1
|
Kongpanna P, Jamikorn U, Tripipat T, Tantituvanont A, Ngampak R, Nilubol D. Efficacy of Three Doses of Halquinol on Growth Performance, Diarrhea Incidence, Nutrient Digestibility, and Fecal Microbiome of Weaned Pigs. Animals (Basel) 2025; 15:1258. [PMID: 40362078 PMCID: PMC12071017 DOI: 10.3390/ani15091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The weaning period is a critical phase for nursery pigs that is characterized by rapid growth and alterations in the intestinal microbiome associated with nutrient utilization. The present study aimed to investigate the efficacy of halquinol, when used as an antibiotic (ABO), on the growth performance, diarrhea incidence, coefficient of apparent total tract digestibility (CATTD), fecal volatile fatty acids (VFAs), and microbiota in pigs. A total of 210 healthy weaned pigs with an average initial weight of 6.9 kg and aged 28 ± 2 days were assigned to five treatments (six pens/treatment) in a complete randomized design, including a control group (T1, CON; feed with no ABO), a colistin group (T2, CLT; feed containing 120 ppm colistin), and three halquinol groups (T3 to T5, HAL; feed containing 180, 240, and 360 ppm halquinol, respectively). The experiment period lasted for 10 days. Field recordings, observation, and feces collection were performed on D1, D5, and D10. CATTD and VFA assessments were conducted on D10. The composition of the fecal microbiota was analyzed via 16S rRNA gene sequencing using the Illumina Miseq platform. The results demonstrated that the in-feed ABO groups exhibited a significantly lower ADFI (p < 0.01). Pigs fed the T3 and T4 diets had the lowest FCR (p < 0.01) on D5 and D10 and, thus, had reduced ADFI (p < 0.01). A quadratic contrast was found in ADFI and FCR on D5 and D10, indicating a negative correlation with HAL concentration (p < 0.01). Pigs fed CLT and HAL had significantly reduced levels of coliform (p < 0.01) and E. coli (p < 0.01). Moreover, pigs receiving ABO also had a lower fecal score compared to those on the CON diet (p < 0.01). Dietary in-feed ABO had no effect on all the parameters of the CATTD on D10 (p > 0.05), except for fat digestibility in pigs that received T4 (p < 0.01). Pigs fed the T4 and T5 diets had higher propionate concentrations and lower A/P ratios than pigs fed T1, T2, and T3 (p < 0.01). The microbial diversity shifted quickly through the early weaning period. The relative abundance of beneficial Enterococcus microbes increased in pigs fed in-feed ABO, whereas the relative prevalence of pathogenic bacteria, such as Escherichia and Klebsiella, decreased. Escherichia and Bacteroides were negatively correlated with carbohydrate digestibility and butyric and valeric acid production (p < 0.05). Overall, the appropriate HAL dosage was 240 ppm (T4), and this antimicrobial can potentially be characterized as an in-feed colistin replacer that improves feed efficiency and fat digestion, enhancing VFA production, alleviating post-weaning diarrhea, and protecting ABO-resistant piglets.
Collapse
Affiliation(s)
- Panumas Kongpanna
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (U.J.)
| | - Uttra Jamikorn
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (U.J.)
| | - Thitima Tripipat
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rakthai Ngampak
- Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok 10400, Thailand;
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Tao T, Zhang L, Yu T, Ma J, Lu S, Ren J, Li X, Guo X. Exopolysaccharide production by Lactobacillus plantarum T10 is responsible for the probiotic activity in enhancing intestinal barrier function in vitro and in vivo. Food Funct 2024; 15:3583-3599. [PMID: 38469921 DOI: 10.1039/d4fo00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.
Collapse
Affiliation(s)
- Ting Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jiaxue Ma
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
4
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Shaposhnikov LA, Tishkov VI, Pometun AA. Lactobacilli and Klebsiella: Two Opposites in the Fight for Human Health. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S71-S89. [PMID: 38621745 DOI: 10.1134/s0006297924140050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 04/17/2024]
Abstract
The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.
