1
|
Lu CL, Fang ZF, Che LQ, Lin Y, Xu SY, Zhuo Y, Hua L, Li J, Jiang XM, Sun MM, Huang YZ, Wu D, Feng B. Dietary sodium butyrate supplementation during mid-to-late gestation enhances reproductive performance and antioxidant capability in sows. Animal 2025; 19:101516. [PMID: 40334573 DOI: 10.1016/j.animal.2025.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Sodium butyrate (NaB) has been used as a feed additive in livestock production due to its antioxidant and anti-inflammatory properties. However, the effect of dietary NaB supplementation during mid- to late gestation on the reproductive performance of sows remains unclear. Thirty-two pregnant sows (Landrace × Yorkshire) at two or three parities were divided into two groups based on similar BW and backfat thickness on day 30 of pregnancy. The control group received a normal gestational diet, while the NaB group was fed a NaB-supplemented diet, of which 2 g/kg corn was replaced with an equal weight of NaB. Sows were fed an experimental diet from day 30 to day 114 of gestation and the same diet during lactation. The reproductive performance, antioxidant, and anti-inflammatory capabilities of sows were analysed. Gestational supplementation of NaB tended to increase the total litter size (P = 0.069) and the number of piglets born alive (P = 0.052), significantly improve placental efficiency (P = 0.049), and increase feed intake during lactation (P = 0.004). Additionally, the stillbirth rate (P = 0.051) tended to be decreased by gestational NaB supplementation. NaB supplementation enhanced the antioxidant capacity of sows, as evidenced by increasing serum T-SOD activity on day 60 of gestation (P < 0.01) and CAT activity on the day of farrowing (P < 0.05), along with reduced serum malondialdehyde concentration on day 90 of gestation (P < 0.05), as compared to control group. Additionally, NaB supplementation tended to decrease serum 8-OHDG concentration on day 60 of gestation (P = 0.064), and increased serum concentrations of short-chain fatty acids (P < 0.05). Taken together, gestational sodium butyrate supplementation might enhance reproductive performance and antioxidant capability in sows. Thus, NaB is a potential additive for improving reproductive performance in sows.
Collapse
Affiliation(s)
- C L Lu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - L Hua
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - J Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - X M Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - M M Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Y Z Huang
- Xuzhou Xinao Biotechnology Co., Xinyi 221400, PR China
| | - D Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - B Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China.
| |
Collapse
|
2
|
Vaughan OR, Maksym K, Hillman S, Spencer RN, Hristova M, David AL, Lange S. Placental Protein Citrullination Signatures Are Modified in Early- and Late-Onset Fetal Growth Restriction. Int J Mol Sci 2025; 26:4247. [PMID: 40362485 PMCID: PMC12071715 DOI: 10.3390/ijms26094247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Fetal growth restriction (FGR) is an obstetric condition most frequently caused by placental dysfunction. It is a major cause of perinatal morbidity with limited treatment options, so identifying the underpinning mechanisms is important. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that mediate post-translational citrullination (deimination) of proteins, through conversion of arginine to citrulline. Protein citrullination leads to irreversible changes in protein structure and function and is implicated in many pathobiological processes. Whether placental protein citrullination occurs in FGR is poorly understood. We assessed protein citrullination and PAD isozyme abundance (PAD1, 2, 3, 4 and 6) in human placental samples from pregnancies complicated by early- and late-onset FGR, compared to appropriate-for-gestational-age (AGA) controls. Proteomic mass spectrometry demonstrated that the placental citrullinome profile changed in both early- and late-onset FGR, with 112 and 345 uniquely citrullinated proteins identified in early- and late-onset samples, respectively. Forty-four proteins were citrullinated only in control AGA placentas. The proteins that were uniquely citrullinated in FGR placentas were enriched for gene ontology (GO) terms related to neurological, developmental, immune and metabolic pathways. A greater number of GO and human phenotype pathways were functionally enriched for citrullinated proteins in late- compared with early-onset FGR. Correspondingly, late-onset but not early-onset FGR was associated with significantly increased placental abundance of PAD2 and citrullinated histone H3, determined by Western blotting. PAD3 was downregulated in early-onset FGR while abundance of PAD 1, 4 and 6 was less altered in FGR. Our findings show that placental protein citrullination is altered in FGR placentas, potentially contributing to the pathobiology of placental dysfunction.
Collapse
Affiliation(s)
- Owen R. Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Kasia Maksym
- Women’s Health Division, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Sara Hillman
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Rebecca N. Spencer
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
- Department of Obstetrics and Gynaecology, University of Leeds, Leeds LS2 9JT, UK
| | - Mariya Hristova
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
| | - Anna L. David
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Sigrun Lange
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
3
|
Yan C, He B, Wang C, Li W, Tao S, Chen J, Wang Y, Yang L, Wu Y, Wu Z, Liu N, Qin Y. Methionine in embryonic development: metabolism, redox homeostasis, epigenetic modification and signaling pathway. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40237424 DOI: 10.1080/10408398.2025.2491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Methionine, an essential sulfur-containing amino acid, plays a critical role in methyl metabolism, folate metabolism, polyamine synthesis, redox homeostasis maintenance, epigenetic modification and signaling pathway regulation, particularly during embryonic development. Animal and human studies have increasingly documented that methionine deficiency or excess can negatively impact metabolic processes, translation, epigenetics, and signaling pathways, with ultimate detrimental effects on pregnancy outcomes. However, the underlying mechanisms by which methionine precisely regulates epigenetic modifications and affects signaling pathways remain to be elucidated. In this review, we discuss methionine and the metabolism of its metabolites, the influence of folate-mediated carbon metabolism, redox reactions, DNA and RNA methylation, and histone modifications, as well as the mammalian rapamycin complex and silent information regulator 1-MYC signaling pathway. This review also summarizes our present understanding of the contribution of methionine to these processes, and current nutritional and pharmaceutical strategies for the prevention and treatment of developmental defects in embryos.
Collapse
Affiliation(s)
- Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Biyan He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chenjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Wanzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yuquan Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Tavasolian F, Gholizadeh M, Hafezian H. Genomic imprinting and environmental epigenetics: Their influence on sheep reproductive traits across parities. Anim Reprod Sci 2025; 273:107668. [PMID: 39671800 DOI: 10.1016/j.anireprosci.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
This study aimed to explore the impact of genomic imprinting on the genetic variance of composite reproductive traits across three parities in Baluchi sheep. The traits analyzed included litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). We employed a univariate linear animal model for each trait, treating performance across parities as separate traits. Twenty-four animal models were assessed, incorporating direct additive genetic effects, maternal genetic effects, maternal permanent environmental effects, direct and maternal genetic covariances, as well as maternal and paternal imprinting. Model selection was based on Akaike's Information Criterion (AIC). Direct heritability estimates for the traits were generally low, ranging from 0.039 ± 0.017 for LMWLW to 0.085 ± 0.028 for TLWW. TLWB and TLWW exhibited higher heritability than LMWLB and LMWLW in their respective parities. In the best model (model 24), maternal imprinting heritability estimates from the first to third parity were 0.059 ± 0.016, 0.060 ± 0.013, and 0.085 ± 0.021 for TLWB, 0.075 ± 0.021, 0.068 ± 0.025, and 0.048 ± 0.016 for LMWLB, 0.051 ± 0.013, 0.065 ± 0.019, and 0.068 ± 0.020 for TLWW, and, 0.072 ± 0.012, 0.057 ± 0.018 and 0.054 ± 0.011 for LMWLW, respectively. Paternal imprinting heritability estimates were consistently lower than maternal imprinting estimates, with values across parities ranging from 0.001 ± 0.024 to 0.019 ± 0.032 for TLWB, 0.005 ± 0.022-0.010 ± 0.019 for LMWLB, 0.012 ± 0.05-0.017 ± 0.05 for TLWW and, 0.013 ± 0.01-0.016 ± 0.01 for LMWLW. In conclusion, imprinting effects should be included in breeding programs to increase the accuracy of genetic evaluation.
Collapse
Affiliation(s)
- Fatemeh Tavasolian
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Hasan Hafezian
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
5
|
Munoz Alfonso CJ, Huber LA, Levesque CL. Effect of Low- and High-Sulfur-Containing Amino Acid Inclusion in Diets Fed to Primiparous Sows in Late Gestation on Pre-Partum Nitrogen Retention and Offspring Pre- and Post-Weaning Growth Performance. Animals (Basel) 2024; 14:3681. [PMID: 39765585 PMCID: PMC11672852 DOI: 10.3390/ani14243681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Twenty-seven gestating primiparous sows (203 ± 9.1 kg initial body weight on d 89 ± 1 of gestation) were selected to determine the effect of standardized ileal digestible (SID) sulfur-containing amino acid (SAA) intake during late gestation on whole-body nitrogen (N) retention and subsequent litter performance. Primiparous sows were assigned to one of two experimental diets that provided SAAs at 63 or 200% of the estimated requirements during late gestation (0.29 and 0.92% SID SAAs, respectively; n = 15 and 12, respectively). The diets were isoenergetic, and the SID Lys was 0.80% in both diets. Each gilt received 2.50 kg of the assigned diet between gestation d 90 and farrowing. Common lactation and nursery diets were provided to all primiparous sows after farrowing and offspring after weaning, respectively. Gilt whole-body N balance was determined between d 107 and 109 of gestation using total urine collection and fecal grab sampling. After farrowing, litters were standardized to 13 piglets and were not offered creep feed. Whole-body N retention was greater in primiparous sows fed the diet containing 0.92 vs. 0.29% SID SAAs in late gestation (27.2 vs. 19.3 ± 1.8 g/d; p < 0.05), but the number of piglets born alive, litter birth weight, subsequent piglet growth rates, and litter size at weaning were not different between the treatment groups. The post-weaning growth performance of the offspring was not influenced by maternal dietary treatment in late gestation. At farrowing, the post-absorptive plasma concentration of Tau was greater (p < 0.01) for primiparous sows fed 0.92 vs. 0.29% SID SAAs in late gestation, and offspring from primiparous sows fed 0.92% SID SAAs tended to have greater plasma homocysteine (Hcys; p = 0.066). Post-absorptive plasma AAs Ile, Leu, Val, and Tyr were greater (p < 0.05), and Ser tended to be greater (p = 0.071) in sows fed 0.92 vs. 0.29% SID SAAs. For the offspring, there were no diet effects on any of the dispensable and indispensable AA concentrations in plasma at birth, at weaning, or 3 and 6 weeks post-weaning. The primary finding is that the sow has a remarkable ability to buffer dietary AA imbalances, ensuring fetal growth even when SAA intake is below the current requirement estimates. While sufficient supplemental SAA intake is essential for the sow's well-being, excessive SAA levels may not confer additional advantages in terms of sow or piglet growth and the production of vital metabolites. This research emphasizes the importance of meticulously balanced diets for pregnant sows to simultaneously support maternal growth and nitrogen retention, which may also have an impact on the synthesis of biomolecules linked to improving health outcomes for the offspring.
