1
|
Tang Y, Cheng C, Ding R, Qian J, Liu M, Guo Y, Li Q. MSC exosomes and MSC exosomes loaded with LncRNA H19 as nanotherapeutics regulate the neurogenetic potential of Müller Glial Cells in dry age-related macular degeneration. Free Radic Biol Med 2025; 231:178-192. [PMID: 40015462 DOI: 10.1016/j.freeradbiomed.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
In retinal degeneration diseases such as dry age-related macular degeneration (AMD), Müller Glial Cells (MGCs) in mammals undergo a process of reactive gliosis leading to the progression of dry AMD. Here, It is demonstrated that exosomes derived from mesenchymal stem cells (MSC exosomes) and MSC exosomes loaded with LncRNA H19, acting as nanotherapeutics, can be regulated by MGCs in dry AMD. In the in vivo study, MSC exosomes were administered via intravitreal injection. MSC exosomes effectively redirected MGCs from gliosis to dedifferentiation and alleviated MGCs-to-epithelial transition by inhibiting oxidative stress in mice with dry AMD induced by NaIO3. In the in vitro study, MSC exosomes promoted MGCs dedifferentiation by activating Wnt/β-catenin signaling pathway and prevented oxidative stress-induced MGCs gliosis and MGCs-to-epithelial transition by inhibiting TGFβ1 signaling pathway. MSC exosomes loaded with LncRNA H19 enhanced the activation of Wnt/β-catenin signaling pathway and the inhibition of the TGFβ1 signaling pathway compared with MSC exosomes. These results suggest that MSC exosomes regulate the neurogenetic potential of MGCs by redirecting MGCs from gliosis to dedifferentiation and alleviating the transformation of MGCs to epithelial cells through regulating oxidative stress. Regulating LncRNA H19 in MGCs to promote mammalian retinal regeneration in dry AMD was suggested for the first time.
Collapse
Affiliation(s)
- Yue Tang
- China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Caiyi Cheng
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Rui Ding
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingyuan Qian
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Min Liu
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuzun Guo
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qian Li
- China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Luo T, Tang Y, Xie W, Ma Z, Gong J, Zhang Y, Yang T, Jia X, Zhou J, Hu Z, Han L, Wang Q, Song Z. Cerium-based nanoplatform for severe acute pancreatitis: Achieving enhanced anti-inflammatory effects through calcium homeostasis restoration and oxidative stress mitigation. Mater Today Bio 2025; 31:101489. [PMID: 39906206 PMCID: PMC11791244 DOI: 10.1016/j.mtbio.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Severe acute pancreatitis (SAP), a life-threatening inflammatory disease of the pancreas, has a high mortality rate (∼40 %). Current therapeutic approaches, including antibiotics, trypsin inhibitors, fasting, rehydration, and even continuous renal replacement therapy, yield limited clinical management efficacy. Abnormally elevated calcium levels and reactive oxygen species (ROS) overproduction by damaged mitochondria are key factors in the inflammatory cascade in SAP. The combination of calcium chelators and cerium-based nanozymes loaded with catalase (MOF808@BA@CAT) was developed to bind intracellular calcium, eliminate excessive ROS, and ameliorate the resulting mitochondrial dysfunction, thereby achieving multiple anti-inflammatory effects on SAP. A single low dose of the nanoplatform (1.5 mg kg-1) significantly reduced pancreatic necrosis in SAP rats, effectively ameliorated oxidative stress in the pancreas, improved mitochondrial dysfunction, reduced the proportion of apoptotic cells, and blocked the systemic inflammatory amplification cascade, resulting in the alleviation of systemic inflammation. Moreover, the nanoplatform restored impaired autophagy and inhibited endoplasmic reticulum stress in pancreatic tissue, preserving injured acinar cells. Mechanistically, the administration of the nanoplatform reversed metabolic abnormalities in pancreatic tissue and inhibited the signaling pathways that promote inflammation progression in SAP. This nanoplatform provides a new strategy for SAP treatment, with clinical translation prospects, through ion homeostasis regulation and pancreatic oxidative stress inhibition.
