1
|
Lee S, Yoon H, Hong SH, Kwon SP, Hong JJ, Kwak HW, Park HJ, Yoo S, Bae SH, Park HJ, Lee J, Bang YJ, Lee YS, Kim JY, Yoon S, Roh G, Cho Y, Kim Y, Kim D, Park SI, Kim DH, Lee S, Oh A, Ha D, Lee SY, Park M, Hwang EH, Bae G, Jeon E, Park SH, Choi WS, Oh HR, Kim IW, Youn H, Keum G, Bang EK, Rhee JH, Lee SE, Nam JH. mRNA-HPV vaccine encoding E6 and E7 improves therapeutic potential for HPV-mediated cancers via subcutaneous immunization. J Med Virol 2023; 95:e29309. [PMID: 38100632 DOI: 10.1002/jmv.29309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Seol Hee Hong
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung Pil Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Hye Won Kwak
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Hyeong-Jun Park
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Soyeon Yoo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Yongkwan Kim
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Daegeun Kim
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Sang-In Park
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Do-Hyung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Sowon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Ayoung Oh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Dahyeon Ha
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Misung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Gyuseo Bae
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Eunsu Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Sung Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Ho Rim Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - In Woo Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, South Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Eun-Kyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, South Korea
| | - Shee Eun Lee
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| |
Collapse
|
2
|
Meliante PG, Petrella C, Fiore M, Minni A, Barbato C. Head and Neck Squamous Cell Carcinoma Vaccine: Current Landscape and Perspectives. Curr Issues Mol Biol 2023; 45:9215-9233. [PMID: 37998754 PMCID: PMC10670496 DOI: 10.3390/cimb45110577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The treatment of unresectable or metastatic Head and Neck Squamous Cell Carcinoma (HNSCC) has traditionally relied on chemotherapy or radiotherapy, yielding suboptimal outcomes. The introduction of immunotherapy has significantly improved HNSCC treatment, even if the long-term results cannot be defined as satisfactory. Its mechanism of action aims to counteract the blockade of tumor immune escape. This result can also be obtained by stimulating the immune system with vaccines. This review scope is to comprehensively gather existing evidence and summarize ongoing clinical trials focused on therapeutic vaccines for HNSCC treatment. The current landscape reveals numerous promising drugs in the early stages of experimentation, along with a multitude of trials that have been suspended or abandoned for years. Nonetheless, there are encouraging results and ongoing experiments that instill hope for potential paradigm shifts in HNSCC therapy.
Collapse
Affiliation(s)
- Piero Giuseppe Meliante
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy 1, 02100 Rieti, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
3
|
Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma—A Review. Vaccines (Basel) 2023; 11:vaccines11030634. [PMID: 36992219 DOI: 10.3390/vaccines11030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Therapeutic vaccination is one of the most effective immunotherapeutic approaches, second only to immune checkpoint inhibitors (ICIs), which have already been approved for clinical use. Head and neck squamous cell carcinomas (HNSCCs) are heterogenous epithelial tumors of the upper aerodigestive tract, and a significant proportion of these tumors tend to exhibit unfavorable therapeutic responses to the existing treatment options. Comprehending the immunopathology of these tumors and choosing an appropriate immunotherapeutic maneuver seems to be a promising avenue for solving this problem. The current review provides a detailed overview of the strategies, targets, and candidates for therapeutic vaccination in HNSCC. The classical principle of inducing a potent, antigen-specific, cell-mediated cytotoxicity targeting a specific tumor antigen seems to be the most effective mechanism of therapeutic vaccination, particularly against the human papilloma virus positive subset of HNSCC. However, approaches such as countering the immunosuppressive tumor microenvironment of HNSCC and immune co-stimulatory mechanisms have also been explored recently, with encouraging results.