Collapse
Affiliation(s)
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.M.A.); (L.-A.H.)
| | - Crystal L. Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
6
|
Cloutier L, Galiot L, Sauvé B, Pierre C, Guay F, Dumas G, Gagnon P, Létourneau Montminy MP. Impact of Precision Feeding During Gestation on the Performance of Sows over Three Cycles. Animals (Basel) 2024; 14:3513. [PMID: 39682479 DOI: 10.3390/ani14233513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated the impact of precision feeding and bump feeding strategies during gestation on the reproductive performance of sows monitored over three cycles. Four treatments were compared: two constant-concentration feeding strategies (0.53% standardized ileal digestible lysine content; SID Lys) with the feed supply remaining constant (flat feeding; FF) or variable (bump feeding; BF) and two precision feeding strategies based on the InraPorc model considering performance by parity (precision feeding per parity; PFP) or the weight of each sow at breeding (precision feeding by individual; PFI). Sows were followed over three gestation and lactation cycles. In the first cycle (n = 502), the birth-to-weaning piglet mortality for PFP (8.7%) and PFI (10.3%) was lower than for BF (13.8%), with FF (11.3%) being intermediate (p = 0.001). No differences were observed in litter performance during the second cycle (n = 340). During the third cycle (n = 274), the stillborn rate was lower for PFP (6.2%) than for BF (9.1%) and FF (10.4%), with PFI (7.0%) being intermediate (p = 0.01). The BF strategy did not significantly improve sow or litter performance during lactation. Meanwhile, precision feeding could reduce nitrogen (10-13%) and total phosphorus intake (6-9%) with PFP and PFI strategies. Also, the results showed that it could even reduce piglet mortality during lactation.
Collapse
Affiliation(s)
- Laetitia Cloutier
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Lucie Galiot
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Béatrice Sauvé
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Carole Pierre
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Gabrielle Dumas
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Patrick Gagnon
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | | |
Collapse
|
7
|
Long S, Mahfuz S, Piao X. Dietary 25-Hydroxycholecalciferol Supplementation from Day 85 of Gestation to Farrowing Enhances Performance, Antioxidant Capacity, and Immunoglobulins of Sows and Newborn Piglets. Animals (Basel) 2024; 14:3378. [PMID: 39682344 DOI: 10.3390/ani14233378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, the aim was to evaluate the effects of dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation on performance, antioxidant capacity, and immunoglobulin level of sows and newborn piglets. On day 85 of gestation, forty Landrace × Yorkshire gestating sows (average body weight of 241 ± 6.8 kg; average parity of 3.47 ± 0.6) were allotted into two treatments (20 replicates per treatment) based on parity, body weight, and back fat thickness. From day 85 of gestation to farrowing, sows were fed a normal vitamin D3 diet as control (containing 50 μg/kg vitamin D3; CON), or a 25-hydroxycholecalciferol-supplemented diet (containing 50 μg/kg 25-hydroxycholecalciferol). Compared with CON, dietary 25-hydroxycholecalciferol supplementation increased (p < 0.05) protein and fat content in colostrum and the average birth body weight of newborn piglets. Sows fed 25-hydroxycholecalciferol showed increased (p < 0.05) apparent total tract digestibility of crude protein compared with CON. Diets supplemented with 25-hydroxycholecalciferol also increased (p < 0.05) the content of superoxide dismutase (SOD), and tended to increase (p = 0.06) the total antioxidant capacity content and reduce (p = 0.09) the malondialdehyde (MDA) level in colostrum. An increase (p < 0.05) in the content of SOD and a reduction (p < 0.05) in the content of MDA in the serum of newborn piglets was also observed in the 25-hydroxycholecalciferol treatment compared with CON. Dietary 25-hydroxycholecalciferol supplementation also enhanced (p < 0.05) the immunoglobulin G content and reduced (p < 0.05) the concentration of tumor nuclear factor-α in the serum of sows, as well as reducing (p < 0.05) the content of immunoglobulin G and immunoglobulin A in the serum of newborn piglets compared with CON. Supplementation of 25-hydroxycholecalciferol in sow diets increased (p < 0.05) the content of alkaline phosphatase in the serum and colostrum of sows, the concentration of insulin and crosslap in serum of sows, and the serum calcium content of newborn piglets compared with CON. In conclusion, dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation could enhance performance, antioxidant capacity, and immunoglobulin in sows and newborn piglets.
Collapse
Affiliation(s)
- Shenfei Long
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Sun H, Chen M, Liao J, He L, Wan B, Yin J, Zhang X. The maternal lifestyle in pregnancy: Implications for foetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024; 15:1641-1650. [PMID: 39155495 PMCID: PMC11446712 DOI: 10.1002/jcsm.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jialong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| |
Collapse
|
9
|
Li TX, Kim IH. Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets. Animals (Basel) 2024; 14:1714. [PMID: 38929333 PMCID: PMC11200542 DOI: 10.3390/ani14121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In most current farm operations, lactating sows need to overcome reproductive and environmental stresses that have resulted in poor sow production performance and piglet growth. Therefore, this study aimed to investigate the effects of in-feed supplementation of monosodium glutamate (MSG) in sows during late gestation lactation in regard to litter performance. The study subjects were 12 multi-parity sows (Landrace × Large White), farrowing sows with an average parity of four (three with three parities, seven with four parities, and two with five parities). They were randomly divided into the following two diet groups: the basal diet as a control (CON) group based on corn and soybean meal; and the basal diet + 2% MSG group. The experimental time ranged from 109 days before delivery to 21 days after delivery. There were six sows in each group, and each sow served as the experimental unit. There were no significant differences (p > 0.05) in body weight (BW), back fat (BF) thickness and estrus interval between sows supplemented with 2% MSG in their diets before and after farrowing and during weaning (p > 0.05). However, MSG-treated sows tended to increase BW loss at farrowing more than the CON group (p = 0.093) but lost less weight during lactation than the CON group (p = 0.019). There were no significant differences in the body condition scores (BCSs) and BF loss of the two groups of sows before and after farrowing and at weaning (p > 0.05). There was no significant difference in the weight of newborn piglets between the two groups of sows (p > 0.05). The weaning weight (p = 0.020) and average daily gain (ADG) (p = 0.045) of suckling piglets were higher in the MSG treated group compared to the CON group. The daily milk production of sows in the MSG treatment group was higher compared to the CON group (p = 0.045). The protein concentration of milk at week 3 (p = 0.060) and fat concentration of milk at week 5 (p = 0.095) of the MSG-supplemented sows tended to increase more than the CON group. In summary, the dietary inclusion of MSG supplementation had a beneficial effect on the late gestating sows and their piglet's growth and milk production. Our research has shown that the addition of 2% MSG in late gestation and lactation diet would be beneficial for both sow and piglet production.
Collapse
Affiliation(s)
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
10
|
Akyüz B, Sohel MMH, Konca Y, Arslan K, Gürbulak K, Abay M, Kaliber M, White SN, Cinar MU. Effects of Low and High Maternal Protein Intake on Fetal Skeletal Muscle miRNAome in Sheep. Animals (Basel) 2024; 14:1594. [PMID: 38891641 PMCID: PMC11171157 DOI: 10.3390/ani14111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there is limited data regarding the maternal diet and miRNA expression in sheep. Therefore, we analyzed high and low maternal dietary protein for miRNA expression in fetal longissimus dorsi. Pregnant ewes were fed an isoenergetic high-protein (HP, 160-270 g/day), low-protein (LP, 73-112 g/day), or standard-protein diet (SP, 119-198 g/day) during pregnancy. miRNA expression profiles were evaluated using the Affymetrix GeneChip miRNA 4.0 Array. Twelve up-regulated, differentially expressed miRNAs (DE miRNAs) were identified which are targeting 65 genes. The oar-3957-5p miRNA was highly up-regulated in the LP and SP compared to the HP. Previous transcriptome analysis identified that integrin and non-receptor protein tyrosine phosphatase genes targeted by miRNAs were detected in the current experiment. A total of 28 GO terms and 10 pathway-based gene sets were significantly (padj < 0.05) enriched in the target genes. Most genes targeted by the identified miRNAs are involved in immune and muscle disease pathways. Our study demonstrated that dietary protein intake during pregnancy affected fetal skeletal muscle epigenetics via miRNA expression.
Collapse
Affiliation(s)
- Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
- Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Türkiye
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Kutlay Gürbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
11
|
Antonczyk C, Ratert C, Schwennen C, Kamphues J, Abd El-Wahab A. Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance. Animals (Basel) 2024; 14:1380. [PMID: 38731384 PMCID: PMC11082942 DOI: 10.3390/ani14091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
The present study aimed to quantify and update the data on the body composition (energy nutrients) of newborn piglets of different body weights at the time of birth, as well as of the placenta mass. Data were collected from newborn piglets (n = 25) from modern genetic lines which were stillborn or died within the first 24 h of life after being crushed to death with various body weights at birth (<0.8 kg (n = 5); 0.8-1.2 kg (n = 5); >1.2-1.6 kg (common birth weight, n = 10) and >1.6 kg (n = 5)). The placenta (n = 20) of sows from a conventional breeding farm were collected, too. The body composition of newborns of "normal" (>1.2-1.6 kg) and even lighter (0.8-1.2) weights still indicated a "normal" composition. In the case of a lower body weight of piglets <0.8 kg at birth, the crude ash (24.1%) and crude protein (8.21%) contents were higher, but the crude fat (16.1%), carbohydrate (57.4%), and gross energy (3.60%) contents were lower. The placental composition in comparison to the piglet body composition was characterized by higher crude protein contents (24.3%) and lower crude ash (31.6%), crude fat (9.08%), and carbohydrate (55.6%) contents. In conclusion, the energy and protein accumulation in the total mass of fetuses and placentas increased by 75% and 64%, respectively, in comparison to times in which the litter size varied around 10-12 piglets, essentially as a result of the larger fetal mass and not of a different body composition.
Collapse
Affiliation(s)
- Carina Antonczyk
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany (C.S.); (J.K.)
| | - Christine Ratert
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany (C.S.); (J.K.)
| | - Cornelia Schwennen
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany (C.S.); (J.K.)
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany (C.S.); (J.K.)
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany (C.S.); (J.K.)