Collapse
Affiliation(s)
- Tingyi Luo
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yujing Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wangcheng Xie
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian Gong
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yonggui Zhang
- Department of Critical Care Medicine & Emergency, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Tingsong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xuyang Jia
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, School of Medicine, Jiaotong University, Shanghai, 200335, China
| | - Zhengyu Hu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230000, China
| | - Lin Han
- Central Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
3
|
Zheng H, Pan Y. Transcriptome-proteome integration analysis identifies elevated expression of LARP7 promoting the tumorigenesis and development of gastrointestinal stromal tumors. Transl Oncol 2025; 53:102316. [PMID: 39933393 DOI: 10.1016/j.tranon.2025.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the digestive tract, with c-kit and PDGFRA mutations being the primary causes. However, GIST pathogenesis is not still fully understood. Differential expression analysis, Univariate Cox regression and Kaplan-Meier curves were utilized to screen for up-regulated and prognostically relevant genes. The expression distribution was compared across various demographics and clinical groups. The relationship between gene expression and cytokine pathway activation was assessed via CytoSig. Immune cell infiltration was analyzed using TIMER2.0. Four paired GIST and adjacent normal tissues were collected to validate the expression trend. CCK8 assays and scratch wound healing assays were conducted in GIST-T1 and GIST-882 cells. Results indicated that LARP7 was up-regulated in GISTs at both mRNA and protein levels. This elevated expression was associated with poor prognosis, particularly in GISTs located in the small intestine and those with larger tumor sizes. LARP7 was implicated in the expression of IFN-induced genes and the negative regulation of viral processes. Predictions of cytokine pathways supported these findings, and immune cell infiltration analysis revealed a higher presence of CD8+ T cells in GISTs with high LARP7 expression. The lncRNA (H19 or LINC00665)-miRNA(hsa-miR-138-5p) axis targeted LARP7. Furthermore, LARP7 was elevated in imatinib-resistant GISTs, with some other drugs predicted to aid in therapy. LARP7 knockdown resulted in reduced proliferation and migration of GIST-T1 and GIST-882 cells. Overall, high expression of LARP7 correlates with poor prognosis in GISTs, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Heng Zheng
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Qingyang District, Chengdu, 610072 China
| | - Yong Pan
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Qingyang District, Chengdu, 610072 China.
| |
Collapse
|
4
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Gao W, Zhang Y, Yuan L, Huang F, Wang YS. Long Non-coding RNA H19-Overexpressing Exosomes Ameliorate UVB-Induced Photoaging by Upregulating SIRT1 Via Sponging miR-138. Photochem Photobiol 2023; 99:1456-1467. [PMID: 36916469 DOI: 10.1111/php.13801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
UVB-induced photoaging is characterized by wrinkle formation, slackness and senile plaques, affecting the health and beauty of human being. Our previous study revealed that exosomes derived from adipose-derived stem cells (ADSCs) could efficiently alleviate UVB-induced photodamage. However, the functional ingredients in exosomes were undefined. LncRNA H19, one of the well-researched lncRNAs in exosomes, exhibits multiple physiological effects. This study aims to demonstrate the photo-protective role of lncRNA H19 on skin photoaging in UVB-irradiated human skin fibroblasts cells (HSFs) and Kunming mice. LncRNA H19-overexpressing exosomes (H19-Exo) were isolated from the supernatant of ADSCs infected with lncRNA H19-loaded lentivirus. The results showed that H19-Exo significantly inhibited MMPs production, DNA damage and ROS generation while enhancing procollagen type I synthesis in UVB-irradiated HSFs. Meanwhile, H19-Exo markedly reversed epidermal thickening and collagen degradation in UVB-irradiated mice. Furthermore, luciferase reporter assays indicated that lncRNA H19 acted as a sponge for miR-138 expression, and SIRT1 was targeted by miR-138. Evidence from both in vitro and in vivo studies also revealed that H19-Exo could enhance SIRT1 expression by knocking down miR-138. In conclusion, lncRNA H19 served as a therapeutic candidate in treating UVB-induced skin photoaging by upregulation of SIRT1 via miR-138.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Zhang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Limin Yuan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Fangzhou Huang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu-Shuai Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
6
|
Wu YB, Li SY, Liu JY, Xue JJ, Xu JF, Chen T, Cao TY, Zhou H, Wu TT, Dong CL, Qian WF, Qiao LW, Hou SY, Wang T, Shen C. Long non-coding RNA NRSN2-AS1 promotes ovarian cancer progression through targeting PTK2/β-catenin pathway. Cell Death Dis 2023; 14:696. [PMID: 37875515 PMCID: PMC10598275 DOI: 10.1038/s41419-023-06214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
As a common malignant tumor among women, ovarian cancer poses a serious threat to their health. This study demonstrates that long non-coding RNA NRSN2-AS1 is over-expressed in ovarian cancer tissues using patient sample and tissue microarrays. In addition, NRSN2-AS1 is shown to promote ovarian cancer cell proliferation and metastasis both in vitro and in vivo. Mechanistically, NRSN2-AS1 stabilizes protein tyrosine kinase 2 (PTK2) to activate the β-catenin pathway via repressing MG-53-mediated ubiquitinated degradation of PTK2, thereby facilitating ovarian cancer progression. Rescue experiments verify the function of the NRSN2-AS1/PTK2/β-catenin axis and the effects of MG53 on this axis in ovarian cancer cells. In conclusion, this study demonstrates the key role of the NRSN2-AS1/PTK2/β-catenin axis for the first time and explores its potential clinical applications in ovarian cancer.
