1
|
Ariyoshi W, Takeuchi J, Mitsugi S, Koga A, Nagai-Yoshioka Y, Yamasaki R. Mechanisms Underlying the Stimulation of DUSP10/MKP5 Expression in Chondrocytes by High Molecular Weight Hyaluronic Acid. Biomedicines 2025; 13:376. [PMID: 40002789 PMCID: PMC11852791 DOI: 10.3390/biomedicines13020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Previously, we reported that high molecular weight hyaluronic acid (HMW-HA) exerts chondroprotective effects by enhancing dual specificity protein phosphatase 10/mitogen-activated protein kinase (MAPK) phosphatase 5 (DUSP10/MKP5) expression and suppressing inflammatory cytokine-induced matrix metalloproteinase-13 (MMP13) expression in a human immortalized chondrocyte line (C28/I2 cells) via inhibition of MAPKs. The aim of this study was to elucidate the molecular mechanisms underlying the enhancement of DUSP10/MKP5 expression by HMW-HA in C28/I2 cells. Methods: C28/I2 cells were treated with HMW-HA, and the activation of intracellular signaling molecules was determined using Western blot analysis. The expression levels of mRNAs and microRNAs (miRNAs) were evaluated through real-time quantitative reverse transcription PCR analysis. Results: HMW-HA treatment induced Akt phosphorylation via interaction with CD44, and pretreatment with specific inhibitors of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling attenuated the HMW-HA-induced expression of DUSP10/MKP5. HMW-HA suppressed the expression of miR-92a, miR-181a, and miR-181d. Loss-of-function and gain-of-function analyses of these miRNAs indicate that miR-92a, miR-181a, and miR-181d negatively regulate DUSP10/MKP5 expression. Moreover, HMW-HA-induced Akt phosphorylation was partially suppressed by miR-181a and miR-181d mimics. Finally, we found that HMW-HA activates RhoA-associated protein kinase (ROK) signaling, which contributes to Akt phosphorylation. Conclusions: These findings suggest that the induction of DUSP10/MKP5 expression by HMW-HA binding to CD44, leading to MMP13 suppression, involves multiple regulatory mechanisms, including PI3K/Akt and RhoA-activated ROK signaling, in addition to miRNA-mediated regulation. Elucidating these detailed molecular mechanisms may reveal novel biological activities that contribute to the therapeutic efficacy of HMW-HA against osteoarthritis.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Jun Takeuchi
- Medical Affairs, Seikagaku Corporation, Tokyo 100-0005, Japan;
| | - Sho Mitsugi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka 540-0008, Japan;
| | - Ayaka Koga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| |
Collapse
|
2
|
Bektas I, Hazar Yoruc AB, Cinel L, Ekinci M, Horoz SE, Turet DM, Mentes A. Histological evaluation of different concentrations of hyaluronic-acid-added zinc oxide eugenol on rat molar pulp. Odontology 2025; 113:283-295. [PMID: 38958828 PMCID: PMC11717850 DOI: 10.1007/s10266-024-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Hyaluronic acid (HA), known for diverse properties, was investigated for its potential in dental pulp therapy. This study investigated the potential of HA in dental pulp therapy by examining the physical properties and effects of zinc oxide eugenol (ZOE) pulpotomy materials containing varying HA concentrations on rat molar teeth. In vitro tests assessed compressive strength and hardness of ZOE materials blended with HA (0.5%, 1%, 3%) and HA gels (0.54%, 0.8%). 120 samples, encompassing the control group, underwent compressive strength testing, while 60 samples were designated for hardness assessment. In vivo experiments on rat molars studied histological effects of HA-containing ZOE on dental pulp over 1 week and 1 month. Gels with HA concentrations of 0.5%, 1%, and 0.54% were used in pulpotomy on 22 rats. Each rat underwent the procedure on four teeth, with one tooth serving as a control, totaling 88 teeth subjected to the intervention. In the analyses, SPSS 22.0 was used and the significance level was set at P = 0.05. Findings showed that HA at 0.5% maintained compressive strength, but higher concentrations decreased mechanical properties significantly (P = 0.001). Histological assessments indicated better outcomes with lower HA concentrations in terms of odontoblast layer continuity (P = 0.005 at 1 month) and pulp vitality (P = 0.001 at 1 week and P = 0.018 at 1 month). The study suggests HA holds promise for pulpotomy and regenerative endodontic treatments, but further research is needed to understand long-term clinical implications.
Collapse
Affiliation(s)
- Irmak Bektas
- Department of Pediatric Dentistry, Institute of Health Sciences, Marmara University, Basibuyuk, Saglik Yerleskesi 9/3 Maltepe, 34854, Istanbul, Turkey.
