1
|
Różańska A, Pioskowik A, Herrles L, Datta T, Krzyściak P, Jachowicz-Matczak E, Siewierski T, Walkowicz M, Chmielarczyk A. Evaluation of the Efficacy of UV-C Radiation in Eliminating Clostridioides difficile from Touch Surfaces Under Laboratory Conditions. Microorganisms 2025; 13:986. [PMID: 40431159 PMCID: PMC12113795 DOI: 10.3390/microorganisms13050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive, spore-forming anaerobic bacterium, usually transmitted through the fecal-oral route, that can result from direct person-to-person contact, exposure to contaminated environmental surfaces, or contact with the hands of colonized healthcare personnel. An increased number of infections, especially healthcare-associated, with this etiology has been observed in most countries. As a spore-forming organism, CD is resistant to alcohol formulations and is a challenge for chemical disinfection. The solution could be the supplementation of traditional disinfection with non-touch techniques, such as UV-C radiation. The adoption of UV-C as a supplementary disinfection method in hospitals has significantly increased since the COVID-19 pandemic. However, there are no current guidelines concerning the use of UV-C disinfection in hospitals. The aim of this study was to evaluate the effectiveness of UV-C irradiation in inactivating Clostridioides difficile from different types of surfaces in hospital settings. The study was based on laboratory tests evaluating the efficacy in eliminating three different C. difficile strains on carriers made of plastic, metal and glass after 10 min exposure to UV-C (wavelength, 253.7 nm). We observed a wide range of reductions in the C. difficile suspensions depending on the density of the carrier contamination, type of carrier, strains and the location of the carrier. The percentage reductions ranged from 0 to 100%, but the best results were observed for glass, with lower initial suspension density and carrier placement on a door frame. Statistically significant differences were only seen in different suspension densities. Our experiment was a continuation of the tests done for non-sporing bacteria and C. auris, and there were some interesting differences in C. difficile reflecting its biology, especially its sensitivity to an aerobic atmosphere during the sample drying. Although the elimination of C. difficile by UV-C radiation was confirmed in our experiment, it was lower than in the case of non-spore-forming bacteria. Thus, this method may be used in healthcare settings (hospitals) for improving environmental safety and preventing C. difficile spreading.
Collapse
Affiliation(s)
- Anna Różańska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.K.); (E.J.-M.); (A.C.)
| | - Anna Pioskowik
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (A.P.); (L.H.); (T.D.)
| | - Laura Herrles
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (A.P.); (L.H.); (T.D.)
| | - Tanisha Datta
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (A.P.); (L.H.); (T.D.)
| | - Paweł Krzyściak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.K.); (E.J.-M.); (A.C.)
| | - Estera Jachowicz-Matczak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.K.); (E.J.-M.); (A.C.)
| | | | - Monika Walkowicz
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (P.K.); (E.J.-M.); (A.C.)
| |
Collapse
|
2
|
Bagińska N, Grygiel I, Orwat F, Harhala MA, Jędrusiak A, Gębarowska E, Letkiewicz S, Górski A, Jończyk-Matysiak E. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:4285. [PMID: 38383718 PMCID: PMC10881977 DOI: 10.1038/s41598-024-54469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Acinetobacter baumannii is currently a serious threat to human health, especially to people with immunodeficiency as well as patients with prolonged hospital stays and those undergoing invasive medical procedures. The ever-increasing percentage of strains characterized by multidrug resistance to widely used antibiotics and their ability to form biofilms make it difficult to fight infections with traditional antibiotic therapy. In view of the above, phage therapy seems to be extremely attractive. Therefore, phages with good storage stability are recommended for therapeutic purposes. In this work, we present the results of studies on the stability of 12 phages specific for A. baumannii under different conditions (including temperature, different pH values, commercially available disinfectants, essential oils, and surfactants) and in the urine of patients with urinary tract infections (UTIs). Based on our long-term stability studies, the most optimal storage method for the A. baumannii phage turned out to be - 70 °C. In contrast, 60 °C caused a significant decrease in phage activity after 1 h of incubation. The tested phages were the most stable at a pH from 7.0 to 9.0, with the most inactivating pH being strongly acidic. Interestingly, ethanol-based disinfectants caused a significant decrease in phage titers even after 30 s of incubation. Moreover, copper and silver nanoparticle solutions also caused a decrease in phage titers (which was statistically significant, except for the Acba_3 phage incubated in silver solution), but to a much lesser extent than disinfectants. However, bacteriophages incubated for 24 h in essential oils (cinnamon and eucalyptus) can be considered stable.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357, Wrocław, Poland
| | | | - Andrzej Górski
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| |
Collapse
|
3
|
