1
|
Bergenfelz C, Do P, Larsson L, Ivarsson H, Malmborn K, Håkansson AP. Corynebacteria from the respiratory microbiota modulate inflammatory responses and associate with a reduced pneumococcal burden in the lungs. Front Cell Infect Microbiol 2025; 14:1530178. [PMID: 39935537 PMCID: PMC11811110 DOI: 10.3389/fcimb.2024.1530178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Certain species from the normal respiratory tract microbiota have recently been proposed to positively influence human health. Corynebacterium propinquum and C. pseudodiphtheriticum (Corynebacteria) are two Gram-positive species that frequently colonize the upper respiratory tract and strongly associate with a reduced incidence of respiratory tract infections. The specific role of Corynebacteria during respiratory health and disease is, however, largely uncharacterized. Method Respiratory tract epithelial cells NCI-H292 and BALB/cByJ mice were inoculated with Corynebacteria (C. propinquum 2018M3 and 2019M4, and C. pseudodiphtheriticum 2019M8 and 2020M12) alone or with subsequent challenge with Streptococcus pneumoniae (pneumococci). The inflammatory response and the bacterial burden of both species over time were determined by Western blot, luciferase assay, cytokine bead array, flow cytometry and viable plate counts on blood agar plates. Results Clinical isolates of Corynebacteria were well tolerated by human cells and mice. Corynebacteria induced a transient inflammatory response during healthy conditions in the absence of known pathogens. Pre-exposure or nasal priming with Corynebacteria did not affect subsequent acquisition of pneumococci but were associated with a modulated inflammatory response in vitro and in vivo as well as with a reduced pneumococcal burden in the respiratory tract of mice. This indicates that the presence of C. propinquum or C. pseudodiphtheriticum may protect against severe pneumococcal infections. Conclusions In this study, we delineate the role of Corynebacteria from the normal microbiota that epidemiologically associate with respiratory health. We show that the presence of Corynebacteria modulates the inflammatory response to pneumococci and associate with faster decrease in pneumococcal burden, primarily in the lower respiratory tract. Our data indicate that Corynebacteria has potential to protect against severe pneumococcal infections.
Collapse
Affiliation(s)
- Caroline Bergenfelz
- Department of Translational Medicine, Division of Experimental Infection Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
2
|
Wüthrich T, de Brot S, Richina V, Mostacci N, Baumann Z, Leborgne NGF, Godel A, Alves MP, Bentires-Alj M, Benarafa C, Hilty M. Cigarette smoke-induced disordered microbiota aggravates the severity of influenza A virus infection. mSystems 2024; 9:e0079024. [PMID: 39565120 DOI: 10.1128/msystems.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Cigarette smoke (CS) promotes the development of chronic pulmonary disease and has been associated with increased risk for influenza-related illness. Here, we directly addressed the impact of CS disordered microbiota on the severity of influenza A virus (IAV) infection. Specific and opportunistic pathogen-free (SOPF) C57BL/6J mice were exposed to CS or room air (RA) for 5.5 months. Each exposed mouse was then cohoused with a group of recipient germ-free (GF) mice for 1 month for microbial transfer. Colonized GF mice were then infected intranasally with IAV and disease development was monitored. Upper and lower airway and fecal microbiota were longitudinally investigated by 16S rRNA gene sequencing and bacterial cultures in donor and recipient mice. The bacterial family Streptococcaceae accounted for the largest difference between CS- and RA-exposed microbiota in the oropharynx. Analysis of the oropharynx and fecal microbiota indicated an efficient transfer to coprophagic recipient mice, which replicated the differences in microbiota composition observed in donor mice. Subsequent IAV infection revealed significantly higher weight loss for CS microbiota recipient mice at 8-10 days post infection (dpi) compared to control recipient mice. In addition, H1N1 infection inflicted substantial changes in the microbiota composition, especially at days 4 and 8 after infection. In conclusion, mice with a CS-associated microbiota suffer from higher disease severity upon IAV infection compared to mice colonized with a normal SOPF microbiota. Our data suggest that independently of CS exposure and concomitant structural lung damage, microbial distortion due to CS exposure may impact the severity of IAV disease course.IMPORTANCEIt has been reported that chronic exposure to CS is associated with a disordered microbiota composition. In this study, we colonized germ-free (GF) mice with the microbiota from SOPF mice which were chronically exposed to CS or RA. This allowed disentangling the effect of the disordered microbiota from the immune-modulating effects of actual CS exposure. We observed a successful transfer of the microbiotas after cohousing including specific microbiota differences induced by CS exposure in formerly GF mice, which were never exposed to CS. We then investigated the effects of IAV infection on the disease course and microbiotas of formerly GF mice. We found that mice with CS-associated microbiota reveal worse disease course compared to the control group. We hypothesize that CS-induced disordering of the microbiota may, indeed, impact the severity of influenza A disease.
Collapse
Affiliation(s)
- Tsering Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Veronica Richina
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Zora Baumann
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan G F Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Aurélie Godel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Anduni L, Molina H, Zazueta A, Cancino J, Ponce C, Chakoory O, Comtet-Marre S, Tapia CV, Peyret P, Gotteland M, Magne F. Optimization of lung tissue pre-treatment by bead homogenization for subsequent culturomics. Sci Rep 2024; 14:22724. [PMID: 39349927 PMCID: PMC11442450 DOI: 10.1038/s41598-024-69736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
The discovery that the lung harbors a diverse microbiome, as revealed by next-generation sequencing, has significantly altered our understanding of respiratory health and disease. Despite the association between the lung microbiota and disease, the nature of their relationship remains poorly understood, and culture isolation of these microorganisms could help to determine their role in lung physiology. Current procedures for processing samples from the lower respiratory tract have been shown to affect the viability of microorganisms, so it is crucial to develop new methods to improve their survival. This study aimed to improve the isolation and characterization of lung microorganisms using a bead-beating homogenization method in a mouse model. Microsphere diameter and bead-beating time affected the survival of the microorganisms (E. coli, S. aureus and C. albicans). Using 2.3 mm diameter microspheres for 60 s of bead-beating promoted the survival of both bacteria and yeast strains. After intratracheal instillation of these microorganisms in mice, approximately 70% of the cells were recovered after the tissue homogenization. To assess the efficiency of the proposed method, the diversity of bacteria was compared between the homogenate and lung tissue samples. Ninety-one genera were detected in the lung tissue, and 63 in the homogenate. Bacterial genera detected in the homogenate represented 84% of the total abundance of the microbiota identified in the lung tissue. Taken together, these results demonstrate that the tissue homogenization process developed in this study recovered the majority of the microorganisms present in the lung. This study presents a bead-beating homogenization method for effective cultivation of lung tissue microorganisms, which may help to improve the understanding of host-microbe interactions in the lung.
Collapse
Affiliation(s)
- Lourdes Anduni
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hector Molina
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Zazueta
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Cancino
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Ponce
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | | | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
4
|
Chen P, Hu T, Jiang H, Li B, Li G, Ran P, Zhou Y. The effects of different lung parts, age, and batches on the lung microbiota of healthy rats. Ann Med 2024; 56:2381085. [PMID: 39099020 PMCID: PMC11299442 DOI: 10.1080/07853890.2024.2381085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 05/16/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.