| | - Afife Binnaz Hazar Yoruc
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, Davutpasa Cad. No.127 Esenler,, 34210, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Pendik Egitim Arastirma Hastanesi, Ust Kaynarca, Pendik, Istanbul, Turkey
| | - Meltem Ekinci
- Department of Pediatric Dentistry, Institute of Health Sciences, Marmara University, Basibuyuk, Saglik Yerleskesi 9/3 Maltepe, 34854, Istanbul, Turkey
| | - Seher Eda Horoz
- Department of Pathology, School of Medicine, Marmara University, Pendik Egitim Arastirma Hastanesi, Ust Kaynarca, Pendik, Istanbul, Turkey
| | - Deniz Mukaddes Turet
- Experimental Animal Implementation and Research Center, Medical School, Marmara University, Basibuyuk, Maltepe, 34854, Istanbul, Turkey
| | - Ali Mentes
- Department of Pediatric Dentistry, Institute of Health Sciences, Marmara University, Basibuyuk, Saglik Yerleskesi 9/3 Maltepe, 34854, Istanbul, Turkey
- Department of Pediatric Dentistry, School of Dentistry, Marmara University, Basibuyuk, Saglik Yerleskesi 9/3 Maltepe, 34854, Istanbul, Turkey
| |
Collapse
|
3
|
Sezgin BI, Ildes Sezgin GC, Koyuncu Ö, Mentes A. Hyaluronic acid as a pulpotomy material in primary molars: an up to 30 months retrospective study. BMC Oral Health 2024; 24:683. [PMID: 38867194 PMCID: PMC11167839 DOI: 10.1186/s12903-024-04405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The aim of this retrospective study was to determine the long-term clinical and radiographic success of our previous randomized clinical trial and to compare the success of hyaluronic acid, with the widely used formocresol and ferric sulphate agents. METHODS This retrospective study is the extension of the 1-year survey of our randomized clinical trial that had compared the effectiveness of a hyaluronic acid pulpotomy over formocresol and ferric sulphate pulpotomies and included clinical and radiographic evaluations with a follow-up period of over 24 months for 44 children who applied to our clinic between May 2019 and September 2019. Long-term clinical and radiographic data were obtained from the periodic files of our department, wherein each tooth's file was examined to identify any clinical and radiographic findings. Descriptive statistics and Pearson's chi-square tests were used to evaluate the data. Statistical significance was considered as p < 0.05. RESULTS The clinical and radiographic success rates of the hyaluronic acid, formocresol, and ferric sulphate groups were not statistically different at > 24 months. None of the teeth in the hyaluronic acid group showed any clinical findings at > 24 months. CONCLUSIONS Hyaluronic acid pulpotomies exhibited comparable success rates to formocresol and ferric sulphate materials spanning over 24 months examinations. Because of convenient accessibility and applicability of hyaluronic acid, it may be recommended as a promising alternative medicament for pulpotomy treatments of primary molars. However, further long-term follow-up human studies are needed to better understand the effect of hyaluronic acid on the dental pulp of human primary molars.
Collapse
Affiliation(s)
- Batın Ilgıt Sezgin
- Department of Paediatric Dentistry, Faculty of Dentistry, Istanbul Galata University, Istanbul, Türkiye, 34430, Turkey.
| | | | - Özge Koyuncu
- Department of Paediatric Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Türkiye, 34854, Turkey
| | - Ali Mentes
- Department of Paediatric Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Türkiye, 34854, Turkey
| |
Collapse
|
4
|
Ahmed MS, Saeed MG, Hasan NH. Immunohistochemical study of mixing mineral trioxide aggregate with hyaluronic acid as a pulp-capping agent in dog teeth. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:485-490. [PMID: 38939541 PMCID: PMC11205164 DOI: 10.4103/jcde.jcde_88_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 06/29/2024]
Abstract
Objective The purpose of this study was to evaluate the immunohistochemical effect of hyaluronic acid (HA) on the mineralization rate of the reparative dentin when it is used as a mixing medium with mineral trioxide aggregate (MTA). Materials and Methods Direct pulp capping (DPC) was performed on 90 teeth from 10 dogs that had been experimentally exposed. The exposed pulps were divided into three groups according to the mixing medium with MTA: Group I: MTA + distilled water (control group), Group II: MTA + hybrid cooperative complex HA (HCC-HA), Group III: MTA + high molecular weight HA (HMW-HA). After pulp capping, all cavities were restored with final restoration. The dogs were divided randomly into five groups (two dogs each) according to the evaluation periods (7, 14, 21, 30, and 60) days. At the end of the study, the dogs were euthanized, and the sampled teeth were processed for immunohistochemical investigation. Results Both types of HA (HCC-HA, HMW-HA) showed an increase in the expression of alkaline phosphatase (ALP) at a higher rate than using distilled water with MTA. Conclusions Within the limitations of this study, HA proved to be an effective additive to MTA for DPC.
Collapse
Affiliation(s)
- Muthanna S. Ahmed
- Specialized Dental Center, Ninawa Health Directorate, College of Veterinary, University of Mosul, Iraq
| | - Mohammed G. Saeed
- Department of Pathology and Poultry Diseases, College of Veterinary, University of Mosul, Iraq
| | - Nadia H. Hasan
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| |
Collapse
|
5
|
Huang H, Hu X, Wu J, Song C, Tian Z, Jiang B. Hyaluronan degradation by HYAL2 is essential for odontoblastic differentiation and migration of mouse dental papilla cells. Matrix Biol 2024; 129:1-14. [PMID: 38490466 DOI: 10.1016/j.matbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.
Collapse
Affiliation(s)
- Haiyan Huang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoyu Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Jiayan Wu
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chenyu Song
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhixin Tian
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
6
|
Yokokawa D, Umemura N, Miyamoto Y, Kondoh N, Kawano S. Chemokine‑like receptor 1‑positive cells are present in the odontoblast layer in tooth tissue in rats and humans. Exp Ther Med 2024; 27:75. [PMID: 38264427 PMCID: PMC10804379 DOI: 10.3892/etm.2023.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Cluster of differentiation (CD)44 is a marker of dental pulp stem cells and is involved in odontoblast differentiation and calcification. Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) is also expressed in odontoblasts and dental pulp stem cells and is involved in inflammation suppression and tooth regeneration. Resolvin E1, a bioactive lipid, is a CMKLR1 ligand that mediates the chemerin-CMKLR1 interaction and suppresses pulpal inflammation. The present study clarified the intracellular and tissue localization of CD44 and CMKLR1 by immunohistochemical staining of normal pulp and pulp with pulpitis from 12-week-old male Wistar rat teeth or human teeth. In addition, the localization of CD44 and CMKLR1 in human dental pulp stem cells was observed by immunofluorescence staining. The present study also examined the involvement of resolvin E1 in inhibiting inflammation and calcification by western blotting. CD44- and CMKLR1-positive cells were confirmed in the odontoblast layer in normal dental pulp of rats and humans. CD44 was mainly localized in the cell membrane and CMKLR1 was mainly found in the cytoplasm of human dental pulp stem cells. CMKLR1 was also confirmed in the odontoblast layer in rats and humans with pulpitis but CD44 was not present. Following treatment of dental pulp stem cells with lipoteichoic acid, which imitates Gram-positive bacterial infection, resolvin E1 did not suppress the expression of cyclooxygenase-2 or of the odontoblast differentiation marker, dentin sialophosphoprotein. Furthermore, resolvin E1 induced the differentiation of dental pulp stem cells into odontoblasts even in the presence of the inflammatory stimulus.