Bento de Carvalho T, Barbosa JB, Teixeira P. Assessing Antimicrobial Efficacy on Plastics and Other Non-Porous Surfaces: A Closer Look at Studies Using the ISO 22196:2011 Standard. BIOLOGY 2024; 13:59. [PMID: 38275735 PMCID: PMC10813364 DOI: 10.3390/biology13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The survival and spread of foodborne and nosocomial-associated bacteria through high-touch surfaces or contamination-prone sites, in either healthcare, domestic or food industry settings, are not always prevented by the employment of sanitary hygiene protocols. Antimicrobial surface coatings have emerged as a solution to eradicate pathogenic bacteria and prevent future infections and even outbreaks. Standardised antimicrobial testing methods play a crucial role in validating the effectiveness of these materials and enabling their application in real-life settings, providing reliable results that allow for comparison between antimicrobial surfaces while assuring end-use product safety. This review provides an insight into the studies using ISO 22196, which is considered the gold standard for antimicrobial surface coatings and examines the current state of the art in antimicrobial testing methods. It primarily focuses on identifying pitfalls and how even small variations in methods can lead to different results, affecting the assessment of the antimicrobial activity of a particular product.
Collapse
Affiliation(s)
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.d.C.); (P.T.)
| | | |
Collapse
|
4
|
Fathi P, Roslend A, Alafeef M, Moitra P, Dighe K, Esch MB, Pan D. In Situ Surface-Directed Assembly of 2D Metal Nanoplatelets for Drug-Free Treatment of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2022; 11:e2102567. [PMID: 35856392 DOI: 10.1002/adhm.202102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
The development of antibiotic resistance among bacterial strains is a major global public health concern. To address this, drug-free antibacterial approaches are needed. Copper surfaces have long been known for their antibacterial properties. In this work, a one-step surface modification technique is used to assemble 2D copper chloride nanoplatelets directly onto copper surfaces such as copper tape, transmission electron microscopy (TEM) grids, electrodes, and granules. The nanoplatelets are formed using copper ions from the copper surfaces, enabling their direct assembly onto these surfaces in a one-step process that does not require separate nanoparticle synthesis. The synthesis of the nanoplatelets is confirmed with TEM, scanning electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Antibacterial properties of the Cu nanoplatelets are demonstrated in multidrug-resistant (MDR) Escherichia coli, MDR Acinetobacter baumannii, MDR Staphylococcus aureus, E. coli, and Streptococcus mutans. Nanoplatelets lead to a marked improvement in antibacterial properties compared to the copper surfaces alone, affecting bacterial cell morphology, preventing bacterial cell division, reducing their viability, damaging bacterial DNA, and altering protein expression. This work presents a robust method to directly assemble copper nanoplatelets onto any copper surface to imbue it with improved antibacterial properties.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maha Alafeef
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Parikshit Moitra
- Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Mandy B Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Diagnostic Radiology Nuclear Medicine and Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Nuclear Engineering and Materials Science and Engineering Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Naseef H, Sahoury Y, Farraj M, Qurt M, Abukhalil AD, Jaradat N, Sabri I, Rabba AK, Sbeih M. Novel Fusidic Acid Cream Containing Metal Ions and Natural Products against Multidrug-Resistant Bacteria. Pharmaceutics 2022; 14:1638. [PMID: 36015264 PMCID: PMC9414967 DOI: 10.3390/pharmaceutics14081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Drug design and development to overcome antimicrobial resistance continues to be an area of research due to the evolution of microbial resistance mechanisms and the necessity for new treatments. Natural products have been used since the dawn of medicine to heal skin infections. The antimicrobial properties of fusidic acid, zinc sulfate, and copper sulfate have been studied and are well known. Furthermore, these compounds have different mechanisms of action in targeting microorganisms, either by inhibiting protein synthesis or bacterial cell walls. Therefore, their combination is expected to have synergistic activity in killing bacteria. However, the synergistic antimicrobial activity has not been evaluated in a cream formulation. Therefore, the objectives of this in vitro study were to develop and evaluate the synergistic efficacy of fusidic acid in combinations with natural products, including oleuropein, thyme oil, zinc sulfate, and copper sulfate, as a cream to eradicate fusidic-acid-resistant microorganisms in skin infections. METHODS Three different cream formulations were developed, compared, and labeled F1, F2, and F3. The compounds were studied for their antibacterial activity. In addition, the stability of the cream was investigated at 25 °C and 40 °C in plastic jars over three months. RESULTS The F2 formula has adequate physicochemical properties. Furthermore, it displays stable and better results than the marketed trade product and has potential inhibition zones (ZOI). Interestingly, considerable numbers (9.5%) of fusidic-acid-resistant Staphylococcus aureus (FRSA) isolates possessed a high resistance pattern with MIC ≥ 128 μg/mL. In contrast, most tested FRSA isolates (90.5%) had a low resistance pattern with MIC ≤ 8 μg/mL. CONCLUSION In conclusion, the F2 cream made with fusidic acid, oleuropein, thyme oil, zinc sulfate, and copper sulfate in the right amounts has stable physical and chemical properties and has potential against FRSA as an antimicrobial agent.