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Mobedi E, Harati HRD, Allahyari I, Gharagozlou F, Vojgani M, Baghbanani RH, Akbarinejad A, Akbarinejad V. Developmental programming of production and reproduction in dairy cows: IV. Association of maternal milk fat and protein percentage and milk fat to protein ratio with offspring's birth weight, survival, productive and reproductive performance and AMH concentration from birth to the first lactation period. Theriogenology 2024; 220:12-25. [PMID: 38457855 DOI: 10.1016/j.theriogenology.2024.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Although the association of maternal milk production with developmental programming of offspring has been investigated, there is limited information available on the relationship of maternal milk components with productive and reproductive performance of the offspring. Therefore, the present study was conducted to analyze the association of maternal milk fat and protein percentage and milk fat to protein ratio with birth weight, survival, productive and reproductive performance and AMH concentration in the offspring. In study I, data of birth weight, milk yield and reproductive variables of offspring born to lactating dams (n = 14,582) and data associated with average maternal milk fat percentage (MFP), protein percentage (MPP) and fat to protein ratio (MFPR) during 305-day lactation were retrieved. Afterwards, offspring were classified in various categories of MFP, MPP and MFPR. In study II, blood samples (n = 339) were collected from offspring in various categories of MFP, MPP and MFPR for measurement of serum AMH. Maternal milk fat percentage was positively associated with birth weight and average percentage of milk fat (APMF) and protein (APMP) and milk fat to protein ratio (FPR) during the first lactation, but negatively associated with culling rate during nulliparity in the offspring (P < 0.05). Maternal milk protein percentage was positively associated with birth weight, APMF, APMP, FPR and culling rate, but negatively associated with milk yield and fertility in the offspring (P < 0.05). Maternal FPR was positively associated with APMF and FPR, but negatively associated with culling rate, APMP and fertility in the offspring (P < 0.05). However, concentration of AMH in the offspring was not associated with MFP, MPP and MFPR (P > 0.05). In conclusion, the present study revealed that maternal milk fat and protein percentage and their ratio were associated with birth weight, survival, production and reproduction of the offspring. Yet it was a preliminary research and further studies are required to elucidate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Emadeddin Mobedi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Iman Allahyari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Faramarz Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Hemmati Baghbanani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Galli GM, Andretta I, Levesque C, Stefanello T, Carvalho CL, Perez Pelencia JY, Bueno Martins G, Souza de Lima Cony B, Romeiro de Oliveira C, Franceschi CH, Kipper M. Using probiotics to improve nutrient digestibility and gut-health of weaned pigs: a comparison of maternal and nursery supplementation strategies. Front Vet Sci 2024; 11:1356455. [PMID: 38585295 PMCID: PMC10996282 DOI: 10.3389/fvets.2024.1356455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Maternal probiotic supplementation has been found to have a positive impact on the gut health of piglets, not only during the lactation period, but also after weaning. Providing probiotics to nursery pigs is also a common strategy for supplementation. The goal of this study was to evaluate which would be the most effective strategy to improve nutrient digestibility, energy metabolism, and intestinal health in weaned pigs considering the maternal or nursery options. A total of 32 newly weaned pigs were randomly split into a 2 × 2 factorial arrangement considering maternal probiotic supplementation (with or without) in gestation-lactation and probiotic supplementation in the nursery period (with or without). After weaning, experimental diets were provided for 22 days. Total fecal and urine collection was performed from day 15 to 21. Blood samples were collected from all pigs on days 3 and 22 of the experiment to assess serum biochemistry and intestinal permeability. All pigs were euthanized on day 22 for intestinal tissue collection. Pigs born from probiotic-fed sows had greater (p < 0.05) total tract digestibility of dry matter (+1%) and gross energy (+1.3%), and greater (p < 0.05) metabolizable energy coefficient (+1.3%), which resulted in a 46 kcal/kg increase (p < 0.05) in the metabolizable energy content of the diet. Nitrogen intake (p = 0.035), uptake (p = 0.007), and retention (p = 0.012) were all increased in these pigs. Fecal moisture was reduced in pigs born from probiotic-fed sows and pigs fed the probiotic diet only in the nursery (p < 0.05). Pigs born from probiotic-fed sows had reduced intestinal permeability by 16% (p < 0.05), whereas pigs fed the probiotic diet in the nursery only tended to improve this response (p < 0.10). The villus:crypt ratio of pigs born from probiotic-fed sows was greater compared to the control (p < 0.05), while serum levels of alanine aminotransferase were lower (p < 0.05). Pigs born from probiotic-fed sows had increased nutrient digestibility and improved gut health. Therefore, it is concluded that supplementing the sow diets with probiotics rather than just providing diets in the nursery phase is an advantageous strategy.
Collapse
Affiliation(s)
- Gabriela Miotto Galli
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ines Andretta
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Crystal Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Thais Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Lopes Carvalho
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Gabriel Bueno Martins
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Souza de Lima Cony
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Romeiro de Oliveira
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Haubert Franceschi
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
14
|
Hammers KL, Urriola PE, Schwartz M, Ryu MS, Gomez A, Johnston LJ. Timing of dietary zinc additions during gestation for improved piglet survival. Transl Anim Sci 2024; 8:txae030. [PMID: 38510065 PMCID: PMC10953792 DOI: 10.1093/tas/txae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The objectives of this study were to determine a practical approach to feeding elevated dietary zinc (Zn) to gestating sows in a commercial setting and to confirm preweaning mortality could be reduced by feeding high Zn to sows during different periods of gestation. The study was conducted at a commercial sow farm in the upper Midwest. Mixed parity sows (n = 267) over three consecutive weekly farrowing groups (sows farrowing within 1 wk) were assigned randomly to one of the three dietary treatments within parity. Treatments consisted of: (1) control sows fed a corn-soybean meal diet containing 206 mg/kg total supplemental Zn supplied by zinc hydroxychloride; (2) breed-to-farrow: as control + 147 mg/kg supplemental Zn as ZnSO4 (353 mg/kg total supplemental Zn) fed from 5 d after breeding to farrowing; and (3) day 110-to-farrow: as control fed from breeding to farrowing + 4,079 mg/kg supplemental Zn as ZnSO4 (4,285 mg/kg total supplemental Zn) starting day 110 of gestation until farrowing. At farrowing, individual piglets were weighed and identified within 12 h of birth. Data were analyzed using PROC GLIMMIX of SAS and the model considered the fixed effect of dietary treatment and random effect of farrowing group. Dietary treatments did not affect number of total pigs born per litter. For breed-to-farrow sows, there was an increase in the percentage of pigs born alive compared to sows fed the control and day 110-to-farrow treatments (P < 0.001). The number of stillborn pigs expressed as a percentage of total litter size at birth decreased for breed-to-farrow sows (P < 0.001) compared with control or day 110-to-farrow sows. Mortality of low birth weight piglets from birth to weaning did not differ among dietary treatments (P = 0.305); however, a trend for decreasing post-natal mortality (P = 0.068) of normal birth weight pigs was observed for pigs born to sows fed elevated Zn 5 d before farrowing. In conclusion, feeding elevated Zn to sows throughout gestation increased the proportion of pigs born alive suggesting that elevated gestational Zn intake makes piglets more robust to endure the stresses of farrowing and decreases intrapartum mortality. Under the conditions of this study, elevated Zn intake of sows did not influence piglet post-natal survival. However, feeding high zinc throughout gestation may decrease piglet mortality during the parturition process.
Collapse
Affiliation(s)
- Kelsey L Hammers
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Moon-Suhn Ryu
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Lee J Johnston
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
- West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA
| |
Collapse
|
15
|
Mas-Parés B, Xargay-Torrent S, Carreras-Badosa G, Gómez-Vilarrubla A, Niubó-Pallàs M, Tibau J, Reixach J, Prats-Puig A, de Zegher F, Ibañez L, Bassols J, López-Bermejo A. Gestational Caloric Restriction Alters Adipose Tissue Methylome and Offspring's Metabolic Profile in a Swine Model. Int J Mol Sci 2024; 25:1128. [PMID: 38256201 PMCID: PMC10816194 DOI: 10.3390/ijms25021128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the effects of gestational caloric restriction and early postnatal metformin administration on offspring's adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows were either underfed (30% restriction of total food) or kept under standard diet during gestation, and piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment (n = 16 per group) throughout lactation. DNA methylation and gene expression were assessed in the retroperitoneal adipose tissue of piglets at weaning. Results showed that gestational caloric restriction had a negative effect on the metabolic profile of the piglets, increased the expression of inflammatory markers in the adipose tissue, and changed the methylation of several genes related to metabolism. Metformin treatment resulted in positive changes in the adipocyte morphology and regulated the methylation of several genes related to atherosclerosis, insulin, and fatty acids signaling pathways. The methylation and gene expression of the differentially methylated FASN, SLC5A10, COL5A1, and PRKCZ genes in adipose tissue associated with the metabolic profile in the piglets born to underfed sows. In conclusion, our swine model showed that caloric restriction during pregnancy was associated with impaired inflammatory and DNA methylation markers in the offspring's adipose tissue that could predispose the offspring to later metabolic abnormalities. Early metformin administration could modulate the size of adipocytes and the DNA methylation changes.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Sílvia Xargay-Torrent
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Gemma Carreras-Badosa
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Maria Niubó-Pallàs
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Joan Tibau
- Benestar Animal, Institut de Recerca i Tecnología Agroalimentàries (IRTA), 17121 Monells, Spain;
| | | | - Anna Prats-Puig
- Department of Physical Therapy, EUSES, University of Girona, 17190 Salt, Spain;
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Fundació Sant Joan de Déu, University of Barcelona, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Abel López-Bermejo
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
- Pediatrics, Hospital Dr. Josep Trueta, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17820 Girona, Spain
| |
Collapse
|
16
|
Blavi L, Villagómez-Estrada S, Solà-Oriol D, Pérez JF. Exploring zinc deficiency using serum Zn levels: consequences and potential solutions in suckling pigs. J Anim Sci 2024; 102:skad396. [PMID: 38035764 PMCID: PMC10799317 DOI: 10.1093/jas/skad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Three trials were undertaken to provide an answer to different questions: 1) Are suckling pigs able to maintain physiological serum Zn levels throughout lactation and do these levels vary between high and low body weight (BW) pigs?, 2) Are serum Zn levels in pigs soon after weaning a predisposing factor for diarrhea?, and 3) Is it possible to increase serum Zn levels at weaning by supplementing Zn during lactation. In trial 1, blood samples were taken from pigs during lactation. Eight pigs (one piglet per litter) had blood drawn on days 0 (farrowing), 7, 14, 21, and 28 (weaning), and 60 pigs (selected from the whole farrowing batch with 35 sows), categorized as either heavy (8.63 kg) or light (5.50 kg) had blood drawn on day 28. Serum Zn levels at birth were 1.2 mg/L and decreased (P < 0.01) to 0.67 mg/L on day 28. Heavier pigs showed greater (P < 0.01) serum Zn levels (0.98 mg/L) than light BW pigs (0.79 mg/L). In trial 2, blood samples were obtained from 240 pigs at weaning (26.2 ± 2.5 d) with an average initial BW of 6.94 ± 1.87 kg and were distributed into 24 pens (10 pigs/pen) by BW. Diarrhea incidence was recorded daily from days 0 to 35 post-weaning. From the 240 pigs, a group of 110 pigs with uniform BW (6.5 ± 1.9 kg) was selected and separated into two groups based on serum Zn levels at weaning with 55 pigs with low serum Zn (LZn: <0.71 mg/L) and 55 pigs with high serum Zn (HZn: >0.9 mg/L). Pigs with LZn were 2.49 times as likely to have diarrhea as pigs with HZn (P < 0.02). In trial 3, a total of 96 suckling pigs were allotted four treatments that consisted of the daily administration of 0, 6, 18, or 30 mg of Zn as Zn citrate in capsule form during the last 7 d of lactation. Pigs were individually weighed, and blood samples were obtained on days 14, 21 (weaning), and 7 after weaning. Serum Zn levels linearly increased by day as Zn citrate supplementation increased (interaction, P < 0.001). However, only light pigs supplemented with 18 and 30 mg/L of Zn experienced an increase in serum Zn levels during lactation. In conclusion, a decrease in serum Zn levels occurs during lactation and is more severe in low BW pigs. Low Zn status (< 0.7 mg/L) at weaning may be a predisposing factor for diarrhea. However, Zn supplementation during lactation can mitigate this decrease in light pigs.