Collapse
Affiliation(s)
- Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Shen-Yi Li
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
- Department of Obstetrics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Jin-Yan Liu
- Department of Breast and Thyroid Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Jia-Jia Xue
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, 215124, China
| | - Jin-Fu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Chen
- Department of Gynaecology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Tian-Yue Cao
- Department of Gynaecology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Lin Dong
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Feng Qian
- Department of Breast and Thyroid Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Long-Wei Qiao
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Shun-Yu Hou
- Department of Gynaecology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Ting Wang
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
7
|
Deng J, Song Z, Li X, Shi H, Huang S, Tang L. Role of lncRNAs in acute pancreatitis: pathogenesis, diagnosis, and therapy. Front Genet 2023; 14:1257552. [PMID: 37842644 PMCID: PMC10569178 DOI: 10.3389/fgene.2023.1257552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal diseases characterized by an injury and inflammatory disorder of the pancreas with complicated pathological mechanisms. Long non-coding RNAs (lncRNAs) have been shown to play an important role in various physiological and pathological processes in humans, and they have emerged as potential biomarkers of diagnosis and therapeutic targets in various diseases. Recently, accumulating evidence has shown significant alterations in the expression of lncRNAs, which are involved in the pathogenesis of AP, such as premature trypsinogen activation, impaired autophagy, inflammatory response, and acinar cell death. Moreover, lncRNAs can be the direct target of AP treatment and show potential as biomarkers for the diagnosis. Thus, in this review, we focus on the role of lncRNAs in the pathogenesis, diagnosis, and therapy of AP and emphasize the future directions to study lncRNAs in AP, providing new insight into understanding the cellular and molecular mechanisms of AP and seeking novel biomarkers for the diagnosis and therapeutic targets to improve clinical management in the future.
Collapse
Affiliation(s)
- Jie Deng
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Ziying Song
- Department of Emergency Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaolan Li
- Department of Pain Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Shangqing Huang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lijun Tang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y, Song Z. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207691. [PMID: 37409821 PMCID: PMC10477874 DOI: 10.1002/advs.202207691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Zhengyu Hu
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230032China
| | - Dongyan Wang
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Jian Gong
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhilong Ma
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Tingyi Luo
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xuyang Jia
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yihai Shi
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Zhenshun Song
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
9
|
Ma Z, Xie W, Luo T, Hu Z, Hua J, Zhou J, Yang T, Wang W, Song Z, Yu X, Xu J, Shi S. Exosomes from TNF-α preconditioned human umbilical cord mesenchymal stromal cells inhibit the autophagy of acinar cells of severe acute pancreatitis via shuttling bioactive metabolites. Cell Mol Life Sci 2023; 80:257. [PMID: 37594573 PMCID: PMC11073291 DOI: 10.1007/s00018-023-04861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Severe acute pancreatitis (SAP) is a common critical disease of the digestive system, with high mortality and a lack of effective prevention and treatment measures. Despite mesenchymal stromal cell transplantation having the potential to treat SAP, its clinical application prospect is limited, and the mechanism is unclear. Here, we reveal the therapeutic role of exosomes from TNF-α-preconditioned human umbilical cord mesenchymal stromal cells (HUCMSCs) in attenuating SAP and show that it is partly dependent on exosomal metabolites. Bioactive metabolomics analysis showed that 48 metabolites be significantly differentially expressed between the two groups (Exo-Ctrl group versus Exo-TNF-α group). Then, the further functional experiments indicated that 3,4-dihydroxyphenylglycol could be a key molecule mediating the therapeutic effect of TNF-α-preconditioned HUCMSCs. The animal experiments showed that 3,4-dihydroxyphenylglycol reduced inflammation and oxidative stress in the pancreatic tissue and inhibited acinar cell autophagy in a rat model of SAP. Mechanistically, we revealed that 3,4-dihydroxyphenylglycol activated the mTOR pathway to inhibit acinar cell autophagy and alleviate SAP. In summary, our study demonstrated that exosomes from TNF-α-preconditioned HUMSCs inhibit the autophagy of acinar cells of SAP by shuttling 3,4-dihydroxyphenylglycol and inhibiting the mTOR pathway. This study revealed the vital role and therapeutic potential of metabolite-derived exosomes in SAP, providing a new promising method to prevent and therapy SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingyi Luo
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Zhou J, Song G, Su M, Zhang H, Yang T, Song Z. Long noncoding RNA CASC9 promotes pancreatic cancer progression by acting as a ceRNA of miR-497-5p to upregulate expression of CCND1. ENVIRONMENTAL TOXICOLOGY 2023; 38:1251-1264. [PMID: 36947456 DOI: 10.1002/tox.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is an aggressive malignancy with poor prognosis. Accumulating studies have showed that long non-coding RNA (lncRNA) is a crucial regulator in various tumorigenesis and progression including PC. This research aims to explore the roles and molecular mechanism of lncRNA cancer susceptibility candidate 9 (CASC9) in PC. METHODS The expression levels of lncRNA CASC9 and miR-497-5p were evaluated in PC tissues and paired adjacent healthy tissues by quantitative real-time PCR. PC cell lines were transfected with lentivirus targeting lncRNA CASC9, and cells proliferation, migration and invasion tests were conducted. Dual luciferase reporter assays were also carried out to explore the relationship between lncRNA CASC9, miR-497-5p and Cyclin D1 (CCND1). RESULTS LncRNA CASC9 was significantly up-regulated in PC tissues, while miR-497-5p expression was down-regulated. Down-regulation of lncRNA CASC9 in PC cells can significantly suppress the cell aggressiveness both in vitro and in vivo; moreover, knock-down of miR-497-5p could neutralize this impact. Additionally, the luciferase activity assay has assured that CCND1 was a downstream target of miR-497-5p. CONCLUSION LncRNA CASC9 can promote the PC progression by modulating miR-497-5p/CCND1 axis, which is potential target for PC treatment.
