1
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
2
|
Lin H, Nie L, Lu G, Wu H, Xu T. Long non-coding RNA KCNQ10T1/miR-19a-3p/SMAD5 axis promotes osteogenic differentiation of mouse bone mesenchymal stem cells. J Orthop Surg Res 2023; 18:929. [PMID: 38057885 PMCID: PMC10698940 DOI: 10.1186/s13018-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Bone fracture is a common orthopedic disease that needs over 3 months to recover. Promoting the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is beneficial for fracture healing. Therefore, this research aimed to study the roles of long non-coding RNA (lncRNA) KCNQ10T1 in osteogenic differentiation of BMSCs. METHODS BMSCs were treated with osteogenic medium and assessed by CCK-8 and flow cytometry assays. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), as well as concentration of osteoblast markers were measured to evaluate osteogenic differentiation of BMSCs. Western blot was employed to detect proteins; while, qRT-PCR was for mRNA levels. Additionally, targeted relationships between KCNQ10T1 and miR-19a-3p, as well as miR-19a-3p and SMAD5 were verified by dual luciferase reporter gene assay along with RNA pull-down method. RESULTS Upregulation of KCNQ10T1 promoted the ALP staining and ARS intensity, increased the cell viability and decreased the apoptosis rate of BMSCs. Besides, KCNQ10T1 overexpression increased the ALP, OPG, OCN and OPN protein levels. KCNQ10T1 sponges miR-19a-3p, which targets Smad5. Upregulated miR-19a-3p reversed the overexpressed KCNQ10T1-induced effects, and depletion of SMAD5 reversed the miR-19a-3p inhibitor-induced effects on osteogenic medium-treated BMSCs. CONCLUSIONS Upregulation of KCNQ10T1 promoted osteogenic differentiation of BMSCs through miR-19a-3p/SMAD5 axis in bone fracture.
Collapse
Affiliation(s)
- He Lin
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China.
| | - Lanjun Nie
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Guiqing Lu
- Dermatological Department, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haixia Wu
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Tao Xu
- Department of Neurosurgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Qiu W, Li Z, Su Z, Cao L, Li L, Chen X, Zhang W, Li Y. Kaempferol prevents aseptic loosening via enhance the Wnt/β-catenin signaling pathway in vitro and in vivo. Eur J Med Res 2023; 28:505. [PMID: 37946300 PMCID: PMC10634165 DOI: 10.1186/s40001-023-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Kaempferol has demonstrated notable positive effects on the osteogenic differentiation of mesenchymal stem cells (MSC) and osteoblasts. A substantial body of research has emphasized the role of dislodged titanium particles in aseptic loosening following joint replacement surgery. This study predominantly investigates the suppressive influence of Kaempferol on osteolysis induced by titanium (Ti) alloy particles. In vitro investigations disclosed that Kaempferol effectively enhanced mineralization and alkaline phosphatase (ALP) activity in bone-marrow mesenchymal stem cells exposed to Ti particles. In addition, we conducted a comprehensive analysis of osteogenic differentiation microarray data_sets (GSE37676, GSE79814, and GSE114474) to identify differentially expressed genes. Significantly, Kaempferol upregulated the expression of critical osteogenic markers, including Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix/Sp-7, and β-catenin. In vivo experiments, including H&E staining and Immunohistochemistry, provided compelling evidence that Kaempferol exerted a robust inhibitory effect on periprosthetic osteolysis in mice, with particularly pronounced results at higher doses. Moreover, it elevated the expression levels of osteogenic factors and Wnt/β-catenin signaling components. These findings collectively indicate that Kaempferol mitigates the hindrance to osteogenesis posed by titanium particles by activating the Runx2 and Wnt/β-catenin signaling pathways. This research lays a solid foundation for the prospective utilization of Kaempferol in the management of aseptic loosening following arthroplasty, offering promising therapeutic potential.
Collapse
Affiliation(s)
- Wenkui Qiu
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhenyan Su
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lichao Cao
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lei Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Xi Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Wanhong Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Yanqing Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China.
- School of Life Sciences, Henan University, Kaifeng, 475000, Henan, People's Republic of China.
| |
Collapse
|
4
|
Zhang S, Cui Y, Gao X, Wei C, Wang Q, Yang B, Sun W, Luo Y, Jiang Q, Huang Y. Resveratrol inhibits the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism lncRNAs. J Nutr Biochem 2023; 117:109351. [PMID: 37087074 DOI: 10.1016/j.jnutbio.2023.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Resveratrol (RES) is one of the best-known bioactive polyphenols that has received much attention in recent years because of its importance to anti-obesity. However, the exact mechanism underlying this effect and whether it can improve lipid metabolism by regulating the long-chain non-coding RNA (lncRNA) remains unclear. In this study, twenty-four healthy crossbred castrated boars were fed a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. We founded that 400mg/kg and 600mg/kg RES-supplemented diet did not affect growth rate, but reduced significantly subcutaneous adipose thickness, carcass fat rate, greater dramatically the serum concentration of adiponectin and high-density lipoprotein in pigs. Further, we verified that RES could inhibit the formation and accumulation of lipid droplets by AdipoQ-AdipoR1-AMPKα and AdipoQ-AdipoR2-PPARα signal pathway in vivo and vitro (3T3-L1 preadipocytes). Transcriptome analyses founded that 5 differently expressed (DE) lncRNAs and 77 mRNAs in subcutaneous adipose between control group and 400 mg/kg RES group, which mainly involved in "adipocytokine signaling pathway", "Wnt signaling pathway", "PI3K-Akt signaling pathway" and "MAPK signaling pathway". In conclusion, RES can inhibit the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism-related lncRNAs. Our results provide a new insight on the molecular mechanism of RES as a nutritional agents to the prevention and treatment for obesity.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yueyue Cui
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Wenyue Sun
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yunyan Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| |
Collapse
|
5
|
Gong G, Wan W, Liu X, Yin J. Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. Int Immunopharmacol 2023; 117:109991. [PMID: 37012875 DOI: 10.1016/j.intimp.2023.109991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Apelin/APJ is widely distributed in various tissues in the body and participates in the regulation of physiological and pathological mechanisms such as autophagy, apoptosis, inflammation, and oxidative stress. Apelin-13 is an adipokine family member with multiple biological roles and has been shown to be involved in the development and progression of bone diseases. In the process of osteoporosis and fracture healing, Apelin-13 plays an osteoprotective role by regulating the autophagy and apoptosis of BMSCs, and promotes the osteogenic differentiation of BMSCs. In addition, Apelin-13 also attenuates the progression of arthritis by regulating the inflammatory response of macrophages. In conclusion, Apelin-13 has an important connection with bone protection, which provides a new strategy for the clinical treatment of bone-related diseases.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
6
|
Wang Z, Zhang H, Li Q, Zhang L, Chen L, Wang H, Chen Y. Long non-coding RNA KCNQ1OT1 alleviates postmenopausal osteoporosis by modulating miR-421-3p/mTOR axis. Sci Rep 2023; 13:2333. [PMID: 36759677 PMCID: PMC9911397 DOI: 10.1038/s41598-023-29546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The prevention and treatment of postmenopausal osteoporosis (PMOP) is a significant public health issue, and non-coding RNAs are of vital importance in this process. In this study, we find that the long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (lncRNA KCNQ1OT1) can alleviate the ovariectomy-induced (OVX) PMOP in vivo. We determined that over-expression of KCNQ1OT1 could enhance functions of MC3T3-E1 cells, whereas an opposite trend was observed when KCNQ1OT1 was knocked down. Subsequently, miR-421-3p targeting KCNQ1OT1 was detected through a database search, and RNA fluorescent in situ hybridization, RNA immunoprecipitation, dual luciferase reporter assays all verified this relationship. Notably, KCNQ1OT1 stifled the miR-421-3p expression. The inhibition of proliferation, migration, and osteogenic differentiation caused by KCNQ1OT1 knock-down were reversed by an miR-421-3p inhibitor, further confirming the above findings. We verified that miR-421-3p specifically targeted the mammalian target of rapamycin (mTOR), and miR-421-3p inhibitor could reverse the negative effects of small interfering RNA of mTOR (si-mTOR) on MC3T3-E1 cells. Finally, osteoblasts isolated and cultured from OVX mice model and control mice also confirmed the observed trend. In combination, results mentioned above reveal that KCNQ1OT1 regulates MC3T3-E1 cell functions by regulating the miR-421-3p/mTOR axis.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lu Chen
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China. .,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
7
|
Sun T, Wang F, Hu G, Li Z. Salvianolic acid B activates chondrocytes autophagy and reduces chondrocyte apoptosis in obese mice via the KCNQ1OT1/miR-128-3p/SIRT1 signaling pathways. Nutr Metab (Lond) 2022; 19:53. [PMID: 35922815 PMCID: PMC9351265 DOI: 10.1186/s12986-022-00686-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Salvianolic acid B (Sal B) possesses strong anti-inflammatory and antioxidant activity. This study aims to explore the underlying mechanism of Sal B to improve the obesity-related osteoarthritis (OA). Methods C57BL/6 J male mice were fed with a normal control diet (NCD), a high fat diet (HFD), or HFD with Sal B (25 mg/kg), and mouse body weights and osteoarticular inflammatory factor levels were examined. Mouse chondrogenic cell line ATDC5 were transfected with lncRNA KCNQ1 overlapping transcript 1 small hairpin RNA (KCNQ1OT1 shRNA), miR-128-3p mimic or Sirtuin-1 small interfering RNA (SIRT1 siRNA), then stimulated with Palmitic acid (PA) followed by the treatment of Sal B. Then, inflammatory response, apoptosis, and autophagy of ATDC5 cells in different groups were detected. Results Sal B reduced the body weight, decreased the levels of inflammatory markers, and improved cartilage damage in OA mice fed with HFD. KCNQ1OT1 was downregulated in OA mice fed with HFD, and PA-stimulated ATDC5 cells. Sal B protected ATDC5 cells against PA-mediated inflammation, apoptosis, and the inhibition of autophagy, while knockdown of KCNQ1OT1 reversed these results. KCNQ1OT1 was found to be functioned as a ceRNA to bind and downregulate the expression of miR-128-3p that was upregulated in PA-induced cells. Furthermore, SIRT1 was verified as a target of miR-128-3p. MiR-128-3p overexpression reversed the effects of Sal B on inflammatory response, apoptosis, and autophagy in PA-stimulated cells, and knockdown of SIRT1 displayed the similar results. Conclusion Sal B exerted a chondroprotective effect by upregulating KCNQ1OT1, which indicates Sal B can used for a therapeutic agent in obesity-related OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00686-0.