Collapse
Affiliation(s)
- Ping Chen
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tingting Hu
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Haonan Jiang
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Guiying Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Yadav B, Bhattacharya SS, Rosen L, Nagpal R, Yadav H, Yadav JS. Oro-Respiratory Dysbiosis and Its Modulatory Effect on Lung Mucosal Toxicity during Exposure or Co-Exposure to Carbon Nanotubes and Cigarette Smoke. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:314. [PMID: 38334585 PMCID: PMC10856953 DOI: 10.3390/nano14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The oro-respiratory microbiome is impacted by inhalable exposures such as smoking and has been associated with respiratory health conditions. However, the effect of emerging toxicants, particularly engineered nanoparticles, alone or in co-exposure with smoking, is poorly understood. Here, we investigated the impact of sub-chronic exposure to carbon nanotube (CNT) particles, cigarette smoke extract (CSE), and their combination. The oral, nasal, and lung microbiomes were characterized using 16S rRNA-based metagenomics. The exposures caused the following shifts in lung microbiota: CNT led to a change from Proteobacteria and Bacteroidetes to Firmicutes and Tenericutes; CSE caused a shift from Proteobacteria to Bacteroidetes; and co-exposure (CNT+CSE) had a mixed effect, maintaining higher numbers of Bacteroidetes (due to the CNT effect) and Tenericutes (due to the CSE effect) compared to the control group. Oral microbiome analysis revealed an abundance of the following genera: Acinetobacter (CNT), Staphylococcus, Aggregatibacter, Allobaculum, and Streptococcus (CSE), and Alkalibacterium (CNT+CSE). These proinflammatory microbial shifts correlated with changes in the relative expression of lung mucosal homeostasis/defense proteins, viz., aquaporin 1 (AQP-1), surfactant protein A (SP-A), mucin 5b (MUC5B), and IgA. Microbiota depletion reversed these perturbations, albeit to a varying extent, confirming the modulatory role of oro-respiratory dysbiosis in lung mucosal toxicity. This is the first demonstration of specific oro-respiratory microbiome constituents as potential modifiers of toxicant effects in exposed lungs.
Collapse
Affiliation(s)
- Brijesh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| | - Sukanta S. Bhattacharya
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| | - Lauren Rosen
- Department of Pathology and Laboratory Medicine, University of Cincinnati, UC Health University Hospital Laboratory Medicine Building, Suite 110234 Goodman Street, Cincinnati, OH 45219-0533, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Internal Medicine-Digestive Diseases and Nutrition, University of South Florida, Tampa, FL 33613, USA
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| |
Collapse
|
7
|
Wang H, Wang Y. What Makes the Gut-Lung Axis Working? From the Perspective of Microbiota and Traditional Chinese Medicine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8640014. [PMID: 38274122 PMCID: PMC10810697 DOI: 10.1155/2024/8640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Background An increasing number of studies have proved that gut microbiota is involved in the occurrence and development of various lung diseases and can interact with the diseased lung. The concept of the gut-lung axis (GLA) provides a new idea for the subsequent clinical treatment of lung diseases through human microbiota. This review aims to summarize the microbiota in the lung and gut and the interaction between them from the perspectives of traditional Chinese medicine and modern medicine. Method We conducted a literature search by using the search terms "GLA," "gut microbiota," "spleen," and "Chinese medicine" in the databases PubMed, Web of Science, and CNKI. We then explored the mechanism of action of the gut-lung axis from traditional Chinese medicine and modern medicine. Results The lung and gut microbiota enable the GLA to function through immune regulation, while metabolites of the gut microbiota also play an important role. The spleen can improve the gut microbiota to achieve the regulation of the GLA. Conclusion Improving the gut microbiota through qi supplementation and spleen fortification provides a new approach to the clinical treatment of lung diseases by regulating the GLA. Currently, our understanding of the GLA is limited, and more research is needed to explain its working principle.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ying Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
8
|
Mathieu E, Léjard V, Ezzine C, Govindin P, Morat A, Giat M, Lapaque N, Doré J, Blottière HM. An Insight into Functional Metagenomics: A High-Throughput Approach to Decipher Food-Microbiota-Host Interactions in the Human Gut. Int J Mol Sci 2023; 24:17630. [PMID: 38139456 PMCID: PMC10744307 DOI: 10.3390/ijms242417630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Our understanding of the symbiotic relationship between the microbiota and its host has constantly evolved since our understanding that the "self" was not only defined by our genetic patrimony but also by the genomes of bugs living in us. The first culture-based methods highlighted the important functions of the microbiota. However, these methods had strong limitations and did not allow for a full understanding of the complex relationships that occur at the interface between the microbiota and the host. The recent development of metagenomic approaches has been a groundbreaking step towards this understanding. Its use has provided new insights and perspectives. In the present chapter, we will describe the advances of functional metagenomics to decipher food-microbiota and host-microbiota interactions. This powerful high-throughput approach allows for the assessment of the microbiota as a whole (including non-cultured bacteria) and enabled the discovery of new signaling pathways and functions involved in the crosstalk between food, the gut microbiota and its host. We will present the pipeline and highlight the most important studies that helped to develop the field. To conclude, we will emphasize the most recent developments and hot topics in functional metagenomics.
Collapse
Affiliation(s)
- Elliot Mathieu
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Véronique Léjard
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Chaima Ezzine
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Pauline Govindin
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Aurélien Morat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Margot Giat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Nantes Université, INRAE, UMR 1280, PhAN, 44000 Nantes, France
| |
Collapse
|
9
|
Zhang Y, Chen X, Wang Y, Li L, Ju Q, Zhang Y, Xi H, Wang F, Qiu D, Liu X, Chang N, Zhang W, Zhang C, Wang K, Li L, Zhang J. Alterations of lower respiratory tract microbiome and short-chain fatty acids in different segments in lung cancer: a multiomics analysis. Front Cell Infect Microbiol 2023; 13:1261284. [PMID: 37915846 PMCID: PMC10617678 DOI: 10.3389/fcimb.2023.1261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The lower respiratory tract microbiome is widely studied to pinpoint microbial dysbiosis of diversity or abundance that is linked to a number of chronic respiratory illnesses. However, it is vital to clarify how the microbiome, through the release of microbial metabolites, impacts lung health and oncogenesis. Methods In order to discover the powerful correlations between microbial metabolites and disease, we collected, under electronic bronchoscopy examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung cancer participants, further performing metagenomic sequencing, short-chain fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential correlations of the microbiome and SCFAs in lung cancer. Results In comparison to BALFs from normal lung segments of the same participant, those from lung cancer burden lung segments had slightly decreased microbial diversity in the lower respiratory tract. With 18 differentially prevalent microbial species, including the well-known carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative species abundance in the lower respiratory tract microbiome did not significantly differ between the two groups. Additionally, a collection of commonly recognized probiotic metabolites called short-chain fatty acids showed little significance in either group independently but revealed a strong predictive value when using an integrated model by machine learning. Multiomics also discovered particular species related to SCFAs, showing a positive correlation with Brachyspira hydrosenteriae and a negative one with Pseudomonas at the genus level, despite limited detection in lower airways. Of note, these distinct microbiota and metabolites corresponded with clinical traits that still required confirmation. Conclusions Further analysis of metagenome functional capacity revealed that genes encoding environmental information processing and metabolism pathways were enriched in the lower respiratory tract metagenomes of lung cancer patients, further supporting the oncogenesis function of various microbial species by different metabolites. These findings point to a potent relationship between particular components of the integrated microbiota-metabolites network and lung cancer, with implications for screening and diagnosis in clinical settings.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xiangxiang Chen
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine of Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Pediatrics, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Qing Ju
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Hangtian Xi
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Fahan Wang
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Xingchen Liu
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ning Chang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Weiqi Zhang
- Department of Radiology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Cong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Yang RZ, Liang M, Lin S, Weng J, Hu JM, Lin SZ, Wu XD, Zeng K. General anesthesia alters the diversity and composition of the lung microbiota in rat. Biomed Pharmacother 2023; 166:115381. [PMID: 37639744 DOI: 10.1016/j.biopha.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The lung microbiome plays a crucial role in human health and disease. Extensive studies have demonstrated that the disturbance of the lung microbiome influences immune response, cognition, and behavior. The goal of this study was to investigate the effect of general anesthetics on lung microbiome. METHODS Eight-week-old male SD rats received a continuous intravenous infusion of propofol or inhalation of isoflurane for 4 h. 16S rRNA gene amplification from BALF samples was used to investigate the changes in the lung microbiome after interventions. We further performed neurobehavioral assessments to find the differential strains' association with behavior disorder after isoflurane anesthesia. RESULTS The absolute and relative quantitation of 16S rRNA sequencing data showed that isoflurane altered the diversity and abundance of the lung microbiome in rats more than propofol. Elusimicrobia increased significantly in the isoflurane group. Both EPM and OFT results showed that rats exhibited depression-like behaviors after inhalation of isoflurane. In addition, significant differences were found in the COG/KO/MetaCyc/KEGG pathway enrichment analyses among the groups. CONCLUSION Continuous inhalation of isoflurane changed the diversity and composition of the lung microbiota in rats, resulting in post-anesthesia depression.