Collapse
Affiliation(s)
- Hani Naseef
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Yousef Sahoury
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Mohammad Farraj
- Master Program in Clinical Laboratory Science, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Moammal Qurt
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Abdallah D. Abukhalil
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Israr Sabri
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Abdullah K. Rabba
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Mahmmoud Sbeih
- Quality Control Department, Beit-Jala Pharmaceutical Co., Ltd., Bethlehem P.O. Box 58, Palestine
| |
Collapse
|
6
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
7
|
Toplitsch D, Lackner JM, Schwan AM, Hinterer A, Stögmüller P, Horn K, Fritzlar N, Pfuch A, Kittinger C. Antimicrobial Activity of a Novel Cu(NO 3) 2-Containing Sol-Gel Surface under Different Testing Conditions. MATERIALS 2021; 14:ma14216488. [PMID: 34772014 PMCID: PMC8585195 DOI: 10.3390/ma14216488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
In this study, assessment of the antimicrobial activity of a novel, plasma-cured 2.5% (w/v) Cu(NO3)2-containing sol–gel surface was performed. In contrast to state-of-the-art sol–gel coatings, the plasma curing led to a gradient in cross-linking with the highest values at the top of the coating. As a result, the coating behaved simultaneously hard, scratch-resistant, and tough, the latter due to the more flexible bulk of the coating toward the substrate. Further, the diffusion and permeation through the coating also increased toward the substrate. In our study, tests according to ISO 22196 showed antibacterial activity of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface against all bacterial strains tested, and we expanded the testing further using a “dry” evaluation without an aqueous contact phase, which confirmed the antimicrobial efficacy of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface. However, further investigation under exposure to soiling with the addition of 0.3% albumin, used to simulate organic load, led to a significant impairment in the antibacterial effect under both tested conditions. Furthermore, re-testing of the surface after disinfection with 70% ethanol led to a total loss of antibacterial activity. Our results showed that besides the mere application of an antimicrobial agent to a surface coating, it is also necessary to consider the future use of these surfaces in the experimental phase combining industry and science. Therefore, a number of tests corresponding to the utilization of the surface should be obligative on the basis of this assessment.
Collapse
Affiliation(s)
- Daniela Toplitsch
- D&R-Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Jürgen Markus Lackner
- Joanneum Research Forschungsges m.b.H., Institute of Surface Technologies and Photonics, Laser and Plasma Processing, Leobner Str. 94, 8712 Niklasdorf, Austria; (J.M.L.); (A.M.S.)
| | - Alexander Michael Schwan
- Joanneum Research Forschungsges m.b.H., Institute of Surface Technologies and Photonics, Laser and Plasma Processing, Leobner Str. 94, 8712 Niklasdorf, Austria; (J.M.L.); (A.M.S.)
| | - Andreas Hinterer
- Inocon Technologie Gesellschaft m.b.H., 4800 Attnang-Puchheim, Austria; (A.H.); (P.S.)
| | - Philipp Stögmüller
- Inocon Technologie Gesellschaft m.b.H., 4800 Attnang-Puchheim, Austria; (A.H.); (P.S.)
| | - Kerstin Horn
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany; (K.H.); (N.F.); (A.P.)
| | - Natalie Fritzlar
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany; (K.H.); (N.F.); (A.P.)
| | - Andreas Pfuch
- INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany; (K.H.); (N.F.); (A.P.)