Collapse
Affiliation(s)
- Leonid A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
6
|
Guo Q, Yan Y, Zhang Z, Xu B, Bangash HL, Sui X, Yang Y, Zhou Z, Zhao S, Peng N. Developing the Limosilactobacillus reuteri Chassis through an Endogenous Programmable Endonuclease-Based Genome Editing Tool. ACS Synth Biol 2023; 12:3487-3496. [PMID: 37934952 DOI: 10.1021/acssynbio.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Using genetically tractable probiotics to engineer live biotherapeutic products (LBPs) for disease treatment is urgently needed. Limosilactobacillus reuteri is an important vertebrate gut symbiont, which has great potential for developing LBPs. However, in L. reuteri, synthetic biology work is largely limited by the long editing cycle. In this study, we identified a subtype II-A CRISPR-Cas9 system in L. reuteri 03 and found the endogenous Cas9 (LrCas9) recognizing a broad protospacer-adjacent motif (PAM) sequence (3'-NDR; N = A, G, T, C; D = A, G, T; R = A, G). We reprogrammed the LrCas9 for efficient gene deletion (95.46%), point mutation (86.36%), large fragment deletion (40 kb), and gene integration (1743 bp, 73.9%), which uncovered the function of the repeated conserved domains in mucus-binding protein. Moreover, we analyzed the distribution of endogenous endonucleases in 304 strains of L. reuteri and found the existence of programmable endonucleases in 98.36% of L. reuteri strains suggesting the potential to reprogram endogenous endonucleases for genetic manipulation in the majority of L. reuteri strains. In conclusion, this study highlights the development of a new probiotic chassis based on endogenous endonucleases in L. reuteri 03, which paves the way for the development of genome editing tools for functional genetic studies in other L. reuteri. We believe that the development of an endogenous endonuclease-based genetic tool will greatly facilitate the construction of LBPs.
Collapse
Affiliation(s)
- Qiujin Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yiting Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Zhenting Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou, P.R. China
| | - Boya Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Hina Lqbal Bangash
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Xin Sui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yalin Yang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
7
|
Sip S, Sip A, Miklaszewski A, Żarowski M, Cielecka-Piontek J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023; 28:5209. [PMID: 37446871 DOI: 10.3390/molecules28135209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Hesperidin is a polyphenol derived from citrus fruits that has a broad potential for biological activity and the ability to positively modify the intestinal microbiome. However, its activity is limited by its low solubility and, thus, its bioavailability-this research aimed to develop a zein-based hesperidin system with increased solubility and a sustained release profile. The study used triple systems enriched with solubilizers to maximize solubility. The best system was the triple system hesperidin-zein-Hpβ-CD, for which the solubility improved by more than six times. A significant improvement in the antioxidant activity and the ability to inhibit α-glucosidase was also demonstrated, due to an improved solubility. A release profile analysis was performed in the subsequent part of the experiments, confirming the sustained release profile of hesperidin, while improving the solubility. Moreover, the ability of selected probiotic bacteria to metabolize hesperidin and the effect of this flavonoid compound on their growth were investigated.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Kiousi DE, Efstathiou C, Tzampazlis V, Plessas S, Panopoulou M, Koffa M, Galanis A. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1127256. [PMID: 36844407 PMCID: PMC9944596 DOI: 10.3389/fcimb.2023.1127256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Lactobacilli are avid producers of antimicrobial compounds responsible for their adaptation and survival in microbe-rich matrices. The bactericidal or bacteriostatic ability of lactic acid bacteria (LAB) can be exploited for the identification of novel antimicrobial compounds to be incorporated in functional foodstuffs or pharmaceutical supplements. In this study, the antimicrobial and antibiofilm properties of Lactiplantibacillus pentosus L33, Lactiplantibacillus plantarum L125 and Lacticaseibacillus paracasei SP5, previously isolated form fermented products, were examined, against clinical isolates of Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli. Methods The ability of viable cells to inhibit pathogen colonization on HT-29 cell monolayers, as well as their co-aggregation capacity, were examined utilizing the competitive exclusion assay. The antimicrobial activity of cell-free culture supernatants (CFCS) was determined against planktonic cells and biofilms, using microbiological assays, confocal microscopy, and gene expression analysis of biofilm formation-related genes. Furthermore, in vitro analysis was supplemented with in silico prediction of bacteriocin clusters and of other loci involved in antimicrobial activity. Results The three lactobacilli were able to limit the viability of planktonic cells of S. aureus and E. coli in suspension. Greater inhibition of biofilm formation was recorded after co-incubation of S. enterica with the CFCS of Lc. paracasei SP5. Predictions based on sequence revealed the ability of strains to produce single or two-peptide Class II bacteriocins, presenting sequence and structural conservation with functional bacteriocins. Discussion The efficiency of the potentially probiotic bacteria to elicit antimicrobial effects presented a strain- and pathogen-specific pattern. Future studies, utilizing multi-omic approaches, will focus on the structural and functional characterization of molecules involved in the recorded phenotypes.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasilis Tzampazlis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Maria Panopoulou
- Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
9
|
Lee SY, Kang JH, Lee DY, Jeong JW, Kim JH, Moon SS, Hur SJ. Methods for improving meat protein digestibility in older adults. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:32-56. [PMID: 37093926 PMCID: PMC10119465 DOI: 10.5187/jast.2023.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research
Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
10
|
Wang X, Huang X, Yang Q, Yan Z, Wang P, Gao X, Luo R, Gun S. TMT labeled comparative proteomic analysis reveals spleen active immune responses during Clostridium perfringens type C infected piglet diarrhea. PeerJ 2022; 10:e13006. [PMID: 35402105 PMCID: PMC8988937 DOI: 10.7717/peerj.13006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/03/2022] [Indexed: 01/11/2023] Open
Abstract
Background Clostridium perfringens (C. perfringens) type C is the principal pathogenic clostridia of swine, frequently causing hemorrhagic diarrhea, even necrotic enteritis in piglets, leading to severe economic loss for swine industr ies worldwide. However, there are no specific and effective prevention measures. Therefore, clarifying the molecular mechanisms of hosts against pathogenesis infection is very important to reduce the incidence of C. perfringens type C infected piglet diarrhea disease. Methods We performed an TMT labeling-based quantitative spleen proteomic analysis of the control group (SC), tolerance group (SR) and susceptible group (SS) to identify the differentially expressed proteins (DEPs), and screened potential molecular markers of piglet spleen tissues in response to C. perfringens type C infection. Results In this study, a total of 115, 176 and 83 DEPs were identified in SR vs SC, SS vs SC, and SR vs SC, respectively, which may play the important regulatory roles in the process of piglet spleens in response toC. perfringens type C-infected diarrhea diseases. GO enrichment analysis revealed that the DEPs were mostly significantly enriched in acute inflammatory response, defense response, antimicrobial response, transporter activity, cellular metabolic process and so on, and KEGG pathway enrichment analysis showed that the significantly enriched immune related pathways of the PPAR signaling pathway, IL-17 signaling pathway, antigen processing and presentation, which hints at the immune defense process of piglet spleen against C. perfringens infection. This study helps to elucidate the protein expressional pattern of piglet spleen against C. perfringens type C-infected diarrhea disease, which can contribute to the prevention and control for pig diarrhea disease and the further development of diarrhea resistant pig breeding.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Moita VHC, Duarte ME, Kim SW. Supplemental Effects of Phytase on Modulation of Mucosa-Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility, Intestinal Morphology, and Bone Parameters in Broiler Chickens. Animals (Basel) 2021; 11:3351. [PMID: 34944129 PMCID: PMC8698009 DOI: 10.3390/ani11123351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine supplemental effects of phytase on modulation of the mucosa-associated microbiota in the jejunum, intestinal morphology, nutrient digestibility, bone parameters, and growth performance of broiler chickens. Three hundred and sixty newly hatched broiler chickens (Ross 308) (44 ± 2 g BW) were randomly allotted in 6 treatments with 10 birds per cage based on a completely randomized design and fed for 27 d. The treatments consisted of one negative control (NC), diet formulated meeting the requirements suggested by Ross recommendations (2019), and without phytase supplementation. The other treatments consisted of a positive control diet (PC) formulated with 0.15% deficient Ca and P and split into 5 treatments with different phytase inclusion levels (0, 500, 1000, 2000, 4000 FTU/kg feed). Titanium dioxide (0.4%) was added to feeds as an indigestible marker to measure apparent ileal digestibility (AID) of nutrients. On d 27, 3 birds were randomly selected from each cage and euthanized to collect samples for analyzing the mucosa-associated microbiota in the jejunum, oxidative stress status, AID, and bone parameters. Data were analyzed using the proc Mixed of SAS 9.4. Phytase supplementation tended to have a quadratic effect (p = 0.078) on the overall ADG (maximum: 41 g/d at 2833 FTU/kg of feed). Supplementation of phytase at 2,000 FTU/kg increased (p < 0.05) the relative abundance of Lactobacillus and reduced (p < 0.05) Pelomonas. Moreover, it tended to reduce Helicobacter (p = 0.085), Pseudomonas (p = 0.090) Sphingomonas (p = 0.071). Phytase supplementation increased (p < 0.05) the villus height and the AID of CP; and tended to increase (p = 0.086) the AID of P. Phytase supplementation increased (p < 0.05) breaking strength and P content in the tibia. In conclusion, phytase supplementation showed potential benefits on the modulation of the mucosa-associated microbiota in the jejunum by tending to reduce harmful bacteria (Pelomonas, Helicobacter, and Pseudomonas) and increase beneficial bacteria (Lactobacillus). In addition, it showed positive effects increasing apparent ileal digestibility of CP and P, enhancing intestinal morphology (villus height), and improving the bone parameters (bone breaking strength, ash, and P content). Phytase supplementation at a range of 38 to 59 FTU/d or 600 to 950 FTU/kg of feed provided the most benefits related to nutrient digestibility.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (V.H.C.M.); (M.E.D.)