Collapse
Affiliation(s)
- Tianwen Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Gaojian Hu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China
| | - Zhizhou Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 of Xiantai Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
8
|
Zhang H, Chen L, Wang Z, Sun Z, Shan Y, Li Q, Qi L, Wang H, Chen Y. Long noncoding RNA KCNQ1OT1 inhibits osteoclast differentiation by regulating the miR-128-3p/NFAT5 axis. Aging (Albany NY) 2022; 14:4486-4499. [PMID: 35587369 PMCID: PMC9186780 DOI: 10.18632/aging.204088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs play an important role in regulating osteoclast differentiation. We investigated whether and how potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA, regulates osteoclast differentiation. We found that the expression of KCNQ1OT1 was downregulated in osteoporotic bone tissue. Then transfection of KCNQ1OT1 overexpression vectors or small interfering RNAs showed that the proliferation, migration, and osteoclast differentiation of RAW 264.7 cells were inhibited by KCNQ1OT1 upregulation, while they were promoted by KCNQ1OT1 knockdown. Interestingly, we found and confirmed that miR-128-3p was a target of KCNQ1OT1 using online databases, dual luciferase reporter assays and quantitative real-time polymerase chain reaction, and that it inhibited the expression of miR-128-3p. Moreover, we confirmed that miR-128-3p directly targeted nuclear factor of activated T cell 5 (NFAT5), a protein that combines with osteoprotegerin and thus regulates osteoclastogenesis with the presence of the receptor activator of nuclear factor κB ligand. Furthermore, we demonstrated that both the knockdown of KCNQ1OT1 and the overexpression of miR-128-3p attenuate the expression of NFAT5, while upregulating the osteoclastogenesis markers c-Fos, NFATc1, and Ctsk. The results from overexpression of KCNQ1OT1 and the inhibition of miR-128-3p were contrary to the above. Finally, we found that the inhibition of osteoclast differentiation by KCNQ1OT1 overexpression could be rescued using a miR-128-3p mimic, while the enhancement of migration and osteoclast differentiation by si-NFAT5 could be reversed with a miR-128-3p inhibitor. These results suggested that KCNQ1OT1 regulates the osteoclast differentiation via the miR-128-3p/NFAT5 axis.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lu Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yu Shan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Linzeng Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
9
|
Gao X, Ge J, Zhou W, Xu L, Geng D. IL-10 inhibits osteoclast differentiation and osteolysis through MEG3/IRF8 pathway. Cell Signal 2022; 95:110353. [PMID: 35525407 DOI: 10.1016/j.cellsig.2022.110353] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Osteolysis caused by wear particles is the main reason for joint replacement failure. Inhibition of osteoclast differentiation relieves wear particle-induced osteolysis. Our study aimed to explore the effect of lncRNA maternally expressed gene 3 (MEG3) on osteoclast differentiation and wear particle-induced osteolysis, and to improve the potential mechanism of interleukin-10 (IL-10) inhibition on osteoclast differentiation. METHODS Polymethylmethacrylate (PMMA) -induced osteolysis mice model and receptor activator of nuclear factor-B ligand (RANKL) -induced osteoclast differentiation model were constructed. Tartrate-resistant acidic phosphatase (TRAP) staining, hematoxylin-eosin (HE) staining, immunohistochemical staining, bone resorption assay, dual-luciferase assay, RNA pull-down assay, RNA immunoprecipitation, and chromatin immunoprecipitation were executed. RESULTS MEG3 levels were increased and interferon regulatory factor 8 (IRF8) levels were decreased in PMMA-induced osteolysis mice. IL-10 inhibited RANKL-induced osteoclast differentiation, promoted MEG3 methylation, and inhibited MEG3 expression. Moreover, knockdown of MEG3 inhibited osteoclast differentiation and increased IRF8 levels. Meanwhile, MEG3 combined with signal transducer and activator of transcription 1 (STAT1), STAT1 combined with IRF8, and overexpression of MEG3 inhibited STAT1 binding to IRF8. Further studies have shown that knockdown of MEG3 inhibited osteoclast differentiation and alleviated osteolysis, but knockdown of IRF8 weakened these results. CONCLUSION MEG3 regulated the expression of IRF8 by binding to STAT1, thereby affecting osteoclast differentiation and wear particle-induced osteolysis. IL-10 might inhibit osteoclast differentiation by MEG3/IRF8.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Jian Ge
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Wangchen Zhou
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lei Xu
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Deqin Geng
- Department of Clinical Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
10
|
lncRNA KCNQ1OT1 Promotes EMT, Angiogenesis, and Stemness of Pituitary Adenoma by Upregulation of RAB11A. JOURNAL OF ONCOLOGY 2022; 2022:4474476. [PMID: 35432529 PMCID: PMC9010184 DOI: 10.1155/2022/4474476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
This study is aimed at investigating the effect and mechanism of long noncoding RNA (lncRNA) KCNQ1OT1 on pituitary adenoma (PA). The KCNQ1OT1 expression in invasive and noninvasive PA tissues was detected by real-time fluorescence quantitative polymerase chain reaction (qPCR). The effects of KCNQ1OT1 on the proliferation of PA cells, namely, GH3 and HP75, were detected by CCK-8 experiment. The Transwell assay detected the effect of KCNQ1OT1 on the invasion of GH3 and HP75 cells. The effect of KCNQ1OT1 on the clonal formation ability was detected by clonal formation experiment. The double luciferase reporter assay and the miRNA pull down assay verified the binding of KCNQ1OT1 to miR-140-5p. Meanwhile, the regulatory effect of miR-140-5p on RAB11A was verified. qPCR results showed that KCNQ1OT1 was significantly increased in invasive PA compared with noninvasive PA tissues. Knockdown KCNQ1OT1 inhibited PA cell stemness, angiogenesis, and EMT. In addition, knockdown KCNQ1OT1 inhibited the proliferation, invasion, and clonal formation of PA. miR-140-5p is the target gene of KCNQ1OT1. miR-140-5p targets RAB11A directly. RAB11A can mediate the biological effects of KCNQ1OT1. Meanwhile, lncRNA KCNQ1OT1 can promote the EMT and cellular stemness of PA. Its mechanism of action is realized by inhibiting miR-140-5p. This result can provide a molecular basis for the further study of PA.
Collapse
|
11
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
12
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
13
|
Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered 2022; 13:5855-5867. [PMID: 35226820 PMCID: PMC8973675 DOI: 10.1080/21655979.2022.2037898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteomyelitis (OM) is an orthopedic disease caused by bone infections in the bone cortex, bone marrow, periosteum, and surrounding soft tissues. Recent studies have implicated non-coding RNAs (ncRNAs) in the development of OM. However, little is known about the role of ncRNAs in the osteogenic differentiation during bone infection. In the present study, we investigated the role of KCNQ1OT1/miR-29b-3p axis in osteogenic differentiation in staphylococcus aureus (SpA)-infected human bone mesenchymal stem cells (hBMSCs). We first examined the expression of lncRNA KCNQ1OT1 and miR-29b-3p in the serum samples of OM patients and healthy controls. We also infected hBMSCs with different concentrations of SpA and studied the osteogenic differentiation after infection. Our results revealed that KCNQ1OT1 was downregulated while miR-29b-3p was upregulated in the serum samples of OM patients, as well as in SpA-infected hBMSCs. Overexpression of KCNQ1OT1 ameliorated the damage in hBMSCs caused by SpA infection. KCNQ1OT1 could support hBMSCs osteogenic differentiation by enhancing ALP activity, alizarin red S accumulation, expressions of osteogenic markers, and attenuating inflammatory responses after SpA infection. We further showed that miR-29b-3p was a downstream target of KCNQ1OT1, mediating the osteogenic differentiation of hBMSCs during SpA infection. Our data suggest that KCNQ1OT1 could ameliorate the SpA-induced suppression of osteogenic differentiation in hBMSCs by sponging miR-29b-3p. Modulating KCNQ1OT1 expression may serve as a strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Ran Ding
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Shijun Wei
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Ming Huang
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| |
Collapse
|
14
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
15
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
16
|
Wang F, Zhang F, Zheng F. lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR‑98‑5p/Tbx5 axis in MC3T3‑E1 cells. Exp Ther Med 2022; 23:194. [PMID: 35126697 PMCID: PMC8794546 DOI: 10.3892/etm.2022.11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding (lnc)RNA KCNQ1 opposite strand/antisense transcript 1 (Kcnq1ot1) has been shown to regulate multiple biological processes. However, the functional role of Kcnq1ot1 in osteoporosis and the underlying mechanism are still unclear. The present study aimed to investigate the function of lncRNA Kcnq1ot1 in osteogenic differentiation. Alkaline phosphatase (ALP) activity was measured using an ALP assay kit. Western blotting was performed to assess the expression levels of osteogenic differentiation-associated proteins. Reverse transcription-quantitative PCR was performed to detect Kcnq1ot1, microRNA (miR)-98-5p and T-box transcription factor 5 (Tbx5) expression levels. The binding of Kcnq1ot1 with miR-98-5p and that of miR-98-5p with Tbx5 were predicted by starBase and TargetScan databases, respectively, and verified using dual luciferase reporter assays. The mineralization of MC3T3-E1 cells was observed using an Alizarin red S staining assay. The results revealed that expression of Kcnq1ot1 was increased and that of miR-98-5p was decreased during osteogenic differentiation. Additionally, Kcnq1ot1 was shown to target miR-98-5p and inhibit its expression. Inhibiting miR-98-5p reversed the inhibitory effect of Kcnq1ot1 knockdown on osteogenic differentiation and mineralization of MC3T3-E1 cells. Furthermore, Kcnq1ot1 regulated Tbx5 expression via miR-98-5p. Overexpressing miR-98-5p or downregulating Tbx5 expression reversed the promotive effect of Kcnq1ot1 overexpression on osteogenic differentiation and mineralization of MC3T3-E1 cells. In conclusion, these findings suggested that Kcnq1ot1 may promote bone formation by inhibiting miR-98-5p and upregulating Tbx5. Kcnq1ot1, miR-98-5p and Tbx5 may therefore serve as promising targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Furong Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Chengdong, Xining, Qinghai 810007, P.R. China
| | - Fucai Zhang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Chengdong, Xining, Qinghai 810007, P.R. China
| | - Feng Zheng
- Department of Orthopedics, Qinghai Provincial People's Hospital, Chengdong, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
17
|
Tang W, Liu Q, Tan W, Sun T, Deng Y. LncRNA expression profile analysis of Mg 2+-induced osteogenesis by RNA-seq and bioinformatics. Genes Genomics 2021; 43:1247-1257. [PMID: 34427873 DOI: 10.1007/s13258-021-01140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND In recent years, magnesium (Mg) has been extensively studied for manufacturing biodegradable orthopedic devices. Besides other advantages, researches have shown that magnesium-based implants can stimulate osteogenesis thus accelerating orthopedic trauma recovery, but its molecular mechanism is not fully understood. Meanwhile, long non-coding RNA (lncRNA) has been found to play vital role in regulating osteogenic differentiation. OBJECTIVE To explore the role of lncRNA in Mg2+ (magnesium ions)-induced osteogenesis. METHODS The effect of Mg2+ on mBMSCs proliferation was detected by the CCK-8 assay. The optimum concentration of Mg2+ (7.5 mM) in promoting mBMSCs osteogenesis was determined by ALP staining and Alizarin red staining, western blot and RT-qPCR were performed to detect osteogenic markers expressions. The lncRNAs and mRNAs expression profiles of mBMSCs were assessed by RNA-Seq and processed by bioinformatics analysis. The selected lncRNAs expression level was validated by RT-qPCR. RESULTS The effect of Mg2+ in promoting osteogenesis was confirmed and the optimum concentration was determined as 7.5 mM. The lncRNAs and mRNAs differentially expressed between 7.5 mM Mg2+-treated group and control group was detected and functional analysis revealed that their function were associated with osteogenesis. The ceRNA networks were constructed for H19 and Dubr that aberrantly expressed in two groups. The ceRNA networks of selected lncRNAs (H19 and Dubr) were constructed. CONCLUSIONS This study identified H19 and Dubr as osteogenic associated lncRNAs involved in Mg2+-induced osteogenesis, and they might play their roles through lncRNA-miRNA-mRNA axis.