Collapse
Affiliation(s)
- Rui-Zhi Yang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Song Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Weng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shi-Zhu Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
11
|
Shen D, Wang K, Fathi MA, Li Y, Win-Shwe TT, Li C. A succession of pulmonary microbiota in broilers during the growth cycle. Poult Sci 2023; 102:102884. [PMID: 37423015 PMCID: PMC10466298 DOI: 10.1016/j.psj.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory health problems in poultry production are frequent and knotty and thus attract the attention of farmers and researchers. The breakthrough of gene sequencing technology has revealed that healthy lungs harbor rich microbiota, whose succession and homeostasis are closely related to lung health status, suggesting a new idea to explore the mechanism of lung injury in broilers with pulmonary microbiota as the entry point. This study aimed to investigate the succession of pulmonary microbiota in healthy broilers during the growth cycle. Fixed and molecular samples were collected from the lungs of healthy broilers at 1, 3, 14, 21, 28, and 42 d of age. Lung tissue morphology was observed by hematoxylin and eosin staining, and the changes in the composition and diversity of pulmonary microbiota were analyzed using 16S rRNA gene sequencing. The results showed that lung index peaked at 3 d, then decreased with age. No significant change was observed in the α diversity of pulmonary microbiota, while the β diversity changed regularly with age during the broilers' growth cycle. The relative abundance of dominant bacteria of Firmicutes and their subordinate Lactobacillus increased with age, while the abundance of Proteobacteria decreased with age. The correlation analysis between the abundance of differential bacteria and predicted function showed that dominant bacteria of Firmicutes, Proteobacteria and Lactobacillus were significantly correlated with most functional abundance, indicating that they may involve in lung functional development and physiological activities of broilers. Collectively, these findings suggest that the lung has been colonized with abundant microbiota in broilers when they were just hatched, and their composition changed regularly with day age. The dominant bacteria, Firmicutes, Proteobacteria, and Lactobacillus, play crucial roles in lung function development and physiological activities. It paves the way for further research on the mechanism of pulmonary microbiota-mediated lung injury in broilers.
Collapse
Affiliation(s)
- Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed Ahmed Fathi
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza 12618, Egypt
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
13
|
Chung CJ, Hermes BM, Gupta Y, Ibrahim S, Belheouane M, Baines JF. Genome-wide mapping of gene-microbe interactions in the murine lung microbiota based on quantitative microbial profiling. Anim Microbiome 2023; 5:31. [PMID: 37264412 DOI: 10.1186/s42523-023-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.
Collapse
Affiliation(s)
- C J Chung
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - B M Hermes
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Y Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Research Center Borstel, Evolution of the Resistome, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
14
|
Heinemann AS, Stalp JL, Bonifacio JPP, Silva F, Willers M, Heckmann J, Fehlhaber B, Völlger L, Raafat D, Normann N, Klos A, Hansen G, Schmolke M, Viemann D. Silent neonatal influenza A virus infection primes systemic antimicrobial immunity. Front Immunol 2023; 14:1072142. [PMID: 36761727 PMCID: PMC9902881 DOI: 10.3389/fimmu.2023.1072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.
Collapse
Affiliation(s)
- Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Filo Silva
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lena Völlger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Wiscovitch-Russo R, Taal AM, Kuelbs C, Oldfield LM, Ramar M, Singh H, Fedulov AV, Gonzalez-Juarbe N. Gut and lung microbiome profiles in pregnant mice. Front Microbiol 2022; 13:946779. [PMID: 36578567 PMCID: PMC9791091 DOI: 10.3389/fmicb.2022.946779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, microbiome research has expanded from the gastrointestinal tract to other host sites previously thought to be abacterial such as the lungs. Yet, the effects of pregnancy in the lung and gut microbiome remains unclear. Here we examined the changes in the gut and lung microbiome in mice at 14 days of gestation. Lung tissue and stool samples were collected from pregnant and non-pregnant female BALB/c mice, DNA was isolated, amplified, and bacterial specific V4 16S rRNA gene was sequenced. Using an in-house bioinformatic pipeline we assessed the microbial composition of each organ using stool and lung tissue samples. The stool data showed that Lachnospiraceae and Lactobacillaceae were more abundant in the pregnant mice. Likewise, Lactobacillaceae were dominant in the lungs of pregnant mice. However, Streptococcaceae were dominant in the lungs of non-pregnant mice with a low microbial abundance in the pregnant mice. A permutation test showed that pregnancy significantly contributes to the variance in both the lung and stool microbiome. At the same time, we estimate that 49% of the total detected operational taxonomic units were shared between the stool and lung data. After removing common stool-associated bacteria from the lung dataset, no microbial differential abundance was detected between the pregnant and non-pregnant lung microbial community. Thus, pregnancy contributes to variance to the lung and stool microbiome but not in the unique lung microbiota.
Collapse
Affiliation(s)
| | - Aji Mary Taal
- J. Craig Venter Institute, Rockville, MD, United States
| | - Claire Kuelbs
- J. Craig Venter Institute, Rockville, MD, United States
| | | | - MohanKumar Ramar
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Alexey V. Fedulov
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | |
Collapse
|
16
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
17
|
Translocation and Dissemination of Gut Bacteria after Severe Traumatic Brain Injury. Microorganisms 2022; 10:microorganisms10102082. [PMID: 36296362 PMCID: PMC9611479 DOI: 10.3390/microorganisms10102082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
Enterobacteriaceae are often found in the lungs of patients with severe Traumatic Brain Injury (sTBI). However, it is unknown whether these bacteria come from the gut microbiota. To investigate this hypothesis, the mice model of sTBI was used in this study. After sTBI, Chao1 and Simpson index peaking at 7 d in the lungs (p < 0.05). The relative abundance of Acinetobacter in the lungs increased to 16.26% at 7 d after sTBI. The chao1 index of gut microbiota increased after sTBI and peaked at 7 d (p < 0.05). Three hours after sTBI, the conditional pathogens such as Lachnoclostridium, Acinetobacter, Bacteroides and Streptococcus grew significantly. At 7 d and 14 d, the histology scores in the sTBI group were significantly higher than the control group (p < 0.05). The myeloperoxidase (MPO) activity increased at all-time points after sTBI and peaked at 7 d (p < 0.05). The LBP and sCD14 peaking 7 d after sTBI (p < 0.05). The Zonulin increased significantly at 3 d after sTBI and maintained the high level (p < 0.05). SourceTracker identified that the lung tissue microbiota reflects 49.69% gut source at 7 d after sTBI. In the small intestine, sTBI induced gastrointestinal dysfunction with increased apoptosis and decreasing antimicrobial peptides. There was a negative correlation between gut conditional pathogens and the expression level of antimicrobial peptides in Paneth cells. Our data indicate that gut bacteria translocated to the lungs after sTBI, and Paneth cells may regulate gut microbiota stability and translocation.