| |
Collapse
|
12
|
Pan N, Liu B, Bao X, Zhang H, Sheng S, Liang Y, Pan H, Wang X. Oral Delivery of Novel Recombinant Lactobacillus Elicit High Protection against Staphylococcus aureus Pulmonary and Skin Infections. Vaccines (Basel) 2021; 9:vaccines9090984. [PMID: 34579221 PMCID: PMC8473125 DOI: 10.3390/vaccines9090984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial and community-associated infection worldwide; however, there is no licensed vaccine available. S. aureus initiates infection via the mucosa; therefore, a mucosal vaccine is likely to be a promising approach against S. aureus infection. Lactobacilli, a non-pathogenic bacterium, has gained increasing interest as a mucosal delivery vehicle. Hence, we attempted to develop an oral S. aureus vaccine based on lactobacilli to cushion the stress of drug resistance and vaccine needs. In this study, we designed, constructed, and evaluated recombinant Lactobacillus strains synthesizing S. aureus nontoxic mutated α-hemolysins (HlaH35L). The results from animal clinical trials showed that recombinant Lactobacillus can persist for at least 72 h and can stably express heterologous protein in vivo. Recombinant L. plantarum WXD234 (pNZ8148-Hla) could induce robust mucosal immunity in the GALT, as evidenced by a significant increase in IgA and IL-17 production and the strong proliferation of T-lymphocytes derived from Peyer’s patches. WXD234 (pNZ8148-Hla) conferred up to 83% protection against S. aureus pulmonary infection and significantly reduced the abscess size in a S. aureus skin infection model. Of particular interest is the sharp reduction of the protective effect offered by WXD234 (pNZ8148-Hla) vaccination in γδ T cell-deficient or IL-17-deficient mice. In conclusion, for the first time, genetically engineered Lactobacillus WXD234 (pNZ8148-Hla) as an oral vaccine induced superior mucosal immunity, which was associated with high protection against pulmonary and skin infections caused by S. aureus. Taken together, our findings suggest the great potential for a delivery system based on lactobacilli and provide experimental data for the development of mucosal vaccines for S. aureus.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
- Basic Medical College, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
- Correspondence:
| |
Collapse
|
13
|
Bai M, Liu H, Wang S, Shu Q, Xu K, Zhou J, Xiong X, Huang R, Deng J, Yin Y, Liu Z. Dietary Moutan Cortex Radicis Improves Serum Antioxidant Capacity and Intestinal Immunity and Alters Colonic Microbiota in Weaned Piglets. Front Nutr 2021; 8:679129. [PMID: 34222303 PMCID: PMC8247480 DOI: 10.3389/fnut.2021.679129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa-B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.