Collapse
Affiliation(s)
- Wen Tang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qing Liu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Tianshi Sun
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Liu J, Wang Y. Long non-coding RNA KCNQ1OT1 facilitates the progression of cervical cancer and tumor growth through modulating miR-296-5p/HYOU1 axis. Bioengineered 2021; 12:8753-8767. [PMID: 34704918 PMCID: PMC8806506 DOI: 10.1080/21655979.2021.1982230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Literature reports that lncRNA KCNQ1OT1 is markedly up-regulated in cervical cancer (CC) tissues and cell lines, and KCNQ1OT1 can promote the proliferation and metastasis of CC cells. This current work was designed to investigate the molecular mechanism underlying the participation of KCNQ1OT1 in CC progression. Herein, RT-qPCR was utilized for determining the levels of KCNQ1OT1, miR-296-5p and HYOU1 in clinical tumor tissue specimens and CC cell lines. Then, starBase predicted the complementary binding sites of KCNQ1OT1 and miR-296-5p or miR-296-5p and HYOU1. Dual-luciferase reporter assay/RIP assay validated the interplays among KCNQ1OT1/miR-296-5p/HYOU1. In addition, CCK-8, wound healing and transwell assays were employed to assess the proliferative, migrative and invasive properties of CC cells. Moreover, nude mice xenograft model was established by subcutaneously injection with SiHa cells in order to validate the precise functions of KCNQ1OT1/miR-296-5p/HYOU1 axis in CC in vivo. Besides, Immunohistochemical staining examined Ki-67 expression in xenograft tumors and western blotting analysis detected expressions of MMP2/9 and Wnt/β-catenin signaling pathway in CC cells and xenograft tumors. Elevated KCNQ1OT1 and HYOU1 as well as reduced miR-296-5p were observed in clinical tumor tissue specimens and CC cell lines. Results revealed that upregulation of miR-296-5p counteracted the enhancing effects of overexpressed KCNQ1OT1 on the proliferative, migrative and invasive abilities of CC cells. Additionally, HYOU1 overexpression abolished the suppressing effects of silenced KCNQ1OT1 on the malignant behaviors of CC cells and tumor growth. To conclude, KCNQ1OT1 could aggravate the malignant behaviors of CC and facilitate tumor growth through modulating miR-296-5p/HYOU1 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Obstetrics and Gynecology,Hohhot First Hospital, Hohhot, Inner Mongolia, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Pang M, Wei HX, Chen X. Long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 regulates the proliferation and osteogenic differentiation of human periodontal ligament stem cells by targeting miR-24-3p. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:547-554. [PMID: 34636202 DOI: 10.7518/hxkq.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study aims to explore the effect and molecular mechanism of long non-coding RNA (lncRNA) potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) on proliferation and osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS The hPDLSCs of normal periodontal tissues were isolated and cultured. The mineralized solution induced the osteoblast differentiation of hPDLSCs. The down-regulation of lncRNA KCNQ1OT1, the overexpression of anti-miR-24-3p on the proliferation and the levels of osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) of hPDLSCs were investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA KCNQ1OT1, miR-24-3p, OCN, OPN, and ALP. Methyl thiazolyl tetrazolium (MTT) method was used to detect cell viability and activity. Cell proliferation was evaluated by MTT. Western blot was used to detect protein expression. The targeted relationship between lncRNA KCNQ1OT1 and miR-24-3p was detected by double-luciferase experiment. RESULTS The expression level of lncRNA KCNQ1OT1 increased, and that of miR-24-3p decreased during the osteogenesis of hPDLSCs (P<0.05). The down-regulation of lncRNA KCNQ1OT1 inhibited cell proliferation and reduced the mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). LncRNA KCNQ1OT1 targeted and regulated miR-24-3p. The overexpression of miR-24-3p inhibited cell proliferation and reduced the mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). Inhibition of miR-24-3p reversed the effect of the down-regulation of lncRNA KCNQ1OT1 on cell proliferation and mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). CONCLUSIONS Down-regulation of lncRNA KCNQ1OT1 inhibited the proliferation and osteogenic differentiation of hPDLSCs by targeting the up-regulated expression of miR-24-3p.
Collapse
Affiliation(s)
- Ming Pang
- Dept. of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Hong-Xia Wei
- Dept. of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Xi Chen
- Dept. of Stomatology, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China
| |
Collapse
|
20
|
Chen X, Sun S, Geng T, Fan X, Zhang S, Zhao S, Geng Y, Jin Q. Resveratrol reduces the progression of titanium particle-induced osteolysis via the Wnt/β-catenin signaling pathway in vivo and in vitro. Exp Ther Med 2021; 22:1119. [PMID: 34504573 PMCID: PMC8383761 DOI: 10.3892/etm.2021.10553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
As an activator of sirtuin 1, resveratrol has become an extensively reviewed anti-inflammatory and anti-aging drug in recent years, and it has been widely studied for the treatment of energy control and endocrine diseases. The present study attempted to characterize the role of resveratrol in osteolysis induced by titanium (Ti) alloy particles and Ti pins in vitro and in vivo. In vitro, bone marrow mesenchymal stem cells were cultured with Ti alloy particles to simulate osteolysis. Cell viability and the expression levels of proteins associated with osteogenesis and the Wnt/β-catenin signaling pathway, including Runt-related transcription factor 2 (Runx2), alkaline phosphatase, osteocalcin, β-catenin, lymphoid enhancer-binding factor 1 and transcription factor 4, were increased following treatment with resveratrol after 21 days of osteogenic differentiation. In vivo, a Ti pin model in C57BL/6J mice was used to study the anti-osteolysis effect of resveratrol on the peri-prosthetic bone. The pulling force of the Ti alloy pin was increased in a dose-dependent manner in the resveratrol groups compared with the control group. Furthermore, the results of micro-CT scanning revealed that the bone volume and the bone surface/volume ratio in the periprosthetic tissue were increased in the resveratrol-treated groups, particularly in the high-dose resveratrol group. In addition, immunohistochemistry demonstrated that Runx2 expression was upregulated in the high-dose resveratrol group. In conclusion, the results of the present study indicated that resveratrol may inhibit Ti particle-induced osteolysis via activation of the Wnt/β-catenin signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shouxuan Sun
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Tianxiang Geng
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Fan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shifeng Zhang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Sijia Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Yi Geng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Qunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
21
|
Wang B, Liu X. Long non-coding RNA KCNQ1OT1 promotes cell viability and migration as well as inhibiting degradation of CHON-001 cells by regulating miR-126-5p/TRPS1 axis. Adv Rheumatol 2021; 61:31. [PMID: 34108052 DOI: 10.1186/s42358-021-00187-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is defined as a degenerative disease. Pivotal roles of long non-coding RNA (lncRNAs) in OA are widely elucidated. Herein, we intend to explore the function and molecular mechanism of lncRNA KCNQ1OT1 in CHON-001 cells. METHODS Relative expression of KCNQ1OT1, miR-126-5p and TRPS1 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined by MTT assay. The migratory ability of chondrocytes was assessed by transwell assay. Western blot was used to determine relative protein expression of collagen II, MMP13 and TRPS1. Dual-luciferase reporter (DLR) assay was applied to test the target of lncRNA KCNQ1OT1 or miR-126-5p. RESULTS Relative expression of KCNQ1OT1 and TRPS1 was reduced, whereas miR-126-5p was augmented in cartilage tissues of post-traumatic OA patients compared to those of subjects without post-traumatic OA. Increased KCNQ1OT1 or decreased miR-126-5p enhanced cell viability and migration, and repressed extracellular matrix (ECM) degradation in CHON-001 cells. MiR-126-5p was the downstream target of KCNQ1OT1, and it could directly target TRPS1. There was an inverse correlation between KCNQ1OT1 and miR-126-5p or between miR-126-5p and TRPS1. Meantime, there was a positive correlation between KCNQ1OT1 and TRPS1. The promoting impacts of KCNQ1OT1 on cell viability and migration as well as the suppressive impact of KCNQ1OT1 on ECM degradation were partially abolished by miR-126-5p overexpression or TRPS1 knockdown in CHON-001 cells. CONCLUSIONS Overexpression of KCNQ1OT1 attenuates the development of OA by sponging miR-126-5p to target TRPS1. Our findings may provide a possible therapeutic strategy for human OA in clinic.