Collapse
Affiliation(s)
- Laia Blavi
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Faculty of Veterinary Medicine and Agronomy, Veterinary Medicine Department, Universidad UTE, Quito 17012764, Ecuador
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - José F Pérez
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
17
|
Muro BB, Carnevale RF, Leal DF, Almond GW, Monteiro MS, Poor AP, Schinckel AP, Garbossa CA. The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutr Res Rev 2023; 36:351-371. [PMID: 35748154 DOI: 10.1017/s0954422422000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overnutrition or undernutrition during all or part of the reproductive cycle predisposes sows to metabolic consequences and poor reproductive health which contributes to a decrease in sow longevity and an increase in perinatal mortality. This represents not only an economic problem for the pig industry but also results in poor animal welfare. To maximise profitability and increase sustainability in pig production, it is pivotal to provide researchers and practitioners with synthesised information about the repercussions of maternal obesity or malnutrition on reproductive health and perinatal outcomes, and to pinpoint currently available nutritional managements to keep sows' body condition in an optimal range. Thus, the present review summarises recent work on the consequences of maternal malnutrition and highlights new findings.
Collapse
Affiliation(s)
- Bruno Bd Muro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Rafaella F Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Diego F Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga, SP, Brazil
| | - Glen W Almond
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Matheus S Monteiro
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - André P Poor
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cesar Ap Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| |
Collapse
|
18
|
Palma O, Jallah JK, Mahakalkar MG, Mendhe DM. The Effects of Vegan Diet on Fetus and Maternal Health: A Review. Cureus 2023; 15:e47971. [PMID: 38034264 PMCID: PMC10685994 DOI: 10.7759/cureus.47971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Veganism, a way of eating that forbids goods produced from animals, is rising in acceptance around the globe. This thorough analysis investigates how a vegan diet affects fetal growth during pregnancy, highlighting the need to maintain ideal maternal nutrition. The idea of "early life programming" emphasizes how a pregnant woman's lifestyle impacts her unborn child's health. Nutrient consumption during pregnancy makes it essential to have a healthy eating routine. While a carefully thought-out vegan diet may contain all the essential nutrients, some micronutrients need special attention, which may call for supplementation. The study delves into significant findings concerning nutritional adequacy and challenges in the discussion section, highlighting nutrients like calcium, iron, omega-3 fatty acids, vitamin D, and protein. It emphasizes medical professionals' need to monitor and assist vegan expectant mothers in meeting their nutritional needs. The analysis also examines the intricate connection between a mother's health and the outcomes of vegan pregnancies, such as decreased rates of gestational diabetes and hypertension. Examining fetal growth and development further highlights the complexity of this process, as do the contradicting data on birth weights. Furthermore, early data suggest that infants born to vegan moms may benefit cognitively, but further studies are required to prove a causal relationship. In addressing ethical and environmental issues in the review's conclusion, it is acknowledged that these aspects impact pregnant women's food decisions. Given the rising popularity of veganism, it is crucial to offer trustworthy advice to expectant women who are thinking about or already following a vegan diet.
Collapse
Affiliation(s)
- Ogiza Palma
- Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Manjusha G Mahakalkar
- Obstetrics and Gynecology, Shrimati Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Deeplata M Mendhe
- Medicine, Community Health Nursing, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
19
|
Ahn JS, Son GH, Kwon EG, Chung KY, Jang SS, Kim UH, Song JY, Lee HJ, Park BK. Intramuscular fat formation in fetuses and the effect of increased protein intake during pregnancy in Hanwoo cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:818-837. [PMID: 37970512 PMCID: PMC10640954 DOI: 10.5187/jast.2023.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 11/17/2023]
Abstract
Understanding adipocyte development in fetus during bovine pregnancy is important for strengthening fattening technology. Additionally, nutritional level of dams during pregnancy has the potential to improve offspring growth and fat development. The purpose of this study is to evaluate the intramuscular adipocyte development and expression level of related genes in bovine fetus, and the effect of increased crude protein (CP) intake during pregnancy on the growth performance and carcass characteristics of male offspring. Eighty six pregnant Hanwoo cows (average body weight, 551.5 ± 51.3 kg, age 5.29 ± 0.61 y) were used. Fetuses were collected at 90, 180 and 270 d of gestation from 18 pregnant Hanwoo cows. The remaining 68 pregnant cows were randomly assigned to 2 feeding groups. The control (CON) group was provided the standard protein diet (n = 34), and treatment (TRT) group was provided a diet with a 5% increase in CP intake (n = 34). Male offspring were divided into two groups according to protein treatment of the pregnant cows: CON male offspring (CON-O) and TRT male offspring (TRT-O). Intramuscular adipocytes were found in the fetal skeletal muscle after 180 days of gestation. Male calf's birth weight increased in the TRT group compared to that in the CON group (p < 0.002). The final body weight (p < 0.003) and average daily gain (p < 0.019) of male offspring were significantly higher in TRT-O than in CON-O. The feed conversion ratio was also improved by 10.5% in TRT-O compared to that in CON-O (p < 0.026). Carcass weight was significantly higher in the TRT-O group than that in the CON-O group (p < 0.003), and back fat was thicker in the TRT-O group (p = 0.07). The gross receipts and net income were higher in TRT-O than in CON-O (p < 0.04). Thus, fetal intramuscular fat can be formed from the mid-gestation period, and increased CP intake during pregnancy can increase net income by improving the growth and carcass weight of male offspring rather than intramuscular fat.
Collapse
Affiliation(s)
- Jun Sang Ahn
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Gi Hwal Son
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Eung Gi Kwon
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Ki Yong Chung
- Department of Beef Science, Korea National
College of Agriculture and Fisheries, Jeonju 54874,
Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Ui Hyung Kim
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | | | - Hyun Jeong Lee
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Byung Ki Park
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| |
Collapse
|
20
|
Ji Y, Sun Y, Liu N, Jia H, Dai Z, Yang Y, Wu Z. l-Leucine supplementation reduces growth performance accompanied by changed profiles of plasma amino acids and expression of jejunal amino acid transporters in breast-fed intra-uterine growth-retarded piglets. Br J Nutr 2023; 129:2025-2035. [PMID: 36047051 DOI: 10.1017/s0007114522002823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we provided an evidence that l-Leucine supplementation facilitates growth performance in suckling piglets with normal birth weight. However, it remains hitherto obscure weather breast-fed piglets displaying intra-uterine growth restriction (IUGR) show a similar effect in response to l-Leucine provision. In this study, 7-d-old sow-reared IUGR piglets were orally administrated with l-Leucine (0, 0·7, 1·4 or 2·1 g/kg BW) twice daily for 2 weeks. Increasing leucine levels hampered the growth performance of suckling IUGR piglets. The average daily gain of IUGR piglets was significantly reduced in 1·4 g/kg BW and 2·1 g/kg BW l-Leucine supplementation groups (P < 0·05). Except for ornithine and glutamine, the plasma concentrations of other amino acids were abated as l-Leucine levels increased (P < 0·05). Leucine supplementation led to reduction in the levels of urea, blood ammonia, blood glucose, TAG and total cholesterol, as well as an elevation in the level of LDL-cholesterol in suckling IUGR piglets (P < 0·05). In addition, 1·4 g/kg BW of l-Leucine enhanced the mRNA expression of ATB0,+, whereas decreased the mRNA abundances of CAT1, y + LAT1, ASCT2 and b0,+AT in the jejunum (P < 0·05). Concomitantly, the jejunum of IUGR piglets in l-Leucine group contains more ATB0,+ and less SNAT2 protein than in the control (P < 0·05). Collectively, l-Leucine supplementation impairs growth performance in breast-fed IUGR piglets, which may be associated with depressed nutritional conditions and alterations in the uptake of amino acids and the expression of amino acid transporters in the small intestine.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023; 13:metabo13050593. [PMID: 37233634 DOI: 10.3390/metabo13050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | | | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
22
|
Miyake K, Mochizuki K, Kushima M, Shinohara R, Horiuchi S, Otawa S, Akiyama Y, Ooka T, Kojima R, Yokomichi H, Yamagata Z, Yamazaki S, Ohya Y, Kishi R, Yaegashi N, Hashimoto K, Mori C, Ito S, Yamagata Z, Inadera H, Nakayama T, Iso H, Shima M, Kurozawa Y, Suganuma N, Kusuhara K, Katoh T. Maternal protein intake in early pregnancy and child development at age 3 years. Pediatr Res 2023:10.1038/s41390-022-02435-8. [PMID: 36624288 DOI: 10.1038/s41390-022-02435-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The current study aimed to assess the association between low maternal protein intake during pregnancy and child developmental delay at age 3 years. METHODS This research used data obtained from the Japan Environment and Children's Study. In total, we analyzed 77,237 mother-child pairs. Dietary intake was assessed using the Food Frequency Questionnaire. Developmental outcomes at age 3 years were evaluated with the Japanese version of the Ages and Stages Questionnaire, Third Edition. A multivariate logistic regression analysis was performed to assess the association between maternal protein intake during pregnancy and child development delays at age 3 years. RESULTS Based on the protein-to-total energy intake ratio during early pregnancy, the participants were categorized into three groups: <9.39% (>2 standard deviation below the mean), the severely low protein (SLP) group; 9.39-<13%, the low protein group; and ≥13%, the normal protein group. After adjusting for potential confounding factors, SLP intake was found to be significantly correlated with a higher risk of developmental delay according to the communication, fine motor and problem-solving skill domains. CONCLUSIONS SLP intake caused by inadequate diet during early pregnancy was associated with a higher risk of child developmental delay at age 3 years. IMPACT Animal studies have shown that maternal protein restriction during pregnancy and lactation causes abnormal brain development among offspring. Birth cohort studies to date have not assessed the effects of maternal low protein exposure during pregnancy on child development. Severely low protein intake during early pregnancy was associated with a higher risk of child developmental delay at age 3 years. Since nutritional imbalance in early pregnancy affects not only fetal growth but also postnatal neurodevelopment, nutritional management before pregnancy is considered important.