Collapse
Affiliation(s)
- Daisuke Yokokawa
- Department of Endodontics, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| | - Yuka Miyamoto
- Department of Oral Pathology, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
- Department of Chemistry Laboratory, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| | - Satoshi Kawano
- Department of Endodontics, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
7
|
Schmidt J, Pavlík V, Suchánek J, Nešporová K, Soukup T, Kapitán M, Pilbauerová N. Low, medium, and high molecular weight hyaluronic acid effects on human dental pulp stem cells in vitro. Int J Biol Macromol 2023; 253:127220. [PMID: 37827401 DOI: 10.1016/j.ijbiomac.2023.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Hyaluronic acid (HA), an extracellular biopolymer found throughout the human body, holds promise as a biocompatible and biodegradable scaffold material. High molecular weight (HMW) HA degrades, generating low molecular weight (LMW) fragments with distinct properties. These fragments can influence the behaviour of cells, including human dental pulp stem cells (hDPSCs) incorporated into HA-containing hydrogels or scaffolds. Therefore, a comprehensive examination of the impact of a range of HA molecular weights on hDPSCs is essential before designing HA-based scaffolds for these cells. hDPSC lines were cultured with LMW HA (800 Da, 1600 Da, 15 kDa), medium molecular weight HA (237 kDa), or HMW HA (1500 kDa) over six passages. The various molecular weights had negligible effects on hDPSCs viability, morphology, adhesion, or relative telomere length. Furthermore, the expression of key surface stemness markers (CD29, CD44, CD73, CD90) remained unaltered. HA did not induce osteogenic, chondrogenic, or adipogenic differentiation. Moreover, the potential for chondrogenic and osteogenic differentiation was not adversely affected by LMW or HMW HA. Various molecular weights of HA seem safe, biocompatible and therefore suitable components for hDPSCs-containing scaffolds. These findings affirm that the hDPCSs will not be negatively affected by HA fragments resulting from scaffold degradation.
Collapse
Affiliation(s)
- Jan Schmidt
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Pavlík
- Cell Physiology Research Group, Contipro a.s., 561 02 Dolni Dobrouc, Czech Republic.
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Kristina Nešporová
- Cell Physiology Research Group, Contipro a.s., 561 02 Dolni Dobrouc, Czech Republic
| | - Tomáš Soukup
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Martin Kapitán
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Nela Pilbauerová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Zhang X, Yi Y, Jiang Y, Liao J, Yang R, Deng X, Zhang L. Targeted Therapy of Acute Liver Injury via Cryptotanshinone-Loaded Biomimetic Nanoparticles Derived from Mesenchymal Stromal Cells Driven by Homing. Pharmaceutics 2023; 15:2764. [PMID: 38140104 PMCID: PMC10747007 DOI: 10.3390/pharmaceutics15122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Acute liver injury (ALI) has the potential to compromise hepatic function rapidly, with severe cases posing a considerable threat to human health and wellbeing. Conventional treatments, such as the oral administration of antioxidants, can inadvertently lead to liver toxicity and other unwanted side effects. Mesenchymal stromal cells (MSCs) can target therapeutic agents directly to inflammatory sites owing to their homing effect, and they offer a promising avenue for the treatment of ALI. However, the efficacy and feasibility of these live cell products are hampered by challenges associated with delivery pathways and safety concerns. Therefore, in this work, MSC membranes were ingeniously harnessed as protective shells to encapsulate synthesized PLGA nanoparticle cores (PLGA/MSCs). This strategic approach enabled nanoparticles to simulate endogenous substances and yielded a core-shell nano-biomimetic structure. The biomimetic nanocarrier remarkably maintained the homing ability of MSCs to inflammatory sites. In this study, cryptotanshinone (CPT)-loaded PLGA/MSCs (CPT@PLGA/MSC) were prepared. These nanoparticles can be effectively internalized by LO2 cells. They reduced cellular oxidative stress and elevated inflammatory levels. In vivo results suggested that, after intravenous administration, CPT@PLGA/MSCs significantly reduced uptake by the reticuloendothelial system and immune recognition compared to PLGA nanoparticles without MSC membrane coatings, subsequently resulting in their targeted and enhanced accumulation in the liver. The effectiveness of CPT@PLGA/MSCs in alleviating carbon tetrachloride-induced oxidative stress and inflammation in a mouse model was unequivocally demonstrated through comprehensive histological examination and liver function tests. This study introduces a pioneering strategy with substantial potential for ALI treatment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yao Yi
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| |
Collapse
|
9
|
Wu H, Shao C, Shi J, Hu Z, Zhou Y, Chen Z, Tang R, Xie Z, Jin W. Hyaluronic acid-mediated collagen intrafibrillar mineralization and enhancement of dentin remineralization. Carbohydr Polym 2023; 319:121174. [PMID: 37567692 DOI: 10.1016/j.carbpol.2023.121174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 08/13/2023]
Abstract
Non-collagenous proteins (NCPs) in the extracellular matrix (ECM) of bone and dentin are known to play a critical regulatory role in the induction of collagen fibril mineralization and are embedded in hyaluronic acid (HA), which acts as a water-retaining glycosaminoglycan and provides necessary biochemical and biomechanical cues. Our previous study demonstrated that HA could regulate the mineralization degree and mechanical properties of collagen fibrils, yet its kinetics dynamic mechanism on mineralization is under debate. Here, we further investigated the role of HA on collagen fibril mineralization and the possible mechanism. The HA modification can significantly promote intrafibrillar collagen mineralization by reducing the electronegativity of the collagen surface to enhance calcium ions (Ca2+) binding capacity to create a local higher supersaturation. In addition, the HA also provides additional nucleation sites and shortens the induction time of amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) crystallization, which benefits mineralization. The acceleration effect of HA on intrafibrillar collagen mineralization is also confirmed in collagen hydrogel and in vitro dentin remineralization. These findings offer a physicochemical view of the regulation effect of carbohydrate polymers in the body on biomineralization, the fine prospect for an ideal biomaterial to repair collagen-mineralized tissues.