Collapse
Affiliation(s)
- Binfeng Wang
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Xiangwei Liu
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China.
| |
Collapse
|
22
|
Guo B, Zhu X, Li X, Yuan CF. The Roles of LncRNAs in Osteogenesis, Adipogenesis and Osteoporosis. Curr Pharm Des 2021; 27:91-104. [PMID: 32634074 DOI: 10.2174/1381612826666200707130246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis (OP) is the most common bone disease, which is listed by the World Health Organization (WHO) as the third major threat to life and health among the elderly. The etiology of OP is multifactorial, and its potential regulatory mechanism remains unclear. Long non-coding RNAs (LncRNAs) are the non-coding RNAs that are over 200 bases in the chain length. Increasing evidence indicates that LncRNAs are the important regulators of osteogenic and adipogenic differentiation, and the occurrence of OP is greatly related to the dysregulation of the bone marrow mesenchymal stem cells (BMSCs) differentiation lineage. Meanwhile, LncRNAs affect the occurrence and development of OP by regulating OP-related biological processes. METHODS In the review, we summarized and analyzed the latest findings of LncRNAs in the pathogenesis, diagnosis and related biological processes of OP. Relevant studies published in the last five years were retrieved and selected from the PubMed database using the keywords of LncRNA and OP. RESULTS/CONCLUSION The present study aimed to examine the underlying mechanisms and biological roles of LncRNAs in OP, as well as osteogenic and adipogenic differentiation. Our results contributed to providing new clues for the epigenetic regulation of OP, making LncRNAs the new targets for OP therapy.
Collapse
Affiliation(s)
- Bo Guo
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xiaokang Zhu
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xinzhi Li
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - C F Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Lin ZB, Long P, Zhao Z, Zhang YR, Chu XD, Zhao XX, Ding H, Huan SW, Pan YL, Pan JH. Long Noncoding RNA KCNQ1OT1 is a Prognostic Biomarker and mediates CD8 + T cell exhaustion by regulating CD155 Expression in Colorectal Cancer. Int J Biol Sci 2021; 17:1757-1768. [PMID: 33994860 PMCID: PMC8120463 DOI: 10.7150/ijbs.59001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Long noncoding RNA KCNQ1 opposite strand/antisense transcript 1 (lncRNA KCNQ1OT1) is abnormally expressed in various solid tumors. The purpose of this study was to explore the prognostic value and potential functional role of lncRNA KCNQ1OT1 across cancers. Methods: We performed a meta-analysis of published literature to evaluate the prognostic value of lncRNA KCNQ1OT1 across cancers. Verification, functional analysis, and genomic variation analysis were performed using the GEPIA, TIMER, and LnCeVar databases. According to the immune cell infiltration level, we established a prognostic model of lncRNA KCNQ1OT1 expression using public datasets of TIMER. We used quantitative real-time polymerase chain reaction (RT-qPCR) and western blot to detect the expression levels of lncRNA KCNQ1OT1 and the CD155 protein in colorectal cancer (CRC) tissues and cell lines. Then, a lncRNA KCNQ1OT1-knockdown cell line was cocultured to explore the role of lncRNA KCNQ1OT1 and CD155 in the T cell response by flow cytometric analysis. Results: Our results showed that the high expression of lncRNA KCNQ1OT1 was significantly related to poor overall survival across cancers, especially CRC. Interestingly, we found that COAD patients with high lncRNA KCNQ1OT1 expression and high CD8+ T cell infiltration levels had a worse prognosis than those with low lncRNA KCNQ1OT1 expression and high CD8+ T cell infiltration levels. Moreover, lncRNA KCNQ1OT1 and CD155 showed significantly higher expression in CRC tissue than in normal tissue, and lncRNA KCNQ1OT1 expression was positively correlated with CD155 expression in CRC. Finally, knockdown of lncRNA KCNQ1OT1 reduced CD155 expression in HCT116 and SW620 cells and enhanced the immune response in coculture with CD8+ T cells. Conclusions: High lncRNA KCNQ1OT1 expression is significantly correlated with poor prognosis of CRC patients and mediates the CD8+ T cell response in CRC. These findings indicate that lncRNA KCNQ1OT1 is a prognostic biomarker and potential immune therapeutic target for enhancing the CD8+ T cell response in CRC.
Collapse
Affiliation(s)
- Zheng-bin Lin
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Pei Long
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yi-ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiao-dong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiao-xu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Song-wei Huan
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yun-long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, 510630, China
| | - Jing-hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
24
|
LncRNA KCNQ1OT1 attenuates osteoarthritic chondrocyte dysfunction via the miR-218-5p/PIK3C2A axis. Cell Tissue Res 2021; 385:115-126. [PMID: 33783609 DOI: 10.1007/s00441-021-03441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The occurrence of osteoarthritis is closely related to chondrocyte dysfunction caused by cellular inflammatory response and matrix degradation, which seriously affect the quality of life of patients. Therefore, this study aimed to investigate the role of potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a member of the lncRNA voltage-gated channel subfamily Q, in the development of osteoarthritis. In this study, RT-qPCR results showed that KCNQ1OT1 expression was downregulated in osteoarthritic chondrocytes compared with normal chondrocytes. In addition, upregulation of KCNQ1OT1 significantly enhanced the viability of osteoarthritic chondrocytes, inhibited cell apoptosis, and reduced the release of inflammatory cytokines and metal matrix enzymes. Next, bioinformatics analysis and luciferase reporter gene analysis predicted and validated the targeting relationship between KCNQ1OT1 and miR-218-5p. We found that the expression of miR-218-5p was significantly upregulated in osteoarthritic chondrocytes, and knockdown of miR-218-5p significantly enhanced the viability of osteoarthritic chondrocytes, inhibited apoptosis, and decreased the abundance of inflammatory cytokines and metal matrix enzymes. Furthermore, the targeting relationship between miR-218-5p and recombinant phosphoinositide-3-kinase class-2-alpha polypeptide (PIK3C2A) was identified, and overexpression of PIK3C2A enhanced cell viability, and reduced apoptosis and secretion of inflammatory factors. Finally, we found that miR-218-5p overexpression reversed the protective effect of overexpression of KCNQ1OT1 or PIK3C2A on osteoarthritic chondrocytes. In conclusion, our results demonstrated that KCNQ1OT1 upregulated PIK3C2A and activated the PI3K/AKT/mTOR pathway to reduce chondrocyte dysfunction by targeting miR-218-5p, providing new insights into the pathogenesis of osteoarthritis.
Collapse
|
25
|
A Novel Long Noncoding RNA, Lnc-OAD, Is Required for Bone Morphogenetic Protein 2- (BMP-2-) Induced Osteoblast Differentiation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697749. [PMID: 33816629 PMCID: PMC7987440 DOI: 10.1155/2021/6697749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Long noncoding RNAs (lncRNAs) play very important roles in cell differentiation. Our recent study has demonstrated that a novel lncRNA named lnc-OAD modulated 3T3-L1 adipocyte differentiation. In the present study, we examined the roles of lnc-OAD in bone morphogenetic protein 2- (BMP-2-) induced osteoblast differentiation. Lnc-OAD expression was increased during BMP-2-induced osteoblast differentiation in C3H10T1/2 mesenchymal stem cells and MC3T3-E1 preosteoblast cells. Knockdown of lnc-OAD expression by specific siRNA remarkably decreased early osteoblast differentiation. In addition, stable knockdown of lnc-OAD by lentivirus vector also significantly inhibited late osteoblast differentiation and matrix mineralization in vitro. Conversely, stably overexpressed lnc-OAD with lentiviral vector accelerated osteoblast differentiation. Mechanistically, knockdown of lnc-OAD reduced significantly the phosphorylation of AKT and the expression of Osterix induced by BMP-2, while overexpression of lnc-OAD enhanced the phosphorylation of AKT and the expression of Osterix. Taken together, our study suggests that lnc-OAD plays an important role in modulating BMP-2-induced osteoblast differentiation via, at least in part, regulating the AKT-Osterix signaling axis.
