inbo Han
- Department of NeurosurgeryCHA University School of Medicine, CHA Bundang Medical CenterSeongnam‐siSouth Korea
| |
Collapse
|
16
|
Qi Y, Li B, Wen Y, Yang X, Chen B, He Z, Zhao Z, Magdalou J, Wang H, Chen L. H3K9ac of TGFβRI in human umbilical cord: a potential biomarker for evaluating cartilage differentiation and susceptibility to osteoarthritis via a two-step strategy. Stem Cell Res Ther 2021; 12:163. [PMID: 33663609 PMCID: PMC7934528 DOI: 10.1186/s13287-021-02234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiological investigation and our previous reports indicated that osteoarthritis had a fetal origin and was closely associated with intrauterine growth retardation (IUGR). Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) could be programmable to “remember” early-life stimuli. Here, we aimed to explore an early-warning biomarker of fetal-originated adult osteoarthritis in the WJ-MSCs. Methods Firstly, two kinds of WJ-MSCs were applied to evaluate their chondrogenic potential in vitro through inducing chondrogenic differentiation as the first step of our strategy, one from newborns with IUGR and the other from normal newborns but treated with excessive cortisol during differentiation to simulate the excessive maternal glucocorticoid in the IUGR newborns. As for the second step of the strategy, the differentiated WJ-MSCs were treated with interleukin 1β (IL-1β) to mimic the susceptibility to osteoarthritis. Then, the expression and histone acetylation levels of transforming growth factor β (TGFβ) signaling pathway and the expression of histone deacetylases (HDACs) were quantified, with or without cortisol receptor inhibitor RU486, or HDAC4 inhibitor LMK235. Secondly, the histone acetylation and expression levels of TGFβRI were further detected in rat cartilage and human umbilical cord from IUGR individuals. Results Glycosaminoglycan content and the expression levels of chondrogenic genes were decreased in the WJ-MSCs from IUGR, and the expression levels of chondrogenic genes were further reduced after IL-1β treatment, while the expression levels of catabolic factors were increased. Then, serum cortisol level from IUGR individuals was found increased, and similar changes were observed in normal WJ-MSCs treated with excessive cortisol. Moreover, the decreased histone 3 lysine 9 acetylation (H3K9ac) level of TGFβRI and its expression were observed in IUGR-derived WJ-MSCs and normal WJ-MSCs treated with excessive cortisol, which could be abolished by RU486 and LMK235. At last, the decreased H3K9ac level of TGFβRI and its expression were further confirmed in the cartilage of IUGR rat offspring and human umbilical cords from IUGR newborn. Conclusions WJ-MSCs from IUGR individuals displayed a poor capacity of chondrogenic differentiation and an increased susceptibility to osteoarthritis-like phenotype, which was attributed to the decreased H3K9ac level of TGFβRI and its expression induced by high cortisol through GR/HDAC4. The H3K9ac of TGFβRI in human umbilical cord could be a potential early-warning biomarker for predicting neonatal cartilage dysplasia and osteoarthritis susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02234-8.
Collapse
Affiliation(s)
- Yongjian Qi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xu Yang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Biao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zheng He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhe Zhao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jacques Magdalou
- UMR 7561 CNRS-Université de Lorraine, Faculté de Médicine, Vandoeuvre-lès-Nancy, France
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
17
|
Fiani B, Dahan A, El-Farra MH, Kortz MW, Runnels JM, Suliman Y, Miranda A, Nguy A. Cellular transplantation and platelet-rich plasma injections for discogenic pain: a contemporary review. Regen Med 2021; 16:161-174. [PMID: 33650437 DOI: 10.2217/rme-2020-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease (DDD) is the leading cause of chronic back pain. It is a pathologic condition associated with aging and is believed to result from catabolic excess in the intervertebral discs' (IVD) extracellular matrix. Two new treatment options are intradiscal cellular transplantation and growth factor therapy. Recent investigations on the use of these therapies are discussed and compared with emerging evidence supporting novel cellular injections. At present, human and animal studies provide a compelling rationale for the use of cellular injections in the treatment of discogenic pain. Since DDD results from the IVD extracellular matrix's unmitigated catabolism, cellular injections are used to induce regeneration and homeostasis in the IVD. Here, we review intervertebral disc anatomy, DDD pathophysiology and clinical considerations, as well as the current and emerging literature investigating outcomes associated with cellular transplantation and platelet-rich plasma for discogenic pain. Further high-quality trials are certainly warranted.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, 92262 CA, USA