Collapse
Affiliation(s)
- Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
10
|
Tyagi A, Shetty J, Shetty S, Kumar BM, Shetty AV, Nair MR. Antibacterial and Immunomodulatory Properties of Stem Cells from Human Exfoliated Deciduous Teeth: An In Vitro Study. Int J Clin Pediatr Dent 2023; 16:240-246. [PMID: 38268633 PMCID: PMC10804301 DOI: 10.5005/jp-journals-10005-2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) provide an important autologous source for stem cell-based regenerative therapies with their easy acquisition and multipotency. However, the understanding of their antibacterial and immunomodulatory properties is limited. This in vitro research aims to determine whether SHED inhibits the growth of Streptococcus mutans (S. mutans) and Enterococcus faecalis (E. faecalis), as well as whether or not it has immunomodulatory effects by measuring interleukins (ILs)-2 and -6 levels. SHEDs were derived from the pulp of deciduous teeth that had undergone up to two-thirds of their roots' resorption. Isolated SHEDs were characterized on their morphological features, viability, assessment of surface markers, and in vitro induction into osteocytes and adipocytes. SHED was tested for its antibacterial efficacy against S. mutans and E. faecalis using a colony-forming units (CFU) assay. Lastly, we checked the cytokine levels by enzyme-linked immune sorbent assay (ELISA) for assessing the immunomodulatory properties of SHED. The results showed that the established SHED had fibroblastic morphology with higher viability. The ability to differentiate into osteocytes and adipocytes, as well as the expression of stem cell-specific markers, demonstrated their potential and flexibility under in vitro settings. SHED demonstrated antibacterial characteristics by significantly (p < 0.05) lowering S. mutans CFU, whereas E. faecalis CFU was either unaffected by or just slightly affected by the cells. SHED also helped keep inflammatory indicators, including IL-2 and IL-6, at stable levels when compared to the control. The results indicate that SHED may aid in preventing or reducing an infection due to its antibacterial activity and may provide immunomodulatory activities by controlling the production of cytokines. How to cite this article Tyagi A, Shetty J, Shetty S, et al. Antibacterial and Immunomodulatory Properties of Stem Cells from Human Exfoliated Deciduous Teeth: An In Vitro Study. Int J Clin Pediatr Dent 2023;16(S-3):S240-S246.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Department of Pedodontics and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Jayaprakasha Shetty
- Department of Centre for Stem Cell Research and Regenerative Medicine, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Shriya Shetty
- Department of Microbiology, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Basavarajappa Mohana Kumar
- Department of Centre for Stem Cell Research and Regenerative Medicine, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Alandur Veena Shetty
- Department of Microbiology, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Manju Raman Nair
- Department of Pedodontics and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| |
Collapse
|
11
|
Svandova E, Vesela B, Kratochvilova A, Holomkova K, Oralova V, Dadakova K, Burger T, Sharpe P, Lesot H, Matalova E. Markers of dental pulp stem cells in in vivo developmental context. Ann Anat 2023; 250:152149. [PMID: 37574172 DOI: 10.1016/j.aanat.2023.152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Masaryk University, Brno, Czech Republic
| | - Barbora Vesela
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| | | | | | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | | | - Tom Burger
- Veterinary University, Brno, Czech Republic
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; King's College London, London, United Kingdom.
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| |
Collapse
|
12
|
Luo N, Deng YW, Wen J, Xu XC, Jiang RX, Zhan JY, Zhang Y, Lu BQ, Chen F, Chen X. Wnt3a-Loaded Hydroxyapatite Nanowire@Mesoporous Silica Core-Shell Nanocomposite Promotes the Regeneration of Dentin-Pulp Complex via Angiogenesis, Oxidative Stress Resistance, and Odontogenic Induction of Stem Cells. Adv Healthc Mater 2023; 12:e2300229. [PMID: 37186211 DOI: 10.1002/adhm.202300229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Rui-Xue Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Bing-Qiang Lu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
13
|
Nugraheni VI, Bagio DA, Margono A, Julianto I. The Effect of Hydrogel Hyaluronic Acid on Dentine Sialophosphoprotein Expression of Human Dental Pulp Stem Cells. Eur Endod J 2023; 8:280-285. [PMID: 38219035 PMCID: PMC10500214 DOI: 10.14744/eej.2023.59672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Hyaluronic acid (HA) is glycosaminoglycan and one of important factors in extracellular matrix. In an inflamed pulp, when niche biology is conducive, the recruitment of human dental pulp stem cells (hDPSCs) will take place and differentiate into odontoblast like cell, creating reparative dentine and expressing dentine sialophosphoprotein (DSPP). Therefore, the purpose of this study was to analyze the potential of hydrogel HA in various concentration towards hDPSCs differentiation via DSPP expression at day 7 and 14. METHODS After hDPSCs incubation reaching 80% confluence, cells were then starved for 24 hours. Then, culture media were supplemented with osteogenic media. hDPSCs planted into 96 well plate and HA 10 μg/mL, 20 μg/mL, and 30 μg/mL were added. DSPP expression was analysed using elisa reader at day 7 and 14, qualitative result was analysed using alizarin red at day 21. Data was analysed using one-way ANOVA. RESULTS At day 7, there was a statistically significant different potential of HA conditioned media in various concentration (p<0.05) towards hDPSCs differentiation via expression of DSPP with HA 30 μg/mL being the most potential concentration to increase DSPP expression. CONCLUSION HA have the potential to increase odontoblast differentiation process via expression of DSPP, with HA 30 μg/mL being the optimum concentration for hDPSCs. (EEJ-2022-12-169).