Collapse
|
26
|
Zhang K, Shi Z, Ren Y, Han X, Wang J, Hong W. [Kcnq1ot1 promotes osteogenic differentiation and suppresses osteoclast differentiation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:31-38. [PMID: 33509750 DOI: 10.12122/j.issn.1673-4254.2021.01.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the regulatory role of long non-coding RNA Kcnq1ot1 in osteoclast differentiation, osteogenic differentiation and osteoporosis. METHODS The expression of lnc-Kcnq1ot1, Bglap, Runx2, Alp, Bsp, Nfatc1, Mmp9, Ctsk and Oscar were detected by real-time quantitative PCR (qRT-PCR) in the femoral bones from mouse models of postmenopausal osteoporosis (ovariectomized mice, n=8), disuse osteoporosis (induced by tail suspension, n=14) and agerelated osteoporosis (18-month-old mice, n=8), and also in MC3T3-E1 cells during osteoblast differentiation and in murine bone marrow-derived macrophages (BMMs) and RAW264.7 cells during osteoclast differentiation. MC3T3-E1 cells with lncKcnq1ot1 knockdown by lentivirus infection were induced to differentiate into osteoblasts using osteogenic induction medium, and the expression of lnc-Kcnq1ot1, Alp and Bglap was detected with qRT-PCR and ALP activity was assessed with ALP staining. BMMs and RAW264.7 cells were transfected with siRNAs targeting lnc-Kcnq1ot1 and stimulated with RANKL and/or M-CSF, and the expression of lnc-Kcnq1ot1, Ctsk and Oscar was detected by qRT-PCR, and TRAP activity was assessed by TRAP staining. The subcellular localization of lnc-Kcnq1ot1 in MC3T3-E1 and RAW264.7 cells was determined using cell fractionation followed by qRT-PCR. RESULTS The expression of lnc-Kcnq1ot1 was significantly upregulated during osteoblast differentiation but downregulated in the bone tissues of osteoporotic mice and during osteoclast differentiation (P < 0.05). Silencing lnc-Kcnq1ot1 obviously decreased the expression of Bglap and Alp (P < 0.05) and attenuated osteogenic medium-induced osteoblast differentiation. Knockdown of lnc-Kcnq1ot1 also promoted the expression of Ctsk and Oscar (P < 0.05) and aggravated RANKL-induced osteoclast differentiation. The results of cell fractionation and qRT-PCR demonstrated that lnc-Kcnq1ot1 was located mainly in the nuclei of MC3T3-E1 and RAW264.7 cells. CONCLUSIONS Our data demonstrate that lnc-Kcnq1ot1 promotes osteogenic differentiation and alleviates osteoclast differentiation, suggesting the potential of lnc-Kcnq1ot1 as a therapeutic target against osteoporosis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yi Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
27
|
Wang J, Liu S, Shi J, Liu H, Li J, Zhao S, Yi Z. The Role of lncRNAs in Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:243-249. [PMID: 31880266 DOI: 10.2174/1574888x15666191227113742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/01/2023]
Abstract
Bone Marrow Mesenchymal Stem Cells (BMSCs) are one of the primary cells found in the bone marrow, and they can differentiate into osteoblasts, chondrocytes, adipocytes and even myoblasts, and are, therefore, considered pluripotent cells. Because of their multipotential differentiation, selfrenewal capability, immunomodulation and other potential activities, BMSCs have become an important source of seed cells for gene therapy, tissue engineering, cell replacement therapy and regenerative medicine. Long non-coding RNA (lncRNA) is an RNA molecule greater than 200 nucleotides in length that is expressed in a variety of species, including animals, plants, yeast, prokaryotes, and viruses, but lacks an apparent open reading frame, and does not have the function of translation into proteins. Many studies have shown that lncRNAs play an important role in the osteogenic differentiation of BMSCs. Here, we describe the role of lncRNAs in the osteogenic differentiation of BMSCs, in order to provide a new theoretical and experimental basis for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China.,Xi'an Medical University, Xi'an 710068, China
| | - Shizhang Liu
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jiyuan Shi
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Huitong Liu
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jingyuan Li
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Song Zhao
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China.,Xi'an Medical University, Xi'an 710068, China
| | - Zhi Yi
- Department of Orthopaedic, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
28
|
Zheng J, Guo H, Qin Y, Liu Z, Ding Z, Zhang L, Wang W. SNHG5/miR-582-5p/RUNX3 feedback loop regulates osteogenic differentiation and apoptosis of bone marrow mesenchymal stem cells. J Cell Physiol 2020. [PMID: 33111341 DOI: 10.1002/jcp.29527] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Osteoporosis is one of the most prevailing orthopedic diseases that causes a heavy burden on public health. Given that bone marrow-derived mesenchymal stem cells (BMSCs) are of immense importance in osteoporosis development, it is necessary to expound the mechanisms underlying BMSC osteoblastic differentiation. Although mounting research works have investigated the role of small nucleolar RNA host gene 5 (SNHG5) in various diseases, elucidations on its function in osteoporosis are still scarce. It was observed that SNHG5 and RUNX family transcription factor 3 (RUNX3) were remarkably elevated during osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Further, we disclosed that the silencing of SNHG5 suppressed osteogenic differentiation and induced apoptosis of hBMSCs. What's more, SNHG5 acted as a competing endogenous RNA to affect RUNX3 expression via competitively binding with microRNA (miR)-582-5p. RUNX3 was also confirmed to simulate the transcriptional activation of SNHG5. Finally, our findings manifested that the positive feedback loop of SNHG5/miR-582-5p/RUNX3 executed the promoting role in the development of osteoporosis, which shed light on specific molecular mechanism governing SNHG5 in osteogenic differentiation and apoptosis of hBMSCs and indicated that SNHG5 may represent a novel target for the improvement of osteoporosis therapy.
Collapse
Affiliation(s)
- Jiwei Zheng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongliang Guo
- Department of Repair Section, The Affiliated Stomatology Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Qin
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zongxiang Liu
- Department of Stomatology, The Affiliated Stomatology Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhijiang Ding
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Zhang
- Department of Stomatology, The Affiliated Stomatology Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
29
|
Xia K, Cen X, Yu L, Huang X, Sun W, Zhao Z, Liu J. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation. J Cell Physiol 2020; 235:6010-6022. [PMID: 31985033 DOI: 10.1002/jcp.29526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important modulators of mesenchymal stem cells (MSCs) in cellular differentiation. However, the regulatory mechanisms of lncRNAs in NEL-like 1 (NELL-1)-induced osteogenic differentiation of human adipose-derived stem cells remain elusive. Expression profiles of lncRNAs and messenger RNAs during NELL-1-induced osteogenesis were obtained using high-throughput sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene coexpression networks were performed. We identified 323 statistically differentially expressed lncRNAs during osteogenesis and NELL-1-induced osteogenesis, and three lncRNAs (ENST00000602964, ENST00000326734, and TCONS_00006792) were identified as core regulators. Hedgehog pathway markers, including IHH and GLI1, were downregulated, while the antagonists of this pathway (GLI3 and HHIP) were upregulated during NELL-1-induced osteogenesis. In this process, the antagonist of Wnt, SFRP1, was downregulated. According to the analysis, we speculated that lncRNAs played important roles in NELL-1-induced osteogenesis via the crosstalk between Hedgehog and Wnt pathways.
Collapse
Affiliation(s)
- Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP, Duan B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication 2020; 12:035020. [PMID: 32369796 PMCID: PMC8059098 DOI: 10.1088/1758-5090/ab906e] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional reconstruction of craniomaxillofacial defects is challenging, especially for the patients who suffer from traumatic injury, cranioplasty, and oncologic surgery. Three-dimensional (3D) printing/bioprinting technologies provide a promising tool to fabricate bone tissue engineering constructs with complex architectures and bioactive components. In this study, we implemented multi-material 3D printing to fabricate 3D printed PCL/hydrogel composite scaffolds loaded with dual bioactive small molecules (i.e. resveratrol and strontium ranelate). The incorporated small molecules are expected to target several types of bone cells. We systematically studied the scaffold morphologies and small molecule release profiles. We then investigated the effects of the released small molecules from the drug loaded scaffolds on the behavior and differentiation of mesenchymal stem cells (MSCs), monocyte-derived osteoclasts, and endothelial cells. The 3D printed scaffolds, with and without small molecules, were further implanted into a rat model with a critical-sized mandibular bone defect. We found that the bone scaffolds containing the dual small molecules had combinational advantages in enhancing angiogenesis and inhibiting osteoclast activities, and they synergistically promoted MSC osteogenic differentiation. The dual drug loaded scaffolds also significantly promoted in vivo mandibular bone formation after 8 week implantation. This work presents a 3D printing strategy to fabricate engineered bone constructs, which can likely be used as off-the-shelf products to promote craniomaxillofacial regeneration.
Collapse
Affiliation(s)
- Wenhai Zhang
- First Hip Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - St Patrick Reid
- College of Medicine, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical and Materials Engineering, University of Nebraska- Lincoln, Lincoln, NE, USA
| |
Collapse
|
31
|
Zhu Z, Cui Y, Huang F, Zeng H, Xia W, Zeng F, He C, Chen J, Chen Z, Chen H, Li Y. Long non-coding RNA H19 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-β-catenin pathway. Mol Cell Biochem 2020; 470:145-155. [PMID: 32440841 DOI: 10.1007/s11010-020-03753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Randall's plaque (RP) serves as a nidus on which idiopathic calcium oxalate stones form. Renal interstitial mineralization may be the cause underlying RP, and recent studies demonstrated the similarities between the interstitial mineralization and ectopic calcification. The present study aimed to investigate whether human renal interstitial fibroblasts (hRIFs) could form calcification under osteogenic conditions, and whether long non-coding RNA H19 participated in regulating osteogenic differentiation of hRIFs through Wnt-β-catenin pathway. HRIFs were isolated and induced for osteogenic differentiation under osteogenic conditions. Runx2, OCN, alkaline phosphatase (ALP) activity, and the mineralized nodule formation were used to assess the osteogenic phenotype. Molecule expressions were determined by qRT-PCR, immunofluorescence staining, and western blot. The mineralized nodules were assessed by Alizarin red staining. Compared to the normal renal papillary tissue, Runx2, OCN, and H19 were significantly upregulated in RP. After hRIFs were induced with osteogenic medium, osteogenic markers (Runx2, OCN and ALP), β-catenin and H19 were significantly upregulated, and the mineralized nodules are formed. Additionally, overexpression of H19 promoted the osteogenic phenotype of hRIFs and increased the expression of β-catenin, whereas knock-down of H19 or XAV939 (inhibitor of Wnt-β-catenin signaling pathway) significantly repressed the osteogenic phenotype of hRIFs and decreased the β-catenin. Moreover, XAV939 was shown to abolish the osteogenic differentiation of hRIFs promoted by H19. The study demonstrated that ectopic calcification partly participated in the formation of RP, and H19 promoted osteogenic differentiation of hRIFs by activating Wnt-β-catenin pathway, which shed new light on the molecular mechanism of the RP formation.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huimin Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
32
|
Chen L, Xiong Y, Yan C, Zhou W, Endo Y, Xue H, Hu Y, Hu L, Leng X, Liu J, Lin Z, Mi B, Liu G. LncRNA KCNQ1OT1 accelerates fracture healing via modulating miR-701-3p/FGFR3 axis. FASEB J 2020; 34:5208-5222. [PMID: 32060985 DOI: 10.1096/fj.201901864rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence highlights the role of the long noncoding RNA (lncRNA) KCNQ1OT1 in fracture healing. Osteoblast proliferation, migration, and survival are pivotal during this process. In this study, we aimed to improve our understanding of the regulatory role of lncRNA KCNQ1OT1 during osteoblast proliferation, migration, and survival. We searched the gene expression omnibus databases and LncBase Experimental V.2 to identify key microRNAs (miRNAs) targets of KCNQ1OT1. MiR-701-3p was selected as a differentially expressed miRNA and RNA immunoprecipitation assays were performed to verify its interaction with KCNQ1OT1. Fibroblast growth factor receptor 3 (FGFR3) was also identified as a target of miR-701-3p. We further identified KCNQ1OT1 as a competing endogenous RNA of miR-701-3p that could influence osteoblast proliferation, migration, and apoptosis in vitro and in vivo. Taken together, our results indicate that the KCNQ1OT1/miR-701-3p/FGFR3 axis is an important regulator of osteoblast proliferation, migration, and apoptosis, and provide a new therapeutic avenue for fracture healing.