Collapse
Affiliation(s)
- Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mingqi Su
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wu P, Zhu Y, Li J, Chen H, Wu H, Hu X, Zhu H. Guizhi Fuling Wan inhibits autophagy of granulosa cells in polycystic ovary syndrome mice via H19/miR-29b-3p. Gynecol Endocrinol 2023; 39:2210232. [PMID: 37187204 DOI: 10.1080/09513590.2023.2210232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE To investigate the potential molecular mechanism of traditional Chinese medicine Guizhi Fuling Wan (GZFLW) inhibiting granulosa cells (GCs) autophagy in polycystic ovary syndrome (PCOS). METHODS Control GCs and model GCs were cultured and treated with blank serum or GZFLW-containing serum. The levels of H19 and miR-29b-3p in GCs were detected using qRT-PCR, target genes of miR-29b-3p were identified using luciferase assay. The protein expressions of Phosphatase and tensin homolog (PTEN), Matrix Metalloproteinase (MMP)-2, and Bax were measured using western blot. The level of autophagy was detected via MDC staining, the degree of autophagosomes and autophagic polymers was observed using dual fluorescence-tagged mRFP-eGFP-LC3. RESULTS GZFLW intervention reduced the expression of autophagy-related proteins PTEN, MMP-2 and Bax, by upregulating the expression of miR-29b-3p and downregulated the expression of H19 (p < .05 or p < .01). The number of autophagosomes and autophagy polymers was significantly decreased by GZFLW treatment. However, the inhibition of miR-29b-3p and overexpression of H19 induced a significant increase in the number of autophagosomes and autophagic polymers, which attenuated the inhibitory effect of GZFLW on autophagy (p < .05 or p < .01). In addition, inhibition of miR-29b-3p or overexpression of H19 can attenuate the effect of GZFLW on the expression of PTEN, MMP-2 and Bax proteins (p < .05 or p < .01). CONCLUSION Our study found that GZFLW inhibits autophagy in PCOS GCs via H19/miR-29b-3p pathway.
Collapse
Affiliation(s)
- Peijuan Wu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junjie Li
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Chen
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanxue Wu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodan Hu
- School of Clinical Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqiu Zhu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Yang H, Zhang Y, Du Z, Wu T, Yang C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging (Albany NY) 2023; 15:791-809. [PMID: 36787444 PMCID: PMC9970314 DOI: 10.18632/aging.204513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Skin wounds caused by diabetes are a major medical problem. Mesenchymal stem cell-derived exosomes hold promise to quicken wound healing due to their ability to transfer certain molecules to target cells, including mRNAs, microRNAs, lncRNAs, and proteins. Nonetheless, the specific mechanisms underlying this impact are not elucidated. Therefore, this research aimed to investigate the effect of MSC-derived exosomes comprising long non-coding RNA (lncRNA) H19 on diabetic skin wound healing. Hair follicle mesenchymal stem cells (HF-MSCs) were effectively isolated and detected, and exosomes (Exo) were also isolated smoothly. Pretreatment with 30 mM glucose for 24 h (HG) could efficiently induce pyroptosis in HaCaT cells. Exosomal H19 enhanced HaCaT proliferation and migration and inhibited pyroptosis by reversing the stimulation of the NLRP3 inflammasome. Injection of exosomes overexpressing lncRNA H19 to diabetic skin wound promoted sustained skin wound healing, whereas sh-H19 exosomes did not have this effect. In conclusion, Exosomes overexpressing H19 promoted HaCaT proliferation, migration and suppressed pyroptosis both in vitro and in vivo. Therefore, HFMSC-derived exosomes that overexpress H19 may be included in strategies for healing diabetic skin wounds.
Collapse
Affiliation(s)
- Hongliang Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin 132033, China
| | - Zhenwu Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin 132033, China
| |
Collapse
|
13
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Yang H, Jiang P, Xiao P, Zhou H. Bone Marrow Mesenchymal Stem Cells Modified with microRNA-216a-5p Enhance Proliferation of Acinar Cells in Severe Acute Pancreatitis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of bone marrow mesenchymal stem cells (BMSC) modified with miR-216a-5p on acinar cell proliferation in SAP. 40 rats were equally assigned into miR-NC set, miR-216a-5p set, BMSC set and anti-miR-216a-5p set randomly. The SAP model was prepared using AR42J
cells which were disposed with CAE. Cells were transfected with lipidosome method to meaure miR-216-5p by RT-PCR, cell proliferation by CCK-8 along with analysis of cell clone formation and apoptosis. miR-216a-5p in modified BMSC was significantly upregulated compared with BMSC, indicating
that BMSC was modified with miR-216a-5p successfully. BMSC modified with miR-216a-5p significantly promoted cell proliferation and clone formation and decreased apoptosis. The luciferase activity in wild type of miR-216a-5p was reduced, indicating that miR-216-5p could target Pak2 gene. In
conclusion, proliferation of acinar cells in SAP is prompted and apoptosis ise reduced by BMSC modified with miR-216a-5p, which is possibly through targeting PAK2 gene.