| | - Alden Dahan
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Mohamed H El-Farra
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Michael W Kortz
- Department of Neurosurgery, University of Colorado Hospital, Aurora, 80045 CO, USA
| | - Juliana M Runnels
- University of New Mexico School of Medicine, Albuquerque, 87106 NM, USA
| | - Yasmine Suliman
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Anita Miranda
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Austin Nguy
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| |
Collapse
|
18
|
Roh EJ, Darai A, Kyung JW, Choi H, Kwon SY, Bhujel B, Kim KT, Han I. Genetic Therapy for Intervertebral Disc Degeneration. Int J Mol Sci 2021; 22:ijms22041579. [PMID: 33557287 PMCID: PMC7914740 DOI: 10.3390/ijms22041579] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration can cause chronic lower back pain (LBP), leading to disability. Despite significant advances in the treatment of discogenic LBP, the limitations of current treatments have sparked interest in biological approaches, including growth factor and stem cell injection, as new treatment options for patients with chronic LBP due to IVD degeneration (IVDD). Gene therapy represents exciting new possibilities for IVDD treatment, but treatment is still in its infancy. Literature searches were conducted using PubMed and Google Scholar to provide an overview of the principles and current state of gene therapy for IVDD. Gene transfer to degenerated disc cells in vitro and in animal models is reviewed. In addition, this review describes the use of gene silencing by RNA interference (RNAi) and gene editing by the clustered regularly interspaced short palindromic repeats (CRISPR) system, as well as the mammalian target of rapamycin (mTOR) signaling in vitro and in animal models. Significant technological advances in recent years have opened the door to a new generation of intradiscal gene therapy for the treatment of chronic discogenic LBP.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Anjani Darai
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Jae Won Kyung
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
| | - Basanta Bhujel
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea
| | - Kyoung Tae Kim
- School of Medicine, Department of Neurosurgery, Kyungpook National University, Daegu 41944, Korea;
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si 13496, Korea; (E.J.R.); (A.D.); (J.W.K.); (H.C.); (S.Y.K.); (B.B.)
- Correspondence:
| |
Collapse
|
19
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
20
|
An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int J Mol Sci 2020; 21:ijms21197391. [PMID: 33036383 PMCID: PMC7582266 DOI: 10.3390/ijms21197391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the predominant causes of chronic low back pain (LBP), which is a leading cause of disability worldwide. Despite substantial progress in cell therapy for the treatment of IVD degeneration, significant challenges remain for clinical application. Here, we investigated the effectiveness of hyaluronan-methylcellulose (HAMC) hydrogels loaded with Wharton's Jelly-derived mesenchymal stromal cell (WJ-MSCs) in vitro and in a rat coccygeal IVD degeneration model. Following induction of injury-induced IVD degeneration, female Sprague-Dawley rats were randomized into four groups to undergo a single intradiscal injection of the following: (1) phosphate buffered saline (PBS) vehicle, (2) HAMC, (3) WJ-MSCs (2 × 104 cells), and (4) WJ-MSCs-loaded HAMC (WJ-MSCs/HAMC) (n = 10/each group). Coccygeal discs were removed following sacrifice 6 weeks after implantation for radiologic and histologic analysis. We confirmed previous findings that encapsulation in HAMC increases the viability of WJ-MSCs for disc repair. The HAMC gel maintained significant cell viability in vitro. In addition, combined implantation of WJ-MSCs and HAMC significantly promoted degenerative disc repair compared to WJ-MSCs alone, presumably by improving nucleus pulposus cells viability and decreasing extracellular matrix degradation. Our results suggest that WJ-MSCs-loaded HAMC promotes IVD repair more effectively than cell injection alone and supports the potential clinical use of HAMC for cell delivery to arrest IVD degeneration or to promote IVD regeneration.