Collapse
|
18
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
19
|
Microbiota of the Pregnant Mouse: Characterization of the Bacterial Communities in the Oral Cavity, Lung, Intestine, and Vagina through Culture and DNA Sequencing. Microbiol Spectr 2022; 10:e0128622. [PMID: 35916526 PMCID: PMC9430855 DOI: 10.1128/spectrum.01286-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mice are frequently used as animal models for mechanistic studies of infection and obstetrical disease, yet characterization of the murine microbiota during pregnancy is lacking. The objective of this study was to characterize the microbiotas of distinct body sites of the pregnant mouse—vagina, oral cavity, intestine, and lung—that harbor microorganisms that could potentially invade the murine amniotic cavity, thus leading to adverse pregnancy outcomes. The microbiotas of these body sites were characterized through anoxic, hypoxic, and oxic culture as well as through 16S rRNA gene sequencing. With the exception of the vagina, the cultured microbiotas of each body site varied by atmosphere, with the greatest diversity in the cultured microbiota appearing under anoxic conditions. Only cultures of the vagina were comprehensively representative of the microbiota observed through direct DNA sequencing of body site samples, primarily due to the predominance of two Rodentibacter strains. Identified as Rodentibacter pneumotropicus and Rodentibacter heylii, these isolates exhibited predominance patterns similar to those of Lactobacillus crispatus and Lactobacillus iners in the human vagina. Whole-genome sequencing of these Rodentibacter strains revealed shared genomic features, including the ability to degrade glycogen, an abundant polysaccharide in the vagina. In summary, we report body site-specific microbiotas in the pregnant mouse with potential ecological parallels to those of humans. Importantly, our findings indicate that the vaginal microbiotas of pregnant mice can be readily cultured, suggesting that mock vaginal microbiotas can be tractably generated and maintained for experimental manipulation in future mechanistic studies of host vaginal-microbiome interactions. IMPORTANCE Mice are widely utilized as animal models of obstetrical complications; however, the characterization of the murine microbiota during pregnancy has been neglected. Microorganisms from the vagina, oral cavity, intestine, and lung have been found in the intra-amniotic space, where their presence threatens the progression of gestation. Here, we characterized the microbiotas of pregnant mice and established the appropriateness of culture in capturing the microbiota at each site. The high relative abundance of Rodentibacter observed in the vagina is similar to that of Lactobacillus in humans, suggesting potential ecological parallels. Importantly, we report that the vaginal microbiota of the pregnant mouse can be readily cultured under hypoxic conditions, demonstrating that mock microbial communities can be utilized to test the potential ecological parallels between microbiotas in human and murine pregnancy and to evaluate the relevance of the structure of these microbiotas for adverse pregnancy outcomes, especially intra-amniotic infection and preterm birth.
Collapse
|
20
|
Stricker S, Hain T, Chao CM, Rudloff S. Respiratory and Intestinal Microbiota in Pediatric Lung Diseases-Current Evidence of the Gut-Lung Axis. Int J Mol Sci 2022; 23:ijms23126791. [PMID: 35743234 PMCID: PMC9224356 DOI: 10.3390/ijms23126791] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut–lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut–lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: ; Tel.: +49-641-985-56617
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Department of Nutritional Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
21
|
An optimized approach for processing of frozen lung and lavage samples for microbiome studies. PLoS One 2022; 17:e0265891. [PMID: 35381030 PMCID: PMC8982836 DOI: 10.1371/journal.pone.0265891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
The respiratory tract has a resident microbiome with low biomass and limited diversity. This results in difficulties with sample preparation for sequencing due to uneven bacteria-to-host DNA ratio, especially for small tissue samples such as mouse lungs. We compared effectiveness of current procedures used for DNA extraction in microbiome studies. Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected to test different forms of sample pre-treatment and extraction methods to increase bacterial DNA yield and optimize library preparation. DNA extraction using a pre-treatment method of mechanical lysis (lung tissue) and one-step centrifugation (BALF) increased DNA yield and bacterial content of samples. In contrast, a significant increase of environmental contamination was detected after phenol chloroform isoamyl alcohol (PCI) extraction and nested PCR. While PCI has been a standard procedure used in microbiome studies, our data suggests that it is not efficient for DNA extraction of frozen low biomass samples. Finally, a DNA Enrichment kit was tested and found to improve the 16S copy number of lung tissue with a minor shift in microbial composition. Overall, we present a standardized method to provide high yielding DNA and improve sequencing coverage of low microbial biomass frozen samples with minimal contamination.
Collapse
|
22
|
Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells 2022; 11:cells11050916. [PMID: 35269538 PMCID: PMC8909000 DOI: 10.3390/cells11050916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system of the respiratory tract possesses an effective “defense barrier” against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.
Collapse
|
23
|
Cardelli E, Calvigioni M, Vecchione A, Macera L, Mazzantini D, Celandroni F, Panattoni A, Pistello M, Maggi F, Ghelardi E, Mannella P. Delivery Mode Shapes the Composition of the Lower Airways Microbiota in Newborns. Front Cell Infect Microbiol 2022; 11:808390. [PMID: 35004360 PMCID: PMC8733567 DOI: 10.3389/fcimb.2021.808390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radical alterations in the human microbiota composition are well-known to be associated with many pathological conditions. If these aberrations are established at the time of birth, the risk of developing correlated pathologies throughout life is significantly increased. For this reason, all newborns should begin their lives with a proper microbiota in each body district. The present study aimed at demonstrating a correlation between the mode of delivery and the development of a well-balanced microbiota in the lower airways of newborns. 44 pregnant women were enrolled in this study. Microbiological comparative analysis was carried out on tracheobronchial secretions of babies born through vaginal delivery (VD) or caesarean section (CS). All samples showed the presence of bacterial DNA, regardless of the mode of delivery. No viable cultivable bacteria were isolated from the CS samples. On the contrary, VD allowed colonization of the lower airways by alive cultivable bacteria. The identification of bacterial species revealed that Lactobacillus spp. and Bacteroides vulgatus were the most common microorganisms in the lower airways of vaginally-delivered newborns. Data obtained from quantitative PCRs showed a significantly higher total bacterial load, as well as Firmicutes and Lactobacillus spp. amount, in VD samples than CS ones, while no statistically significant difference was found in Torque Teno Virus (TTV) load between samples. Taken together, our findings confirm the hypothesis that passage through the maternal vaginal canal determines more beneficial colonization of the lower airways in newborns.