Collapse
|
4
|
Tseng SH, Cheng MA, Farmer E, Ferrall L, Kung YJ, Lam B, Lim L, Wu TC, Hung CF. Albumin and interferon-β fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity. J Immunother Cancer 2022; 10:e004342. [PMID: 35459734 PMCID: PMC9036441 DOI: 10.1136/jitc-2021-004342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type I interferons (IFN) promote dendritic cells maturation and subsequently enhance generation of antigen-specific CD8 +T cell for the control of tumor. Using type I interferons as an adjuvant to vaccination could prove to be a potent strategy. However, type I interferons have a short half-life. Albumin linked to a protein will prolong the half-life of the linked protein. METHODS In this study, we explored the fusion of albumin to IFNβ (Alb-IFNβ) for its functional activity both in vitro and in vivo. We determined the half-life of Alb-IFNβ following treatment in the serum, tumor, and tumor draining lymph nodes in both wild type and FcRn knockout mice. We characterized the ability of Alb-IFNβ to enhance antigen-specific CD8+ T cells using ovalbumin (OVA) or human papillomavirus (HPV) E7 long peptides. Next, we evaluated the therapeutic antitumor effect of coadministration of AlbIFNβ with antigenic peptides against HPVE7 expressing tumor and the treatment's ability to generate HPVE7 antigen specific CD8+ T cells. The contribution of the antitumor effect by lymphocytes was also examined by an antibody depletion experiment. The ability of Alb-IFNβ to serve as an adjuvant was tested using clinical grade therapeutic protein-based HPV vaccine, TACIN. RESULTS Alb-IFNβ retains biological function and does not alter the biological activity of IFNβ. In addition, Alb-IFNβ extends half-life of IFNβ in serum, lymph nodes and tumor. The coadministration of Alb-IFNβ with OVA or HPVE7 antigenic peptides enhances antigen-specific CD8 +T cell immunity, and in a TC-1 tumor model results in a significant therapeutic antitumor effect. We found that CD8 +T cells and dendritic cells, but not CD4 +T cells, are important for the observed antitumor therapeutic effect mediated by Alb-IFNβ. Finally, Alb-IFNβ served as a potent adjuvant for TA-CIN for the treatment of HPV antigen expressing tumors. CONCLUSIONS Overall, Alb-IFNβ serves as a potent adjuvant for enhancement of strong antigen-specific CD8 +T cell antitumor immunity, reduction of tumor burden, and increase in overall survival. Alb-IFNβ potentially can serve as an innovative adjuvant for the development of vaccines for the control of infectious disease and cancer.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Max A Cheng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Farmer
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Louise Ferrall
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yu Jui Kung
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Lam
- Stanford Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ling Lim
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - T-C Wu
- Pathology, Oncology, Obstetrics and Gynecology, Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Pathology, Johns Hopkins Univ, Baltimore, Maryland, USA
- Oncology, Johns Hopkins University, Baltimore, MD, USA
- Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 2021; 28:19. [PMID: 34903958 PMCID: PMC8653808 DOI: 10.1007/s10989-021-10334-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong 250000 China
| | - Zhanwei Chen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Yihua Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| |
Collapse
|
6
|
Che Y, Yang Y, Suo J, Chen C, Wang X. Intratumoral Injection of a Human Papillomavirus Therapeutic Vaccine-Induced Strong Anti-TC-1-Grafted Tumor Activity in Mice. Cancer Manag Res 2021; 13:7339-7354. [PMID: 34584459 PMCID: PMC8464315 DOI: 10.2147/cmar.s329471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose The route of administration of a therapeutic tumor vaccine is a critical factor in inducing antitumor activity. In this study, we explored the effects of three vaccination routes (subcutaneous, peritumoral, and intratumoral injection) on antitumor activity induced by a human papillomavirus (HPV) therapeutic vaccine containing HPV16 E7 peptide combined with the adjuvant CpG ODN in established TC-1 grafted tumors. Methods We used flow cytometry to evaluate splenic and tumor-infiltrating immune cells. We also assessed transcriptional changes in a sequence of immune-related genes in tumors of different treatment groups using quantitative real-time polymerase chain reaction. Immunohistochemistry was used to determine the expression of molecules related to tumor infiltrating immune cells, angiogenesis, and cancer-associated fibroblasts in tumor tissues. Results Our results suggested that intratumoral and peritumoral vaccination generated enhanced antitumor activity compared to subcutaneous delivery. In particular, intratumoral vaccination elicited a stronger antitumor effect, with two of the six treated mice being nearly tumor-free at day 28. Three vaccination routes induced increases in splenic CD4+ and/or CD8+ T lymphocytes, and marked decreases in immunosuppressive cells. Peritumoral vaccination increased the tumor-infiltrating CD8+T cells in tumors, while intratumoral vaccination enhanced the tumor-infiltrating CD4+ and CD8+ T lymphocytes, as well as decreased the tumor-infiltrating of immunosuppressive cells, which may result in stronger inhibition of tumor growth and prolonged survival in mice bearing tumors. Furthermore, compared to the subcutaneous route, intratumoral vaccination led to a significant increase in antitumor cytokines and chemokines. In addition, our data showed marked downregulation of MMP-2, MMP-9, VEGF, CD31, and α-SMA in the intratumoral vaccination group, which might contribute to the suppression of tumor invasion, angiogenesis, and metastasis. Conclusion Overall, intratumoral vaccination is superior to subcutaneous delivery and has the potential to inhibit tumor growth by improving the tumor microenvironment.
