1
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
2
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Portacci A, Iorillo I, Maselli L, Amendolara M, Quaranta VN, Dragonieri S, Carpagnano GE. The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:4271-4285. [PMID: 38785528 PMCID: PMC11119966 DOI: 10.3390/cimb46050260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Galectins are a group of β-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From this standpoint, an increasing body of evidence have recognized galectins as potential biomarkers involved in several aspects of asthma pathophysiology. Among them, galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-10 (Gal-10) are the most extensively studied in human and animal asthma models. These galectins can affect T helper 2 (Th2) and non-Th2 inflammation, mucus production, airway responsiveness, and bronchial remodeling. Nevertheless, while higher Gal-3 and Gal-9 concentrations are associated with a stronger degree of Th-2 phlogosis, Gal-10, which forms Charcot-Leyden Crystals (CLCs), correlates with sputum eosinophilic count, interleukin-5 (IL-5) production, and immunoglobulin E (IgE) secretion. Finally, several galectins have shown potential in clinical response monitoring after inhaled corticosteroids (ICS) and biologic therapies, confirming their potential role as reliable biomarkers in patients with asthma.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Leonardo Maselli
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Monica Amendolara
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | | | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| |
Collapse
|
5
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
6
|
Venditto L, Morano S, Ferrante G, Piazza M, Tenero L, Piacentini G, Pecoraro L. The Evolution of Scientific Knowledge in Childhood Asthma over Time: A Surprising History. CHILDREN (BASEL, SWITZERLAND) 2024; 11:262. [PMID: 38397374 PMCID: PMC10887562 DOI: 10.3390/children11020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Asthma is a disease that has been described since the times of Hammurabi. However, it is only since the 1960s that effective therapeutic strategies have been available. Pathogenic mechanisms underlying the disease have been deeply studied, contributing to creating a "patient-specific asthma" definition. Biological drugs have been approved over the last twenty years, improving disease management in patients with severe asthma via a "precision medicine-driven approach". This article aims to describe the evolution of scientific knowledge in childhood asthma, focusing on the most recent biological therapies and their indications for patients with severe asthma.
Collapse
Affiliation(s)
| | | | - Giuliana Ferrante
- Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy; (L.V.); (S.M.); (M.P.)
| | | | | | | | | |
Collapse
|
7
|
Jesenak M, Durdik P, Oppova D, Franova S, Diamant Z, Golebski K, Banovcin P, Vojtkova J, Novakova E. Dysfunctional mucociliary clearance in asthma and airway remodeling - New insights into an old topic. Respir Med 2023; 218:107372. [PMID: 37516275 DOI: 10.1016/j.rmed.2023.107372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Bronchial asthma is a heterogeneous respiratory condition characterized by chronic airway inflammation, airway hyperresponsiveness and airway structural changes (known as remodeling). The clinical symptoms can be evoked by (non)specific triggers, and their intensity varies over time. In the past, treatment was mainly focusing on symptoms' alleviation; in contrast modern treatment strategies target the underlying inflammation, even during asymptomatic periods. Components of airway remodeling include epithelial cell shedding and dysfunction, goblet cell hyperplasia, subepithelial matrix protein deposition, fibrosis, neoangiogenesis, airway smooth muscle cell hypertrophy and hyperplasia. Among the other important, and frequently forgotten aspects of airway remodeling, also loss of epithelial barrier integrity, immune defects in anti-infectious defence and mucociliary clearance (MCC) dysfunction should be pointed out. Mucociliary clearance represents one of the most important defence airway mechanisms. Several studies in asthmatics demonstrated various dysfunctions in MCC - e.g., ciliated cells displaying intracellular disorientation, abnormal cilia and cytoplasmic blebs. Moreover, excessive mucus production and persistent cough are one of the well-recognized features of severe asthma and are also associated with defects in MCC. Damaged airway epithelium and impaired function of the ciliary cells leads to MCC dysfunction resulting in higher susceptibility to infection and inflammation. Therefore, new strategies aimed on restoring the remodeling changes and MCC dysfunction could present a new therapeutic approach for the management of asthma and other chronic respiratory diseases.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
| | - Peter Durdik
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Dasa Oppova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic; Department of Clinical Pharmacy & Pharmacology, University in Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Banovcin
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Jarmila Vojtkova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia.
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
8
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
9
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
10
|
Vianello A, Guarnieri G, Achille A, Lionello F, Lococo S, Zaninotto M, Caminati M, Senna G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin Chem Lab Med 2023; 61:1679-1687. [PMID: 36989607 DOI: 10.1515/cclm-2022-1323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Over 3% of asthmatic patients are affected by a particularly severe form of the disease ("severe asthma", SA) which is often refractory to standard treatment. Airway remodeling (AR), which can be considered a critical characteristic of approximately half of all patients with SA and currently thought to be the main mechanism triggering fixed airway obstruction (FAO), seems to be a key factor affecting a patient's outcome. Despite the collective efforts of internationally renowned experts, to date only a few biomarkers indicative of AR and no recognizable biomarkers of lung parenchymal remodeling have been identified. This work examines the pathogenesis of airway and lung parenchymal remodeling and the serum biomarkers that may be able to identify the severe asthmatic patients who may develop FAO. The study also aims to examine if Krebs von den Lungen-6 (KL-6) could be considered a diagnostic biomarker of lung structural damage in SA.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Martina Zaninotto
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Ito Y, Usui-Ouchi A, Ebihara N. Galectin-3, a damage-associated molecular pattern, in tears of patients with vernal keratoconjunctivitis. Jpn J Ophthalmol 2023:10.1007/s10384-023-00994-9. [PMID: 37079165 DOI: 10.1007/s10384-023-00994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/24/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Galectin-3 is a damage-associated molecular pattern (DAMPs), released from damaged or dying cells. In this study, we investigated the concentration and source of galectin-3 in the tears of patients with vernal keratoconjunctivitis (VKC) and evaluated whether the concentration of galectin-3 in tears represents a biomarker of corneal epithelial damage. STUDY DESIGN Clinical and experimental. METHODS We measured the concentration of galectin-3 in tear samples from 26 patients with VKC and 6 healthy controls by enzyme-linked immunosorbent assay (ELISA). The expression of galectin-3 in cultured human corneal epithelial cells (HCEs) stimulated with or without tryptase or chymase was investigated by polymerase chain reaction (PCR), ELISA, and Western blotting. We also estimated the concentration of galectin-3 in the supernatants of cultured HCEs induced to necrosis. Finally, we investigated whether recombinant galectin-3 induced the expression of various genes related to cell migration or the cell cycle in HCEs by using microarray analysis. RESULTS High concentrations of galectin-3 were detected in the tears of patients with VKC. The concentration showed significant correlation with the severity of corneal epithelial damage. Stimulation of cultured HCEs with various concentrations of tryptase or chymase had no effect on the expression of galectin-3. However, high concentrations of galectin-3 were detected in the supernatants of necrotic HCEs. Recombinant human galectin-3 induced various cell migration- and cell cycle-related genes. CONCLUSION The concentrations of galectin-3 in the tears of patients with VKC may represent a biomarker of the severity of corneal epithelial damage.