| | - Clemens Kittinger
- D&R-Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria;
- Correspondence: ; Tel.: +43-316-385-73600
| |
Collapse
|
8
|
Choi SI, Chang MS, Kim T, Chung KH, Bae S, Kim SH, Yoon CJ, Kim YK, Woo JH. Evaluation of copper alloys for reducing infection by methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus faecium in intensive care unit and in vitro. Korean J Intern Med 2021; 36:1204-1210. [PMID: 34399571 PMCID: PMC8435501 DOI: 10.3904/kjim.2020.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/25/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Multi-drug resistant pathogens are increasing among healthcare-associated infections. It is well known that copper and copper alloys have antimicrobial activity. We evaluated the activity of copper against bacteria in a hospital setting in Korea. METHODS This study was conducted in a laboratory and medical intensive care unit (ICU). Methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecium (VRE) were inoculated onto copper, copper alloy and stainless steel plates. After 24 hours of incubation, colony-forming units (CFU) were counted in the laboratory. Two similar rooms were chosen in the ICU; one room had copper-containing surface, and the other room contained items with a stainless steel surfaces. Items were sampled weekly for 8 weeks when the rooms were not crowded and when the rooms were busier with healthcare workers or visitors. RESULTS In vitro time-kill curves showed copper or, a copper alloy yielded a significant reduction in MRSA and VRE CFUs over 15 minutes. Upon exposure to stainless steel plates, CFUs were slowly reduced for 24 hours. In vivo, MRSA CFUs were lower in rooms with copper-containing surfaces compared with controls, both after cleaning and after patients had received visitors (p < 0.05). Analysis of VRE revealed similar results, but VRE CFUs from copper-containing surfaces of drug carts in the ICU did not decrease significantly. CONCLUSION Copper has antimicrobial activity and appears to reduce the number of multi-drug resistant microorganisms in a hospital environment. This finding suggests the potential of the use of copper fittings, instruments and surfaces in hospital.
Collapse
Affiliation(s)
- Sung Im Choi
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Uijeongbu,
Korea
| | - Taeeun Kim
- Department of Infectious Diseases, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu,
Korea
| | - Kyung Hwa Chung
- Department of Infectious Diseases, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu,
Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Chan Jin Yoon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Young Kyoon Kim
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu,
Korea
| |
Collapse
|
9
|
Abraham J, Dowling K, Florentine S. Can Copper Products and Surfaces Reduce the Spread of Infectious Microorganisms and Hospital-Acquired Infections? MATERIALS (BASEL, SWITZERLAND) 2021; 14:3444. [PMID: 34206230 PMCID: PMC8269470 DOI: 10.3390/ma14133444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Pathogen transfer and infection in the built environment are globally significant events, leading to the spread of disease and an increase in subsequent morbidity and mortality rates. There are numerous strategies followed in healthcare facilities to minimize pathogen transfer, but complete infection control has not, as yet, been achieved. However, based on traditional use in many cultures, the introduction of copper products and surfaces to significantly and positively retard pathogen transmission invites further investigation. For example, many microbes are rendered unviable upon contact exposure to copper or copper alloys, either immediately or within a short time. In addition, many disease-causing bacteria such as E. coli O157:H7, hospital superbugs, and several viruses (including SARS-CoV-2) are also susceptible to exposure to copper surfaces. It is thus suggested that replacing common touch surfaces in healthcare facilities, food industries, and public places (including public transport) with copper or alloys of copper may substantially contribute to limiting transmission. Subsequent hospital admissions and mortality rates will consequently be lowered, with a concomitant saving of lives and considerable levels of resources. This consideration is very significant in times of the COVID-19 pandemic and the upcoming epidemics, as it is becoming clear that all forms of possible infection control measures should be practiced in order to protect community well-being and promote healthy outcomes.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| | - Kim Dowling
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Singarayer Florentine
- Future Regions Research Centre, School of Science, Psychology and Sport, Federation University Australia, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| |
Collapse
|
10
|
Dauvergne E, Mullié C. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics (Basel) 2021; 10:antibiotics10030286. [PMID: 33801855 PMCID: PMC7999369 DOI: 10.3390/antibiotics10030286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Copper has been used for its antimicrobial properties since Antiquity. Nowadays, touch surfaces made of copper-based alloys such as brasses are used in healthcare settings in an attempt to reduce the bioburden and limit environmental transmission of nosocomial pathogens. After a brief history of brass uses, the various mechanisms that are thought to be at the basis of brass antimicrobial action will be described. Evidence shows that direct contact with the surface as well as cupric and cuprous ions arising from brass surfaces are instrumental in the antimicrobial effectiveness. These copper ions can lead to oxidative stress, membrane alterations, protein malfunctions, and/or DNA damages. Laboratory studies back up a broad spectrum of activity of brass surfaces on bacteria with the possible exception of bacteria in their sporulated form. Various parameters influencing the antimicrobial activity such as relative humidity, temperature, wet/dry inoculation or wear have been identified, making it mandatory to standardize antibacterial testing. Field trials using brass and copper surfaces consistently report reductions in the bacterial bioburden but, evidence is still sparse as to a significant impact on hospital acquired infections. Further work is also needed to assess the long-term effects of chemical/physical wear on their antimicrobial effectiveness.