Collapse
Affiliation(s)
- Elisa Cardelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Lisa Macera
- Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Cho SY, Choi JH, Lee SH, Choi YS, Hwang SW, Kim YJ. Metataxonomic investigation of the microbial community in the trachea and oropharynx of healthy controls and diabetic patients using endotracheal tubes. PLoS One 2021; 16:e0259596. [PMID: 34739518 PMCID: PMC8570478 DOI: 10.1371/journal.pone.0259596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the study of respiratory microbiota has been an active field of research, obtaining the appropriate respiratory samples for healthy controls remains to be a challenge. As such, this study aims to evaluate the use of endotracheal tube washing as a viable control for sputum samples. METHODS A total of 14 subjects, including 8 healthy respiratory controls and 6 diabetic patients without any respiratory disease, were enrolled in this study, during which the endotracheal tubes used in their scheduled routine surgery were collected. Pre-operative oral gargles were also collected from non-diabetic subjects. RESULTS 16S amplicon sequencing revealed similar taxa composition in endotracheal tube washings and oral gargles in the healthy control subjects, although the relative abundance of 11 genus level operational taxonomic units was significantly different between the two sample sources. The diabetic subjects showed relatively lower diversity than those of non-diabetic subjects. The proportion range of the most abundant taxa detected in each endotracheal tube washings were 10.1-33.2%. CONCLUSION Endotracheal tube washing fluid may provide healthy control samples for upper respiratory investigations without incurring any additional risk to the subject.
Collapse
Affiliation(s)
- Sun Young Cho
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Hyun Choi
- Department of Anesthesiology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yong-Sung Choi
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Mathieu E, Marquant Q, Descamps D, Riffault S, Saint-Criq V, Thomas M. Le poumon est sensible aux effets locaux et à distance des microbiotes. NUTR CLIN METAB 2021. [DOI: 10.1016/j.nupar.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Chen J, Jin A, Huang L, Zhao Y, Li Y, Zhang H, Yang X, Sun Q. Dynamic Changes in Lung Microbiota of Broilers in Response to Aging and Ammonia Stress. Front Microbiol 2021; 12:696913. [PMID: 34421851 PMCID: PMC8371464 DOI: 10.3389/fmicb.2021.696913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022] Open
Abstract
Comprehensive microbial analysis has revealed that the lung harbors a complex variety of microbiota, and although the dynamic distribution of the lung microbiota in mice and laying hens of different ages is well established, this distribution has not been clarified in broilers of different ages. Here, we performed 16S rRNA gene sequencing of lung lavage fluid from broilers at 3 (3D), 7 (7D), 14 (14D), 21 (21D), and 35 (35D) days of age to evaluate changes in the composition of their lung microbiota. Upon examination of the composition and function of the broiler lung microbiota, we found that their maturation increased significantly with age. Specifically, the microbiota composition was similar between 7 and 14D and between 21 and 35D. The relative abundance of aerobic bacteria in the broiler lungs gradually increased as the broilers developed, whereas the relative abundance of potentially pathogenic bacteria reached its highest level at 3D. The relative abundance of predicted functions in microbiota was very similar among 3, 7, and 14D, whereas the Glycan Biosynthesis and Metabolism pathway in microbiota was enriched at 21D. These findings suggest that these metabolic pathways play critical roles in shaping broiler microbiota at these age stages. In addition, short-term external ammonia stimulation significantly increased lung inflammation but did not significantly affect the lung microbiota. Taken together, these data reveal the dynamics of age-related changes in the microbiota of broiler lungs and the stability (the significant variation in the microbial composition) of these microbial communities in response to short-term ammonia stress. These findings provide new insights into the development of broiler lung microbiota and serve as a reference for subsequent studies to evaluate disease prevention in broilers subjected to large-scale breeding.
Collapse
Affiliation(s)
- Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Baker JM, Hinkle KJ, McDonald RA, Brown CA, Falkowski NR, Huffnagle GB, Dickson RP. Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota. MICROBIOME 2021; 9:99. [PMID: 33952355 PMCID: PMC8101028 DOI: 10.1186/s40168-021-01055-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) are vulnerable to contamination and sequencing stochasticity, which obscure legitimate microbial signal. While human lung microbiome studies have rigorously identified sampling strategies that reliably capture microbial signal from these low-biomass microbial communities, the optimal sampling strategy for characterizing murine lung microbiota has not been empirically determined. Performing accurate, reliable characterization of murine lung microbiota and distinguishing true microbial signal from noise in these samples will be critical for further mechanistic microbiome studies in mice. RESULTS Using an analytic approach grounded in microbial ecology, we compared bacterial DNA from the lungs of healthy adult mice collected via two common sampling approaches: homogenized whole lung tissue and bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using droplet digital PCR, characterized bacterial communities using 16S rRNA gene sequencing, and systematically assessed the quantity and identity of bacterial DNA in both specimen types. We compared bacteria detected in lung specimens to each other and to potential source communities: negative (background) control specimens and paired oral samples. By all measures, whole lung tissue in mice contained greater bacterial signal and less evidence of contamination than did BAL fluid. Relative to BAL fluid, whole lung tissue exhibited a greater quantity of bacterial DNA, distinct community composition, decreased sample-to-sample variation, and greater biological plausibility when compared to potential source communities. In contrast, bacteria detected in BAL fluid were minimally different from those of procedural, reagent, and sequencing controls. CONCLUSIONS An ecology-based analytical approach discriminates signal from noise in this low-biomass microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies, independent of specimen type. Video abstract.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Roderick A McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Christopher A Brown
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Gary B Huffnagle
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA.
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Koren N, Zubeidat K, Saba Y, Horev Y, Barel O, Wilharm A, Heyman O, Wald S, Eli-Berchoer L, Shapiro H, Nadler C, Elinav E, Wilensky A, Prinz I, Bercovier H, Hovav AH. Maturation of the neonatal oral mucosa involves unique epithelium-microbiota interactions. Cell Host Microbe 2021; 29:197-209.e5. [PMID: 33412104 DOI: 10.1016/j.chom.2020.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning. Neutrophils are present in the oral epithelium prenatally, and exposure to the microbiota postnatally further recruits them to the preamble neonatal epithelium by γδT17 cells. These neutrophils virtually disappear during weaning as the epithelium seals. The neonate and adult epithelium display distinct turnover kinetics and transcriptomic signatures, with neonate epithelium reminiscent of the signature found in germ-free mice. Microbial reduction during weaning is mediated by the upregulation of saliva production and induction of salivary antimicrobial components by the microbiota. Collectively, unique postnatal interactions between the multilayer epithelium and microbiota shape oral homeostasis.
Collapse
Affiliation(s)
- Noam Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yael Horev
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Or Barel
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Wald
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Nadler
- Oral Medicine Department, Hebrew University, Hadassah School of Dental Medicine, Jerusalem
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hillel Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
29
|
Yildiz S, Pereira Bonifacio Lopes JP, Bergé M, González-Ruiz V, Baud D, Kloehn J, Boal-Carvalho I, Schaeren OP, Schotsaert M, Hathaway LJ, Rudaz S, Viollier PH, Hapfelmeier S, Francois P, Schmolke M. Respiratory tissue-associated commensal bacteria offer therapeutic potential against pneumococcal colonization. eLife 2020; 9:53581. [PMID: 33287959 PMCID: PMC7723408 DOI: 10.7554/elife.53581] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Under eubiotic conditions commensal microbes are known to provide a competitive barrier against invading bacterial pathogens in the intestinal tract, on the skin or on the vaginal mucosa. Here, we evaluate the role of lung microbiota in Pneumococcus colonization of the lungs. In eubiosis, the lungs of mice were dominantly colonized by Lactobacillus murinus. Differential analysis of 16S rRNA gene sequencing or L. murinus-specific qPCR of DNA from total organ homogenates vs.broncho alveolar lavages implicated tight association of these bacteria with the host tissue. Pure L. murinus conditioned culture medium inhibited growth and reduced the extension of pneumococcal chains. Growth inhibition in vitro was likely dependent on L. murinus-produced lactic acid, since pH neutralization of the conditioned medium aborted the antibacterial effect. Finally, we demonstrate that L. murinus provides a barrier against pneumococcal colonization in a respiratory dysbiosis model after an influenza A virus infection, when added therapeutically.