Collapse
Affiliation(s)
- Valonia Irene Nugraheni
- Department of Conservative Dentistry, Universitas Indonesia Faculty of Dentistry, Jakarta, Indonesia
| | - Dini Asrianti Bagio
- Department of Conservative Dentistry, Universitas Indonesia Faculty of Dentistry, Jakarta, Indonesia
| | - Anggraini Margono
- Department of Conservative Dentistry, Universitas Indonesia Faculty of Dentistry, Jakarta, Indonesia
| | - Indah Julianto
- Department of Dermatology and Venereology, Universitas Sebelas Maret Faculty of Medicine, Surakarta, Indonesia
| |
Collapse
|
14
|
Bagio DA, Lestari NA, Putra WA, Alinda SD, Ricardo S, Julianto I. The effect of hyaluronic acid conditioned media on hDPSCs differentiation through CD44 and transforming growth factor-β1 expressions. J Adv Pharm Technol Res 2023; 14:89-93. [PMID: 37255878 PMCID: PMC10226701 DOI: 10.4103/japtr.japtr_649_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 06/01/2023] Open
Abstract
Hyaluronic acid (HA) has the capability to influence dentin niche which is important in regenerative process. The CD44 as a specific receptor of HA was found to be related to dentin mineralization process. Meanwhile, transforming growth factor β1 (TGF-β1) has a vital role in the transition from proliferation into the differentiation of human dental pulp stem cell human dental pulp stem cells (hDPSCs) to become odontoblast cells and dentin mineralization. This study aims to analyzed HA's effect on dentin mineralization through CD44 and TGF-β1 expressions. Stem cells were cultured in four different supplemented conditioned media (control, +10 μg/mL, +20 μg/mL, and + 30 μg/mL of HA). Evaluation of CD44 expression was analyzed using flow cytometry and TGF-β1 was analyzed using enzyme-linked immunosorbent assay reader. Qualitative result using Alizarin red test after 21 days was done to confirm the formation of mineralization nodules. It was shown that HA expression of CD44 and TGF-β1 on hDPSCs were higher in AH groups compared to the control group and 30 μg/mL HA induced the highest TGF-β1 expression on hDPSCs. Alizarin red test also showed the highest mineralization nodules in the same group. Therefore, from this study, we found that supplemented 30 μg/mL of HA was proved in initiating hDPSCs differentiation process and promote dentin mineralization.
Collapse
Affiliation(s)
- Dini Asrianti Bagio
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Nia Agung Lestari
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Wandy Afrizal Putra
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Sylva Dinie Alinda
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Shalina Ricardo
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Indah Julianto
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta Solo, Indonesia
| |
Collapse
|
15
|
Algorta A, Artigas R, Rial A, Brandl S, Rodellar C, Benavides U, Maisonnave J, Yaneselli K. Isolation and characterization of feline dental pulp stem cells. J Feline Med Surg 2023; 25:1098612X221150625. [PMID: 36745130 PMCID: PMC10812064 DOI: 10.1177/1098612x221150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to isolate feline dental pulp stem cells (fDPSCs) and characterize their clonogenic and proliferative abilities, as well as their multipotency, immunophenotype and cytogenetic stability. METHODS Dental pulp was isolated by explant culture from two cats <1 year old at post mortem. Their clonogenicity was characterized using a colony-forming unit fibroblast assay, and their proliferative ability was quantified with a doubling time assay in passages 2, 4 and 6 (P2, P4 and P6, respectively). Multipotency was characterized with an in vitro trilineage differentiation assay in P2, and cells were immunophenotyped in P4 by flow cytometry. Chromosomic stability was evaluated by cytogenetic analysis in P2, P4 and P6. RESULTS The fDPSCs displayed spindle and epithelial-like morphologies. Isolated cells showed a marked clonogenic capacity and doubling time was maintained from P2 to P6. Trilineage differentiation was obtained in one sample, while the other showed osteogenic and chondrogenic differentiation. Immunophenotypic analysis showed fDPSCs were CD45-, CD90+ and CD44+. Structural and numerical cytogenetic aberrations were observed in P2-P4. CONCLUSIONS AND RELEVANCE In this study, fDPSCs from two cats were isolated by explant culture and immunophenotyped. Cells displayed clonogenic and proliferative ability, and multipotency in vitro, and signs of chromosomic instability were observed. Although a larger study is needed to confirm these results, this is the first report of fDPSC isolation and in vitro characterization.