Collapse
Affiliation(s)
- Emilie Dauvergne
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France;
- FAVI Limited Company, 80490 Hallencourt, France
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France;
- Laboratoire Hygiène, Risque Biologique et Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80025 Amiens, France
- Correspondence:
| |
Collapse
|
11
|
Copper-Polyurethane Composite Materials: Particle Size Effect on the Physical-Chemical and Antibacterial Properties. Polymers (Basel) 2020; 12:polym12091934. [PMID: 32867134 PMCID: PMC7563828 DOI: 10.3390/polym12091934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In this work, thermoplastic polyurethane (TPU) composites incorporated with 1.0 wt% Cu particles were synthesized by the melt blending method. The effect of the incorporated copper particle size on the antibacterial, thermal, rheological, and mechanical properties of TPU was investigated. The obtained results showed that (i) the addition of copper particles increased the thermal and mechanical properties because they acted as co-stabilizers of polyurethane (PU) (ii) copper nanoparticles decreased the viscosity of composite melts, and (iii) microparticles > 0.5 µm had a tendency to easily increase the maximum torque and formation of agglomerates. SEM micrographics showed that a good mixture between TPU and copper particles was obtained by the extrusion process. Additionally, copper-TPU composite materials effectively inhibited the growth of the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus. Considering that the natural concentration of copper in the blood is in the range of 0.7-0.12 mg/L and that the total migration value of copper particles from TPU was 1000 times lower, the results suggested that TPU nanocomposites could be adequately employed for biomedical applications without a risk of contamination.
Collapse
|
12
|
Pietsch F, O'Neill AJ, Ivask A, Jenssen H, Inkinen J, Kahru A, Ahonen M, Schreiber F. Selection of resistance by antimicrobial coatings in the healthcare setting. J Hosp Infect 2020; 106:115-125. [PMID: 32535196 DOI: 10.1016/j.jhin.2020.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in these settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial coatings should routinely evaluate the risk of selection associated with their use.
Collapse
Affiliation(s)
- F Pietsch
- Federal Institute for Materials Research and Testing, Department of Materials and Environment, Division of Biodeterioration and Reference Organisms, Berlin, Germany
| | - A J O'Neill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - A Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - J Inkinen
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland
| | - A Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - M Ahonen
- Satakunta University of Applied Sciences, Faculty of Technology, WANDER Nordic Water and Materials Institute, Rauma, Finland.
| | - F Schreiber
- Federal Institute for Materials Research and Testing, Department of Materials and Environment, Division of Biodeterioration and Reference Organisms, Berlin, Germany.
| |
Collapse
|
13
|
Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019; 9:32184-32196. [PMID: 35530774 PMCID: PMC9072912 DOI: 10.1039/c9ra05880j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.
Collapse
Affiliation(s)
- I. B. Gomes
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - L. C. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - M. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
14
|
Abstract
With the advent of the global antimicrobial resistance (AMR) crisis, our arsenal of effective antibiotics is diminishing. The widespread use and misuse of antibiotics in human and veterinary medicine, compounded by the lack of novel classes of antibiotic in the pharmaceutical pipeline, has left a hole in our antibiotic armamentarium. Thus, alternatives to traditional antibiotics are being investigated, including two major groups of antibacterial agents, which have been extensively studied, phytochemicals and metals. Within these groups, there are several subclasses of compound/elements, including polyphenols and metal nanoparticles, which could be used to complement traditional antibiotics, either to increase their potency or extend their spectrum of activity. Alone or in combination, these antibacterial agents have been shown to be effective against a vast array of human and animal bacterial pathogens, including those resistant to licensed antibacterials. These alternative antibacterial agents could be a key element in our fight against AMR and provide desperately needed options, to veterinary and medical clinicians alike.
Collapse
|