Collapse
Affiliation(s)
- Soner Yildiz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Víctor González-Ruiz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Damian Baud
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Inês Boal-Carvalho
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier P Schaeren
- Institute for Infectious Disease (IFIK), University of Bern, Bern, Switzerland.,Graduate School GCB, University of Bern, Bern, Switzerland
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lucy J Hathaway
- Institute for Infectious Disease (IFIK), University of Bern, Bern, Switzerland
| | - Serge Rudaz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Patrice Francois
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Zhang J, Shi K, Wang J, Zhang X, Zhao C, Du C, Zhang L. Effects of respiratory disease on Kele piglets lung microbiome, assessed through 16S rRNA sequencing. Vet World 2020; 13:1970-1981. [PMID: 33132613 PMCID: PMC7566272 DOI: 10.14202/vetworld.2020.1970-1981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Aim Due to the incomplete development of the immune system in immature piglets, the respiratory tract is susceptible to invasion by numerous pathogens that cause a range of potential respiratory diseases. However, few studies have reported the changes in pig lung microorganisms during respiratory infection. Therefore, we aimed to explore the differences in lung environmental microorganisms between healthy piglets and piglets with respiratory diseases. Materials and Methods Histopathological changes in lung sections were observed in both diseased and healthy pigs. Changes in the composition and abundance of microbiomes in alveolar lavage fluid from eleven 4-week-old Chinese Kele piglets (three clinically healthy and eight diseased) were studied by IonS5™ XL sequencing of the bacterial16S rRNA genes. Results Histopathological sections showed that diseased pigs displayed more lung lesions than healthy pigs. Diseased piglets harbored lower bacterial operational taxonomic units, α-diversity, and bacterial community complexity in comparison to healthy piglets. Taxonomic composition analysis showed that in the diseased piglets, the majority of flora was composed of Ureaplasma, Mycoplasma, and Actinobacillus; while Actinobacillus, Sphingomonas, and Stenotrophomonas were dominant in the control group. The abundance of Ureaplasma was significantly higher in ill piglets (p<0.05), and the phylogenetic tree indicated that Ureaplasma was clustered in Ureaplasma diversum, a conditional pathogen that has the potential to affect the swine respiratory system. Conclusion The results of this study show that the microbial species and structure of piglets' lungs were changed during respiratory tract infection. The finding of Ureaplasma suggested that besides known pathogens such as Mycoplasma and Actinobacillus, unknown pathogens can exist in the respiratory system of diseased pigs and provide a potential basis for clinical treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Kaizhi Shi
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jing Wang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xiong Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Chunping Zhao
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Chunlin Du
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Linxin Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention , Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
31
|
Mathieu E, MacPherson CW, Belvis J, Mathieu O, Robert V, Saint-Criq V, Langella P, Tompkins TA, Thomas M. Oral Primo-Colonizing Bacteria Modulate Inflammation and Gene Expression in Bronchial Epithelial Cells. Microorganisms 2020; 8:microorganisms8081094. [PMID: 32707845 PMCID: PMC7464694 DOI: 10.3390/microorganisms8081094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
The microbiota of the mouth disperses into the lungs, and both compartments share similar phyla. Considering the importance of the microbiota in the maturation of the immunity and physiology during the first days of life, we hypothesized that primo-colonizing bacteria of the oral cavity may induce immune responses in bronchial epithelial cells. Herein, we have isolated and characterized 57 strains of the buccal cavity of two human newborns. These strains belong to Streptococcus, Staphylococcus, Enterococcus, Rothia and Pantoea genera, with Streptococcus being the most represented. The strains were co-incubated with a bronchial epithelial cell line (BEAS-2B), and we established their impact on a panel of cytokines/chemokines and global changes in gene expression. The Staphylococcus strains, which appeared soon after birth, induced a high production of IL-8, suggesting they can trigger inflammation, whereas the Streptococcus strains were less associated with inflammation pathways. The genera Streptococcus, Enterococcus and Pantoea induced differential profiles of cytokine/chemokine/growth factor and set of genes associated with maturation of morphology. Altogether, our results demonstrate that the microorganisms, primo-colonizing the oral cavity, impact immunity and morphology of the lung epithelial cells, with specific effects depending on the phylogeny of the strains.
Collapse
Affiliation(s)
- Elliot Mathieu
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Chad W. MacPherson
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Jocelyn Belvis
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Véronique Robert
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Vinciane Saint-Criq
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Muriel Thomas
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
- Correspondence:
| |
Collapse
|
32
|
Carney SM, Clemente JC, Cox MJ, Dickson RP, Huang YJ, Kitsios GD, Kloepfer KM, Leung JM, LeVan TD, Molyneaux PL, Moore BB, O'Dwyer DN, Segal LN, Garantziotis S. Methods in Lung Microbiome Research. Am J Respir Cell Mol Biol 2020; 62:283-299. [PMID: 31661299 PMCID: PMC7055701 DOI: 10.1165/rcmb.2019-0273tr] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne J Huang
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kirsten M Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janice M Leung
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Philip L Molyneaux
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Foundation National Health Service Trust, London, United Kingdom
| | | | | | - Leopoldo N Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York; and
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
33
|
Fitzgibbon G, Mills KHG. The microbiota and immune-mediated diseases: Opportunities for therapeutic intervention. Eur J Immunol 2020; 50:326-337. [PMID: 31991477 DOI: 10.1002/eji.201948322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
A multitude of diverse microorganisms, termed the microbiota, reside in the gut, respiratory tract, skin, and genital tract of humans and other animals. Recent advances in metagenomic sequencing and bioinformatics have enabled detailed characterization of these vital microbial communities. Studies in animal models have uncovered vital previously unrecognized roles for the microbiota in normal function of the immune responses, and when perturbed, in the pathogenesis of diseases of the gastrointestinal tract and lungs, but also at distant sites in the body including the brain. The composition of gut and respiratory microbiota can influence systemic inflammatory responses that mediate asthma, allergy, inflammatory bowel disease, obesity-related diseases, and neurodevelopmental or neurodegenerative conditions. Experiments in mouse models as well as emerging clinical studies have revealed that therapeutic manipulation of the microbiota, using fecal microbiota transplantation, probiotics, or engineered probiotics represent effective nontoxic approaches for the treatment or prevention of Clostridium difficile infection, allergy, and autoimmune diseases and may enhance the efficacy of certain cancer immunotherapeutics. This review discusses how commensal bacteria can influence immune responses that mediate a range of human diseases and how the microbiota are being targeted to treat these diseases, especially those resistant to pharmacological therapies.