Collapse
Affiliation(s)
- Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingzhu Leng
- Department of Biomedical Sciences, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Ye B, Wu ZH, Tsui TY, Zhang BF, Su X, Qiu YH, Zheng XT. lncRNA KCNQ1OT1 Suppresses the Inflammation and Proliferation of Vascular Smooth Muscle Cells through IκBa in Intimal Hyperplasia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:62-72. [PMID: 32146419 PMCID: PMC7058709 DOI: 10.1016/j.omtn.2020.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/31/2022]
Abstract
Inflammation and proliferation of vascular smooth muscle cells (VSMCs) are the key events in intimal hyperplasia. This study aimed to explore the mechanism by which long non-coding RNA (lncRNA) KCNQ1OT1 affects VSMC inflammation and proliferation in this context. A vein graft (VG) model was established in mice to introduce intimal hyperplasia. Isolated normal VSMCs were induced with platelet-derived growth factor type BB (PDGF-BB), and the cell proliferation, migration, and secretion of inflammatory factors were determined. The results showed that KCNQ1OT1 was downregulated in the VSMCs from mice with intimal hyperplasia and in the PDGF-BB-treated VSMCs, and such downregulation of KCNQ1OT1 resulted from the increased methylation level in the KCNQ1OT1 promoter. Overexpressing KCNQ1OT1 suppressed PDFG-BB-induced VSMC proliferation, migration, and secretion of inflammatory factors. In VSMCs, KCNQ1OT1 bound to the nuclear transcription factor kappa Ba (IκBa) protein and increased the cellular IκBa level by reducing phosphorylation and promoting ubiquitination of the IκBa protein. Meanwhile, KCNQ1OT1 promoted the expression of IκBa by sponging miR-221. The effects of KCNQ1OT1 knockdown on promoting VSMC proliferation, migration, and secretion of inflammatory factors were abolished by IκBa overexpression. The roles of KCNQ1OT1 in reducing the intimal area and inhibiting IκBa expression were proved in the VG mouse model after KCNQ1OT1 overexpression. In conclusion, KCNQ1OT1 attenuated intimal hyperplasia by suppressing the inflammation and proliferation of VSMCs, in which the mechanism upregulated IκBa expression by binding to the IκBa protein and sponging miR-221.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, the Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tung Yu Tsui
- Division of Oncology, Hepatobiliary and Transplant Surgery, University Medical Center Rostock, Rostock 18055, Germany
| | - Bao-Fu Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiang Su
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yi-Hui Qiu
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
34
|
He S, Yang S, Zhang Y, Li X, Gao D, Zhong Y, Cao L, Ma H, Liu Y, Li G, Peng S, Shuai C. LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis 2019; 10:947. [PMID: 31827076 PMCID: PMC6906393 DOI: 10.1038/s41419-019-2148-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to be important regulators during the osteogenic differentiation of mesenchymal stem cells (MSCs). We analyzed the lncRNA expression profile during osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and identified a significantly downregulated lncRNA RP11-527N22.2, named osteogenic differentiation inhibitory lncRNA 1, ODIR1. In hUC-MSCs, ODIR1 knockdown significantly promoted osteogenic differentiation, whereas overexpression inhibited osteogenic differentiation in vitro and in vivo. Mechanistically, ODIR1 interacts with F-box protein 25 (FBXO25) and facilitates the proteasome-dependent degradation of FBXO25 by recruiting Cullin 3 (CUL3). FBXO25 increases the mono-ubiquitination of H2BK120 (H2BK120ub) which subsequently promotes the trimethylation of H3K4 (H3K4me3). Both H2BK120ub and H3K4me3 form a loose chromatin structure, inducing the transcription of the key transcription factor osterix (OSX) and increasing the expression of the downstream osteoblast markers, osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP). In summary, ODIR1 acts as a key negative regulator during the osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis, which may provide a novel understanding of lncRNAs that regulate the osteogenesis of MSCs and a potential therapeutic strategy for the regeneration of bone defects.
Collapse
Affiliation(s)
- Shiwei He
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sheng Yang
- Department of Obstetrics and Gynecology, General Hospital, Shenzhen University, Shenzhen, 518053, China
| | - Yanru Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Dan Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China.
| |
Collapse
|
35
|
Zhang W, Zhao H, Chen K, Huang Y. Overexpressing of POU2F2 accelerates fracture healing via regulating HMGA1/Wnt/β-catenin signaling pathway. Biosci Biotechnol Biochem 2019; 84:491-499. [PMID: 31782345 DOI: 10.1080/09168451.2019.1695574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To elucidate the role of POU2F2 (POU class 2 homeobox 2) in fracture healing, 30 rats with femoral fracture were randomly grouped into three groups: FF group, LV-POU2F2 group and LV-scramble group. Rats were injected with PBS, lentivirus expressing POU2F2 or scramble lentivirus once a week for 4 weeks. Results showed that overexpressing of POU2F2 promoted fracture healing and callus growth. Besides, overexpressing of POU2F2 promoted protein and mRNA expression of Col10a1, Runx2, Osterix, and Osteocalcin. High Mobility Group AT-hook 1 (HMGA1) is a non-histone protein participating in chromatin remodeling of cells. Western blotting manifested HMGA1/Wnt/β-catenin pathway was activated in POU2F2 group. Moreover, in-vitro study of hMSCs cells supported the above data. In conclusion, POU2F2 promotes fracture healing via activating the HMGA1/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hanke Zhao
- Department of Orthopedics, Changzhou Wujin People's Hospital, Changzhou, China
| | - Kun Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Huang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Qi D, Wang M, Zhang D, Li H. Tanshinone IIA protects lens epithelial cells from H 2 O 2 -induced injury by upregulation of lncRNA ANRIL. J Cell Physiol 2019; 234:15420-15428. [PMID: 30701534 DOI: 10.1002/jcp.28189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Tanshinone IIA is a lipophilic diterpene extracted from the Salvia miltiorrhiza bunge, possessing antiapoptotic and antioxidant activities. The purpose of this study was to explore the effects of Tanshinone IIA on age-related nuclear cataract. Human lens epithelial cell line SRA01/04 was subjected to H 2 O 2 to mimic a cell model of cataract. Cell Counting Kit-8 assay, flow cytometer, and reactive oxygen species (ROS) detection were performed to evaluate the effect of Tanshinone IIA pretreatment on SRA01/04 cells injured by H 2 O 2 . Besides, the real-time quantitative polymerase chain reaction was used to assess the expression of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL). Western blot analysis was performed to detect the expression of core proteins involved in cell survival and nuclear factor-κB (NF-κB) pathway. H 2 O 2 significantly decreased SRA01/04 cells viability, whereas increased apoptosis and ROS generation. This phenomenon was coupled with the upregulated p53, p21, Bax, cleaved caspase-3, and the downregulated cyclinD1, CDK4, and Bcl-2. Tanshinone IIA pretreatment protected SRA01/04 cells against H 2 O 2 -induced injury. In the meantime, the expression of lncRNA ANRIL was upregulated by Tanshinone IIA. And, the protective effects of Tanshinone IIA on H 2 O 2 -stimulated SRA01/04 cells were abolished when lncRNA ANRIL was silenced. Moreover, the elevated expression of lncRNA ANRIL induced by Tanshinone IIA was abolished by BAY 11-7082 (an inhibitor of NF-κB). To conclude, Tanshinone IIA protects SRA01/04 cells from apoptosis triggered by H 2 O 2 . Tanshinone IIA confers its protective effects possibly via modulation of NF-κB signaling and thereby elevating the expression of lncRNA ANRIL.
Collapse
Affiliation(s)
- Defeng Qi
- Department of Ophthalmology, Linyi Central Hospital, Linyi, China
| | - Mingming Wang
- Department of Ophthalmology, Chengyang People's Hospital, Qingdao, China
| | - Duzhen Zhang
- Department of Ophthalmology, Linyi Central Hospital, Linyi, China
| | - Haihui Li
- Department of Ophthalmology, Yan'an People's Hospital, Yan'an, China
| |
Collapse
|
37
|
Choi Y, Yoon DS, Lee KM, Choi SM, Lee MH, Park KH, Han SH, Lee JW. Enhancement of Mesenchymal Stem Cell-Driven Bone Regeneration by Resveratrol-Mediated SOX2 Regulation. Aging Dis 2019; 10:818-833. [PMID: 31440387 PMCID: PMC6675538 DOI: 10.14336/ad.2018.0802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine. However, MSCs age rapidly during long-term ex vivo culture and lose their therapeutic potential before they reach effective cell doses (ECD) for cell therapy. Thus, a prerequisite for effective MSC therapy is the development of cell culture methods to preserve the therapeutic potential during long-term ex vivo cultivation. Resveratrol (RSV) has been highlighted as a therapeutic candidate for bone disease. Although RSV treatment has beneficial effects on bone-forming cells, in vivo studies are lacking. The current study showed that long-term (6 weeks from primary culture date)-cultured MSCs with RSV induction retained their proliferative and differentiation potential despite reaching ECD. The mechanism of RSV action depends entirely on the SIRT1-SOX2 axis in MSC culture. In a rat calvarial defect model, RSV induction significantly improved bone regeneration after MSC transplantation. This study demonstrated an example of efficient MSC therapy for treating bone defects by providing a new strategy using the plant polyphenol RSV.