Collapse
Affiliation(s)
- Yousuke Ito
- Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan.
| |
Collapse
|
12
|
Lin H, Li H. How does cigarette smoking affect airway remodeling in asthmatics? Tob Induc Dis 2023; 21:13. [PMID: 36741543 PMCID: PMC9881586 DOI: 10.18332/tid/156047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
Asthma is a prevalent chronic airway inflammatory disease involving multiple cells, and the prolonged course of the disease can cause airway remodeling, resulting in irreversible or partial irreversible airflow limitation and persistent airway hyperresponsiveness (AHR) in asthmatics. Therefore, we must ascertain the factors that affect the occurrence and development of airway remodeling in asthmatics. Smokers are not uncommon in asthmatics. However, there is no systematic description of how smoking promotes airway remodeling in asthmatics. This narrative review summarizes the effects of smoking on airway remodeling in asthmatics, and the progress of the methods for evaluating airway remodeling.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
13
|
Zhang Q, Li C, Wan J, Zhang M, Nong Y, Lin J. Role of clinical biomarkers in predicting the effectiveness of omalizumab. Ther Adv Respir Dis 2023; 17:17534666231170821. [PMID: 37148201 PMCID: PMC10164849 DOI: 10.1177/17534666231170821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
OBJECTIVE To explore whether baseline clinical biomarkers and characteristics can be used to predict the responsiveness of omalizumab. METHODS We retrospectively analyzed a cohort of patients with severe asthma who received omalizumab treatment and collected their baseline data and relevant laboratory examination results along with case records of omalizumab treatment responsiveness after 16 weeks. We compared the differences in variables between the group of patients that responded to omalizumab therapy and the non-responder group, and then performed univariate and multivariate logistic regression. Finally, we analyzed the difference in response rate for subgroups by selecting cut-off values for the variables using Fisher's exact probability method. RESULTS This retrospective, single-center observational study enrolled 32 patients with severe asthma who were prescribed daily high-dose inhaled corticosteroids and long-acting β2 receptor agonists on long-acting muscarinic receptor antagonists with or without OCS. Data on age, sex, BMI, bronchial thermoplasty, FeNO, serum total IgE, FEV1, blood eosinophils, induced sputum eosinophils, blood basophils, and complications were not significantly different between the responder and non-responder groups. In the univariate and multivariate logistic regression, all the variants were not significant, and we were unable to build a regression model. We used normal high values and the mean or median of variables as cut-off values to create patient subgroups for the variables and found no significant difference in the omalizumab response rate between the subgroups. CONCLUSION The responsiveness of omalizumab is not associated with pretreatment clinical biomarkers, and these biomarkers should not be used to predict the responsiveness of omalizumab.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi hospital of China-Japan Friendship Hospital, Nanchang, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Jingxuan Wan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi hospital of China-Japan Friendship Hospital, Nanchang, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Ying Nong
- Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2, East Yinghua Road, Chaoyang, Beijing 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
15
|
Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1023. [PMID: 36267708 PMCID: PMC9577744 DOI: 10.21037/atm-22-2835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022]
Abstract
Background and Objective Asthma is a common chronic disorder of the airway, and its disability and mortality rates continue to increase each year. Due to the lack of an ideal treatment, asthma control in China remains unsatisfactory. Airway remodeling is the pathological basis for the eventual development of the fixed airflow limitation in asthmatic patients. Early diagnosis and the prevention of airway remodeling has the potential to decrease disease severity, to improve control, and to prevent disease expression. Methods This article presents an overview. The literature was combed through via CNKi and PubMed according to the listed keywords. We considered Chinese and English original publications (basic science and clinical), reviews and abstracts of 21th Century. Key Content and Findings We review the pathological features and pathogenesis of, and the interventional treatment options for airway remodeling in asthmatic patients, emphasizing the importance of airway remodeling in asthma and providing novel insights into the prevention and control of asthma. Conclusions Thus, there have been research advances in airway remodeling, especially in the areas of slowing down or reversing airway remodeling. As growing studies showed, treating airway remodeling is a promising strategy in preventing the occurrence and progression of asthma. Breakthroughs in these difficulties airway remodeling still facing will open up new avenues in the research and treatment of asthma.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Respiratory and Critical Care Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
16
|
Tsuge M, Ikeda M, Tsukahara H. Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1253. [PMID: 36010143 PMCID: PMC9406359 DOI: 10.3390/children9081253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Anti-inflammatory therapy, centered on inhaled steroids, suppresses airway inflammation in asthma, reduces asthma mortality and hospitalization rates, and achieves clinical remission in many pediatric patients. However, the spontaneous remission rate of childhood asthma in adulthood is not high, and airway inflammation and airway remodeling persist after remission of asthma symptoms. Childhood asthma impairs normal lung maturation, interferes with peak lung function in adolescence, reduces lung function in adulthood, and increases the risk of developing chronic obstructive pulmonary disease (COPD). Early suppression of airway inflammation in childhood and prevention of asthma exacerbations may improve lung maturation, leading to good lung function and prevention of adult COPD. Biological drugs that target T-helper 2 (Th2) cytokines are used in patients with severe pediatric asthma to reduce exacerbations and airway inflammation and improve respiratory function. They may also suppress airway remodeling in childhood and prevent respiratory deterioration in adulthood, reducing the risk of COPD and improving long-term prognosis. No studies have demonstrated a suppressive effect on airway remodeling in childhood severe asthma, and further clinical trials using airway imaging analysis are needed to ascertain the inhibitory effect of biological drugs on airway remodeling in severe childhood asthma. In this review, we describe the natural prognosis of lung function in childhood asthma and the risk of developing adult COPD, the pathophysiology of allergic airway inflammation and airway remodeling via Th2 cytokines, and the inhibitory effect of biological drugs on airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Mitsuru Tsuge
- Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masanori Ikeda
- Okayama University School of Medicine, Okayama 700-8558, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
19
|
Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022; 31:210176. [PMID: 35082128 PMCID: PMC9488919 DOI: 10.1183/16000617.0176-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica Kraft
- University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
20
|
Busse WW, Melén E, Menzies-Gow AN. Holy Grail: the journey towards disease modification in asthma. Eur Respir Rev 2022; 31:31/163/210183. [PMID: 35197266 PMCID: PMC9488532 DOI: 10.1183/16000617.0183-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
At present, there is no cure for asthma, and treatment typically involves therapies that prevent or reduce asthma symptoms, without modifying the underlying disease. A “disease-modifying” treatment can be classed as able to address the pathogenesis of a disease, preventing progression or leading to a long-term reduction in symptoms. Such therapies have been investigated and approved in other indications, e.g. rheumatoid arthritis and immunoglobulin E-mediated allergic disease. Asthma's heterogeneous nature has made the discovery of similar therapies in asthma more difficult, although novel therapies (e.g. biologics) may have the potential to exhibit disease-modifying properties. To investigate the disease-modifying potential of a treatment, study design considerations can be made, including: appropriate end-point selection, length of trial, age of study population (key differences between adults/children in physiology, pathology and drug metabolism) and comorbidities in the patient population. Potential future focus areas for disease-modifying treatments in asthma include early assessments (e.g. to detect patterns of remodelling) and interventions for patients genetically susceptible to asthma, interventions to prevent virally induced asthma and therapies to promote a healthy microbiome. This review explores the pathophysiology of asthma, the disease-modifying potential of current asthma therapies and the direction future research may take to achieve full disease remission or prevention. Asthma is a complex, heterogeneous disease, which currently has no cure; this review explores the disease-modifying potential of asthma therapies and the direction future research may take to achieve disease remission or prevention.https://bit.ly/31AxYou
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | | |
Collapse
|
21
|
Omalizumab: An Optimal Choice for Patients with Severe Allergic Asthma. J Pers Med 2022; 12:jpm12020165. [PMID: 35207654 PMCID: PMC8878072 DOI: 10.3390/jpm12020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Omalizumab is the first monoclonal antibody that was globally approved as a personalized treatment option for patients with moderate-to-severe allergic asthma. This review summarizes the knowledge of almost two decades of use of omalizumab to answer some important everyday clinical practice questions, concerning its efficacy and safety and its association with other asthma-related and drug-related parameters. Evidence suggests that omalizumab improves asthma control and reduces the incidence and frequency of exacerbations in patients with severe allergic asthma. Omalizumab is also effective in those patients in reducing corticosteroid use and healthcare utilization, while it also seems to improve lung function. Several biomarkers have been recognized in predicting its efficacy in its target group of patients, while the optimal duration for evaluating its efficacy is between 16 and 32 weeks.
Collapse
|
22
|
The Impact of Monoclonal Antibodies on Airway Smooth Muscle Contractility in Asthma: A Systematic Review. Biomedicines 2021; 9:biomedicines9091281. [PMID: 34572466 PMCID: PMC8468486 DOI: 10.3390/biomedicines9091281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Airway hyperresponsiveness (AHR) represents a central pathophysiological hallmark of asthma, with airway smooth muscle (ASM) being the effector tissue implicated in the onset of AHR. ASM also exerts pro-inflammatory and immunomodulatory actions, by secreting a wide range of cytokines and chemokines. In asthma pathogenesis, the overexpression of several type 2 inflammatory mediators including IgE, IL-4, IL-5, IL-13, and TSLP has been associated with ASM hyperreactivity, all of which can be targeted by humanized monoclonal antibodies (mAbs). Therefore, the aim of this review was to systematically assess evidence across the literature on mAbs for the treatment of asthma with respect to their impact on the ASM contractile tone. Omalizumab, mepolizumab, benralizumab, dupilumab, and tezepelumab were found to be effective in modulating the contractility of the ASM and preventing the AHR, but no available studies concerning the impact of reslizumab on the ASM were identified from the literature search. Omalizumab, dupilumab, and tezepelumab can directly modulate the ASM in asthma, by specifically blocking the interaction between IgE, IL-4, and TSLP, and their receptors are located on the surface of ASM cells. Conversely, mepolizumab and benralizumab have prevalently indirect impacts against AHR by targeting eosinophils and other immunomodulatory effector cells promoting inflammatory processes. AHR has been suggested as the main treatable trait towards precision medicine in patients suffering from eosinophilic asthma, therefore, well-designed head-to-head trials are needed to compare the efficacy of those mAbs that directly target ASM contractility specifically against the AHR in severe asthma, namely omalizumab, dupilumab, and tezepelumab.
Collapse
|
23
|
Shevchenko O, Tsirulnikova O, Sharapchenko S, Pashkov I, Bekov M, Shigaev E, Gichkun O, Velikiy D, Gautier S. MiR-339 and galectin-3: diagnostic value in patients with airway obstruction after lung transplantation. Transpl Int 2021; 34:1733-1739. [PMID: 34448266 DOI: 10.1111/tri.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Respiratory complications can be the cause of graft dysfunction after lung transplantation (LTx). MicroRNAs are small regulatory molecules-potential biomarkers of respiratory diseases and post-transplant complications. Galectin-3 is highly expressed in fibrosis of transplanted solid organs. The aim was to evaluate the expression of plasma miR-339 and galectin-3 concentrations in lung recipients including with airway obstruction after LTx. The study included 57 lung recipients (34 men and 23 women aged 10 to 74 years) were followed up to 5 years after LTx. The plasma microRNAs were detected by real-time PCR; galectin-3 levels were measured by ELISA. During follow-up in 30 recipients, post-transplant complications were detected: 12 (40.0%) cases of airway obstruction. The levels of miR-339 and galectin-3 were significantly higher in recipients with airway obstruction compare with 27 (47.3%) recipients without any complications (P = 0.036 and P = 0.014, resp.). Increasing miR-339 (above the 0.02 fold change) and galectin-3 (above the 11.7 ng/ml) threshold plasma levels in lung recipients is associated with high risk (RR = 7.14 ± 0.97 [95% CI 1.05-48.60], P = 0.045) of airway obstruction after LTx. A measurement of miR-339 expression in combination with galectin-3 level might be perspective to identify recipients at risk of airway obstruction after LTx.