Collapse
Affiliation(s)
- Hongxiu Yang
- Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Peng Jiang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Pengfei Xiao
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Huiyu Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| |
Collapse
|
15
|
Wang CH, Pan Z, Tang ZM. Effect of lncRNA H19 targeting miR-30a-5p on cell apoptosis, secretion of inflammatory factors, and autophagy in caerulein-induced acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2022; 30:997-1003. [DOI: 10.11569/wcjd.v30.i22.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND We hypothesized that H19 might promote the progression of acute pancreatitis by targeting miR-30a-5p.
AIM To investigate the effect of lncRNA H19 targeting miR-30a-5p on cell apoptosis, secretion of inflammatory factors, and autophagy in a caerulein-induced acute pancreatitis cell model.
METHODS Human pancreatic AR42J cells were cultured and treated with caerulein to establish a pancreatic injury cell model. The cells were divided into cerulean + si-NC group, cerulean + si-H19 group, cerulean + miR-NC group, cerulean + miR-30a-5p group, cerulean + si-H19 + anti-miR-NC group, and cerulean + si-H19 + anti-miR-30a-5p group. Real-time fluorescence quantitative PCR was used to detect the expression levels of H19 and miR-30a-5p in cells; flow cytometry was used to detect apoptosis; enzyme-linked immunosorbent assay (ELISA) was used to detect TNF-α, IL-1β, and IL-6 levels; Western blot was used to detect autophagy-related microtubule-associated protein 1 light chain 3-Ⅰ(LC3-Ⅰ) and microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) protein expression; dual luciferase assay was used to detect the target relationship between H19 and miR-30a-5p in cells.
RESULTS Compared with normal pancreatic cells, H19 expression was increased and miR-30a-5p expression was decreased in pancreatitis cells induced by caerulein (P < 0.05). Compared with the cerulean + si-NC group, H19 expression was reduced, the cell survival rate was increased, the levels of TNF-α, IL-1β, and IL-6 were reduced, and LC3-Ⅰ protein expression was reduced and LC3-Ⅱ protein expression was increased in the cerulein+si-H19 group (P < 0.05). Compared with the caerulein + miR-NC group, miR-30a-5p expression was increased, the cell survival rate was increased, the levels of TNF-α, IL-1β, and IL-6 were decreased, and LC3-Ⅰ protein expression was reduced and LC3-Ⅱ protein expression was increased in the caerulein + miR-30a-5p group (P < 0.05). Compared with the cerulean + si-H19 + anti-miR-NC group, the expression of miR-30a-5p was significantly reduced, the cell survival rate was reduced, the levels of TNF-α, IL-1β, and IL-6 were increased, and LC3-Ⅰ protein expression was increased and LC3-Ⅱ protein expression was decreased in the cerulean + si-H19 + anti-miR-30a-5p group (P < 0.05).
CONCLUSION Down-regulation of H19 inhibits the apoptosis, secretion of inflammatory factors, and autophagy in the acute pancreatitis cell model induced by caerulein by targeting miR-30a-5p.
Collapse
Affiliation(s)
- Chun-Hui Wang
- The First People's Hospital Surgery of Huzhou City, Huzhou 313000, Zhejiang Province, China
| | - Zhuo Pan
- The First People's Hospital Surgery of Huzhou City, Huzhou 313000, Zhejiang Province, China
| | - Zhong-Ming Tang
- Gastroenterology Department, The First People's Hospital of Huzhou City, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
16
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
17
|
Nonalcoholic Fatty Liver Hepatocyte-Derived lncRNA MALAT1 Aggravates Pancreatic Cell Inflammation via the Inhibition of Autophagy by Upregulating YAP. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2930960. [PMID: 36093484 PMCID: PMC9452936 DOI: 10.1155/2022/2930960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Background Acute pancreatitis (AP) is one of the most common gastrointestinal disorders, which causes death with a high mortality rate of about 30%. The study aims to identify whether the nonalcoholic fatty liver disease (NAFLD)-derived lncRNA MALAT1 participates in the inflammation of pancreatic cell and its potential mechanism. Methods The NAFLD cell model was constructed by treating HepG2 cells with FFA. The in vitro model of acute pancreatitis (AP) was established by the administration of caerulein on AR42J cells. MALAT1 and si-MALAT1 were transfected into pancreatic cells, and then exosomes were collected from the NAFLD cell model and then were cocultured with AR42J cells. Transmission electron microscopy was used to observe the morphology of exosomes. Oil Red O staining was applied to reveal the lipid deposition. The triglyceride, IL-6, and TNF-α levels were detected using ELISA. The MALAT1 level in exosomes was detected by qRT-PCR. The CD9, CD63, CD81, and CYP2E1, LC3II, and LC3I levels were detected by western blot. Results MALAT1 was upregulated in NAFLD-derived exosomes and increased the levels of IL-6 and TNF-α in pancreatic cells. NAFLD-derived exosomes inhibited YAP phosphorylation, decreased the levels of IL-6 and TNF-α, and reduced the ratio of LC3II/LC3I protein in pancreatic cells. Silencing MALAT1 significantly returned the inhibitory effect of NAFLD on hippo-YAP pathway. YAP1 signal transduction inhibitor CA3 reversed the decrease of LC3II/LC3I expression and the increase of IL-6 and TNF-α levels induced by MALAT1 in the AP cell model. Conclusions NAFLD-derived MALAT1 exacerbates pancreatic cell inflammation via inhibiting autophagy by upregulating YAP.