Collapse
Affiliation(s)
- Miaomiao Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shanshan Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruilin Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Yang J, Wang C, Liu L, Zhang M. Lactobacillus reuteri KT260178 Supplementation Reduced Morbidity of Piglets Through Its Targeted Colonization, Improvement of Cecal Microbiota Profile, and Immune Functions. Probiotics Antimicrob Proteins 2021; 12:194-203. [PMID: 30659502 DOI: 10.1007/s12602-019-9514-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supplementing suckling piglets with Lactobacillus reuteri isolated from a homologous source improves L. reuteri colonization number in the gastrointestinal tract, which can have health benefits. This study investigated dietary L. reuteri supplementation on the growth and health-including immune status-of piglets, as well as its colonization. A total of 60 sows with similar parity and body weight were allocated into one of three groups after secretion (n = 20 each, with 10 neonatal piglets of each): untreated control, L. reuteri supplementation, and antibiotic treatment. The experimental duration was 28 days, from birth of piglets to their group transferred. For the first 7 days after birth, all neonatal piglets were fed by sows. Piglets in the L. reuteri supplementation group were administered with 1.0 ml L. reuteri fermentation broth containing 5.0 × 107 CFU. From 7 to 28 days, piglets were given basal feed (control), basal feed supplemented with L. reuteri (1.0 × 107 CFU/g), or aureomycin (150 mg/kg). L. reuteri colonization in the distal jejunum and ileum was increased in piglets in the L. reuteri-supplemented as compared to the control group after 28 days, as determined by fluorescence in situ hybridization and real-time PCR analysis. Total Lactobacillus and Bifidobacterium counts in the cecum were higher whereas total aerobic bacteria (Escherichia coli and Staphylococcus) counts were lower in the L. reuteri as compared to the control group. L. reuteri supplementation also improved body antioxidant status and immune function relative to control animals. Strain-specific L. reuteri administered to piglets colonizes the intestinal mucosa and improves cecal microbiota profile and whole-body antioxidant and immune status, leading to better growth and lower morbidity and mortality rates.
Collapse
Affiliation(s)
- Jiajun Yang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui Academy of Agriculture Science, Hefei, 230031, China
| | - Chonglong Wang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China. .,Key Laboratory of Pig Molecular Quantitative Genetics, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.
| | - Linqing Liu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China.,Key Laboratory of Pig Molecular Quantitative Genetics, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 of Nongke South Road, Hefei, 230031, Anhui, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, People's Republic of China
| |
Collapse
|
15
|
Kim J, Balasubramanian I, Bandyopadhyay S, Nadler I, Singh R, Harlan D, Bumber A, He Y, Kerkhof LJ, Gao N, Su X, Ferraris RP. Lactobacillus rhamnosus GG modifies the metabolome of pathobionts in gnotobiotic mice. BMC Microbiol 2021; 21:165. [PMID: 34082713 PMCID: PMC8176599 DOI: 10.1186/s12866-021-02178-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). Results 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1β and TNF-α. Conclusions LGG co-association had a negative impact on colonization of P. acnes, and markedly altered the metabolic output and inflammatory response elicited by pathobionts. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02178-2.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | | | - Sheila Bandyopadhyay
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Ian Nadler
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Rajbir Singh
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Danielle Harlan
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Amanda Bumber
- Comparative Medicine Resources, Rutgers University, Newark, NJ, 07103, USA
| | - Yuling He
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.,Present address: Geriatric Endocrinology Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, 07102, USA
| | - Xiaoyang Su
- Department of Medicine, Clinical Academic Building, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, Medical Science Building, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
16
|
Westfall S, Carracci F, Estill M, Zhao D, Wu QL, Shen L, Simon J, Pasinetti GM. Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract. Sci Rep 2021; 11:1067. [PMID: 33441743 PMCID: PMC7806704 DOI: 10.1038/s41598-020-79947-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota's metabolome is composed of bioactive metabolites that confer disease resilience. Probiotics' therapeutic potential hinges on their metabolome altering ability; however, characterizing probiotics' metabolic activity remains a formidable task. In order to solve this problem, an artificial model of the human gastrointestinal tract is introduced coined the ABIOME (A Bioreactor Imitation of the Microbiota Environment) and used to predict probiotic formulations' metabolic activity and hence therapeutic potential with machine learning tools. The ABIOME is a modular yet dynamic system with real-time monitoring of gastrointestinal conditions that support complex cultures representative of the human microbiota and its metabolome. The fecal-inoculated ABIOME was supplemented with a polyphenol-rich prebiotic and combinations of novel probiotics that altered the output of bioactive metabolites previously shown to invoke anti-inflammatory effects. To dissect the synergistic interactions between exogenous probiotics and the autochthonous microbiota a multivariate adaptive regression splines (MARS) model was implemented towards the development of optimized probiotic combinations with therapeutic benefits. Using this algorithm, several probiotic combinations were identified that stimulated synergistic production of bioavailable metabolites, each with a different therapeutic capacity. Based on these results, the ABIOME in combination with the MARS algorithm could be used to create probiotic formulations with specific therapeutic applications based on their signature metabolic activity.