Collapse
Affiliation(s)
- Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Megumi Kushima
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ryoji Shinohara
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sayaka Horiuchi
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sanae Otawa
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yuka Akiyama
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tadao Ooka
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reiji Kojima
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroshi Yokomichi
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation enhances postweaning growth and meat quality of pigs with intrauterine growth restriction. J Anim Sci 2023; 101:skad354. [PMID: 37837640 PMCID: PMC10630012 DOI: 10.1093/jas/skad354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Pigs with intrauterine growth restriction (IUGR) have suboptimum growth performance and impaired synthesis of glycine (the most abundant amino acid in the body). Conventional corn- and soybean meal-based diets for postweaning pigs contain relatively low amounts of glycine and may not provide sufficient glycine to meet requirements for IUGR pigs. This hypothesis was tested using 52 IUGR pigs and 52 litter mates with normal birth weights (NBW). At weaning (21 d of age), IUGR or NBW pigs were assigned randomly to one of two nutritional groups: supplementation of a corn-soybean meal-based diet with either 1% glycine plus 0.19% cornstarch or 1.19% L-alanine (isonitrogenous control). Feed consumption and body weight (BW) of pigs were recorded daily and every 2 or 4 wks, respectively. All pigs had free access to their respective diets and clean drinking water. Within 1 wk after the feeding trial ended at 188 d of age, blood and other tissue samples were obtained from pigs to determine concentrations of amino acids and meat quality. Neither IUGR nor glycine supplementation affected (P > 0.05) feed intakes of pigs per kg BW. The final BW, gain:feed ratio, carcass dressing percentages, and four-lean-cuts percentages of IUGR pigs were 13.4 kg, 4.4%, 2%, and 15% lower (P < 0.05) for IUGR pigs than NBW pigs, respectively. Compared with pigs in the alanine group, dietary glycine supplementation increased (P < 0.05) final BW, gain:feed ratio, and meat a* value (a redness score) by 3.8 kg, 11%, and 10%, respectively, while reducing (P < 0.05) backfat thickness by 18%. IUGR pigs had lower (P < 0.05) concentrations of glycine in plasma (-45%), liver (-25%), jejunum (-19%), longissimus dorsi muscle (-23%), gastrocnemius muscle (-26%), kidney (-15%), and pancreas (-6%), as compared to NBW pigs. In addition, dietary glycine supplementation increased (P < 0.05) concentrations of glycine in plasma and all analyzed tissues. Thus, supplementing 1% of glycine to corn-soybean meal-based diets improves the growth performance, feed efficiency, and meat quality of IUGR pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| |
Collapse
|
24
|
Herring CM, Bazer FW, Johnson GA, Seo H, Hu S, Elmetwally M, He W, Long DB, Wu G. Dietary supplementation with 0.4% L-arginine between days 14 and 30 of gestation enhances NO and polyamine syntheses and water transport in porcine placentae. J Anim Sci Biotechnol 2022; 13:134. [PMID: 36476252 PMCID: PMC9730586 DOI: 10.1186/s40104-022-00794-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.
Collapse
Affiliation(s)
- Cassandra M. Herring
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Gregory A. Johnson
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Heewon Seo
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Shengdi Hu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Mohammed Elmetwally
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Wenliang He
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Daniel B. Long
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Guoyao Wu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
25
|
Short- and Long-Term Effects of Birth Weight and Neonatal Care in Pigs. Animals (Basel) 2022; 12:ani12212936. [PMID: 36359060 PMCID: PMC9655915 DOI: 10.3390/ani12212936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Swine industries worldwide face a loss in profit due to high piglet mortality, particularly as a consequence of the marked increase in prolificity and low birth weight (BW) of piglets. This research studied the effect of BW and individual neonatal care provided to piglets on preweaning mortality, and the long-term effects on growth and carcass and meat characteristics. Litters from seventy-one crossbred sows (PIC 34) were included in the trial. Half of each litter did not receive any further management, and the remaining half received the pre-established management protocol of early assistance of neonatal care (NC). Along lactation, the low-BW piglets (weight equal to or less than 1.1 kg) showed a threefold higher mortality rate than piglets of higher weights (32 vs. 10%; p = 0.001), with mortality particularly concentrated within the first week after birth. No effect of NC treatment was observed on mortality ratio caused by crushing, but a significant effect was observed in low-BW piglets who died of starvation (p < 0.01). The effect of NC on growth is dependent on BW, and heavier piglets at birth benefit from NC treatment to a higher extent than low-BW piglets. Low-BW piglets showed a higher fatness (p = 0.003), lower lean cut yield (p = 0.002) in carcasses, and higher intramuscular fat (IMF) content (2.29% vs. 1.91%; p = 0.01) in meat. NC treatment increased the lean content in carcasses from low-BW piglets (p < 0.01). The monounsaturated fatty acids concentration was higher in lower-than-normal-BW piglets (48.1% vs. 47.1%; p = 0.002) and the opposite effect was observed for polyunsaturated fatty acids (13.6% vs. 15.7%; p = 0.002). NC treatment induced a higher concentration of n-7 fatty acids. In conclusion, NC treatment may be a useful practice to reduce mortality in low-BW piglets. Moreover, NC could affect carcass fatness and meat quality, thus suggesting a long-term effect on metabolism.
Collapse
|
26
|
Ponsuksili S, Murani E, Hadlich F, Iqbal MA, Fuchs B, Galuska CE, Perdomo-Sabogal A, Sarais F, Trakooljul N, Reyer H, Oster M, Wimmers K. Prenatal transcript levels and metabolomics analyses reveal metabolic changes associated with intrauterine growth restriction and sex. Open Biol 2022; 12:220151. [PMID: 36102059 PMCID: PMC9471991 DOI: 10.1098/rsob.220151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The metabolic changes associated with intrauterine growth restriction (IUGR) particularly affect the liver, which is a central metabolic organ and contributes significantly to the provision of energy and specific nutrients and metabolites. Therefore, our aim was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs, as well as the metabolome in fetal liver tissue in IUGR compared to appropriate for gestational age groups (AGA). Discordant siblings representing the extremes in fetal weight at day 63 post conception (dpc) were selected from F2 fetuses of a cross of German Landrace and Pietrain. Most of the changes in the liver of IUGR at midgestation involved various lipid metabolic pathways, both on transcript and metabolite levels, especially in the category of sphingolipids and phospholipids. Differentially expressed miRNAs, such as miR-34a, and their differentially expressed mRNA targets were identified. Sex-specific phenomena were observed at both the transcript and metabolite levels, particularly in male. This suggests that sex-specific adaptations in the metabolic system occur in the liver during midgestation (63 dpc). Our multi-omics network analysis reveals interactions and changes in the metabolic system associated with IUGR and identified an important biosignature that differs between IUGR and AGA piglets.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Beate Fuchs
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany
| | - Christina E Galuska
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
27
|
Epigenetic regulation of fetal brain development in pig. Gene 2022; 844:146823. [PMID: 35988784 DOI: 10.1016/j.gene.2022.146823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
How fetal brain development is regulated at the molecular level is not well understood. Due to ethical challenges associated with research on the human fetus, large animals particularly pigs are increasingly used to study development and disorders of fetal brain. The pig fetal brain grows rapidly during the last ∼ 50 days before birth which is around day 60 (d60) of pig gestation. But what regulates the onset of accelerated growth of the brain is unknown. The current study tests the hypothesis that epigenetic alteration around d60 is involved in the onset of rapid growth of fetal brain of pig. To test this hypothesis, DNA methylation changes of fetal brain was assessed in a genome-wide manner by Enzymatic Methyl-seq (EM-seq) during two gestational periods (GP): d45 vs. d60 (GP1) and d60 vs. d90 (GP2). The cytosine-guanine (CpG) methylation data was analyzed in an integrative manner with the RNA-seq data generated from the same brain samples from our earlier study. A neural network based modeling approach was implemented to learn changes in methylation patterns of the differentially expressed genes, and then predict methylations of the brain in a genome-wide manner during rapid growth. This approach identified specific methylations that changed in a mutually informative manner during rapid growth of the fetal brain. These methylations were significantly overrepresented in specific genic as well as intergenic features including CpG islands, introns, and untranslated regions. In addition, sex-bias methylations of known single nucleotide polymorphic sites were also identified in the fetal brain ide during rapid growth.