Collapse
Affiliation(s)
- Olga Shevchenko
- Department of Regulatory mechanisms in Transplantology, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.,Department of Transplantology and Artificial Organs, Sechenov University, Moscow, Russian Federation
| | - Olga Tsirulnikova
- Department of Transplantology and Artificial Organs, Sechenov University, Moscow, Russian Federation.,Department of Therapy, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Sofya Sharapchenko
- Department of Regulatory mechanisms in Transplantology, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Ivan Pashkov
- Department of Surgery №3, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Maksat Bekov
- Department of Endoscopy, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Egor Shigaev
- Department of Surgery №3, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Olga Gichkun
- Department of Regulatory mechanisms in Transplantology, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.,Department of Transplantology and Artificial Organs, Sechenov University, Moscow, Russian Federation
| | - Dmitriy Velikiy
- Department of Regulatory mechanisms in Transplantology, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Sergey Gautier
- Department of Transplantology and Artificial Organs, Sechenov University, Moscow, Russian Federation.,Department of Surgery №3, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.,Director, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Severe asthma remains a debilitating disease and a challenge for the clinicians. Novel therapies have been introduced and have greatly improved asthma control and more are under development or in clinical studies. These include anti-IL5/IL5R, anti-IL4/IL4R, anti IL13, anti- thymic stromal lymphopoietin (TSLP) and more, and severe asthma is currently managed in personalized medicine approach. However, there is still an unmet need to discover new, clinically available biomarkers and targeted therapies for a large group of severe asthma patients, particularly those with T2-low asthma. In this review, we briefly present the phenotypes and endotypes of severe asthma, the omics technologies in asthma as well as current and future treatments for both T2-high and T2-low asthma. RECENT FINDINGS In this review, we are going to present the effectiveness and safety of anti-IL5 therapies, the clinical trials for dupilumab and tezepelumab and the most significant molecules and biological agents used in trials as possible treatments forT2-low asthma. SUMMARY Novel anti-IL5 agents have changed the management of T2-high asthma resulting in improved disease control, QoL and lung function and importantly, fewer exacerbations. Nevertheless, there is still the need to find new treatments, particularly for T2-low asthma, which remains a challenge.
Collapse
|
25
|
CD3E as a new predictive biomarker of response to omalizumab treatment in asthma patients: Evidence from bioinformatic analysis. Int Immunopharmacol 2021; 93:107423. [PMID: 33578181 DOI: 10.1016/j.intimp.2021.107423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Omalizumab is a bio-targeted agent approved as add-on therapy for the treatment of severe asthma. Most patients with severe asthma show no response to omalizumab. American Thoracic Society (ATS) and European Respiratory Society (ERS) recommend blood eosinophil count and fractional exhaled nitric oxide (FeNO) as biomarkers with high value for increased response to omalizumab and periostin as a biomarker with a low value. In this study, we aimed to identify the biomarkers for predicting treatment response to omalizumab by performing whole blood transcriptional expression profiling using array and clinical data from GSE134544. METHODS We analyzed GSE134544 whole blood transcriptional and clinical data of omalizumab treatment using xCell, weighted gene co-expression network analysis (WGCNA), gene ontology enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network, and logistic regression analysis. RESULTS We calculated the immune enrichment score using xCell and found that CD4+ T cells, CD4+ Tem, CD4+ memory T cells, CD8+ Tcm, and dendritic cells (DC) were relatively higher in responders than in non-responders. Analysis of omalizumab response using WGCNA revealed that the above-mentioned significant immune cells in the red module was relevant to the sample traits; there were 547 genes in the red module. We identified 20 hub genes for the PPI network using cytoHubba, a Cytoscape plugin. Using logistic regression analysis, CD3E was found to be the only significant biomarker, and the area under the curve of ROC curves was 0.763. CONCLUSION CD3E maybe a new predictive biomarker of response to omalizumab treatment in asthma patients and be used to select more suitable asthma patients for omalizumab treatment.
Collapse
|
26
|
Cheng SL. Immunologic Pathophysiology and Airway Remodeling Mechanism in Severe Asthma: Focused on IgE-Mediated Pathways. Diagnostics (Basel) 2021; 11:diagnostics11010083. [PMID: 33419185 PMCID: PMC7825545 DOI: 10.3390/diagnostics11010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the expansion of the understanding in asthma pathophysiology and the continual advances in disease management, a small subgroup of patients remains partially controlled or refractory to standard treatments. Upon the identification of immunoglobulin E (IgE) and other inflammatory mediators, investigations and developments of targeted agents have thrived. Omalizumab is a humanized monoclonal antibody that specifically targets the circulating IgE, which in turn impedes and reduces subsequent releases of the proinflammatory mediators. In the past decade, omalizumab has been proven to be efficacious and well-tolerated in the treatment of moderate-to-severe asthma in both trials and real-life studies, most notably in reducing exacerbation rates and corticosteroid use. While growing evidence has demonstrated that omalizumab may be potentially beneficial in treating other allergic diseases, its indication remains confined to treating severe allergic asthma and chronic idiopathic urticaria. Future efforts may be bestowed on determining the optimal length of omalizumab treatment, seeking biomarkers that could better predict treatment response and as well as extending its indications.
Collapse
Affiliation(s)
- Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Taipei Hospital, Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli, Taoyuan 32056, Taiwan
| |
Collapse
|
27
|
Regulatory Effects of Nur77 on Airway Remodeling and ASMC Proliferation in House Dust Mite-Induced Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4565246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Airway remodeling played a vital role in the development of asthma, and airway smooth muscle (ASM) mass was its hallmark. However, few strategies targeting ASM remodeling were developed in treating asthma. Nur77 was the transcription factor nuclear receptor involved in the pathogenesis of several lung diseases. Nur77 distribution and expression were determined in an HDM-mediated allergic asthma model. Its effect on airway hyperresponsiveness (AHR), chronic inflammation, and ASM remodeling in asthmatic mice was evaluated using a lentivirus-mediated shRNA. Possible mechanisms were explored by examining Nur77 actions and its underlying pathways in primary human AMC cells (ASMCs). In this study, we reported that Nur77 expression was mainly distributed along ASM and increased in lungs of HDM-challenged mice. Nur77 depletion by lentivirus-mediated shRNA ameliorated AHR, chronic inflammation, goblet cell hyperplasia, and airway remodeling in the asthmatic mouse model. By means of primary human ASMC, we discovered that Nur77 upregulation by HDM stimulation promoted cell proliferation and ROS production, as well as reduced antioxidant gene expression. These alterations might associate with MFN2/MAPK/AKT pathways. These findings broadened our understanding of airway remodeling and ASMC proliferation, which might provide a novel therapeutic target for asthma patients.