Collapse
Affiliation(s)
- Susan Westfall
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Carracci
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danyue Zhao
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Probiotics are promising remedial treatments for symptoms of small intestine (SI) diseases and promoters of overall good health. Probiotics play an important role in supporting a healthy SI microbiome (eubiosis), and in preventing establishment of unhealthy microbiota. SI eubiosis promotes optimal nutrient uptake, and optimal nutritional status maintains a healthy SI, reducing the likelihood of SI diseases. It is important to understand the advantages and limitations of probiotic therapies. RECENT FINDINGS Microbial dysbiosis decreases the capacity of the small bowel to utilize and absorb dietary compounds. In some studies, probiotic supplements containing lactic acid bacteria and Bifidobacterium have been demonstrated effective in supporting beneficial microbes in the SI while improving barrier integrity and reducing nutrient malabsorption and SI disease-related pathology. Strain-specific probiotic therapy may be a natural and effective approach to restoring SI barrier integrity and eubiosis, resulting in improved nutrient absorption and better health, including reducing the incidence of and severity of SI diseases.
Collapse
Affiliation(s)
- Taylor C Judkins
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | - Douglas L Archer
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA
| | | | - Rebecca J Solch
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Dr., Gainesville, FL, 32611, USA.
| |
Collapse
|
18
|
Maltz RM, Keirsey J, Kim SC, Mackos AR, Gharaibeh RZ, Moore CC, Xu J, Somogyi A, Bailey MT. Social Stress Affects Colonic Inflammation, the Gut Microbiome, and Short-chain Fatty Acid Levels and Receptors. J Pediatr Gastroenterol Nutr 2019; 68:533-540. [PMID: 30540706 PMCID: PMC6428608 DOI: 10.1097/mpg.0000000000002226] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Gastrointestinal disorders, such as inflammatory bowel diseases (IBDs) and functional gastrointestinal disorders (FGIDs), involve disrupted homeostatic interactions between the microbiota and the host. Both disorders are worsened during stress, and in laboratory mice, stress exposure has been shown to change the composition of the gut microbiome. Stress-induced changes to the microbiome exacerbate intestinal inflammation and alter intestinal motility in mice. It is, however, not yet known whether microbiota-derived short-chain fatty acids (butyrate, propionate, and acetate) and their receptors contribute to this effect. METHODS Mice were exposed to a social disruption stress, or left undisturbed as a control. After the first stress exposure, mice were orally challenged with Citrobacter rodentium or with vehicle. The levels of short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry. SCFA receptors were measured via real-time polymerase chain reaction. Microbial community composition was assessed using 16S rRNA gene sequencing. RESULTS Stress exposure reduced colonic SCFA levels. Stress exposure and C rodentium, however, significantly increased SCFA levels and changed the expression of SCFA receptors. The levels of SCFAs did not correlate with the severity of colonic inflammation, but the colonic expression of the SCFA receptor GPR41 was positively associated with inflammatory cytokines and colonic histopathology scores. The relative abundances of several taxa of colonic bacteria were significantly changed by stress exposure, including SCFA producers. CONCLUSIONS Social stress can have a significant effect on infection-induced colonic inflammation, and stress-induced changes in microbial-produced metabolites and their receptors may be involved.
Collapse
Affiliation(s)
- Ross M. Maltz
- Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, OH, United States
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jeremy Keirsey
- Campus Chemical Instrumentation Center Mass Spec and Proteomics, The Ohio State University, Columbus, OH, United States
| | - Sandra C. Kim
- Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH, United States
| | - Raad Z. Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, United States
| | - Cathy C. Moore
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jinyu Xu
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Arpad Somogyi
- Campus Chemical Instrumentation Center Mass Spec and Proteomics, The Ohio State University, Columbus, OH, United States
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
19
|
Zhang Z, Lv J, Pan L, Zhang Y. Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol 2018; 102:8135-8143. [PMID: 30032432 DOI: 10.1007/s00253-018-9217-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
Lactobacilli are recognized as probiotics on account of their health-promoting effects in the host. The aim of this review is to summarize current knowledge of the mechanisms of the adaption factors and main functions of lactobacilli that exert health-promoting effects in the host and to discuss important applications in animal and human health. The adaption mechanisms of lactobacilli facilitate interactions with the host and directly contribute to the beneficial nutritional, physiological, microbiological, and immunological effects in the host. Besides, the application of probiotic lactobacilli will increase our understanding of practical uses based on the roles of these organisms in immunoregulation, antipathogenic activities, and enhancement of the epithelial barrier.
Collapse
Affiliation(s)
- Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046, Gansu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046, Gansu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol 2018; 9:757. [PMID: 29725324 PMCID: PMC5917019 DOI: 10.3389/fmicb.2018.00757] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|