Collapse
|
28
|
Rezaei R, Gabriel AS, Wu G. Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets. J Anim Sci Biotechnol 2022; 13:65. [PMID: 35710489 PMCID: PMC9205058 DOI: 10.1186/s40104-022-00718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Under current dietary regimens, milk production by lactating sows is insufficient to sustain the maximal growth of their piglets. As precursors of glutamate and glutamine as well as substrates and activators of protein synthesis, branched-chain amino acids (BCAAs) have great potential for enhancing milk production by sows. Methods Thirty multiparous sows were assigned randomly into one of three groups: control (a corn- and soybean meal-based diet), the basal diet + 1.535% BCAAs; and the basal diet + 3.07% BCAAs. The ratio (g/g) among the supplemental L-isoleucine, L-leucine and L-valine was 1.00:2.56:1.23. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and their respective diets. The number of live-born piglets was standardized to 9 per sow at d 0 of lactation (the day of parturition). On d 3, 15 and 29 of lactation, body weights and milk consumption of piglets were measured, and blood samples were obtained from sows and piglets 2 h and 1 h after feeding and nursing, respectively. Results Feed intake did not differ among the three groups of sows. Concentrations of asparagine, glutamate, glutamine, citrulline, arginine, proline, BCAAs, and many other amino acids were greater (P < 0.05) in the plasma of BCAA-supplemented sows and their piglets than those in the control group. Compared with the control, dietary supplementation with 1.535% and 3.07% BCAAs increased (P < 0.05) concentrations of free and protein-bound BCAAs, glutamate plus glutamine, aspartate plus asparagine, and many other amino acids in milk; milk production by 14% and 21%, respectively; daily weight gains of piglets by 19% and 28%, respectively, while reducing preweaning mortality rates by 50% and 70%, respectively. Conclusion Dietary supplementation with up to 3.07% BCAAs enhanced milk production by lactating sows, and the growth and survival of their piglets.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ana San Gabriel
- Ajinomoto Co., Inc, 1-15-1 Kyobashi, Chuoku, Tokyo, 104-8315, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Hao Q, Wang Z, Wang L, Han M, Zhang M, Gao X. Isoleucine stimulates mTOR and SREBP-1c gene expression for milk synthesis in mammary epithelial cells through BRG1-mediated chromatin remodelling. Br J Nutr 2022; 129:1-11. [PMID: 35593529 DOI: 10.1017/s0007114522001544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several amino acids can stimulate milk synthesis in mammary epithelial cells (MEC); however, the regulatory role of isoleucine (Ile) and underlying molecular mechanism remain poorly understood. In this study, we aimed to evaluate the regulatory effects of Ile on milk protein and fat synthesis in MEC and reveal the mediation mechanism of Brahma-related gene 1 (BRG1) on this regulation. Ile dose dependently affected milk protein and fat synthesis, mechanistic target of rapamycin (mTOR) phosphorylation, sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation, and BRG1 protein expression in bovine MEC. Phosphatidylinositol 3 kinase (PI3K) inhibition by LY294002 treatment blocked the stimulation of Ile on BRG1 expression. BRG1 knockdown and gene activation experiments showed that it mediated the stimulation of Ile on milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c expression and maturation in MEC. ChIP-PCR analysis detected that BRG1 bound to the promoters of mTOR and SREBP-1c, and ChIP-qPCR further detected that these bindings were increased by Ile stimulation. In addition, BRG1 positively regulated the binding of H3K27ac to these two promoters, while it negatively affected the binding of H3K27me3 to these promoters. BRG1 knockdown blocked the stimulation of Ile on these two gene expressions. The expression of BRG1 was higher in mouse mammary gland in the lactating period, compared with that in the puberty or dry period. Taken together, these experimental data reveal that Ile stimulates milk protein and fat synthesis in MEC via the PI3K-BRG1-mTOR/SREBP-1c pathway.
Collapse
Affiliation(s)
- Qi Hao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Zhe Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Lulu Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Meihong Han
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| |
Collapse
|
30
|
Villagómez-Estrada S, Pérez JF, Melo-Durán D, Gonzalez-Solè F, D'Angelo M, Pérez-Cano FJ, Solà-Oriol D. Short Communication: Body weight of newborn and suckling piglets affects their intestinal gene expression. J Anim Sci 2022; 100:6577224. [PMID: 35511683 PMCID: PMC9175296 DOI: 10.1093/jas/skac161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Modern hyperprolific sows must deal with large litters (16–20 piglets) which reduce piglet birthweight with a concomitant increase in the proportion of small and intrauterine growth retarded piglets. However, larger litters do not only have a greater variation of piglet weights, but also a greater variation in colostrum and milk consumption within the litter. To further understand the impact that body weight has on piglets, the present study aimed to evaluate the degree of physiological weakness of the smallest piglets at birth and during the suckling period (20 d) compared to their middle-weight littermates through their jejunal gene expression. At birth, light piglets showed a downregulation of genes related to immune response (FAXDC2, HSPB1, PPARGC1α), antioxidant enzymes (SOD2m), digestive enzymes (ANPEP, IDO1, SI), and nutrient transporter (SLC39A4) (P < 0.05) but also a tendency for a higher mRNA expression of GBP1 (inflammatory regulator) and HSD11β1 (stress hormone) genes compared to their heavier littermates (P < 0.10). Excluding HSD11β1 gene, all these intestinal gene expression differences initially observed at birth between light and middle-weight piglets were stabilized at the end of the suckling period, when others appeared. Genes involved in barrier function (CLDN1), pro-inflammatory response (CXCL2, IL6, IDO1), and stress hormone signaling (HSD11β1) over-expressed compared to their middle-weight littermates (P < 0.05). In conclusion, at birth and at the end of suckling period, light body weight piglets seem to have a compromised gene expression and therefore impaired nutrient absorption, immune and stress responses compared to their heavier littermates.
Collapse
Affiliation(s)
- Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain.,Carrera de Medicina Veterinaria, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - José F Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Diego Melo-Durán
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain.,Faculty of Medical Sciences "Eugenio Espejo", UTE University, Quito 17012764, Ecuador
| | - Francesc Gonzalez-Solè
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Matilde D'Angelo
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Francisco J Pérez-Cano
- Department of Biochemistry and Physiology, University of Barcelona, Barcelona 08007, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
31
|
Maternal Dietary Energy and Piglet Health. J Anim Sci 2022; 100:skac050. [PMID: 35363311 PMCID: PMC8973908 DOI: 10.1093/jas/skac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
|
32
|
Peixoto-Neves D, Kanthakumar P, Afolabi JM, Soni H, Buddington RK, Adebiyi A. K V7.1 channel blockade inhibits neonatal renal autoregulation triggered by a step decrease in arterial pressure. Am J Physiol Renal Physiol 2022; 322:F197-F207. [PMID: 35001664 PMCID: PMC8816635 DOI: 10.1152/ajprenal.00568.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
KV7 channels, the voltage-gated K+ channels encoded by KCNQ genes, mediate heterogeneous vascular responses in rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter mean arterial pressure, renal blood flow, and renal vascular resistance in the pigs. An ∼20 mmHg reduction in mean arterial pressure evoked effective autoregulation of renal blood flow, which HMR inhibited. We conclude that 1) the expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.NEW & NOTEWORTHY KV7.1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. KV7.1 is functionally expressed in neonatal pig renal vascular smooth muscle cells (SMCs). A decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs. Although SMC KV7.1 does not control basal renal vascular resistance, its inhibition blunts neonatal renal autoregulation engendered by a step decrease in arterial pressure.
Collapse
Affiliation(s)
- Dieniffer Peixoto-Neves
- 1Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Jeremiah M. Afolabi
- 1Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hitesh Soni
- 1Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Adebowale Adebiyi
- 1Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
33
|
Zhang J, Yan E, Zhang L, Wang T, Wang C. Curcumin reduces oxidative stress and fat deposition in longissimus dorsi muscle of intrauterine growth-retarded finishing pigs. Anim Sci J 2022; 93:e13741. [PMID: 35707899 DOI: 10.1111/asj.13741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Dietary curcumin possessing multiple biological activities may be an effective way to alleviate oxidative damage and fat deposition in intrauterine growth retardation (IUGR) finishing pigs. Therefore, this study was conducted to evaluate effects of dietary curcumin on meat quality, antioxidant capacity, and fat deposition of longissimus dorsi muscle in IUGR finishing pigs. Twelve normal birth weight (NBW) and 24 IUGR female piglets at 26 days of age were divided into 3 dietary groups: NBW (basal diet), IUGR (basal diet), and IUGR + Cur (basal diet supplemented with 200 mg/kg curcumin). The trial lasted for 169 days. Results showed that IUGR increased concentrations of malondialdehyde (MDA) and protein carbonyls (PC) and fat deposition in longissimus dorsi muscle. However, curcumin decreased the intramuscular fat content and the levels of MDA and PC and improved meat quality in IUGR pigs. Furthermore, curcumin inhibited the decrease of nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and decreased peroxisome pro liferator-activated receptors γ (PPARγ) expression in IUGR pigs. These findings suggested that dietary addition of 200 mg/kg curcumin could improve meat quality, alleviate oxidative stress through activating Nrf2 signaling pathway, and reduce fat deposition via inhibiting PPARγ expression in longissimus dorsi muscle of IUGR finishing pigs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Enfa Yan
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chao Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Ouellet V, Boucher A, Dahl GE, Laporta J. Consequences of maternal heat stress at different stages of embryonic and fetal development on dairy cows' progeny. Anim Front 2021; 11:48-56. [PMID: 34934529 PMCID: PMC8683134 DOI: 10.1093/af/vfab059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Véronique Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Alexandra Boucher
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
35
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
36
|
Use of Agriculturally Important Animals as Models in Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:315-333. [PMID: 34807449 DOI: 10.1007/978-3-030-85686-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Livestock have contributed significantly to advances in biomedicine and offer unique advantages over rodent models. The human is the ideal biomedical model; however, ethical reasons limit the testing of hypotheses and treatments in humans. Rodent models are frequently used as alternatives to humans due to size, low cost, and ease of genetic manipulation, and have contributed tremendously to our understanding of human health and disease. However, the use of rodents in translational research pose challenges for researchers due to physiological differences to humans. The use of livestock species as biomedical models can address these challenges as livestock have several similarities to human anatomy, physiology, genetics, and metabolism and their larger size permits collection of more frequent and often larger samples. Additionally, recent advances in genetics in livestock species allow for studies in genomics, proteomics, and metabolomics, which have the added benefit of applications to both humans in biomedical research and livestock in improving production. In this review, we provide an overview of scientific findings using livestock and benefits of each model to the livestock industry and to biomedical research.
Collapse
|
37
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
38
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
39
|
Villagómez-Estrada S, Pérez JF, van Kuijk S, Melo-Durán D, Forouzandeh A, Gonzalez-Solè F, D'Angelo M, Pérez-Cano FJ, Solà-Oriol D. Strategies of inorganic and organic trace mineral supplementation in gestating hyperprolific sow diets: effects on the offspring performance and fetal programming. J Anim Sci 2021; 99:6290087. [PMID: 34057466 DOI: 10.1093/jas/skab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to evaluate the effect of trace mineral nutrition on sow performance, mineral content, and intestinal gene expression of neonate piglets when inorganic mineral sources (ITM) were partially replaced by their organic mineral (OTM) counterparts. At 35 d postmating, under commercial conditions, a total of 240 hyperprolific multiparous sows were allocated into three experimental diets: 1) ITM: with Zn, Cu, and Mn at 80, 15, and 60 mg/kg, respectively; 2) partial replacement trace mineral source (Replace): with a 30 % replacement of ITM by OTM, resulting in ITM + OTM supplementation of Zn (56 + 24 mg/kg), Cu (10.5 + 4.5 mg/kg), and Mn (42 + 18 mg/kg); and 3) Reduce and replace mineral source (R&R): reducing a 50% of the ITM source of Zn (40 + 24 mg/kg), Cu (7.5 + 4.5 mg/kg), and Mn (30 + 18 mg/kg). At farrowing, 40 piglets were selected, based on birth weight (light: <800 g, and average: >1,200 g), for sampling. Since the present study aimed to reflect results under commercial conditions, it was difficult to get an equal parity number between the experimental diets. Overall, no differences between experimental diets on sow reproductive performance were observed. Light piglets had a lower mineral content (P < 0.05) and a downregulation of several genes (P < 0.10) involved in physiological functions compared with their average littermates. Neonate piglets born from Replace sows had an upregulation of genes involved in functions like immunity and gut barrier, compared with those born from ITM sows (P < 0.10), particularly in light piglets. In conclusion, the partial replacement of ITM by their OTM counterparts represents an alternative to the totally inorganic supplementation with improvements on neonate piglet gene expression, particularly in the smallest piglets of the litter. The lower trace mineral storage together with the greater downregulation of gut health genes exposed the immaturity and vulnerability of small piglets.