Collapse
|
21
|
Muttigi MS, Kim BJ, Kumar H, Park S, Choi UY, Han I, Park H, Lee SH. Efficacy of matrilin-3-primed adipose-derived mesenchymal stem cell spheroids in a rabbit model of disc degeneration. Stem Cell Res Ther 2020; 11:363. [PMID: 32831130 PMCID: PMC7444036 DOI: 10.1186/s13287-020-01862-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic low back pain is a prevalent disability, often caused by intervertebral disc (IVD) degeneration. Mesenchymal stem cell (MSC) therapy could be a safe and feasible option for repairing the degenerated disc. However, for successful translation to the clinic, various challenges need to be overcome including unwanted adverse effects due to acidic pH, hypoxia, and limited nutrition. Matrilin-3 is an essential extracellular matrix (ECM) component during cartilage development and ossification and exerts chondrocyte protective effects. METHODS This study evaluated the effects of matrilin-3-primed adipose-derived MSCs (Ad-MSCs) on the repair of the degenerated disc in vitro and in vivo. We determined the optimal priming concentration and duration and developed an optimal protocol for Ad-MSC spheroid generation. RESULTS Priming with 10 ng/ml matrilin-3 for 5 days resulted in the highest mRNA expression of type 2 collagen and aggrecan in vitro. Furthermore, Ad-MSC spheroids with a density of 250 cells/microwell showed the increased secretion of favorable growth factors such as transforming growth factor beta (TGF-β1), TGF-β2, interleukin-10 (IL-10), granulocyte colony-stimulating factor (G-CSF), and matrix metalloproteinase 1 (MMP1) and decreased secretion of hypertrophic ECM components. In addition, matrilin-3-primed Ad-MSC spheroid implantation was associated with optimal repair in a rabbit model. CONCLUSION Our results suggest that priming MSCs with matrilin-3 and spheroid formation could be an effective strategy to overcome the challenges associated with the use of MSCs for the treatment of IVD degeneration.
Collapse
Affiliation(s)
- Manjunatha S Muttigi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, South Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, 382010, India
| | - Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea
- Department of Biomedical Science, CHA University, Seongnam-si, 13488, South Korea
| | - Un Yong Choi
- Department of Neurosurgery, School of Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, South Korea
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, South Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea.
| |
Collapse
|
22
|
Zucchelli E, Birchall M, Bulstrode NW, Ferretti P. Modeling Normal and Pathological Ear Cartilage in vitro Using Somatic Stem Cells in Three-Dimensional Culture. Front Cell Dev Biol 2020; 8:666. [PMID: 32850801 PMCID: PMC7402373 DOI: 10.3389/fcell.2020.00666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Microtia (underdeveloped ear) is a rare congenital dysmorphology affecting the development of the outer ear. Although human microtic cartilage has not been fully characterized, chondrogenic cells derived from this tissue have been proposed as a suitable source for autologous auricular reconstruction. The aim of this study was to further characterize native microtic cartilage and investigate the properties of cartilage stem/progenitor cells (CSPCs) derived from it. Two-dimensional (2D) systems are most commonly used to assess the chondrogenic potential of somatic stem cells in vitro, but limit cell interactions and differentiation. Hence here we investigated the behavior of microtic CSPCs in three-dimensional spheroid cultures. Remarkable similarities between human microtic cartilages from five patients, as compared to normal cartilage, were observed notwithstanding possibly different etiologies of the disease. Native microtic cartilage displayed poorly defined perichondrium and hyper-cellularity, an immature phenotype that resembled that of the normal developing human auricular cartilage we studied in parallel. Crucially, our analysis of microtic ears revealed for the first time that, unlike normal cartilage, microtic cartilages are vascularized. Importantly, CSPCs isolated from human microtic and normal ear cartilages were found to recapitulate many characteristics of pathological and healthy tissues, respectively, when allowed to differentiate as spheroids, but not in monolayer cultures. Noteworthily, starting from initially homogeneous cell pellets, CSPC spheroids spontaneously underwent a maturation process in culture, and formed two regions (inner and outer region) separated by a boundary, with distinct cell types that differed in chondrogenic commitment as indicated by expression of chondrogenic markers. Compared to normal ear-derived spheroids, microtic spheroids were asymmetric, hyper-cellularized and the inner and outer regions did not develop properly. Hence, their organization resembled that of native microtic cartilage. Together, our results identify novel features of microtic ears and highlight the importance of 3D self-organizing in vitro systems for better understanding somatic stem cell behavior and disease modeling. Our observations of ear-derived chondrogenic stem cell behavior have implications for choice of cells for tissue engineered reconstructive purposes and for modeling the etiopathogenesis of microtia.