Collapse
Affiliation(s)
- Yoorim Choi
- 1Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Dong Suk Yoon
- 3Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | - Kyoung-Mi Lee
- 1Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,4Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Seong Mi Choi
- 1Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Myon-Hee Lee
- 3Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA.,5Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kwang Hwan Park
- 1Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Seung Hwan Han
- 6Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, South Korea
| | - Jin Woo Lee
- 1Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.,4Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
38
|
Qi X, Yu XJ, Wang XM, Song TN, Zhang J, Guo XZ, Li GJ, Shao M. Knockdown of KCNQ1OT1 Suppresses Cell Invasion and Sensitizes Osteosarcoma Cells to CDDP by Upregulating DNMT1-Mediated Kcnq1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:804-818. [PMID: 31454677 PMCID: PMC6716066 DOI: 10.1016/j.omtn.2019.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is a malignant bone tumor, with a high incidence worldwide. The involvement of long non-coding RNAs (lncRNAs) in cancers and their molecular association with the progression of osteosarcoma have been previously discussed. We conducted the present study to examine the effect of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) on osteosarcoma cell invasion and chemosensitivity to cisplatin (CDDP). After determination of the expression of Kcnq1 in osteosarcoma tissues and cells, the plasmids with overexpression or knockdown KCNQ1OT1 were introduced into the cells to aid the identification of cell proliferation, migration, invasion, chemosensitivity to CDDP, and apoptosis. Then, the interaction between KCNQ1OT1 and the Kcnq1/DNA methyltransferase 1 (DNMT1) axis was evaluated by measuring the level of Kcnq1 promoter region methylation and DNMT1 enrichment of the Kcnq1 promoter region. Low Kcnq1 expression and high KCNQ1OT1 expression were shown in osteosarcoma tissues and cells. Kcnq1 was negatively mediated by KCNQ1OT1 via DNMT1. The overexpression of Kcnq1 or knockdown of KCNQ1OT1 inhibited the proliferation, migration, and invasion, and it promoted the chemosensitivity to CDDP and apoptosis of MG-63 cells and its CDDP-resistant cell lines. Moreover, the same trend was observed in the cells following methylation inhibitor treatment. Collectively, knockdown of KCNQ1OT1 can inhibit the osteosarcoma progression through the Kcnq1/DNMT1 axis.
Collapse
Affiliation(s)
- Xu Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xiao-Jun Yu
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xu-Ming Wang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Tie-Nan Song
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jie Zhang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xin-Zhen Guo
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Guo-Jun Li
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ming Shao
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China.
| |
Collapse
|
39
|
Song J, Shu H, Zhang L, Xiong J. Long noncoding RNA GAS5 inhibits angiogenesis and metastasis of colorectal cancer through the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:6937-6951. [PMID: 30672001 DOI: 10.1002/jcb.27743] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/31/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Angiogenesis plays a key role in the tumorigenesis and progression of colorectal cancer (CRC). In this study, we investigated the effect of long noncoding RNA (lncRNA) GAS5 on the angiogenesis, invasion, and metastasis of CRC, and the involvement of the Wnt/β-catenin signaling pathway. METHODS CRC tissues and adjacent normal tissues were collected from 52 patients with CRC. GAS5 expression was determined in vivo and in vitro by real-time quantitative polymerase chain reaction (RT-qPCR). Then RT-qPCR and Western blot were used to identify expression of key genes of Wnt/β-catenin signaling pathway. CRC cells with lowest GAS5 expression were selected and subjected to si-GAS5, oe-GAS5, or XAV939 to validate the effect of GAS5 and Wnt/β-catenin signaling pathway on CRC cell activities. The activation of Wnt/β-catenin signaling pathway was determined in response to GAS5. Subcutaneous tumor growth and microvascular density were observed in nude mice, in which in vivo metastasis was observed following tail vein injection of CRC cells. RESULTS Initially, poor expression of GAS5 was observed in CRC tissues and cells. Upregulated GAS5 repressed CRC cell invasion and migration in vitro, as well as subcutaneous tumor growth, angiogenesis, and liver metastases in vivo. Furthermore, the Wnt/β-catenin signaling pathway was determined to be activated in CRC tissues and cells, while its activation was inhibited by GAS5. The Wnt/β-catenin signaling pathway promoted the CRC cell invasion and migration in vitro, subcutaneous tumor growth, angiogenesis and, liver metastases in vivo. CONCLUSION Taken together, the results of the study conclude that lncRNA GAS5 inhibited the activation of the Wnt/β-catenin signaling pathway, thereby suppressing the angiogenesis, invasion, and metastasis of CRC.
Collapse
Affiliation(s)
- Jianping Song
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Oncology, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongchun Shu
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Gastroenterology, Shangrao People's Hospital, Shangrao, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Zhu J, Wang Y, Yu W, Xia K, Huang Y, Wang J, Liu B, Tao H, Liang C, Li F. Long Noncoding RNA: Function and Mechanism on Differentiation of Mesenchymal Stem Cells and Embryonic Stem Cells. Curr Stem Cell Res Ther 2019; 14:259-267. [PMID: 30479219 DOI: 10.2174/1574888x14666181127145809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
Background:Long suspected as transcriptional noise, recently recognized, long non-coding
RNAs (lncRNAs) are emerging as an indicator, biomarker and therapy target in the physiologic and
pathologic process. Mesenchymal stem cells and embryonic stem cells are important source for normal
and therapeutic tissue repair. However, the mechanism of stem cell differentiation is not completely
understood. Research on lncRNAs may provide novel insights into the mechanism of differentiation
process of the stem cell which is important for the application of stem cell therapy. The lncRNAs field
is still very young, new insights into lncRNAs function are emerging to a greater understanding of biological
processes.
Objective:
In this review, we summarize the recent researches studying lncRNAs and illustrate how
they act in the differentiation of the mesenchymal stem cells and embryonic stem cells, and discuss
some future directions in this field.
Results:
Numerous lncRNAs were differentially expressed during differentiation of mesenchymal stem
cells and embryonic stem cells. LncRNAs were able to regulate the differentiation processes through
epigenetic regulation, transcription regulation and post-transcription regulation.
Conclusion:
LncRNAs are involved in the differentiation process of mesenchymal stem cells and embryonic
stem cells, and they could become promising indicator, biomarker and therapeutic targets in the
physiologic and pathologic process. However, the mechanisms of the role of lncRNAs still require further
investigation.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuluan Huang
- Department of Gynecologic Oncology, Women`s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
41
|
Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 2019; 115:108912. [PMID: 31048188 DOI: 10.1016/j.biopha.2019.108912] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell types, including osteogenic, chondrogenic and adipogenic lineages. Osteogenic differentiation of MSCs plays a critical role in bone tissue engineering. Inducing MSC osteogenesis represents a potential treatment that promotes bone formation and bone regeneration. Recently, long non-coding RNA (lncRNA) was shown to participate in the occurrence and development of various diseases. Different lncRNA expression patterns can regulate the cell cycle, proliferation, metastasis, immunobiology and differentiation. With the recent extensive study of lncRNAs, an increasing number of lncRNAs are being studied in the MSC field. Furthermore, some lncRNAs have been confirmed to regulate MSC osteogenesis. Therefore, here, we review research concerning lncRNA in osteogenic differentiation of MSCs and highlight the importance of lncRNA in bone formation and bone regeneration.
Collapse
Affiliation(s)
- Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yuan-Wei Zhang
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yu Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
42
|
Zhao K, Pi B, Zhao L, Tian S, Ge J, Yang H, Sha W, Wang L. Influence of N-acetyl cysteine (NAC) and 2-methylene-1,3-dioxepane (MDO) on the properties of polymethyl methacrylate (PMMA) bone cement. RSC Adv 2019; 9:11833-11841. [PMID: 35517041 PMCID: PMC9063513 DOI: 10.1039/c9ra01638d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Abstract
The properties of polymethyl methacrylate (PMMA) bone cement make it a popular bone filling material. However, its disadvantages, such as lack of biodegradability and osteogenesis, restrict its clinical application. Studies have indicated the osteogenic properties of N-acetyl cysteine (NAC) and the biodegradability of 2-methylene-1,3-dioxepane/methyl methacrylate-based (MDO/MMA) copolymers. In this study, we developed bioactive PMMA cements through modification with fixed concentrations of NAC and different proportions of MDO. The purpose of this study was to compare the mechanical properties, morphology, NAC release, biocompatibility, degradability and mineralization capability of modified bone cements with those of conventional cement. The specific-modified specimens (NAC-p (5% MDO-co-MMA)) exhibited a lower bending modulus but had little effect on compressive strength. This material was morphologically compact and nonporous, similar to conventional PMMA bone cement. NAC could be released from NAC-p (5% MDO-co-MMA) continuously and appropriately. NAC-p (5% MDO-co-MMA) was biologically safe and showed satisfactory tissue compatibility. Ester was introduced into the polymer, which reinforced the degradation properties of NAC-p (5% MDO-co-MMA). NAC-p (5% MDO-co-MMA) enhanced the mineralization capability of osteoblastic cells.