Collapse
|
18
|
miR-141-3p Regulates EZH2 to Attenuate Porphyromonas gingivalis Lipopolysaccharide-Caused Inflammation and Inhibition of Osteogenic Differentiation in Human Periodontal Ligament Stem Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4634925. [PMID: 35509853 PMCID: PMC9061008 DOI: 10.1155/2022/4634925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022]
Abstract
Objective miR-141-3p has been demonstrated to be both anti-inflammatory and osteoprotective. This study is aimed at investigating the effect of miR-141-3p on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) and its mechanism. Methods PgLPS was used to induce an inflammatory environment, and overexpression of miR-141-3p was done to assess its effect on hPDLSCs in an inflammatory environment. The level of miR-141-3p and EZH2 in hPDLSCs from each treatment group was detected via qRT-PCR, and the inflammatory factors IL-6 and IL-8 in the supernatant of each group were detected by ELISA. ALP staining and alizarin red staining were used to assess the effect of miR-141-3p on the osteogenic differentiation ability of hPDLSCs, and also, western blot was used to detect expression of osteogenic differentiation-related proteins. Further, dual-luciferase reporter assay examined whether miR-141-3p targeted EZH2. Results PgLPS led to a significant decrease of miR-141-3p in hPDLSCs. Overexpression of miR-141-3p could enhance ALP activity and alizarin red staining intensity and increase Runx2, OPN and OCN protein expression levels in PgLPS-treated hPDLSCs. Additionally, miR-141-3p could reduce IL-6 and IL-8. miR-141-3p could target and negatively regulate EZH2, and overexpression of EZH2 reversed the promoting effect of miR-141-3p on osteogenic differentiation. Conclusion miR-141-3p can attenuate PgLPS-induced inhibition of osteogenic differentiation and inflammation in hPDLSCs by negatively regulating EZH2.
Collapse
|
19
|
Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
|
20
|
Tan L, Wang X, Chen D, Xu L, Xu Y, Hu D. microRNA-265 Regulates Bone Marrow Mesenchymal Stem Cells Differentiation and Promotes Sepsis Lung Injury Repair via Transforming Growth Factor Beta 1. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study investigates whether miR-265 regulates the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into alveolar type II epithelial cells (ATII) through TGF-β1 and promotes lung injury repair in rats with sepsis, thereby inhibiting sepsis progression.
25 patients with sepsis admitted to the Respiratory and Critical Care Medicine Department of the hospital and 17 normal controls were included. TGF-β1 level was measured by ELISA. miR-265 level was measured by qRT-PCR and AT II-related genes and proteins expression was analyzed
by western blot and qRT-PCR. miR-265 expression was significantly higher in sepsis patients than normal group. Progenitor BMSCs were long and shuttle-shaped after 1 and 3 days of growth. Cultured MSCs had low expression of the negative antigen CD34 (4.32%) and high expression of the positive
antigen CD44 (99.87%). TGF-β1 level was significantly increased with longer induction time, while miR-265 expression was significantly decreased in cell culture medium. miR-265 interference significantly decreased TGF-β1 expression. In conclusion, miR-265 inhibits BMSC
differentiation to AT II via regulation of TGF-β1, thereby inhibiting sepsis progression.