Collapse
Affiliation(s)
- Agustina Algorta
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
- Odontostomatology Service, Veterinary Hospital Clinical Department, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Rody Artigas
- Animal Genetics and Improvement Unit, Department of Animal Production and Health Production Systems, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Analía Rial
- Department of Biotechnology Development, Hygiene Institute, Medical Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Scott Brandl
- Microbiology Unit, Department of Pathobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Clementina Rodellar
- LAGENBIO, Veterinary Faculty, Food and Agriculture Institute of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Uruguaysito Benavides
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Jacqueline Maisonnave
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Kevin Yaneselli
- Immunology and Immunotherapy Unit, Department of Patobiology, Veterinary Faculty, University of the Republic (UdelaR), Montevideo, Uruguay
| |
Collapse
|
16
|
Dieterle MP, Gross T, Steinberg T, Tomakidi P, Becker K, Vach K, Kremer K, Proksch S. Characterization of a Stemness-Optimized Purification Method for Human Dental-Pulp Stem Cells: An Approach to Standardization. Cells 2022; 11:cells11203204. [PMID: 36291072 PMCID: PMC9600643 DOI: 10.3390/cells11203204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are promising for oral/craniofacial regeneration, but their purification and characterization is not yet standardized. hDPSCs from three donors were purified by magnetic activated cell sorting (MACS)-assisted STRO-1-positive cell enrichment (+), colony derivation (c), or a combination of both (c/+). Immunophenotype, clonogenicity, stemness marker expression, senescence, and proliferation were analyzed. Multilineage differentiation was assessed by qPCR, immunohistochemistry, and extracellular matrix mineralization. To confirm the credibility of the results, repeated measures analysis and post hoc p-value adjustment were applied. All hDPSC fractions expressed STRO-1 and were similar for several surface markers, while their clonogenicity and expression of CD10/44/105/146, and 166 varied with the purification method. (+) cells proliferated significantly faster than (c/+), while (c) showed the highest increase in metabolic activity. Colony formation was most efficient in (+) cells, which also exhibited the lowest cellular senescence. All hDPSCs produced mineralized extracellular matrix. Regarding osteogenic induction, (c/+) revealed a significant increase in mRNA expression of COL5A1 and COL6A1, while osteogenic marker genes were detected at varying levels. (c/+) were the only population missing BDNF gene transcription increase during neurogenic induction. All hDPSCs were able to differentiate into chondrocytes. In summary, the three hDPSCs populations showed differences in phenotype, stemness, proliferation, and differentiation capacity. The data suggest that STRO-1-positive cell enrichment is the optimal choice for hDPSCs purification to maintain hDPSCs stemness. Furthermore, an (immuno) phenotypic characterization is the minimum requirement for quality control in hDPSCs studies.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tara Gross
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-27047460
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kathrin Becker
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Kremer
- Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
17
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
18
|
Kajiura K, Umemura N, Ohkoshi E, Ohta T, Kondoh N, Kawano S. Shikonin induces odontoblastic differentiation of dental pulp stem cells via AKT-mTOR signaling in the presence of CD44. Connect Tissue Res 2021; 62:689-697. [PMID: 33334200 DOI: 10.1080/03008207.2020.1865937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: In our previous study, we demonstrated that hyaluronan induces odontoblastic differentiation of dental pulp stem cells via interactions with CD44. However, it remains unclear whether CD44 expression by dental pulp stem cells is required for odontoblastic differentiation.Methods: We searched for a compound other than hyaluronan that induces odontoblastic differentiation of dental pulp stem cells and used western blotting to determine whether CD44 is involved in the induction of odontoblastic differentiation by the compound. We further validated the cell signaling details of the compound-induced expression of dentin sialophosphoprotein (DSPP), which is known as a marker of odontoblastic differentiation.Results: We investigated shikonin, which is one of the derivatives of naphthoquinone, the skeleton of vitamin K. Shikonin-induced expression of DSPP was inhibited by PI3K, AKT, and mTOR inhibitors. Additionally, shikonin-induced expression of DSPP was inhibited in dental pulp stem cells transfected with siRNA against CD44.Conclusions: Shikonin can stimulate dental pulp stem cells to undergo odontoblastic differentiation through a mechanism involving the AKT-mTOR signaling pathway and CD44. Although expression of CD44 is important for inducing odontoblastic differentiation of dental pulp stem cells, the relationship between the AKT-mTOR signaling pathway and CD44 expression, in the context of shikonin stimulation, has not yet been elucidated. This study suggests that shikonin may be useful for inducing odontoblastic differentiation of dental pulp stem cells, and that it may have clinical applications, including protection of the dental pulp.
Collapse
Affiliation(s)
- Kunihiro Kajiura
- Department of Endodontics, Asahi University School of Dentistry, Gifu, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Emika Ohkoshi
- Department of Natural and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Japan
| | - Takahisa Ohta
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Satoshi Kawano
- Department of Endodontics, Asahi University School of Dentistry, Gifu, Japan
| |
Collapse
|
19
|
Koh B, Sulaiman N, Ismadi SNSW, Ramli R, Yunus SSM, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD. Mesenchymal stem cells: A comprehensive methods for odontoblastic induction. Biol Proced Online 2021; 23:18. [PMID: 34521356 PMCID: PMC8442352 DOI: 10.1186/s12575-021-00155-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the area of oral and maxillofacial surgery, regenerative endodontics aims to present alternative options to conventional treatment strategies. With continuous advances in regenerative medicine, the source of cells used for pulp tissue regeneration is not only limited to mesenchymal stem cells as the non-mesenchymal stem cells have shown capabilities too. In this review, we are systematically assessing the recent findings on odontoblastic differentiation induction with scaffold and non-scaffold approaches. METHODS A comprehensive search was conducted in Pubmed, and Scopus, and relevant studies published between 2015 and 2020 were selected following the PRISMA guideline. The main inclusion criteria were that articles must be revolving on method for osteoblast differentiation in vitro study. Therefore, in vivo and human or animal clinical studies were excluded. The search outcomes identified all articles containing the word "odontoblast", "differentiation", and "mesenchymal stem cell". RESULTS The literature search identified 99 related studies, but only 11 articles met the inclusion criteria. These include 5 odontoblastic differentiation induction with scaffold, 6 inductions without scaffolds. The data collected were characterised into two main categories: type of cells undergo odontoblastic differentiation, and odontoblastic differentiation techniques using scaffolds or non-scaffold. CONCLUSION Based on the data analysis, the scaffold-based odontoblastic induction method seems to be a better option compared to the non-scaffold method. In addition of that, the combination of growth factors in scaffold-based methods could possibly enhance the differentiation. Thus, further detailed studies are still required to understand the mechanism and the way to enhance odontoblastic differentiation.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Sharifah Nursyazwani Shahirah Wan Ismadi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Roszalina Ramli
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Salmiah Mohd Yunus
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Orthodontic, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Increasing Odontoblast-like Differentiation from Dental Pulp Stem Cells through Increase of β-Catenin/p-GSK-3β Expression by Low-Frequency Electromagnetic Field. Biomedicines 2021; 9:biomedicines9081049. [PMID: 34440255 PMCID: PMC8392719 DOI: 10.3390/biomedicines9081049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Odontoblasts produce proteins that form the dentinal extracellular matrix, which can protect the dental pulp from external stimuli and is required for tooth regeneration. This study showed that a pulsed electromagnetic field (PEMF) can regulate cell metabolism and induce cell differentiation. This study determined the frequency of PEMF that is effective for odontoblast differentiation. Human dental pulp stem cells (hDPSCs) were cultured in odontoblast differentiation medium containing dexamethasone, BMP2, TGF-β1, and FGF-2, and then exposed to 10 mT intensity of PEMF at 40, 60, 70, and 150 Hz for 15 min/day. The MTT assay, LDH assay, flow cytometry, protein and gene expression, and immunofluorescence were performed to check if hDPSCs differentiated into odontoblast-like cells. The hDPSCs showed frequency-dependent differences in protein and gene expression. The mesenchymal stem cell markers were reduced to a greater extent at 60 and 70 Hz than at other frequencies, and odontoblast-related markers, particularly β-catenin, p-GSK-3β, and p-p38, were increased at 60 and 70 Hz. Exposure to 10 mT intensity of PEMF at 70 Hz influenced the differentiation of hDPSCs considerably. Taken together, PEMF treatment can promote differentiation of hDPSCs into odontoblast-like cells by increasing p-GSK-3β and β-catenin expression.