Collapse
|
28
|
Emson C, Diver S, Chachi L, Megally A, Small C, Downie J, Parnes JR, Bowen K, Colice G, Brightling CE. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res 2020; 21:265. [PMID: 33050900 PMCID: PMC7550845 DOI: 10.1186/s12931-020-01513-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with severe, uncontrolled asthma, particularly those with a non-eosinophilic phenotype, have a great unmet need for new treatments that act on a broad range of inflammatory pathways in the airway. Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin, an epithelial cytokine. In the PATHWAY phase 2b study (NCT02054130), tezepelumab reduced exacerbations by up to 71% in adults with severe, uncontrolled asthma, irrespective of baseline eosinophilic inflammatory status. This article reports the design and objectives of the phase 2 CASCADE study. METHODS CASCADE is an ongoing exploratory, phase 2, randomized, double-blind, placebo-controlled, parallel-group study aiming to assess the anti-inflammatory effects of tezepelumab 210 mg administered subcutaneously every 4 weeks for 28 weeks in adults aged 18-75 years with uncontrolled, moderate-to-severe asthma. The primary endpoint is the change from baseline to week 28 in airway submucosal inflammatory cells (eosinophils, neutrophils, T cells and mast cells) from bronchoscopic biopsies. Epithelial molecular phenotyping, comprising the three-gene-mean technique, will be used to assess participants' type 2 (T2) status to enable evaluation of the anti-inflammatory effect of tezepelumab across the continuum of T2 activation. Other exploratory analyses include assessments of the impact of tezepelumab on airway remodelling, including reticular basement membrane thickening and airway epithelial integrity. At the onset of the COVID-19 pandemic, the protocol was amended to address the possibility that site visits would be limited. The amendment allowed for: at-home dosing of study drug by a healthcare professional, extension of the treatment period by up to 6 months so patients are able to attend an onsite visit to undergo the end-of-treatment bronchoscopy, and replacement of final follow-up visits with a virtual or telephone visit. DISCUSSION CASCADE aims to determine the mechanisms by which tezepelumab improves clinical asthma outcomes by evaluating the effect of tezepelumab on airway inflammatory cells and remodelling in patients with moderate-to-severe, uncontrolled asthma. An important aspect of this study is the evaluation of the anti-inflammatory effect of tezepelumab across patients with differing levels of eosinophilic and T2 inflammation. TRIAL REGISTRATION NCT03688074 (ClinicalTrials.gov). Registered 28 September 2018.
Collapse
Affiliation(s)
- Claire Emson
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | | | | | - Ayman Megally
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Cherrie Small
- Development Operations, BioPharmaceuticals R&D, AstraZeneca, Mississauga, Ontario, Canada
| | | | | | - Karin Bowen
- Biometrics, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gene Colice
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | |
Collapse
|
29
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
30
|
Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis 2020; 12:6090-6101. [PMID: 33209441 PMCID: PMC7656354 DOI: 10.21037/jtd-20-1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway remodeling, as a major characteristic of bronchial asthma, is critical to the progression of this disease, whereas it is of less importance in clinical management. Complying with the current stepwise treatment standard for asthma, the choice of intervention on the clinical status is primarily determined by the patient’s treatment response to airway inflammation. However, a considerable number of asthmatic patients, especially severe asthmatic subjects, remain uncontrolled though they have undergone fortified anti-inflammation treatment. In the past few years, a growing number of biologics specific to asthma phenotypes have emerged, bringing new hope for patients with refractory asthma and severe asthma. While at the same time, the effect of airway remodeling on asthma treatment has become progressively prominent. In the era of personalized treatment, it has become one of the development directions for asthma treatment to find reliable airway remodeling biomarkers to assist in asthma phenotypes classification, and to further combine multiple phenotypes to accurately treat patients. In the present study, the research status of airway remodeling in asthma is reviewed to show the basis for classifying and treating such disease. Besides, several selected airway remodeling biomarkers and possibility to use them in individual treatment are discussed as well. This study considers that continuously optimized mechanisms and emerging biomarkers for airway remodeling in the future may further support individual therapy for asthma patients.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Pajno GB, Castagnoli R, Arasi S, Licari A, Caminiti L, Marseglia GL. Pediatric use of omalizumab for allergic asthma. Expert Opin Biol Ther 2020; 20:695-703. [PMID: 32241196 DOI: 10.1080/14712598.2020.1751115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Severe pediatric asthma is associated with significant morbidity as well as with a high economic burden. It represents a heterogeneous disease with multiple clinical phenotypes. Currently, physicians are facing the challenge to provide a 'personalized medicine approach', which is tailored to the diverse pathomechanisms underlying clinical presentations. Three main endotypes of airway inflammation have been described in children with severe asthma. While neutrophilic and paucigranulocytic inflammatory patterns are quite uncommon in childhood, type Th2 inflammation asthma with elevated IgE is the most prevalent in pediatric asthma. Considering the pivotal role of IgE in type Th2 inflammation asthma, the blockade of IgE using anti-IgE therapy represents a potent therapeutic option for severe pediatric asthma in children. AREAS COVERED This review aims to focus on the role of omalizumab as a treatment option in pediatric patients (aged six years and above) with severe allergic asthma. EXPERT OPINION The clinical efficacy and safety of omalizumab for the treatment of pediatric asthma is well documented in clinical trials and observational studies. Further studies are still required to characterize the potential benefit of anti-IgE therapy in airway remodeling, identify additional biomarkers of clinical response and address current unmet needs, including the limit on omalizumab use in children younger than six years.
Collapse
Affiliation(s)
| | - Riccardo Castagnoli
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| | - Stefania Arasi
- Pediatric Allergology Unit, Bambino Gesù Hospital (IRCCS) , Rome, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| | - Lucia Caminiti
- Department of Pediatrics, Allergy Unit, University of Messina , Messina, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| |
Collapse
|
32
|
Qiu C, Zhong L, Huang C, Long J, Ye X, Wu J, Dai W, Lv W, Xie C, Zhang J. Cell-bound IgE and plasma IgE as a combined clinical diagnostic indicator for allergic patients. Sci Rep 2020; 10:4700. [PMID: 32170187 PMCID: PMC7069990 DOI: 10.1038/s41598-020-61455-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Allergic responses are mainly caused by IgE, which is often located on the cell surface. The current diagnostic method detects both allergen-specific IgE and total IgE levels, but a number of allergic patients have a normal serum IgE level, which is a poor clinical correlate for allergy. Here, we developed a simple method to detect the level of cell-bound IgE by dissociating it from blood cells with lactic acid. Dissociated cell-bound IgE and plasma IgE levels were detected using the same ELISA kit at the same time. We established two clinical cohorts: an allergic patient group and a healthy participant group. In general, cell-bound IgE correlated well with plasma IgE; however, some patients exhibited high cell-bound IgE levels but low plasma IgE levels. We recommended 350 ng/mL peripheral blood total IgE (cell-bound IgE + plasma IgE) as the cut-off value for allergy diagnosis. Using this indicator, 90.32% of our allergic patients were correctly diagnosed. The peripheral blood total IgE level is a promising clinical diagnostic indicator in allergic patients and will provide more guidance for allergy diagnosis and therapeutic evaluation.