Collapse
Affiliation(s)
- Gillian Fitzgibbon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
34
|
Li KJ, Chen ZL, Huang Y, Zhang R, Luan XQ, Lei TT, Chen L. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir Res 2019; 20:272. [PMID: 31796027 PMCID: PMC6892239 DOI: 10.1186/s12931-019-1246-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lower respiratory tract (LRT) microbiome has been reported to associate with pulmonary diseases. Unregulated inflammation is an underlying cause of variable lung diseases. The lung microbiome may play an important role in the smoking-induced inflammatory lung diseases. What's more, the function of microbiome may be more important for understanding how microbes interact with host. Our study aims to explore the effects of smoking on the lower respiratory tract microbiome, the association between variation of lower respiratory tract microbiome and inflammation and whether smoking exposure changes the function of lower respiratory tract microbime. METHODS Forty male mice were randomly divided into smoking group and non-smoking group, and the smoking group was exposed to cigarette smoke for 2 h per day for 90 days. After experiment, the blood samples were collected to measure the concentration of interleukin-6 (IL-6) and C reactive protein (CRP) by ELISA. Lung tissue samples were used to detect the community and diversity of lower respiratory tract microbiome through 16S rRNA gene quantification and sequencing technology. ANOSIM and STAMP were performed to analyze the differences of the microbial community structure between smoking group and non-smoking group. SPSS 24.0 software was used to analyze the correlations between microbiome and inflammation mediators through scatter plots and Spearman correlation coefficient. Microbial metabolic function was predicted by PICRUSt based on the 16 s rRNA gene quantification and sequencing results. PATRIC database was searched for the potential pathogenic bacteria in lower respiratory tract. RESULTS Our results suggested that smoking had markedly effects on the microbiota structure of lower respiratory tract based on Bray-Curtis distance (R2 = 0.084, p = 0.005) and on unweighted uniFrac distance (R2 = 0.131, p = 0.002). Smoking mainly affected the abundance of microbiome which belong to Proteobacteria phyla and Firmicutes phyla. Moreover, our results also found that smoking increased the abundance of Acinetobacter, Bacillus and Staphylococcus, which were defined as pathogenic bacteria. Inflammatory mediators were observed to associate with certain microbiome at every level. Most of microbiome which were associated with inflammation belonged to Proteobacteria phyla or Firmicutes phyla. Moreover, we found that the decreased microbiome in smoking group, including Oceanospirillales, Desulfuromonadales, Nesterenkonia, and Lactobacillaceae, all were negatively correlated with IL-6 or CRP. Based on the level of inflammation, the abundance of microbiome differs. At genus level, Lactobacillus, Pelagibacterium, Geobacter and Zoogloea were significantly higher in smoking group with lower IL-6 concentration. The abundance of microbiome was not observed any statistical difference in subgroups with different weight. Three dominant genus, defined as pathogen, were found higher in the smoking group. The microbial functional prediction analysis revealed that ABC-type transport systems, transcription factors, amino acide transport and metabolism, arginine and proline metabolism et al. were distinctively decreased in smoking group, while the proportions of replication, recombination and repair, ribosome, DNA repair and recombination proteins were increased in smoking group (q < 0.05). CONCLUSIONS Members of Proteobacteria phyla and Firmicutes phyla played an important role in the microbial community composition and keeping a relatively balanced homeostasis. Microbiome dysbiosis might break the balance of immune system to drive lung inflammation. There might exist potential probiotics in lower respiratory tract, such as Lactobacillaceae. The altered function of Lower respiratory tract microbiome under smoking exposure may affect the physiological homeostasis of host.
Collapse
Affiliation(s)
- Kang-jie Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016 China
| | - Zi-long Chen
- First Clinical College, Chongqing Medical University, Chongqing, 400016 China
| | - Yao Huang
- First Clinical College, Chongqing Medical University, Chongqing, 400016 China
| | - Rui Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016 China
| | - Xiao-qian Luan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016 China
| | - Ting-ting Lei
- First Clinical College, Chongqing Medical University, Chongqing, 400016 China
| | - Ling Chen
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing, 401331 China
| |
Collapse
|
35
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
36
|
Wu Z, Gatesoupe FJ, Zhang Q, Wang X, Feng Y, Wang S, Feng D, Li A. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus). Mol Biol Rep 2019; 46:5143-5154. [PMID: 31364018 DOI: 10.1007/s11033-019-04972-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
Abstract
Increasing attention has been attracted to host microbiota, due to their vital impact on host health. Little is known about the microbiota of the Chinese giant salamander (Andrias davidianus), in spite of the high economic and scientific value of this endangered species. This study was designed to characterise and compare the gut and lung prokaryotic communities of the Chinese giant salamander by high-throughput sequencing. Our study showed that the giant salamander had a lung prokaryotic community that clustered separately from its intestinal microbiota. Statistical analysis (LEfSe) revealed that the bacterial populations were dominated by Geobacter, Sulfurimonas, and Dechloromonas from Proteobacteria phylum, and Corynebacterium from Actinobacteria phylum in the lung, while Parabacteroides, Bacteroides, and PW3 from Bacteroidetes phylum, and Oscillospira from Firmicutes phylum were predominant in the intestine. A particularly innovative finding was the fairly high abundance of Archaea, especially methanogenic Euryarchaeota. The gut dominant Archaea were Methanocorpusculum and Thermoplasmata vadinCA11, while Methanosaeta and Methanoculleus were the main Archaea in the lung. PICRUSt analysis revealed differentiated functional profiles between the intestinal miacrobiota and the lung microbiota. Specially, some microbial metabolic functions were significantly more active in the intestinal microbiota, while the functional genes involved in infectious diseases were much richer in the lung microbiota. This study characterized the prokaryotic microbial community profiles in the gut and lung of the Chinese giant salamander, providing foundational support for future study seeking to understand microbiota of the giant salamander and the role of its microbiota on infectious diseases.
Collapse
Affiliation(s)
- Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - François-Joël Gatesoupe
- INRA, Nutrition Metabolism and Aquaculture, Center de Bretagne, Ifremer, 29280, Plouzané, France
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiehao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuqing Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyue Feng
- National Fisheries Technical Extension Center, Ministry of Agriculture, Beijing, 100125, China.
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Whittle E, Leonard MO, Harrison R, Gant TW, Tonge DP. Multi-Method Characterization of the Human Circulating Microbiome. Front Microbiol 2019; 9:3266. [PMID: 30705670 PMCID: PMC6345098 DOI: 10.3389/fmicb.2018.03266] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/17/2018] [Indexed: 01/14/2023] Open
Abstract
The term microbiome describes the genetic material encoding the various microbial populations that inhabit our body. Whilst colonization of various body niches (e.g., the gut) by dynamic communities of microorganisms is now universally accepted, the existence of microbial populations in other "classically sterile" locations, including the blood, is a relatively new concept. The presence of bacteria-specific DNA in the blood has been reported in the literature for some time, yet the true origin of this is still the subject of much deliberation. The aim of this study was to investigate the phenomenon of a "blood microbiome" by providing a comprehensive description of bacterially derived nucleic acids using a range of complementary molecular and classical microbiological techniques. For this purpose we utilized a set of plasma samples from healthy subjects (n = 5) and asthmatic subjects (n = 5). DNA-level analyses involved the amplification and sequencing of the 16S rRNA gene. RNA-level analyses were based upon the de novo assembly of unmapped mRNA reads and subsequent taxonomic identification. Molecular studies were complemented by viability data from classical aerobic and anaerobic microbial culture experiments. At the phylum level, the blood microbiome was predominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key phyla detected were consistent irrespective of molecular method (DNA vs. RNA), and consistent with the results of other published studies. In silico comparison of our data with that of the Human Microbiome Project revealed that members of the blood microbiome were most likely to have originated from the oral or skin communities. To our surprise, aerobic and anaerobic cultures were positive in eight of out the ten donor samples investigated, and we reflect upon their source. Our data provide further evidence of a core blood microbiome, and provide insight into the potential source of the bacterial DNA/RNA detected in the blood. Further, data reveal the importance of robust experimental procedures, and identify areas for future consideration.