Collapse
Affiliation(s)
- Eleonora Zucchelli
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, University College London, London, United Kingdom
| | - Neil W. Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
23
|
Farhang N, Silverman L, Bowles RD. Improving Cell Therapy Survival and Anabolism in Harsh Musculoskeletal Disease Environments. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:348-366. [PMID: 32070243 DOI: 10.1089/ten.teb.2019.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell therapies are an up and coming technology in orthopedic medicine that has the potential to provide regenerative treatments for musculoskeletal disease. Despite numerous cell therapies showing preclinical success for common musculoskeletal indications of disc degeneration and osteoarthritis, there have been mixed results when testing these therapies in humans during clinical trials. A theory behind the mixed success of these cell therapies is that the harsh microenvironments of the disc and knee they are entering inhibit their anabolism and survival. Therefore, there is much ongoing research looking into how to improve the survival and anabolism of cell therapies within these musculoskeletal disease environments. This includes research into improving cell function under specific microenvironmental conditions known to exist in the intervertebral disc (IVD) and knee environment such as hypoxia, low-nutrient conditions, hyperosmolarity, acidity, and inflammation. This research also includes improving differentiation of cells into desired native cell phenotypes to better enhance their survival and anabolism in the knee and IVD. This review highlights the effects of specific musculoskeletal microenvironmental challenges on cell therapies and what research is being done to overcome these challenges. Impact statement While there has been significant clinical interest in using cell therapies for musculoskeletal pathologies in the knee and intervertebral disc, cell therapy clinical trials have had mixed outcomes. The information presented in this review includes the environmental challenges (i.e., acidic pH, inflammation, hyperosmolarity, hypoxia, and low nutrition) that cell therapies experience in these pathological musculoskeletal environments. This review summarizes studies that describe various approaches to improving the therapeutic capability of cell therapies in these harsh environments. The result is an overview of what approaches can be targeted and/or combined to develop a more consistent cell therapy for musculoskeletal pathologies.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Degenerative cervical myelopathy: Recent updates and future directions. J Clin Orthop Trauma 2020; 11:822-829. [PMID: 32879568 PMCID: PMC7452218 DOI: 10.1016/j.jcot.2020.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in patient selection, surgical techniques, and postoperative care have facilitated spine surgeons to manage complex spine cases with shorter operative times, reduced hospital stay and improved outcomes. We focus this article on a few areas which have shown maximum developments in management of degenerative cervical myelopathy and also throw a glimpse into the future ahead. Imaging modalities, surgical decision making, robotics and neuro-navigation, minimally invasive spinal surgery, motion preservation, use of biologics are few of them. Through this review article, we hope to provide the readers with an insight into the present state of art in cervical myelopathy and what the future has in store for us.
Collapse
|
25
|
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13:1738-1755. [PMID: 31216380 DOI: 10.1002/term.2914] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Eryk Hakman
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Sophia Halassy
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - David Svinarich
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
- Ascension Providence Hospital, Southfield, MI, USA
| | - Robert Dodds
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| |
Collapse
|
26
|
Meisel HJ, Agarwal N, Hsieh PC, Skelly A, Park JB, Brodke D, Wang JC, Yoon ST, Buser Z. Cell Therapy for Treatment of Intervertebral Disc Degeneration: A Systematic Review. Global Spine J 2019; 9:39S-52S. [PMID: 31157145 PMCID: PMC6512192 DOI: 10.1177/2192568219829024] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To review, critically appraise, and synthesize evidence on use of cell therapy for intervertebral disc repair. METHODS A systematic search of PubMed/MEDLINE was conducted for literature published through October 31, 2018 and EMBASE and ClinicalTrials.gov databases through April 13, 2018 comparing allogenic or autologous cell therapy for intervertebral disc (IVD) repair in the lumbar or cervical spine. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 1039 potentially relevant citations, 8 studies across 10 publications on IVD cell therapies in the lumbar spine met the inclusion criteria. All studies were small and primarily case series. For allogenic cell sources, no difference in function or pain between mesenchymal cell treatment and sham were reported in 1 small randomized controlled trial; 1 small case series reported improved function and pain relative to baseline but it was unclear if the change was clinically significant. Similarly for autologous cell sources, limited data across case series suggest pain and function may be improved relative to baseline; whether the changes were clinically significant was not clear. Safety data was sparse and poorly reported. The need for subsequent surgery was reported in 3 case-series studies ranging from 6% to 80%. CONCLUSIONS The overall strength of evidence for efficacy and safety of cell therapy for lumbar IVD repair was very low primarily due to substantial risk of bias, small sample sizes and lack of a comparator intervention. Methodologically sound studies comparing cell therapies to other treatments are needed.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Beom Park
- Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, Republic of Korea
| | | | | | | | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Perez-Cruet M, Beeravolu N, McKee C, Brougham J, Khan I, Bakshi S, Chaudhry GR. Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease. Neurosurgery 2019; 84:272-283. [PMID: 29490072 PMCID: PMC6292795 DOI: 10.1093/neuros/nyy012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment. OBJECTIVE To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model. METHODS NPCs differentiated from MSCs were characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques. RESULTS NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan and water contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, as well as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed. CONCLUSION The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.