Collapse
Affiliation(s)
- Chuanghua Qiu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Lihong Zhong
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Chunxiu Huang
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Jia Long
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Xuejun Ye
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
- Shenzhen Immunotherapy Biotechnology Co., Ltd, Shenzhen, Guangdong, 518109, China
| | - Jingbo Wu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Wenjie Dai
- Medical Research Center, Yuebei People's Hospital, Shaoguan, Guangdong, 512026, China
| | - Wei Lv
- Shenzhen University General Hospital, Shenzhen, Guangdong, 518035, China
| | - Chongwei Xie
- Medical Research Center, Yuebei People's Hospital, Shaoguan, Guangdong, 512026, China.
| | - Junfang Zhang
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
33
|
Xu P, Wang L, Chen D, Feng M, Lu Y, Chen R, Qiu C, Li J. The application of proteomics in the diagnosis and treatment of bronchial asthma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:132. [PMID: 32175425 DOI: 10.21037/atm.2020.02.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bronchial asthma is a common chronic inflammatory disease of the airways. Although its pathogenic mechanism remains unknown, it is influenced by both genetic and environmental factors. The emergence and application of proteomic technologies can help to facilitate analysis of the changes in transcription factors, inflammatory mediators, chemokines, cytokines, and cell apoptosis-and proliferation-related proteins in the pathological processes of asthma. Proteomic technologies can unearth prospects and theoretical bases for improved understanding of the biological mechanism of asthma and effective identification of diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Lingwei Wang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Dandan Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Mengjie Feng
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| |
Collapse
|
34
|
Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Bartezaghi M, Saccheri F, Canonica GW. Plasma Galectin-3 and urine proteomics predict FEV 1 improvement in omalizumab-treated patients with severe allergic asthma: Results from the PROXIMA sub-study. World Allergy Organ J 2020; 13:100095. [PMID: 32015785 PMCID: PMC6992845 DOI: 10.1016/j.waojou.2019.100095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Patients with severe allergic asthma (SAA) when treated with omalizumab may exhibit different extent of response. Identifying biomarkers that can predict the extent of treatment effectiveness in patients can be useful in personalizing omalizumab treatment. Methods Patients from the longitudinal phase of the PROXIMA study were selected for this ancillary study. After 12 months of omalizumab treatment, patients were categorized according to their response to treatment as: "clinical responder" (Asthma Control Questionnaire [ACQ] total score <1 at Month 12 and/or with a reduction in number of exacerbation versus the previous year); "functional responder" (an increment of ≥0.1 L in forced expiratory volume in 1 s [FEV1] at Month 12 versus baseline); and "super responder" (among clinical responders group, who also showed a functional response). Plasma galectin-3 (GAL-3) levels were quantified using a micro titer plate-based enzyme linked immunosorbent assay kit. Results The Majority of patients (86.36%) in sub-study population were identified as clinical responders. Of the total patients identified as clinical responders, 64.86% were identified as super responders. A statistically significant difference in the baseline plasma GAL-3 levels between responders and non-responders was observed only in the functional responders group (P = 0.0446). Patients with plasma GAL-3 level of ≥11 ng/mL had a greater probability of being a super responder (P = 0.0118) or a functional responder (P = 0.0032). Conclusion Our findings support the use of plasma GAL-3 as a predictive marker to stratify responders and identify super responders and functional responders to omalizumab treatment in patients with severe allergic asthma using less invasive sample like plasma.
Collapse
Affiliation(s)
- Anna Maria Riccio
- Allergy & Respiratory Diseases Clinic, DIMI, University of Genoa, Genoa, Italy
| | | | - Laura De Ferrari
- Allergy & Respiratory Diseases Clinic, DIMI, University of Genoa, Genoa, Italy
| | - Rossana Rossi
- Institute Biomedical Technologies, ITB-CNR, Segrate, Italy
| | | | | | | | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Personalized Medicine Clinic Asthma & Allergy,Humanitas University, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | |
Collapse
|
35
|
Bagnasco D, Passalacqua G, Caminati M, Heffler E, Menzella F, De Ferrari L, Riccio AM, Folli C, Canonica GW. Evolving phenotypes to endotypes: is precision medicine achievable in asthma? Expert Rev Respir Med 2020; 14:163-172. [PMID: 31899999 DOI: 10.1080/17476348.2020.1703675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: The development of biologic molecules led to a drastic change in the therapeutic approach to asthma. With the prospect of acting on different pathophysiological mechanisms of the disease, the idea of precision medicine was developed, in which a single molecule is able to modify a specific triggering mechanism. Thus, it seemed limiting to stop at the distinction of patients phenotypes and the concept of endotypes became more relevant in the therapeutic approach.Areas covered: This review deepened the topic of precision medicine through the transition from phenotyping to endotyping. We performed a review of the literature, preferring articles quoted in Medline and published in journals with an impact factor. Results showed that it is fundamental to take into consideration the role of biomarkers and the related therapies currently available for precision medicine.Expert opinion: The possible overlap of patients in different phenotypes requires a more precise classification, which considers endotypization. With the development of biological drugs able to modify and modulate some pathophysiological mechanisms of the disease, the theoretical concept of endotyping becomes practical, allowing the clinician to choose the specific mechanism to 'attack' in order to control the disease.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Reggio Emilia, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Chiara Folli
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
36
|
Guida G, Riccio AM. Immune induction of airway remodeling. Semin Immunol 2019; 46:101346. [PMID: 31734128 DOI: 10.1016/j.smim.2019.101346] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Airway remodeling is accepted to be a determining component within the natural history of asthma. It is a phenomenon characterized by changes in the airways structures that marches in parallel with and can be influenced by airway inflammation, floating at the interface between both natural and adaptive immunity and physical and mechanical cells behavior. In this review we aimed to highlight the comprehensive, yet not exhaustive, evidences of how immune cells induce, regulate and adapt to the recognized markers of airway remodeling. Mucous cell hyperplasia, epithelial dysfunction and mesenchymal transition, extracellular matrix protein synthesis and restructuration, fibroblast to myofibroblast transition, airway smooth muscle proliferation, bioactive and contractile properties, and vascular remodeling encompass complex physiopathological mechanisms that can be induced, suppressed or regulated by different cellular and molecular pathways. Growth factors, cytokines, chemokines and adhesion molecules expressed or derived either from the immune network of cells infiltrating the asthmatic airways and involving T helper lymphocytes, immune lymphoid cells, dendritic cells, eosinophils, neutrophils, mast cells or by the structural components such as epithelial cells, fibroblasts, myocytes, airway smooth muscle cells concur with protein cellular matrix component and metalloproteases in modifying the airway structure in a detrimental way. The consequences in lung function decline, fixed airway obstruction and clinical severity of the disease suggest the possibility of identify among the immune molecular pathway of remodeling some biological parameters or signal pathway to be either a good tracer for monitoring the disease evolution or a target for hypothetical phenotypes and endotypes. In the era of personalized medicine, a biomarker of remodeling might predict a response to small-molecule inhibitors or biologicals potentially targeting a fundamental aspect of asthma pathogenesis that impacts on the low responsiveness to airway inflammation directed treatments.