Collapse
Affiliation(s)
- Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - José F Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Sandra van Kuijk
- Trouw Nutrition, Research and Development Department, Amersfoort 3800, The Netherlands
| | - Diego Melo-Durán
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Asal Forouzandeh
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Francesc Gonzalez-Solè
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Matilde D'Angelo
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Francisco J Pérez-Cano
- Department of Biochemistry and Physiology, University of Barcelona, Barcelona 08007, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
40
|
Teixeira SA, Marques DBD, Costa TC, Oliveira HC, Costa KA, Carrara ER, da Silva W, Guimarães JD, Neves MM, Ibelli AMG, Cantão ME, Ledur MC, Peixoto JO, Guimarães SEF. Transcription Landscape of the Early Developmental Biology in Pigs. Animals (Basel) 2021; 11:ani11051443. [PMID: 34069910 PMCID: PMC8157595 DOI: 10.3390/ani11051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Since pre- and postnatal development are programmed during early prenatal life, studies addressing the complete transcriptional landscape during organogenesis are needed. Therefore, we aimed to disentangle differentially expressed (DE) genes between fetuses (at 35 days old) and embryos (at 25 days old) through RNA-sequencing analysis using the pig as model. In total, 1705 genes were DE, including the top DE IBSP, COL6A6, HBE1, HBZ, HBB, and NEUROD6 genes, which are associated with developmental transition from embryos to fetuses, such as ossification, skeletal muscle development, extracellular matrix organization, cardiovascular system, erythrocyte differentiation, and neuronal system. In pathway analysis, embryonic development highlighted those mainly related to morphogenic signaling and cell interactions, which are crucial for transcriptional control during the establishment of the main organs in early prenatal development, while pathways related to myogenesis, neuronal development, and cardiac and striated muscle contraction were enriched for fetal development, according to the greater complexity of organs and body structures at this developmental stage. Our findings provide an exploratory and informative transcriptional landscape of pig organogenesis, which might contribute to further studies addressing specific developmental events in pigs and in other mammals.
Collapse
Affiliation(s)
- Susana A. Teixeira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Daniele B. D. Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Thaís C. Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Haniel C. Oliveira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Karine A. Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Eula R. Carrara
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - Walmir da Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
| | - José D. Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | - Mariana M. Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | - Adriana M. G. Ibelli
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil; (A.M.G.I.); (M.E.C.); (M.C.L.); (J.O.P.)
| | - Maurício E. Cantão
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil; (A.M.G.I.); (M.E.C.); (M.C.L.); (J.O.P.)
| | - Mônica C. Ledur
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil; (A.M.G.I.); (M.E.C.); (M.C.L.); (J.O.P.)
| | - Jane O. Peixoto
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil; (A.M.G.I.); (M.E.C.); (M.C.L.); (J.O.P.)
| | - Simone E. F. Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (S.A.T.); (D.B.D.M.); (T.C.C.); (H.C.O.); (K.A.C.); (E.R.C.); (W.d.S.)
- Correspondence: ; Tel.: +55-31-36124671
| |
Collapse
|
41
|
Oster M, Reyer H, Gerlinger C, Trakooljul N, Siengdee P, Keiler J, Ponsuksili S, Wolf P, Wimmers K. mRNA Profiles of Porcine Parathyroid Glands Following Variable Phosphorus Supplies throughout Fetal and Postnatal Life. Biomedicines 2021; 9:biomedicines9050454. [PMID: 33922173 PMCID: PMC8146947 DOI: 10.3390/biomedicines9050454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of gene expression profiles reflecting functional features and specific responsiveness of parathyroid glands (PTGs) contributes to understanding mineral homeostasis and parathyroid function in healthy and diseased conditions. The study aims to reveal effector molecules driving the maintenance of phosphorus (P) homeostasis and parathyroid hormone (PTH) responsiveness to variable P supply throughout fetal and postnatal life. In this study, a long-term dietary intervention was performed by keeping pig offspring on distinct mineral P levels throughout fetal and postnatal life. Respective adaptation processes of P homeostasis were assessed in mRNA profiles of PTGs and serum minerals. RNA sequencing data and resulting molecular pathways of PTGs showed that the PTH abundance is very strictly controlled via e.g., PIN1, CaSR, MAfB, PLC and PKA signaling to regulate PTH expression, stability, and secretion. Additionally, the observed dietary effects on collagen expression indicate shifts in the ratio between connective tissue and parenchyma, thereby affecting cell-cell contacts as another line of PTH regulation. Taken together, the mRNA profiles of porcine PTGs reflect physiological responses in-vivo following variable dietary P supplies during fetal and postnatal life. The results serve to evaluate a long-term nutrition strategy with implications for improving the mineral balance in individuals with pathological disorders.
Collapse
Affiliation(s)
- Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Christian Gerlinger
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Puntita Siengdee
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Jonas Keiler
- Department of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
- Correspondence: ; Tel.: +49-382-086-8600
| |
Collapse
|
42
|
Zhang Q, Hou Y, Bazer FW, He W, Posey EA, Wu G. Amino Acids in Swine Nutrition and Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:81-107. [PMID: 33770404 DOI: 10.1007/978-3-030-54462-1_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Kar SK, Wells JM, Ellen ED, Te Pas MFW, Madsen O, Groenen MAM, Woelders H. Organoids: a promising new in vitro platform in livestock and veterinary research. Vet Res 2021; 52:43. [PMID: 33691792 PMCID: PMC7943711 DOI: 10.1186/s13567-021-00904-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool.
Collapse
Affiliation(s)
- Soumya K Kar
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Esther D Ellen
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
44
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
45
|
Blavi L, Solà-Oriol D, Llonch P, López-Vergé S, Martín-Orúe SM, Pérez JF. Management and Feeding Strategies in Early Life to Increase Piglet Performance and Welfare around Weaning: A Review. Animals (Basel) 2021; 11:302. [PMID: 33503942 PMCID: PMC7911825 DOI: 10.3390/ani11020302] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
The performance of piglets in nurseries may vary depending on body weight, age at weaning, management, and pathogenic load in the pig facilities. The early events in a pig's life are very important and may have long lasting consequences, since growth lag involves a significant cost to the system due to reduced market weights and increased barn occupancy. The present review evidences that there are several strategies that can be used to improve the performance and welfare of pigs at weaning. A complex set of early management and dietary strategies have been explored in sows and suckling piglets for achieving optimum and efficient growth of piglets after weaning. The management strategies studied to improve development and animal welfare include: (1) improving sow housing during gestation, (2) reducing pain during farrowing, (3) facilitating an early and sufficient colostrum intake, (4) promoting an early social interaction between litters, and (5) providing complementary feed during lactation. Dietary strategies for sows and suckling piglets aim to: (1) enhance fetal growth (arginine, folate, betaine, vitamin B12, carnitine, chromium, and zinc), (2) increase colostrum and milk production (DL-methionine, DL-2-hydroxy-4-methylthiobutanoic acid, arginine, L-carnitine, tryptophan, valine, vitamin E, and phytogenic actives), (3) modulate sows' oxidative and inflammation status (polyunsaturated fatty acids, vitamin E, selenium, phytogenic actives, and spray dried plasma), (4) allow early microbial colonization (probiotics), or (5) supply conditionally essential nutrients (nucleotides, glutamate, glutamine, threonine, and tryptophan).
Collapse
Affiliation(s)
- Laia Blavi
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.S.-O.); (P.L.); (S.L.-V.); (S.M.M.-O.); (J.F.P.)
| | | | | | | | | | | |
Collapse
|
46
|
Oxidation of Energy Substrates in Tissues of Fish: Metabolic Significance and Implications for Gene Expression and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:67-83. [PMID: 34251639 DOI: 10.1007/978-3-030-74180-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish are useful animal models for studying effects of nutrients and environmental factors on gene expression (including epigenetics), toxicology, and carcinogenesis. To optimize the response of the animals to substances of interest (including toxins and carcinogens), water pollution, or climate changes, it is imperative to understand their fundamental biochemical processes. One of these processes concerns energy metabolism for growth, development, and survival. We have recently shown that tissues of hybrid striped bass (HSB), zebrafish, and largemouth bass (LMB) use amino acids (AAs; such as glutamate, glutamine, aspartate, alanine, and leucine) as major energy sources. AAs contribute to about 80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle tissue of the fish. Thus, as for mammals (including humans), AAs are the primary metabolic fuels in the proximal intestine of fish. In contrast, glucose and fatty acids are only minor metabolic fuels in the fish. Fish tissues have high activities of glutamate dehydrogenase, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase, as well as high rates of glutamate uptake. In contrast, the activities of hexokinase, pyruvate dehydrogenase, and carnitine palmitoyltransferase 1 in all the tissues are relatively low. Furthermore, unlike mammals, the skeletal muscle (the largest tissue) of HSB and LMB has a limited uptake of long-chain fatty acids and barely oxidizes fatty acids. Our findings explain differences in the metabolic patterns of AAs, glucose, and lipids among various tissues in fish. These new findings have important implications for understanding metabolic significance of the tissue-specific oxidation of AAs (particularly glutamate and glutamine) in gene expression (including epigenetics), nutrition, and health, as well as carcinogenesis in fish, mammals (including humans), and other animals.