Collapse
Affiliation(s)
- Mick Perez-Cruet
- Department of Neurosurgery, Beaumont Health System, Royal Oak, Michigan
- OUWB School of Medicine, Oakland University, Rochester, Michigan
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Michigan Head and Spine Institute, Southfield, Michigan
| | - Naimisha Beeravolu
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Christina McKee
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Jared Brougham
- OUWB School of Medicine, Oakland University, Rochester, Michigan
| | - Irfan Khan
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shreeya Bakshi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
28
|
Shi P, Chee A, Liu W, Chou PH, Zhu J, An HS. Therapeutic effects of cell therapy with neonatal human dermal fibroblasts and rabbit dermal fibroblasts on disc degeneration and inflammation. Spine J 2019; 19:171-181. [PMID: 30142460 DOI: 10.1016/j.spinee.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND CONTEXT Increasing evidence suggests transplanting viable cells into the degenerating intervertebral disc (IVD) may be effective in treating disc degeneration and back pain. Clinical studies utilizing autologous or allogeneic mesenchymal stem cells to treat patients with back pain have reported some encouraging results. Animal studies have shown that cells injected into the disc can survive for months and have regenerative effects. Studies to determine the advantages and disadvantages of cell types and sources for therapy are needed. PURPOSE The objective of this study is to determine the impact of donor source on the therapeutic effects of dermal fibroblast treatment on disc degeneration and inflammation. STUDY DESIGN Using the rabbit disc degeneration model, we compared transplantation of neonatal human dermal fibroblasts (nHDFs) and rabbit dermal fibroblasts (RDFs) into rabbit degenerated discs on host immune response, disc height, and IVD composition. METHODS New Zealand white rabbits received an annular puncture using an 18-guage needle to induce disc degeneration. Four weeks after injury, rabbit IVDs were treated with 5 × 106 nHDFs, RDFs, or saline. At eight weeks post-treatment, animals were sacrificed. X-ray images were obtained. IVDs were isolated for inflammatory and collagen gene expression analysis using real-time polymerase chain reaction and biochemical analysis of proteoglycan contents using dimethylmethylene blue assay. These studies were funded by a research grant from SpinalCyte, LLC ($414,431). RESULTS Eight weeks after treatment, disc height indexes of discs treated with nHDF increased significantly by 7.8% (p<.01), whereas those treated with saline or RDF increased by 1.5% and 2.0%, respectively. Gene expression analysis showed that discs transplanted with nHDFs and RDFs displayed similar inflammatory responses (p=.2 to .8). Compared to intact discs, expression of both collagen types I and II increased significantly in nHDF-treated discs (p<.05), trending to significant in RDF-treated discs, and not significantly in saline treated discs. The ratio of collagen type II/collagen type I was higher in the IVDs treated with nHDFs (1.26) than those treated with RDFs (0.81) or saline (0.59) and intact discs (1.00). Last, proteoglycan contents increased significantly in discs treated with nHDF (p<.05) and were trending toward significance in the RDF-treated discs compared to those treated with saline. CONCLUSIONS This study showed that cell transplantation with nHDF into degenerated IVDs can significantly increase markers of disc regeneration (disc height, collagen type I and II gene expression, and proteoglycan contents). Transplantation with RDFs showed similar regenerative trends, but these trends were not significant. This study also showed that the human cells transplanted into the rabbit discs did not induce a higher immune response than the rabbit cells. These results support that the IVD is immune privileged and would tolerate allogeneic or xenogeneic grafts.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Tufts University School of Dental Medicine, 1 Kneeland St, Boston, MA 02111, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA
| | - Weijun Liu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 473 Hanzheng St, Wuhan 430033, China
| | - Po-Hsin Chou
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopaedic and Traumatology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, ROC; School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou District, Taipei City, Taiwan 112, ROC
| | - Jun Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; The Minimally Invasive Department of Orthopedics, The First People's Hospital of Huaihua, The Research Center of Translational Medicine, Jishou University School of Medicine, 144 South Road Jinxi South Road, Huaihua City, Hunan 418000, China
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA.