Collapse
Affiliation(s)
- Giuseppe Guida
- Allergology and Lung Pathology, Santa Croce and Carle Hospital, Cuneo - Antonio Carle Hospital, Via Antonio Carle 5, 12100, Confreria (CN), Italy.
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases - Department of Internal Medicine, University of Genoa, Italy.
| |
Collapse
|
37
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
38
|
Abstract
IgE are absolutely required for initiation of allergy reactions, which affect over 20% of the world's population. IgE are the least prevalent immunoglobulins in circulation with 12-h and 2-day half-lives in mouse and human serum, respectively, but an extended tissue half-life of 3-weeks bound to the surface of mast cells by the high affinity IgE receptor, FcεRI (Gould and Sutton 2008). Although the importance of glycosylation to IgG biology is well established, less is known regarding the contribution of IgE glycosylation to allergic inflammation. IgE has seven and nine N-linked glycosylation sites distributed across human and murine constant chains, respectively. Here we discuss studies that have analyzed IgE glycosylation and its function, and how IgE glycosylation contributions to health and disease.
Collapse
|
39
|
Moñino‐Romero S, Lexmond WS, Singer J, Bannert C, Amoah AS, Yazdanbakhsh M, Boakye DA, Jensen‐Jarolim E, Fiebiger E, Szépfalusi Z. Soluble FcɛRI: A biomarker for IgE-mediated diseases. Allergy 2019; 74:1381-1384. [PMID: 30725474 PMCID: PMC6766993 DOI: 10.1111/all.13734] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sherezade Moñino‐Romero
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
| | - Willem S. Lexmond
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
| | - Josef Singer
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Department of Internal Medicine II University Hospital Krems Karl Landsteiner University of Health Sciences Krems an der Donau Austria
| | - Christina Bannert
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
| | - Abena S. Amoah
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Daniel A. Boakye
- Department of Parasitology Noguchi Memorial Institute for Medical Research College of Health Sciences University of Ghana Legon‐Accra Ghana
| | - Erika Jensen‐Jarolim
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
| | - Edda Fiebiger
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
| |
Collapse
|
40
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
41
|
Zastrzeżyńska W, Przybyszowski M, Bazan-Socha S, Gawlewicz-Mroczka A, Sadowski P, Okoń K, Jakieła B, Plutecka H, Ćmiel A, Sładek K, Musiał J, Soja J. Omalizumab may decrease the thickness of the reticular basement membrane and fibronectin deposit in the bronchial mucosa of severe allergic asthmatics. J Asthma 2019; 57:468-477. [PMID: 30905217 DOI: 10.1080/02770903.2019.1585872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Immunoglobulin E is an important modulator of the inflammatory reaction in allergic asthma. It also contributes to airway remodeling in the course of the disease. The authors evaluated airway structural changes in severe allergic asthma during the omalizumab therapy. Patients and methods: The study included 13 patients with severe allergic asthma treated with omalizumab for at least one year. In each patient clinical, laboratory, and spirometry parameters were evaluated before and after the treatment. In addition, bronchoscopy with bronchial mucosa biopsy and bronchoalveolar lavage was performed. The basal lamina thickness, inflammatory cell infiltration, fibronectin, as well as type I and III collagen accumulation were assessed in bronchial mucosa specimens, together with the assessment of bronchoalveolar lavage cellularity. Results: The omalizumab therapy led to a decrease in the basal lamina thickness (p = 0.002), and to a reduction in fibronectin (p = 0.02), but not collagen deposits in the bronchial mucosa. The decrease in fibronectin accumulation was associated with an improvement in asthma control and quality of life (p = 0.01, both), and a diminished dose of systemic corticosteroids (p = 0.001). It was also associated with a tendency towards reduction of the eosinophil count in the peripheral blood, bronchoalveolar lavage fluid, and bronchial mucosa specimens. Conclusion: Our study has shown that omalizumab, effective in the treatment of severe allergic asthma, may also decrease unfavorable structural airway changes in allergic asthmatics, at least with respect to the fibronectin deposit and an increased thickness of the basal lamina. However, more extensive observational studies are needed to verify the above hypothesis.
Collapse
Affiliation(s)
| | - Marek Przybyszowski
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Gawlewicz-Mroczka
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Sadowski
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Plutecka
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Faculty of Applied Mathematics, AGH University of Science and Technology, Kraków, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
42
|
Higher blood eosinophil levels after omalizumab treatment may be associated with poorer asthma outcomes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1643-1646. [PMID: 30898690 DOI: 10.1016/j.jaip.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 11/23/2022]
|
43
|
Bousquet J, Akdis CA, Grattan C, Eigenmann PA, Hoffmann-Sommergruber K, Hellings PW, Agache I. Highlights and recent developments in airway diseases in EAACI journals (2017). Clin Transl Allergy 2018; 8:49. [PMID: 30498567 PMCID: PMC6258432 DOI: 10.1186/s13601-018-0238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) owns three journals: Allergy, Pediatric Allergy and Immunology and Clinical and Translational Allergy. One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. There was substantial progress in 2017 in the identification of basic mechanisms of allergic and respiratory disease and the translation of these mechanisms into clinics. Better understanding of molecular and cellular mechanisms, efforts for the development of biomarkers for disease prediction, novel prevention and intervention studies, elucidation of mechanisms of multimorbidies, entrance of new drugs in the clinics as well as recently completed phase three clinical studies and publication of a large number of allergen immunotherapy studies and metaanalyses have been the highlights of the last year.