Collapse
|
47
|
Wensley MR, Tokach MD, Woodworth JC, Goodband RD, Gebhardt JT, DeRouchey JM, McKilligan D. Maintaining continuity of nutrient intake after weaning. I. Review of pre-weaning strategies. Transl Anim Sci 2021; 5:txab021. [PMID: 33750992 PMCID: PMC7963027 DOI: 10.1093/tas/txab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Weaning is a crucial phase of swine production marked by a multitude of biological and environmental stressors, which have a significant impact on immediate postweaning behavior and feed intake (FI). During this time, the piglet's gastrointestinal (GI) system is also undergoing extensive epithelial, immune, and nervous system development. In this review, our objective is to describe the different preweaning strategies that can be used to minimize nutrient intake disruption and improve FI in the immediate postweaning period. Reducing nutrient disruption postweaning can be accomplished through the implementation of management and nutritional strategies. Research consistently demonstrates that weaning older, more developmentally mature pigs helps prevent many of the adverse GI effects associated with weaning stress. Providing creep feed to pigs during lactation is another reliable strategy that has been shown to increase immediate postweaning FI by acclimating pigs to solid feed prior to weaning. Likewise, socialization by allowing pigs to mix before weaning improves social skills, minimizing mixing stress, and aggression-related injury immediately postweaning. Supplemental milk replacer has also been shown to elicit a positive response in preweaning growth performance, which may help to reduce preweaning mortality. While socialization and milk replacer are acknowledged to ease the weaning transition, these strategies have not been widely adopted due to labor and application challenges. Additionally, the cost of milk replacer and logistics of retrofitting farrowing houses to accommodate litter socialization have limited adaptation. Further exploration of maternal nutrition strategies, particularly fetal imprinting, is needed to better understand the implications of perinatal learning. Other areas for future research include, combining environmental enrichment with feeding strategies, such as large destructible pellets or play feeders, as well as determining at what time point producers should start socializing pigs before weaning. While more research is needed to develop strategic preweaning management programs, many of the strategies presented in this review provide opportunities for producers to minimize nutrient intake disruption by preventing feed neophobia, reducing stress, and easing the wean pig transition.
Collapse
Affiliation(s)
- Madie R Wensley
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS 66506-0201, USA
| | | |
Collapse
|
48
|
Serviento AM, Lebret B, Renaudeau D. Chronic prenatal heat stress alters growth, carcass composition, and physiological response of growing pigs subjected to postnatal heat stress. J Anim Sci 2020; 98:5838137. [PMID: 32415838 DOI: 10.1093/jas/skaa161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023] Open
Abstract
Postnatal heat stress (HS) effects on pig physiology and performance are widely studied but prenatal HS studies, albeit increasing, are still limited. The objective of this study was to evaluate the chronic prenatal HS effects in growing pigs raised in postnatal thermoneutral (TN) or in HS environment. For prenatal environment (PE), mixed-parity pregnant sows were exposed to either TN (PTN; cyclic 18 to 24 °C; n = 12) or HS (PHS; cyclic 28 to 34 °C; n = 12) conditions from day 9 to 109 of gestation. Two female offspring per sow were selected at 10 wk of age and allotted to one of two postnatal growing environments (GE): GTN (cyclic 18 to 24 °C; n = 24) and GHS (cyclic 28 to 34 °C; n = 24). From 75 to 140 d of age, GTN pigs remained in GTN conditions, while GHS pigs were in GTN conditions from 75 to 81 d of age and in GHS conditions from 82 to 140 d of age. Regardless of PE, postnatal HS increased rectal and skin temperatures (+0.30 and +1.61 °C on average, respectively; P < 0.01) and decreased ADFI (-332 g/d; P < 0.01), resulting in lower ADG and final BW (-127 g/d and -7.9 kg, respectively; P < 0.01). The GHS pigs exhibited thicker backfat (P < 0.01), lower carcass loin percentage (P < 0.01), increased plasma creatinine levels (P < 0.01), and decreased plasma glucose, nonesterified fatty acids, T3, and T4 levels (P < 0.05). Prenatal HS increased feed intake in an age-dependent manner (+10 g·kg BW-0.60·d-1 for PHS pigs in the last 2 wk of the trial; P = 0.02) but did not influence BW gain (P > 0.10). Prenatal HS decreased the plasma levels of superoxide dismutase on day 3 of GHS (trend at P = 0.08) and of T4 on day 49 (P < 0.01) but did not affect T3 on day 3 nor 49 (P > 0.10). Prenatal HS increased rectal and skin temperatures and decreased temperature gradient between rectal and skin temperatures in GTN pigs (+0.10, +0.33 and -0.22 °C, respectively; P < 0.05) but not in GHS pigs (P > 0.10). There were also PE × GE interactions found with lower BW (P = 0.06) and higher backfat (P < 0.01) and perirenal adiposity (P < 0.05) for GHS-PHS pigs than the other groups. Overall, increased body temperature and altered thyroid functions and physiological stress responses suggest decreased heat tolerance and dissipation ability of pigs submitted to a whole-gestation chronic prenatal HS. Postnatal HS decreased growth performance, increased carcass adiposity, and affected metabolic traits and thyroid functions especially in pigs previously submitted to prenatal HS.
Collapse
Affiliation(s)
- Aira Maye Serviento
- INRAE, Agrocampus Ouest, PEGASE, Saint-Gilles, France.,Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
| | | | | |
Collapse
|
49
|
Yoon SY, Sa SJ, Cho ES, Ko HS, Choi JW, Kim JS. Effects of Zinc Oxide and Arginine on the Intestinal Microbiota and Immune Status of Weaned Pigs Subjected to High Ambient Temperature. Animals (Basel) 2020; 10:ani10091537. [PMID: 32878254 PMCID: PMC7552118 DOI: 10.3390/ani10091537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the effect of the l-arginine (Arg) inclusion and different doses of ZnO on the growth performance, intestinal microbiota and integrity, and immune status of weaned pigs. A total of 180 pigs (28-day-old) were randomly allotted to six treatments with six replicate pens in each treatment and five pigs per pen. The dietary treatments were Con (1.1% Arg); P-Zn (1.1% Arg + 2500 mg Zn as ZnO/kg diet); ARG (1.6% Arg); ZnArg1 (500 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg2 (1000 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg3 (2500 mg of Zn as ZnO/kg diet + 1.6% Arg). The overall result showed that the inclusion of ZnArg3 significantly improved the average daily gain of pigs compared with the Con treatment. There was a reduction in feed intake in pigs fed the Con diet compared with pigs fed the ZnArg3 diet at phase 1 and overall. At phase 1, pigs fed the ZnArg3 diet and P-Zn diet showed a decreased population of Clostridium spp. in the ileum compared with those of the Con treatment. In addition, a lower ileal Clostridium spp. population was detected in pigs fed the ZnArg2 diet compared with pigs fed the Con diet. The pigs fed ZnArg1 and ZnArg3 diets showed a greater villus height of duodenum compared with the Con and P-Zn treatments. The pigs in the Con treatment showed increased mRNA expression of heat shock protein-27 in the liver compared with the P-Zn, ZnArg1, ZnArg2, and ZnArg3 treatments. When fed the basal diet, mRNA expressions of interleukin-6 were increased in the muscle compared with the ZnArg3 treatment. Dietary supplementation with ZnArg2 decreased the mRNA expressions of interferon-γ in the muscle compared with the Con treatment. Supplementation with P-Zn, ZnArg1, ZnArg2, and ZnArg3 decreased mRNA expressions of tumor necrosis factor-α (TNF-α) compared with the Con treatment. The mRNA gene expressions of interleukin-4 were decreased in the jejunum of pigs fed P-Zn, ARG, ZnArg1, ZnArg2, and ZnArg3 diets compared with pigs fed the Con diet. The jejunum gene expression of toll-like receptor-4 was upregulated in the Con and ARG treatments compared with the ZnArg1 and ZnArg3. The ZnArg1, ZnArg2, and ZnArg3 treatments showed lower mRNA expression of TNF-α compared with the Con treatment. In conclusion, there was no difference in growth performance, intestinal microbiota, gene expression of interleukins between ZnArg1 and ZnArg3 treatments. Therefore, the low level of ZnO (500 mg/kg) plus 1.6% dietary Arg may be recommended for pigs during the weaning stress.
Collapse
Affiliation(s)
- Se Young Yoon
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Soo Jin Sa
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.J.S.); (E.S.C.)
| | - Eun Seok Cho
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.J.S.); (E.S.C.)
| | - Han Seo Ko
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Jung Woo Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Jin Soo Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
- Correspondence: ; Tel.: +82-33-250-8614; Fax: +82-33-259-5572
| |
Collapse
|
50
|
Hoyle AS, Menezes ACB, Nelson MA, Swanson KC, Vonnahme KA, Berg EP, Ward AK. Fetal expression of genes related to metabolic function is impacted by supplementation of ground beef and sucrose during gestation in a swine model. J Anim Sci 2020; 98:skaa232. [PMID: 32687162 PMCID: PMC7431213 DOI: 10.1093/jas/skaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal supplementation on the mRNA abundance of genes associated with metabolic function in fetal muscle and liver, pregnant sows (Landrace × Yorkshire; initial body weight (BW) 221.58 ± 33.26 kg; n = 21) fed a complete gestation diet (corn-soybean meal based diet, CSM) were randomly assigned to 1 of 4 isocaloric supplementation treatments: control (CON, 378 g/d CSM, n = 5), sucrose (SUGAR, 255 g/d crystalized sugar, n = 5), cooked ground beef (BEEF, 330 g/d n = 6), or BEEF + SUGAR (B+S, 165 g/d cooked ground beef and 129 g/d crystalized sugar, n = 5), from days 40 to 110 of gestation. Sows were euthanized on day 111 of gestation. Two male and 2 female fetuses of median BW were selected from each litter, and samples of the longissimus dorsi muscle and liver were collected. Relative transcript level was quantified via qPCR with HPRT1 as the reference gene for both muscle and liver samples. The following genes were selected and analyzed in the muscle: IGF1R, IGF2, IGF2R, GYS-1, IRS-1, INSR, SREBP-1C, and LEPR; while the following were analyzed in the liver: IGF2, IGF2R, FBFase, G6PC, PC, PCK1, FGF21, and LIPC. No effect of fetal sex by maternal treatment interaction was observed in mRNA abundance of any of the genes evaluated (P > 0.11). In muscle, the maternal nutritional treatment influenced (P = 0.02) IGF2 mRNA abundance, with B+S and SUGAR fetuses having lower abundance than CON, which was not different from BEEF. Additionally, SREBP-1 mRNA abundance was greater (P < 0.01) for B+S compared with CON, BEEF, or SUGAR fetuses; and females tended (P = 0.06) to have an increased abundance of SREBP-1 than males. In fetal liver, IGF2R mRNA abundance was greater (P = 0.01) for CON and BEEF than SUGAR and B+S; while FBPase mRNA abundance was greater (P = 0.03) for B+S compared with the other groups. In addition, maternal nutritional tended (P = 0.06) to influence LIPC mRNA abundance, with increased abundance in CON compared with SUGAR and B+S. These data indicate limited changes in transcript abundance due to substitution of supplemental sugar by ground beef during mid to late gestation. However, the differential expression of FBPase and SREBP-1c in response to the simultaneous supplementation of sucrose and ground beef warrants further investigations, since these genes may play important roles in determining the offspring susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Ashley S Hoyle
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Megan A Nelson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Eric P Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|