Collapse
Affiliation(s)
- Kangquan Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Liping Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Shoujin Tian
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Jianfei Ge
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Weiping Sha
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Liming Wang
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| |
Collapse
|
43
|
Liu YB, Lin LP, Zou R, Zhao QH, Lin FQ. Silencing long non-coding RNA MEG3 accelerates tibia fraction healing by regulating the Wnt/β-catenin signalling pathway. J Cell Mol Med 2019; 23:3855-3866. [PMID: 30955246 PMCID: PMC6533481 DOI: 10.1111/jcmm.14229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
As fracture healing is related to gene expression, fracture healing is prospected to be implicated in long non‐coding RNAs (lncRNAs). This study focuses on the effects of epigenetic silencing of long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) on fracture healing by regulating the Wnt/β‐catenin signalling pathway. Genes expressed in fracture were screened using bioinformatics and the subcellular location of MEG3 was determined using FISH. Next, we successfully established tibia fracture (TF) models of C57BL/6J and Col2a1‐ICAT mice and the effect of silencing lncRNA MEG3 on fracture healing was detected after TF mice were treated with phosphate buffer saline (PBS), MEG3 siRNA and scramble siRNA. X‐ray imaging, Safranin‐O/fast green and haematoxylin‐eosin (HE) staining and histomorphometrical and biomechanical analysis were adopted to observe and to detect the fracture healing conditions. Additionally, the positive expression of collagen II and osteocalcin was examined using immunohistochemistry. At last, in the in vitro experiment, the relationship of MEG3 and the Wnt/β‐catenin signalling pathway in fraction healing was investigated. MEG3 was located in the cell nucleus. In addition, it was found that MEG3 and the Wnt/β‐catenin signalling pathway were associated with fraction healing. Moreover, silencing MEG3 was proved to elevate callus area and maximum bending load and to furthermore enhance the recanalization of bone marrow cavity. Finally, MEG3 knockdown elevated levels of Col10a1, Runx2, Osterix, Osteocalcin, Wnt10b and β‐catenin/β‐catenin whereas it reduced p‐GSK‐3β/GSK‐3β levels. Taken together, our data supported that epigenetic silencing of lncRNA MEG3 could promote the tibia fracture healing by activating the Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Yu-Bao Liu
- Department of Orthopaedics, Luhe People's Hospital of Nanjing, Nanjing, P.R. China
| | - Lu-Pan Lin
- Department of Orthopaedics, Luhe People's Hospital of Nanjing, Nanjing, P.R. China
| | - Rui Zou
- Department of Orthopaedics, Luhe People's Hospital of Nanjing, Nanjing, P.R. China
| | - Qing-Hua Zhao
- Department of Orthopaedics, Luhe People's Hospital of Nanjing, Nanjing, P.R. China
| | - Fu-Qing Lin
- Department of Orthopaedics, Luhe People's Hospital of Nanjing, Nanjing, P.R. China
| |
Collapse
|
44
|
Wang CG, Liao Z, Xiao H, Liu H, Hu YH, Liao QD, Zhong D. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol 2019; 107:77-84. [PMID: 30703347 DOI: 10.1016/j.yexmp.2019.01.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is of much significance for bone formation, the imbalance of it would result in osteoporosis and other pathological bone defects. Increasing evidences showed that long non-coding RNAs (lncRNAs) and miRNAs played vital roles in the regulation of osteogenic differentiation. LncRNA KCNQ1OT1 was often regarded as an imprinted lncRNA and was related to tumor progression, while its function in osteogenic differentiation remained unclear. METHOD qRT-PCR was performed to detect the expression of KCNQ1OT1, miR-214 and osteogenesis-related genes BMP2, Runx2, OPN, and OCN. Western blotting was carried out to detect osteogenesis-related markers. The osteoblastic phenotype was evidenced by alkaline phosphatase (ALP) activity and Alizarin Red S accumulation detection. Bioinformatics and luciferase assays were used to predict and validate the interaction between KCNQ1OT1 and miR-214 as well as BMP2 and miR-214. RESULTS KCNQ1OT1 was significantly up-regulated during the process of osteogenic induction while miR-214 was contrarily down-regulated. Knockdown of KCNQ1OT1 inhibited osteogenic differentiation and down-regulated BMP2 and osteogenesis-related genes. It was also confirmed that KCNQ1OT1 directly interacted with miR-214. Meanwhile, miR-214 could bind to 3'UTR of BMP2 and therefore inhibited its expression. Furthermore, co-transfection of miR-214 inhibitor could rescue the down-regulation of BMP2 and osteogenesis-related genes and osteogenic differentiation suppression induced by KCNQ1OT1 knockdown. Moreover, miR-214 inhibitor significantly reversed the decreased protein levels of p-Smad1/5/8, Runx2 and Osterix induced by shKCNQ1OT1. CONCLUSIONS KCNQ1OT1 positively regulated osteogenic differentiation of BMSCs by acting as a ceRNA to regulate BMP2 expression through sponging miR-214.
Collapse
Affiliation(s)
- Cheng-Gong Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhan Liao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Han Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qian-De Liao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Da Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
45
|
Yi J, Liu D, Xiao J. LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression. Cell Tissue Res 2019; 376:113-121. [PMID: 30511267 DOI: 10.1007/s00441-018-2963-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are an important source of stem cells for tissue repair and regeneration but the regulatory mechanism of stem cell differentiation is still unclear. Runt-related gene 2 (Runx2) is a bone-specific transcription factor that plays an important role in promoting osteogenic differentiation. Protein levels of Runx2 are regulated by non-coding RNA. In order to identify the regulatory mechanism underlying non-coding RNA regulation of Runx2, we employed bioinformatics analysis, quantitative reverse transcription PCR (qRT-PCR), osteoblast differentiation induction, immunohistochemical and bifluorescein reporter experiments. The results showed that expression of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and Runx2 was increased in ADSCs induced in osteogenic differentiation media for 21 days, while miR-30 expression was downregulated. qRT-PCR and alkaline phosphatase (ALP) histochemical staining assays demonstrated that knockdown of lncRNA MALAT1 or overexpression of miR-30 suppressed Runx2-mediated osteoblast differentiation by suppressing osteocalcin (OCN), osteopontin (OPN) and osterix (OSX) expression. Overexpressing Runx2 reversed the inhibitory effect of miR-30 on osteogenic differentiation of ADSCs. Bifluorescein report experiments confirmed that miR-30 is a potential target of lncRNA MALAT1 and Runx2 is a potential target of miR-30. Taken together, the results suggested that the expression of lncRNA MALAT1 promoted Runx2-mediated osteogenic differentiation of ADSCs by targeting miR-30.
Collapse
Affiliation(s)
- Jiayong Yi
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Dong Liu
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Jian Xiao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
46
|
Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res 2019; 7:10. [PMID: 30937214 PMCID: PMC6437190 DOI: 10.1038/s41413-019-0048-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Andreia Machado Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Sara Reis Moura
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Henrique Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X, Xia H, Li J, Yang X, Liu Q. Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20061519. [PMID: 30917596 PMCID: PMC6471709 DOI: 10.3390/ijms20061519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl₂) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl₂, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl₂ inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl₂ in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl₂. Moreover, during differentiation, the protein levels of Wnt3a, β-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl₂. The current research shows that CdCl₂ suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/β-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl₂.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yingjian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rui Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Ping Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Xiangyu Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Haibo Xia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Junjie Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
48
|
Jing H, Zhang X, Gao M, Luo K, Fu W, Yin M, Wang W, Zhu Z, Zheng J, He X. Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β‐catenin–related pathways. FASEB J 2019; 33:5641-5653. [DOI: 10.1096/fj.201802137rrr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Jing
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaoyang Zhang
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Manchen Gao
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Kai Luo
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei Fu
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Meng Yin
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei Wang
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhongqun Zhu
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jinghao Zheng
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaomin He
- Department of Cardiothoracic SurgeryShanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
49
|
Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234:11524-11536. [PMID: 30656695 DOI: 10.1002/jcp.27815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Abstract
The incidence of postmenopausal osteoporosis research 50% in middle-aged and older women, however, effects of existing therapy are not ideal. Emerging evidence have proved that long noncoding RNAs (lncRNAs) was correlated with multiple physiological and pathology processes including development, carcinogenesis, and osteogenesis. However, reports on lncRNAs regulating bone formation were relatively limited. In this study, we screened osteogenic lncRNAs through mRNA/lncRNA microarray combined with gene coexpression analysis. The biological function of the screened lncRNA was assessed both in vitro and in vivo. The effects of the lncRNA on osteogenic transcription factors were also evaluated. We identified AK016739, which was correlated with osteogenic differentiation and enriched in skeletal tissues of mice. The expression levels of AK016739 in bone-derived mesenchymal stem cells were increased with age and negatively correlated with osteogenic differentiation marker genes. Experiments showed that AK016739 inhibited osteoblast differentiation, and in vivo inhibition of AK016739 by its small interfering RNA would rescue bone formation in ovariectomized osteoporosis mice model. In addition, AK016739 suppressed both expression levels and activities of osteogenic transcription factors. This newly identified lncRNA AK016739 has revealed a new mechanism of osteogenic differentiation and provided new targets for treatment of skeletal disorders.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haoyu Wang
- Department of Software Technology and Service Engineering, School of Software and Microelectronics, Peking University, Beijing, China
| | - Zhixiang Wu
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
50
|
Zhang C, Du S, Cao L. Retracted Article: Long non-coding RNA KCNQ1OT1 promotes osteosarcoma progression by increasing β-catenin activity. RSC Adv 2018; 8:37581-37589. [PMID: 35558611 PMCID: PMC9089326 DOI: 10.1039/c8ra07209d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/07/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Long non-coding RNA KCNQ1OT1 has been associated with the development of different types of cancers. The present research investigated the role of KCNQ1OT1 in osteosarcoma. Methods: Expression level of KCNQ1OT1 in osteosarcoma and paired non-cancerous tissue specimens from 56 osteosarcoma patients and its association with patients' clinicopathological features was investigated. KCNQ1OT1 overexpression and knockdown in primary-cultured osteosarcoma cells was constructed by lentiviral transduction. Influence of KCNQ1OT1 overexpression or knockdown on osteosarcoma cell growth, apoptosis, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation was investigated. Results: Expression of KCNQ1OT1 in osteosarcoma tissue specimens was significantly increased in comparison to that in adjacent counterparts. High expression of KCNQ1OT1 significantly associated with osteosarcoma progression and patients' decreased survival. Overexpression of KCNQ1OT1 significantly increased osteosarcoma cell growth, proliferation, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation while reducing cell apoptosis in vitro, and KCNQ1OT1 knockdown showed opposite effects. Inhibition of beta-catenin/TCF activity by ICG-001 treatment significantly attenuated the promoting effect of KCNQ1OT1 overexpression on osteosarcoma cell malignancy described above. Conclusion: KCNQ1OT1 might be a potential prognostic factor in osteosarcoma. High expression of KCNQ1OT1 might promote osteosarcoma development by increasing the activation of WNT/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Changsheng Zhang
- Department of Minimally Invasive Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital) No. 100 Yongping road Zhengzhou 450000 Henan China +86-0371-85965160
| | - Shengyang Du
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| | - Lei Cao
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| |
Collapse
|