Collapse
|
21
|
Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules 2020; 11:biom11010022. [PMID: 33379324 PMCID: PMC7823925 DOI: 10.3390/biom11010022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) and dental pulp stem cells (DPSCs) are attractive research topics, and their combined use in the field of tissue engineering seems to be very promising. HA is a natural extracellular biopolymer found in various tissues, including dental pulp, and due to its biocompatibility and biodegradability, it is also a suitable scaffold material. However, low molecular weight (LMW) fragments, produced by enzymatic cleavage of HA, have different bioactive properties to high molecular weight (HMW) HA. Thus, the impact of HA must be assessed separately for each molecular weight fraction. In this study, we present the effect of three LMW-HA fragments (800, 1600, and 15,000 Da) on DPSCs in vitro. Discrete biological parameters such as DPSC viability, morphology, and cell surface marker expression were determined. Following treatment with LMW-HA, DPSCs initially presented with an acute reduction in proliferation (p < 0.0016) and soon recovered in subsequent passages. They displayed significant size reduction (p = 0.0078, p = 0.0019, p = 0.0098) while maintaining high expression of DPSC markers (CD29, CD44, CD73, CD90). However, in contrast to controls, a significant phenotypic shift (p < 0.05; CD29, CD34, CD90, CD106, CD117, CD146, CD166) of surface markers was observed. These findings provide a basis for further detailed investigations and present a strong argument for the importance of HA scaffold degradation kinetics analysis.
Collapse
|
22
|
Agarwal G, Agiwal S, Srivastava A. Hyaluronic acid containing scaffolds ameliorate stem cell function for tissue repair and regeneration. Int J Biol Macromol 2020; 165:388-401. [PMID: 32961192 DOI: 10.1016/j.ijbiomac.2020.09.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
Recent evidence based studies have proposed hyaluronic acid (HA) as an emerging biopolymer for various tissue engineering application. Meanwhile, stem cells (SCs) have also gained immense popularity for their tissue regenerative capacity. Thus, combining HA and stem cells for tissue engineering application have shown to foster tissue repair and regeneration process. HA possesses the ability to interact with SCs via cellular surface receptors along with the capacity to elicit the process of differentiation. The influence of HA on stem cells has been widely investigated in cartilage and bone repair but their properties of reducing inflammation has also been explored in various other tissue repair processes. In this review, we have provided an insight to the effect of crosslinked and non-crosslinked HA on various stem cells. Further, HA based scaffolds combined with stem cells have shown to have a synergistic effect in the regeneration capacity. Also, various chemically modified HA and biomolecules conjugated HA as a suitable carrier or matrix for stem cells delivery and the effect of HA in fine tuning the stem cells function is discussed.
Collapse
Affiliation(s)
- Gopal Agarwal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shubham Agiwal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
23
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
24
|
The possible role of basic fibroblast growth factor in dental pulp. Arch Oral Biol 2019; 109:104574. [PMID: 31585238 DOI: 10.1016/j.archoralbio.2019.104574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factors (FGFs) are growth factors that play an important role in tooth development, repair, and regeneration. Of the FGF families, basic fibroblast growth factor (bFGF) has been the most frequently investigated in dentistry. Numerous studies have reported advantages of bFGF, while others did not find any additional benefit. This review gives a comprehensive summary of the potential role of bFGF in dental pulp wound healing and regeneration in connection with cell proliferation and differentiation, angiogenesis, and neural differentiation from both in vitro and in vivo studies. Furthermore, the possible underlying mechanisms associated with bFGF in promoting dental pulp wound healing are discussed in this review.