Collapse
Affiliation(s)
- Lian Tan
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| | - Xiongxiong Wang
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| | - Danqi Chen
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| | - Li Xu
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| | - Yudong Xu
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| | - Dongjun Hu
- Department of Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
21
|
Wang L, Wang X, Kong L, Li Y, Huang K, Wu J, Wang C, Sun H, Sun P, Gu J, Luo H, Liu K, Meng Q. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease. Phytother Res 2022; 36:899-913. [PMID: 35041255 DOI: 10.1002/ptr.7334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a metabolic disease, has received wide attention worldwide. However, there is no approved effective drug for NAFLD treatment. In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, Western blot, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to further elucidate the mechanism of isoliquiritigenin (ISL) against NAFLD. The results showed that ISL significantly reduced the liver-to-body weight ratios and biochemical index. And the staining results showed that ISL remarkedly ameliorated liver histopathological changes of NAFLD. Furthermore, ISL significantly increased the levels of PPARα, CPT1α, and ACADS, which were involved in lipid metabolism, and inhibited the ROS, TNF-α, IL-1β, and IL-6 expression by activating PGC-1α. Bioinformatics and luciferase assay analysis confirmed that miR-138-5p might bind to PGC-1α mRNA in NAFLD. Importantly, the expression of miR-138-5p was increased in the NAFLD, which was significantly decreased by ISL. In addition, the miR-138-5p inhibitor also promoted lipid metabolism and inhibited inflammatory response in NAFLD via PGC-1α activation. The above results demonstrate that ISL alleviates NAFLD through modulating miR-138-5p/PGC-1α-mediated lipid metabolism and inflammatory reaction in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yingying Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Pharmacology, Drug Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Sun Q, Liang R, Li M, Zhou H. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitro via reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis. J Pharm Pharmacol 2021; 74:861-868. [PMID: 34850057 DOI: 10.1093/jpp/rgab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs) have been demonstrated to play important roles in acute pancreatitis (AP). Herein, this study aimed to investigate the role and mechanism of circRNAs utrophin (circ_UTRN) in AP. METHODS In vitro cultured rat pancreatic acinar cell line AR42J was exposed to caerulein (10 nmol/L) to mimic an AP cell model. The levels of circ_UTRN and microRNA (miR)-320-3p and protein tyrosine kinase 2 (PTK2) were examined using quantitative real-time polymerase chain reaction and Western blot assays. Cell apoptosis was analysed by flow cytometry and Western blot assays. ELISA was employed to detect the levels of tumour necrosis factor-α (TNF-α), IL-1β and IL-6. The binding interaction between miR-320-3p and circ_UTRN or PTK2 was verified using dual-luciferase reporter assay. KEY FINDINGS The expression of circ_UTRN was decreased by caerulein in pancreatic acinar cells, ectopic overexpression of circ_UTRN reduced inflammation and promoted apoptosis in caerulein-mediated pancreatic acinar cells. In a mechanical study, circ_UTRN served as a sponge of miR-320-3p, and miR-320-3p directly targeted PTK2. Rescue assay suggested that the promotion of apoptosis and inhibition of inflammation induced by circ_UTRN re-expression in caerulein-mediated pancreatic acinar cells were partially abolished by miR-320-3p overexpression or PTK2 knockdown. Besides that, miR-320-3p inhibition impaired caerulein-induced cell apoptosis arrest and inflammation via targeting PTK2. CONCLUSIONS Up-regulation of circ_UTRN in pancreatic acinar cells attenuates caerulein-evoked cell apoptosis arrest and inflammation enhancement via miR-320-3p/PTK2, suggesting that circ_UTRN/miR-320-3p/PTK2 axis might be engaged in caerulein-induced AP.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Gastroenterology, Shangdong Province Third Hospital, Jinan City, Shandong Province, China
| | - Ran Liang
- Nancun Community Health Service Center of Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Mingdong Li
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| | - Hua Zhou
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
23
|
Wen X, He B, Tang X, Wang B, Chen Z. Emodin inhibits the progression of acute pancreatitis via regulation of lncRNA TUG1 and exosomal lncRNA TUG1. Mol Med Rep 2021; 24:785. [PMID: 34498715 PMCID: PMC8441981 DOI: 10.3892/mmr.2021.12425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most frequent gastrointestinal diseases and has no specific treatment. It has been shown that dysfunction of pancreatic acinar cells can lead to AP progression. Emodin is a natural product, which can alleviate the symptoms of AP. However, the mechanism by which emodin regulates the function of pancreatic acinar cells remains unclear. Thus, the present study aimed to investigate the mechanism by which emodin modulates the function of pancreatic acinar cells. To mimic AP in vitro, pancreatic acinar cells were cotreated with caerulein and lipopolysaccharide (LPS). Exosomes were isolated using the ExoQuick precipitation kit. Western blot analysis, Nanosight Tracking analysis and transmission electron microscopy were performed to detect the efficiency of exosome separation. Gene expression was detected by reverse transcription‑quantitative PCR. The levels of IL‑1β and TNF‑α were detected by ELISA. The data indicated that emodin significantly decreased the levels of IL‑1β and TNF‑α in the supernatant samples derived from AR42J cells cotreated with caerulein and LPS. In addition, emodin significantly promoted the proliferation of AR42J cells cotreated with caerulein and LPS, and inhibited apoptosis, while the effect of emodin was reversed by long non‑coding (lnc)RNA taurine upregulated 1 (TUG1) overexpression. The expression level of TUG1 in AR42J cells or exosomes derived from AR42J cells was significantly increased following treatment of the cells with LPS and caerulein, while this effect was notably reversed by emodin treatment. In addition, exosomes derived from caerulein and LPS cotreated AR42J cells inhibited the differentiation and anti‑inflammatory function of regulatory T cells, while treatment of the cells with emodin significantly decreased this effect. In conclusion, the data indicated that emodin inhibited the induction of inflammation in AR42J cells by regulating the expression of cellular and exosomal lncRNA. Therefore, emodin may be used as a potential agent for the treatment of AP.