| |
Collapse
|
29
|
de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 2018; 43:25-37. [PMID: 29954665 DOI: 10.1016/j.cytogfr.2018.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy in regenerative medicine and for the treatment of inflammatory/autoimmune diseases. Importantly, MSCs have emerged as an important contributor to the tumor stroma with both pro- and anti-tumorigenic effects. However, the successful translation of MSCs to the clinic and the prevention of their tumorigenic and metastatic effect require a greater understanding of factors controlling their proliferation, differentiation, migration and immunomodulation in vitro and in vivo. The transforming growth factor(TGF)-β1, 2 and 3 are involved in almost every aspect of MSC function. The aim of this review is to highlight the roles that TGF-β play in the biology and therapeutic applications of MSCs. We will discuss the how TGF-β modulate MSC function as well as the paracrine effects of MSC-derived TGF-β on other cell types in the context of tissue regeneration, immune responses and cancer. Finally, taking all these aspects into consideration we discuss how modulation of TGF-β signaling/production in MSCs could be of clinical interest.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain; Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Ana Belén Carrillo-Gálvez
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Francisco Martín
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Per Anderson
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain.
| |
Collapse
|
30
|
Han Z, Gao L, Shi Q, Chen L, Chen C. Quantitative magnetic resonance imaging for diagnosis of intervertebral disc degeneration of the cervico-thoracic junction: a pilot study. Am J Transl Res 2018; 10:925-935. [PMID: 29636882 PMCID: PMC5883133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to appraise two quantitative magnetic resonance imaging techniques, T2* imaging and diffusion-weighted imaging (DWI), for the diagnosis of the intervertebral disc degeneration of the cervico-thoracic junction. Influence of specific factors and diagnostic accuracy of both techniques were particularly explored. Sixty-one volunteers with neck and upper back pain were recruited and evaluated with both T2* imaging and DWI. The Pfirrmann grade, T2* relaxation time and apparent diffusion coefficient (ADC) value of each disc between C7 and T3 were recorded. Stratified analyses were performed for different anatomic levels, genders, age ranges and Pfirrmann grades. The diagnostic accuracy of both techniques was investigated using the receiver operating characteristic (ROC) curves. No statistically significant difference of either T2* relaxation time or ADC value was detected between males and females. Both parameters decreased with the increasing age and Pfirrmann grade. The ROC curves showed the higher sensitivity and specificity for T2* imaging than DWI to quantitatively identify the disc degeneration. Particularly, T2* imaging allowed for a quantitative distinguishing the normal, mild and moderate disc degeneration from the severe degeneration, which was unable to accomplish with DWI. In conclusion, we demonstrated that T2* imaging possess a better accuracy than DWI to quantitatively diagnose the intervertebral disc degeneration at the cervico-thoracic junction.