Collapse
|
25
|
Wang S, Xia Y, Ma T, Weir MD, Ren K, Reynolds MA, Shu Y, Cheng L, Schneider A, Xu HHK. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res 2019; 9:85-96. [PMID: 30465181 DOI: 10.1007/s13346-018-00600-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This represents the first report on the development of metformin-containing dental resins. The objectives were to use the resin as a carrier to deliver metformin locally to stimulate dental cells for dental tissue regeneration and to investigate the effects on odontogenic differentiation of dental pulp stem cells (DPSCs) and mineral synthesis. Metformin was incorporated into a resin at 20% by mass as a model system. DPSC proliferation attaching on resins was evaluated. Dentin sialophosphoprotein (DSPP), dentin matrix phosphoprotein 1 (DMP-1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (Runx2) genes expressions were measured. ALP activity and alizarin red staining (ARS) of mineral synthesis by the DPSCs on resins were determined. DPSCs on metformin-containing resin proliferated well (mean ± SD; n = 6), and the number of cells increased by 4-fold from 1 to 14 days (p > 0.1). DSPP, ALP, and DMP-1 gene expressions of DPSCs on metformin resin were much higher than DPSCs on control resin without metformin (p < 0.05). ALP activity of metformin group was 70% higher than that without metformin at 14 days (p < 0.05). Mineral synthesis by DPSCs on metformin-containing resin at 21 days was 9-fold that without metformin (p < 0.05). A novel metformin-containing resin was developed, achieving substantial enhancement of odontoblastic differentiation of DPSCs and greater mineral synthesis. The metformin resin is promising for deep cavities and perforated cavities to stimulate DPSCs for tertiary dentin formation, for tooth root coatings with metformin release for periodontal regeneration, and for root canal fillings with apical lesions to stimulate bone regeneration.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yang Xia
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
葛 芳, 杜 立. [Study and application of multidirectional differentiation potential of dental pulp stem cells]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2019; 36:172-176. [PMID: 30887793 PMCID: PMC9929884 DOI: 10.7507/1001-5515.201804045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/03/2022]
Abstract
Dental pulp stem cells(DPSCs) are adult stem cells with strong proliferative ability, self-renewal ability and multidirectional differentiation potential. DPSCs have abundant source are easy to obtain, and do not have ethical problems. As seed cells, they played an important role and showed great potential in tissue engineering and regenerative medicine, making them potential ideal seed cells for repairation and regeneration of tissue and organ. Clinical application of DPSCs in bone regeneration has already been achieved, and studies on differentiation of DPSCs into other tissues are still at different levels of basic stage. In this paper, the research and application of directional differentiation potential such as tooth formation, osteogenesis, and nerve formation are reviewed in order to provide clues and ideas for further study on DPSCs in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- 芳 葛
- 山东大学 齐鲁医院 眼科(济南 250012)Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, P.R.China
| | - 立群 杜
- 山东大学 齐鲁医院 眼科(济南 250012)Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, P.R.China
| |
Collapse
|
27
|
Agarwal S, Duffy B, Curtin J, Jaiswal S. Effect of High- and Low-Molecular-Weight Hyaluronic-Acid-Functionalized-AZ31 Mg and Ti Alloys on Proliferation and Differentiation of Osteoblast Cells. ACS Biomater Sci Eng 2018; 4:3874-3884. [PMID: 33429610 DOI: 10.1021/acsbiomaterials.8b00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The quality of patient care has increased dramatically in recent years because of the development of lightweight orthopedic metal implants. The success of these orthopedic implants may be compromised by impaired cytocompatibility and osteointegration. Biomimetic surface engineering of metal implants using biomacromolecules including hyaluronic acid (HA) has been used an effective approach to provide conditions favorable for the growth of bone forming cells. To date, there have been limited studies on osteoblasts functions in response to metal substrates modified with the hyaluronic acid of different molecular weight for orthopedic applications. In this study, we evaluated the osteoblasts functions such as adhesion, proliferation, and differentiation in response to high- and low-molecular-weight HA (denoted as h-HA and l-HA, respectively) functionalized on Ti (h-HA-Ti and l-HA-Ti substrates, respectively) and corrosion-resistant silane coated-AZ31 Mg alloys (h-HA-AZ31 and l-HA-AZ31). The DNA quantification study showed that adhesion and proliferation of osteoblasts were significantly decreased by h-HA immobilized on Ti or AZ31 substrates when compared to low-molecular-weight counterpart over a period of 14 days. On the contrary, h-HA significantly increased the osteogenic differentiation of osteoblast over l-HA, as confirmed by the enhanced expression of ALP, total collagen, and mineralization of extracellular matrix. In particular, the h-HA-AZ31 substrates greatly enhanced the osteoblast differentiation among tested samples (l-HA-AZ31, l-HA-Ti, h-HA-Ti, and Ti alone), which is ascribed to the osteoinductive activity of h-HA, relatively up-regulated intracellular Ca2+ ([Ca2+]i) and Mg2+ ([Mg2+]i) concentrations as well as the alkalization of the cell culture medium. This study suggesting that HA of appropriate molecular weight can be successfully used to modify the surface of metal implants for orthopedic applications.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
28
|
Datko Williams L, Farley A, Cupelli M, Alapati S, Kennedy MS, Dean D. Effects of substrate stiffness on dental pulp stromal cells in culture. J Biomed Mater Res A 2018; 106:1789-1797. [PMID: 29468814 DOI: 10.1002/jbm.a.36382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
Dental pulp stromal cells (DPSCs) can be differentiated down lineages known to either express bone or dentin specific protein markers. Since the differentiation of cells can be heavily influenced by their environment, it may be possible to influence the osteogenic/odontogenic potential of DPSCs by modulating the mechanical properties of substrate on which they are grown. In this study, human DPSCs were grown with and without hydroxyapatite (HA) microparticles on a range of substrates including fibronectin-coated hydrogels and glass substrates, which represented an elastic moduli range of approximately 3 kPa-50 GPa, over a 21-day period. Alkaline phosphatase activity, osteopontin production, and mineralization were monitored. The presence of HA microparticles increased the relative degree of mineralized matrix produced by the cells relative to those in the same substrate and media condition without the HA microparticles. In addition, cultures with cells grown on stiffer substrates had higher ALP activity and higher degree of mineralization than those grown on softer substrates. This study shows that DPSCs are affected by the mechanical properties of their underlying growth substrate and by the presence of HA microparticles. In addition, relatively stiff substrates (>75 kPa) may be required for significant mineralization of these cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1789-1797, 2018.
Collapse
Affiliation(s)
| | - Amanda Farley
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Matthew Cupelli
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Satish Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Marian S Kennedy
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, 29634
| | - Delphine Dean
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
29
|
Milhan NVM, de Barros PP, de Lima Zutin EA, de Oliveira FE, Camargo CHR, Camargo SEA. The Antimicrobial Peptide LL-37 as a Possible Adjunct for the Proliferation and Differentiation of Dental Pulp Stem Cells. J Endod 2017; 43:2048-2053. [DOI: 10.1016/j.joen.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
|