Collapse
Affiliation(s)
- Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Yang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jinguo Suo
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chang Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
8
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Wang S, Huang W, Li K, Yao Y, Yang X, Bai H, Sun W, Liu C, Ma Y. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor. Int J Nanomedicine 2017; 12:6813-6825. [PMID: 28979120 PMCID: PMC5602458 DOI: 10.2147/ijn.s143264] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Currently, therapeutic tumor vaccines under development generally lack significant effects in human clinical trials. Exploring a powerful antigen delivery system is a potential approach to improve vaccine efficacy. We sought to explore engineered bacterial outer membrane vesicles (OMVs) as a new vaccine carrier for efficiently delivering tumor antigens and provoking robust antitumor immune responses. MATERIALS AND METHODS First, the tumoral antigen human papillomavirus type 16 early protein E7 (HPV16E7) was presented on Escherichia coli-derived OMVs by genetic engineering methods, acquiring the recombinant OMV vaccine. Second, the ability of recombinant OMVs delivering their components and the model antigen green fluorescent protein to antigen-presenting cells was investigated in the macrophage Raw264.7 cells and in bone marrow-derived dendritic cells in vitro. Third, it was evaluated in TC-1 graft tumor model in mice that the recombinant OMVs displaying HPV16E7 stimulated specific cellular immune response and intervened the growth of established tumor. RESULTS E. coli DH5α-derived OMVs could be taken up rapidly by dendritic cells, for which vesicle structure has been proven to be important. OMVs significantly stimulated the expression of dendritic cellmaturation markers CD80, CD86, CD83 and CD40. The HPV16E7 was successfully embedded in engineered OMVs through gene recombinant techniques. Subcutaneous immunization with the engineered OMVs induced E7 antigen-specific cellular immune responses, as shown by the increased numbers of interferon-gamma-expressing splenocytes by enzyme-linked immunospot assay and interferon-gamma-expressing CD4+ and CD8+ cells by flow cytometry analyses. Furthermore, the growth of grafted TC-1 tumors in mice was significantly suppressed by therapeutic vaccination. The recombinant E7 proteins presented by OMVs were more potent than those mixed with wild-type OMVs or administered alone for inducing specific cellular immunity and suppressing tumor growth. CONCLUSION The results indicated that the nano-grade OMVs might be a useful vaccine platform for antigen delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Shijie Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Kui Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Yufeng Yao
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases.,Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China
| |
Collapse
|
10
|
Jia YY, Tan WJ, Duan FF, Pan ZM, Chen X, Yin YL, Jiao XA. A Genetically Modified attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor Cells in Direct and Antigen-Specific Manner. Front Cell Infect Microbiol 2017; 7:279. [PMID: 28706878 PMCID: PMC5489629 DOI: 10.3389/fcimb.2017.00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023] Open
Abstract
Attenuated Listeria monocytogenes (L. monocytogenes, LM) induces specific CD8+ and CD4+ T cell responses, and has been identified as a promising cancer vaccine vector. Cervical cancer is the third most common cancer in women worldwide, with human papillomavirus (HPV), particularly type 16, being the main etiological factor. The therapeutic HPV vaccines are urgently needed. The E7 protein of HPV is necessary for maintaining malignancy in tumor cells. Here, a genetically modified attenuated LM expressing HPV16 E7 protein was constructed. Intraperitoneal vaccination of LM4Δhly::E7 significantly reduced tumor size and even resulted in complete regression of established tumors in a murine model of cervical cancer. We provided evidence that recombinant LM strains could enter the tumor tissue and induce non-specific tumor cell death, probably via activation of reactive oxygen species and increased intracellular Ca2+ levels. LM4Δhly::E7 effectively triggered a strong antigen-specific cellular immunity in tumor-bearing mice, and elicited significant infiltration of T cells in the intratumoral milieu. In summary, these data showed LM4Δhly::E7 to be effective in a cervical cancer model and LM4Δhly::E7 induced an antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cells, indicating a potential application against cervical cancer.
Collapse
Affiliation(s)
- Yan Yan Jia
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Wei Jun Tan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Fei Fei Duan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Zhi Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Yue Lan Yin
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xin An Jiao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| |
Collapse
|
11
|
Moeini S, Saeidi M, Fotouhi F, Mondanizadeh M, Shirian S, Mohebi A, Gorji A, Ghaemi A. Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol 2016; 162:333-346. [PMID: 27699512 DOI: 10.1007/s00705-016-3091-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
The use of DNA vaccines has become an attractive approach for generating antigen-specific cytotoxic CD8+ T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be improved by using an adjuvant injected together with checkpoint antibodies. In the current study, we evaluated whether the therapeutic effects of a DNA vaccine encoding human papilloma virus type 16 (HPV-16) E7 can be enhanced by combined application of an immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway and secondary lymphoid tissue chemokine (SLC) also known as CCL21 adjuvant, in a mouse cervical cancer model. The therapeutic effects of the DNA vaccine in combination with CCL21 adjuvant plus PD-1 blockade was evaluated using a tumor growth curve. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using non-radioactive cytotoxicity and MTT assays, respectively. Vascular endothelial growth factor (VEGF) and IL-10 expression in the tumor and the levels of IFN-γ and IL-4 in supernatants of spleno-lymphocyte cultures were measured using ELISA. The immune efficacy was evaluated by in vivo tumor regression assay. The results showed that vaccination with a DNA vaccine in combination with the CCL21 adjuvant plus PD-1 blockade greatly enhanced cytotoxic T lymphocyte production and lymphocyte proliferation rates and greatly inhibited tumor progression. Moreover, the vaccine in combination with adjuvant and blockade significantly reduced intratumoral VEGF, IL-10 and splenic IL-4 but induced the expression of splenic IFN-γ. This formulation could be an effective candidate for a vaccine against cervical cancers and merits further investigation.
Collapse
Affiliation(s)
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fotouhi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Mahdieh Mondanizadeh
- Biotechnology and molecular medicine, Arak University of medical sciences, Arak, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Alireza Mohebi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.,Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Gorji
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse Münster, Germany.,Shefa Neuroscience Research Center, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|