Collapse
Affiliation(s)
- J Bousquet
- MACVIA-France, Fondation partenariale FMC VIA-LR, Montpellier, France.,INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France.,3UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium.,CHRU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - C A Akdis
- 5Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - C Grattan
- 6St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - P A Eigenmann
- 7Pediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Hoffmann-Sommergruber
- 8Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - P W Hellings
- Euforea, Brussels, Belgium.,9Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Louvain, Belgium
| | - I Agache
- 10Transylvania University Brasov, Brasov, Romania
| |
Collapse
|
44
|
Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 2018; 24:56-62. [PMID: 29076828 DOI: 10.1097/mcp.0000000000000441] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The term 'airway remodeling' reflects changes in the type, quantity, and nature of airway wall components and their organization. The purpose of this review is to look at recent publications on airway remodeling in asthma. RECENT FINDINGS Animal models and in-vitro studies have confirmed the involvement of airway epithelium, airway smooth muscle (ASM), and extracellular matrix components in asthma-related airway remodeling. They report influences on proliferation of ASM cells, and how their orientation or morphology, in addition to the heterogeneity of ASM mass at different levels of airways could influence their effects. Clinical benefits have been observed following reduction of ASM following bronchial thermoplasty. Asthmatic epithelial cell transcriptome alterations were found to involve metabolism and epigenetics, beyond epithelial mesenchymal trophic unit driven by injury and repair in chronic inflammation. New ways to explore airway remodeling such as imaging or endoscopic techniques have been evaluated. Finally, new data support the role of eosinophils and mast cells in remodeling and show the influence of new asthma drugs on this process. SUMMARY As recently stated by an American Thoracic Society task force, we need more research on airway remodeling, its determinants and clinical relevance, and on the effects of asthma drugs on its various components.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In this review, we herein describe the progress in management of severe asthma, evolving from a 'blockbuster approach' to a more personalized approach targeted to the utilization of endotype-driven therapies. RECENT FINDINGS Severe asthma characterization in phenotypes and endotypes, by means of specific biomarkers, have led to the dichotomization of the concepts of 'personalized medicine' and 'precision medicine', which are often used as synonyms, but actually have conceptual differences in meaning. The recent contribute of the omic sciences (i.e. proteomics, transcriptomics, metabolomics, genomics, …) has brought this initially theoretic evolution into a more concrete level. SUMMARY This step-by-step transition would bring to a better approach to severe asthmatic patients as the personalization of their therapeutic strategy would bring to a better patient selection, a more precise endotype-driven treatment, and hopefully to better results in terms of reduction of exacerbation rates, symptoms, pulmonary function and quality of life.
Collapse
|
46
|
Galeone C, Scelfo C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, Menzella F. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for "Omics" Technology? BIOMED RESEARCH INTERNATIONAL 2018; 2018:4617565. [PMID: 29992143 PMCID: PMC6016214 DOI: 10.1155/2018/4617565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
According to the current guidelines, severe asthma still represents a controversial topic in terms of definition and management. The introduction of novel biological therapies as a treatment option for severe asthmatic patients paved the way to a personalized approach, which aims at matching the appropriate therapy with the different asthma phenotypes. Traditional asthma phenotypes have been decomposing by an increasing number of asthma subclasses based on functional and physiopathological mechanisms. This is possible thanks to the development and application of different omics technologies. The new asthma classification patterns, particularly concerning severe asthma, include an increasing number of endotypes that have been identified using new omics technologies. The identification of endotypes provides new opportunities for the management of asthma symptoms, but this implies that biological therapies which target inflammatory mediators in the frame of specific patterns of inflammation should be developed. However, the pathway leading to a precision approach in asthma treatment is still at its beginning. The aim of this review is providing a synthetic overview of the current asthma management, with a particular focus on severe asthma, in the light of phenotype and endotype approach, and summarizing the current knowledge about "omics" science and their therapeutic relevance in the field of bronchial asthma.
Collapse
Affiliation(s)
- Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
47
|
Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018; 7. [PMID: 29904584 PMCID: PMC5981194 DOI: 10.12688/f1000research.14581.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.
Collapse
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
48
|
Affiliation(s)
- Amelia Licari
- a Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Gian Luigi Marseglia
- a Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| |
Collapse
|
49
|
Abstract
INTRODUCTION Allergic conditions such as asthma and atopic dermatitis have a high prevalence but represent a heterogeneous group of diseases despite similar clinical presentation and underlying pathophysiology. A better understanding of the phenotypes and endotypes of these diseases has driven rapid development of biologic medications targeting many steps of the inflammatory pathways. Areas covered: There are 2 major inflammatory pathways that drive allergic diseases: Type-2 (Th-2) inflammation and non-type 2 inflammation. All of the biologic medications currently approved for use, and most of the biologic medications under development for allergic diseases have focused on the Th-2 inflammatory pathway. Biologic targets along this pathway include Anti-Immunoglobulin E (IgE), Anti-Interleukin 5 (IL-5), Anti-IL 4, and Anti-IL 13. Although the most study has been done in the realm of severe asthma, biologic targets for other allergic diseases including atopic dermatitis, chronic rhinosinusitis with nasal polyposis, chronic idiopathic urticaria, eosinophilic esophagitis, and eosinophilic granulomatosis with polyangiitis are also discussed. Expert commentary: Novel biologic therapies have emerged over the last several years that have revolutionized the management of patients with refractory allergic disease.
Collapse
Affiliation(s)
- Laurie A Manka
- a Division of Pulmonary, Critical Care, and Sleep Medicine , National Jewish Health , Denver , CO , USA
| | - Michael E Wechsler
- b The Cohen Family Asthma Institute, Division of Pulmonary, Critical Care, and Sleep Medicine , National Jewish Health , Denver , CO , USA
| |
Collapse
|
50
|
Scelfo C, Galeone C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, Menzella F. Towards precision medicine: The application of omics technologies in asthma management. F1000Res 2018; 7:423. [PMID: 29904594 PMCID: PMC5964625 DOI: 10.12688/f1000research.14309.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 01/13/2023] Open
Abstract
Asthma is a chronic obstructive respiratory disease characterised by bronchial inflammation. Its biological and clinical features have been widely explored and a number of pharmacological treatments are currently available. Currently several aspects of asthma pathophysiological background remain unclear, and this is represent a limitation for the traditional asthma phenotype approach. In this scenario, the identification of new molecular and clinical biomarkers may be helpful in order to better understand the disease, define specific diagnostic tools and highlight relevant novel targets for pharmacological treatments. Omics technologies offer innovative research tools for addressing the above mentioned goals. However, there is still a lot to do both in the fields of basic research and in the clinical application. Recently, genome-wide association studies, microRNAs and proteomics are contributing to enrich the available data for the identification of new asthma biomarkers. A precise approach to the patient with asthma, particularly with severe uncontrolled asthma, requires new and specific therapeutic targets, but also proper tools able to drive the clinician in tailoring the treatment. On the other hand, there is a need of predictors to treatment's response, particularly in the field of biological drugs, whose sustainability implies a correct and precise selection of the patients. Translating acquired omics knowledge in clinical practice may address the unmet needs described above, but large-scale studies are required in order to confirm their relevance and effectiveness in daily practice. Thus in our opinion the application of omics is still lagging in the real-life setting.
Collapse
Affiliation(s)
- Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Azienda USL di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Azienda USL di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Verona, 37134, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Azienda USL di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Azienda USL di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Azienda USL di Reggio Emilia, Reggio Emilia, 42123, Italy
| |
Collapse
|