Collapse
Affiliation(s)
- Zhihua Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Frankfurt Initiative for Regenerative Medicine, JW Goethe-UniversityFrankfurt am Main 60528, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland UniversityHomburg/Saar 66421, Germany
| | - Qinglei Shi
- Siemens Ltd., China Healthcare Sector MR Business GroupBeijing 100102, PR China
| | - Lei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
| | - Chun Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and EngineeringWenzhou 325001, PR China
| |
Collapse
|
31
|
Han Z, Zhang Y, Gao L, Jiang S, Ruan D. Human Wharton's Jelly Cells Activate Degenerative Nucleus Pulposus Cells In Vitro. Tissue Eng Part A 2018; 24:1035-1043. [PMID: 29279046 DOI: 10.1089/ten.tea.2017.0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the interaction between human Wharton's jelly cells (WJCs) and degenerative nucleus pulposus cells (NPCs), human WJCs were cocultured with degenerative NPCs with or without direct cell-cell contact. WJCs were isolated from the human umbilical cord and degenerative NPCs were isolated from the surgically obtained degenerative intervertebral disc tissue. The isolated WJCs positively expressed CD73, CD105, CD90, CD29, CD166, and human leukocyte antigen (HLA)-ABC, but negatively expressed CD34, CD45, and HLA-DR. After coculturing with three different WJCs:NPCs ratios for 7 days, the real-time polymerase chain reaction showed that the relative gene expression of nucleus pulposus (NP)-marker genes [aggrecan, type II collagen, and SRY-type HMG box-9 (SOX-9)] was significantly upgraded in all coculture groups (all p < 0.05 compared with control groups). Coculture either with or without cell-cell contact significantly activated the expression of NP-maker genes than controls, but coculture with cell-cell contact yielded a higher gene expression than coculture without cell-cell contact. In coculturing with cell-cell contact and WJCs:NPCs of 25:75, the relative gene expression of aggrecan, type II collagen, SOX-9 for WJCs yielded the highest increase by 721-, 1507-, and 1463-folds, respectively (all p < 0.05 compared with WJCs control). In contrast, the highest relative gene expression of aggrecan, type II collagen, SOX-9 for NPCs was 112-, 84-, and 109-folds, respectively, in coculture with cell-cell contact and in WJCs:NPCs of 75:25 (all p < 0.05 compared with NPCs control). In conclusion, the data indicated that coculturing human WJCs with degenerative NPCs induced the NP-like cell differentiation of WJCs and restored the biological status of degenerative NPCs and coculture WJCs and NPCs with direct cell-cell contact yielded more favorable gene expressions.
Collapse
Affiliation(s)
- Zhihua Han
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,2 Experimental Trauma and Orthopedic Surgery, Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University , Frankfurt, Germany
| | - Yan Zhang
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Liang Gao
- 4 Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Shujun Jiang
- 3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Dike Ruan
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China
| |
Collapse
|
32
|
Beeravolu N, Brougham J, Khan I, McKee C, Perez-Cruet M, Chaudhry GR. Human umbilical cord derivatives regenerate intervertebral disc. J Tissue Eng Regen Med 2018; 12:e579-e591. [PMID: 27690334 DOI: 10.1002/term.2330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/03/2016] [Accepted: 09/26/2016] [Indexed: 09/11/2024]
Abstract
Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model. Transplanted cells survived, engrafted and dispersed into NP in situ. Significant improvement in the histology, cellularity, extracellular matrix proteins, and water and glycosaminoglycan contents in IVD recipients of CPCs was observed compared to MSCs. In addition, IVDs receiving CPCs exhibited higher expression of NP-specific human markers, SOX9, aggrecan, collagen 2, FOXF1 and KRT19. The novelty of the study is that in vitro differentiated CPCs derived from umbilical cord MSCs, demonstrated far greater capacity to regenerate damaged IVDs, which provides basis and impetus for stem cell based clinical studies to treat degenerative disc disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Naimisha Beeravolu
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
- OUWB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan, USA
| | - Jared Brougham
- OUWB School of Medicine, Oakland University, Rochester, Michigan, USA
| | - Irfan Khan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
- OUWB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan, USA
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
- OUWB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan, USA
| | - Mick Perez-Cruet
- OUWB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan, USA
- Beaumont Health System, Royal Oak, Michigan, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
- OUWB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan, USA
| |
Collapse
|
33
|
Kumar H, Ha DH, Lee EJ, Park JH, Shim JH, Ahn TK, Kim KT, Ropper AE, Sohn S, Kim CH, Thakor DK, Lee SH, Han IB. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res Ther 2017; 8:262. [PMID: 29141662 PMCID: PMC5688755 DOI: 10.1186/s13287-017-0710-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