Collapse
Affiliation(s)
- Xiumei Wen
- Department of Gastroenterology, Liangzhu Hospital, Hangzhou, Zhejiang 311113, P.R. China
| | - Beihui He
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xing Tang
- Department of Emergency, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Bin Wang
- Department of Emergency, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
24
|
Li Z, Xue H, Tan G, Xu Z. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep 2021; 24:788. [PMID: 34505632 PMCID: PMC8441966 DOI: 10.3892/mmr.2021.12428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Osteoporosis is a common metabolic bone disorder typically characterized by decreased bone mass and an increased risk of fracture. At present, the detailed molecular mechanism underlying the development of osteoporosis remains to be elucidated. Accumulating evidence shows that non-coding (nc)RNAs, such as microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play significant roles in osteoporosis through the post-transcriptional regulation of gene expression as regulatory factors. Previous studies have demonstrated that ncRNAs participate in maintaining bone homeostasis by regulating physiological and developmental processes in osteoblasts, osteoclasts and bone marrow stromal cells. In the present review, the latest research investigating the involvement of miRNAs, lncRNAs and circRNAs in regulating the differentiation, proliferation, apoptosis and autophagy of cells that maintain the bone microenvironment in osteoporosis is summarized. Deeper insight into the aspects of osteoporosis pathogenesis involving the deregulation of ncRNAs could facilitate the development of therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Haipeng Xue
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Guoqing Tan
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhanwang Xu
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
25
|
Zhu Q, Zou F, Lin J, Liu X, Luo Y. Effect of continuous renal replacement therapy adjuvant to broad-spectrum enzyme inhibitors on the efficacy and inflammatory cytokines in patients with severe acute pancreatitis. Am J Transl Res 2021; 13:8067-8075. [PMID: 34377289 PMCID: PMC8340199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the effect of continuous renal replacement therapy (CRRT) combined with ulinastatin, a broad-spectrum enzyme inhibitor, on the treatment effect and inflammatory mediator levels in patients with severe acute pancreatitis (SAP). METHODS A total of 80 patients with SAP admitted to our hospital were divided into two groups according to a random number table, with 40 cases in the control group and 40 cases in the experimental group. The control group was treated with the broad-spectrum enzyme inhibitor ulinastatin, and the experimental group was treated with continuous renal replacement therapy (CRRT) in addition to the control group's treatment method. The clinical efficacy was evaluated. Serum inflammation indicators, critical illness-related scores, pancreatic microcirculation and coagulation indicators were also detected before and after treatment. RESULTS After 14 days of continuous intervention, the total effective rate of the experimental group was 92.50%, and that of the control group was 75.00%, with statistical significance between the two groups (P<0.05). The expression of APN in the two groups' serum increased, and the other inflammatory indexes decreased. The experimental group's serum APN was higher than that of the control group, and the other inflammatory indexes were lower than those of the control group (all P<0.001). The two groups' critical illness-related scores were improved, and there was a difference between the two groups (P<0.05). The levels of BF and BV increased, while TTP levels decreased, and there was a difference between the experimental and control groups (all P<0.01). The coagulation indexes of the two groups of patients were all improved. Compared with the control group, the coagulation indexes of the experimental group were lower. There was a difference between the two groups (P<0.01). CONCLUSION CRRT adjuvant to broad-spectrum enzyme inhibitor ulinastatin can significantly improve the inflammatory response, microcirculation, hypercoagulability and clinical treatment efficacy in patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Qiuping Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Gannan Medical CollegeGanzhou, Jiangxi Province, China
| | - Fangqin Zou
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical CollegeGanzhou, Jiangxi Province, China
| | - Jie Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Gannan Medical CollegeGanzhou, Jiangxi Province, China
| | - Xin Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Gannan Medical CollegeGanzhou, Jiangxi Province, China
| | - Yulong Luo
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical CollegeGanzhou, Jiangxi Province, China
| |
Collapse
|
26
|
Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev 2021; 41:2474-2488. [PMID: 33840113 DOI: 10.1002/med.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a common gastrointestinal disease with no effective therapeutic options, particularly for cases of severe acute and chronic pancreatitis (CP). Mesenchymal stromal cells (MSCs) are multipotent cells with diverse biological properties, including directional migration, paracrine, immunosuppressive, and antiinflammatory effects, which are considered an ideal candidate cell type for repairing tissue damage caused by various pathogenies. Several researchers have reported significant therapeutic efficacy of MSCs in animal models of acute and CP. However, the specific underlying mechanisms are yet to be clarified and clinical application of MSCs as pancreatitis therapy has rarely been reported. This review mainly focuses on the potential and challenges in clinical application of MSCs for treatment of acute and CP, along with discussion of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|