Background Adipose tissue-derived mesenchymal stem cells (AT-MSCs) offer potential as a therapeutic option for chronic discogenic low back pain (LBP) because of their immunomodulatory functions and capacity for cartilage differentiation. The goal of this study was to assess the safety and tolerability of a single intradiscal implantation of combined AT-MSCs and hyaluronic acid (HA) derivative in patients with chronic discogenic LBP. Methods We performed a single-arm phase I clinical trial with a 12-month follow-up and enrolled 10 eligible chronic LBP patients. Chronic LBP had lasted for more than 3 months with a minimum intensity of 4/10 on a visual analogue scale (VAS) and disability level ≥ 30% on the Oswestry Disability Index (ODI). The 10 patients underwent a single intradiscal injection of combined HA derivative and AT-MSCs at a dose of 2 × 107 cells/disc (n = 5) or 4 × 107 cells/disc (n = 5). Safety and treatment outcomes were evaluated by assessing VAS, ODI, Short Form-36 (SF-36), and imaging (lumbar spine X-ray imaging and MRI) at regular intervals over 1 year. Results No patients were lost at any point during the 1-year clinical study. We observed no procedure or stem cell-related adverse events or serious adverse events during the 1-year follow-up period. VAS, ODI, and SF-36 scores significantly improved in both groups receiving both low (cases 2, 4, and 5) and high (cases 7, 8, and 9) cell doses, and did not differ significantly between the two groups. Among six patients who achieved significant improvement in VAS, ODI, and SF-36, three patients (cases 4, 8, and 9) were determined to have increased water content based on an increased apparent diffusion coefficient on diffusion MRI. Conclusions Combined implantation of AT-MSCs and HA derivative in chronic discogenic LBP is safe and tolerable. However, the efficacy of combined AT-MSCs and HA should be investigated in a randomized controlled trial in a larger population. Trial registration ClinicalTrials.gov NCT02338271. Registered 7 January 2015.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea
| | - Doo-Hoe Ha
- Department of Radiology, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea
| | - Eun-Jong Lee
- CHA Biotec®, Seongnam-si, Gyeonggi-do, 13488, South Korea
| | - Jun Hee Park
- Department of Neurosurgery, Shim Jeong Hospital, Seoul, 151715, South Korea
| | - Jeong Hyun Shim
- Department of Neurosurgery, Shim Jeong Hospital, Seoul, 151715, South Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Korea
| | - Alexander E Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seil Sohn
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea
| | - Chung-Hun Kim
- Department of Plastic and Reconstructive Surgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea
| | | | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13496, South Korea.
| | - In-Bo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, South Korea.
| |
Collapse
|
34
|
Koh RH, Jin Y, Kang BJ, Hwang NS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater 2017; 53:318-328. [PMID: 28161573 DOI: 10.1016/j.actbio.2017.01.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3. In vitro results indicate that CM-expanded cells followed by TGF-β3 exposure stimulated the expression of fibrocartilage-related genes (COL2, SOX9, ACAN, COL1) and production of extracellular matrix components. Histological assessment of in vitro and subcutaneously implanted in vivo constructs demonstrated that CM-expanded cells followed by TGF-β3 exposure resulted in highest cell proliferation, GAG accumulation, and collagen deposition. Furthermore, when implanted into meniscus defect model, CM treatment amplified the potential of TGF-β3 and induced complete regeneration. STATEMENT OF SIGNIFICANCE Conditioned medium derived from chondrocytes have been reported to effectively prime mesenchymal stem cells toward chondrogenic lineage. Type I collagen is the main component of meniscus extracellular matrix and hyaluronic acid is known to promote meniscus regeneration. In this manuscript, we investigated the effects of conditioned medium (CM) and transforming growth factor-β3 (TGF-β3) on tonsil-derived mesenchymal stem cells (T-MSCs) encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogel. We employed a novel source of conditioned medium, derived from meniscal fibrochondrocytes. Our in vitro and in vivo results collectively illustrate that CM-expanded cells followed by TGF-β3 exposure have the best potential for meniscus regeneration. This manuscript highlights a novel stem cell commitment strategy combined with biomaterials designs for meniscus regeneration.
Collapse
|
35
|
Lan Y, Theng S, Huang T, Choo K, Chen C, Kuo H, Chong K. Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor. Stem Cells Transl Med 2016; 6:1006-1017. [PMID: 28297588 PMCID: PMC5442768 DOI: 10.5966/sctm.2016-0054] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti‐inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM‐preconditioned MSCs. OSM‐preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM‐preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor‐β1‐ or OSM‐induced extracellular matrix production in MRC‐5 fibroblasts through paracrine effects. In bleomycin‐induced lung fibrotic mice, transplantation of OSM‐preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ‐tagged MSCs were detected in the lung tissues of the OSM‐preconditioned MSC‐treated mice 18 days after post‐transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM‐preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine2017;6:1006–1017
Collapse
Affiliation(s)
- Ying‐Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Si‐Min Theng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Tsung‐Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Kong‐Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chuan‐Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Rong‐Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Han‐Pin Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
| | - Kowit‐Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| |
Collapse
|
36
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|