Collapse
Affiliation(s)
- Emma Whittle
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| | - Martin O. Leonard
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom
| | - Rebecca Harrison
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| | - Timothy W. Gant
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom
| | - Daniel Paul Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
38
|
Gu L, Deng H, Ren Z, Zhao Y, Yu S, Guo Y, Dai J, Chen X, Li K, Li R, Wang G. Dynamic Changes in the Microbiome and Mucosal Immune Microenvironment of the Lower Respiratory Tract by Influenza Virus Infection. Front Microbiol 2019; 10:2491. [PMID: 31736922 PMCID: PMC6838016 DOI: 10.3389/fmicb.2019.02491] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023] Open
Abstract
Influenza is a major public health concern, and the high mortality rate is largely attributed to secondary bacterial infections. There are several mechanisms through which the virus increases host susceptibility to bacterial colonization, but the micro-environment in lower respiratory tract (LRT) of host, infected with influenza virus, is unclear. To this end, we analyzed the LRT microbiome, transcriptome of lung and metabolome of bronchoalveolar lavage fluid (BALF) in mice inoculated intra-nasally with H1N1 to simulate human influenza, and we observed significant changes in the composition of microbial community and species diversity in the acute (7 days post inoculation or dpi), convalescent (14 dpi) and the recovery (28 dpi) periods. The dominant bacterial class shifted from Alphaproteobacteria to Gammaproteobacteria and Actinobacteria in the infected mice, with a significant increase in the relative abundance of anaerobes and facultative anaerobes like Streptococcus and Staphylococcus. The dysbiosis in the LRT of infected mice was not normalized even in the recovery phase of the infection. In addition, the infected lung transcriptome showed significant differences in the expression levels of genes associated with bacterial infection and immune responses. Finally, the influenza virus infection also resulted in significant changes in the metabolome of the BALF. These alterations in the microbiome, transcriptome, and metabolome of infected lungs were not only appeared at the acute period, but also observed at the recovery period. Furthermore, the infection of influenza virus induced a long-term effect in LRT micro-environmental homeostasis, which may give a chance for the invasion of potential pathogens.
Collapse
Affiliation(s)
- Liming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhihui Ren
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Shun Yu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingzhu Guo
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jianping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- *Correspondence: Rui Li,
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Gefei Wang,
| |
Collapse
|
39
|
Early-Life Formation of the Microbial and Immunological Environment of the Human Airways. Cell Host Microbe 2018; 24:857-865.e4. [DOI: 10.1016/j.chom.2018.10.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
40
|
George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-Junelles AM, Borges F, Foligné B. Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Front Microbiol 2018; 9:2899. [PMID: 30538693 PMCID: PMC6277688 DOI: 10.3389/fmicb.2018.02899] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are representative members of multiple ecosystems on earth, displaying dynamic interactions within animal and plant kingdoms in respect with other microbes. This highly heterogeneous phylogenetic group has coevolved with plants, invertebrates, and vertebrates, establishing either mutualism, symbiosis, commensalism, or even parasitism-like behavior with their hosts. Depending on their location and environment conditions, LAB can be dominant or sometimes in minority within ecosystems. Whatever their origins and relative abundance in specific anatomic sites, LAB exhibit multifaceted ecological and functional properties. While some resident LAB permanently inhabit distinct animal mucosal cavities, others are provided by food and may transiently occupy the gastrointestinal tract. It is admitted that the overall gut microbiome has a deep impact on health and diseases. Here, we examined the presence and the physiological role of LAB in the healthy human and several animal microbiome. Moreover, we also highlighted some dysbiotic states and related consequences for health, considering both the resident and the so-called "transionts" microorganisms. Whether LAB-related health effects act collectively or follow a strain-specificity dogma is also addressed. Besides the highly suggested contribution of LAB to interplay with immune, metabolic, and even brain-axis regulation, the possible involvement of LAB in xenobiotic detoxification processes and metal equilibrium is also tackled. Recent technological developments such as functional metagenomics, metabolomics, high-content screening and design in vitro and in vivo experimental models now open new horizons for LAB as markers applied for disease diagnosis, susceptibility, and follow-up. Moreover, identification of general and more specific molecular mechanisms based on antioxidant, antimicrobial, anti-inflammatory, and detoxifying properties of LAB currently extends their selection and promising use, either as probiotics, in traditional and functional foods, for dedicated treatments and mostly for maintenance of normobiosis and homeostasis.
Collapse
Affiliation(s)
- Fanny George
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Catherine Daniel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabeth Singer
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Axel Guilbaud
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Frédéric J. Tessier
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Benoît Foligné
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| |
Collapse
|
41
|
Finn SMB, Scheuermann U, Holzknecht ZE, Parker W, Granek JA, Lin SS, McKenney EA, Barbas AS. Effect of gastric fluid aspiration on the lung microbiota of laboratory rats. Exp Lung Res 2018; 44:201-210. [PMID: 30465452 DOI: 10.1080/01902148.2018.1482976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM OF THE STUDY The pulmonary microbiota is important for both normal homeostasis and the progression of disease, and may be affected by aspiration of gastric fluid. The aim of this study was to investigate changes in the lung microbiota induced by aspiration of gastric fluid in a laboratory rat model. MATERIAL AND METHODS Using the intratracheal application method, male rats received aspiration with 0.9% normal saline (n = 11); gastric fluid (n = 24) or sterilized (gamma-irradiated) gastric fluid (n = 12) once-weekly for four weeks. On the fifth week, the animals were sacrificed, and the microbiota of the lung was assessed by 16S ribosomal RNA gene sequencing. RESULTS Lungs without aspiration and lungs after aspiration with normal saline had similar microbial compositions, dominated by bacteria of the genera Serratia, Ralstonia and Brucella. Evaluation of the microbiota following aspiration of gastric fluid revealed a much different profile that was dominated by bacteria from the genera Romboutsia and Turicibacter and largely independent of sterilization of the gastric fluid. CONCLUSION In a laboratory rat model, aspiration with gastric fluid caused a substantial shift of the lung microbiota that could be characterized as a shift from Proteobacteria towards Firmicutes, possibly of enteric origin. Bacteria contained in the gastric fluid are not apparently responsible for this change.
Collapse
Affiliation(s)
- Sade M B Finn
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Uwe Scheuermann
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Zoie E Holzknecht
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - William Parker
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Joshua A Granek
- b Department of Bioinformatics and Biostatistics , Duke University School of Medicine , Durham , North Carolina , USA
| | - Shu S Lin
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA.,c Department of Pathology , Duke University Medical Center , Durham , North Carolina , USA.,d Department of Immunology , Duke University Medical Center , Durham , North Carolina , USA
| | - Erin A McKenney
- e Department of Applied Ecology , NC State University , Raleigh , North Carolina , USA
| | - Andrew S Barbas
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| |
Collapse
|
42
|
Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, Remot A, Thomas M. Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Front Physiol 2018; 9:1168. [PMID: 30246806 PMCID: PMC6110890 DOI: 10.3389/fphys.2018.01168] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Improvements in our knowledge of the gut microbiota have broadened our vision of the microbes associated with the intestine. These microbes are essential actors and protectors of digestive and extra-digestive health and, by extension, crucial for human physiology. Similar reconsiderations are currently underway concerning the endogenous microbes of the lungs, with a shift in focus away from their involvement in infections toward a role in physiology. The discovery of the lung microbiota was delayed by the long-held view that the lungs of healthy individuals were sterile and by sampling difficulties. The lung microbiota has a low density, and the maintenance of small numbers of bacteria seems to be a critical determinant of good health. This review aims to highlight how knowledge about the lung microbiota can change our conception of lung physiology and respiratory health. We provide support for this point of view with knowledge acquired about the gut microbiota and intestinal physiology. We describe the main characteristics of the lung microbiota and its functional impact on lung physiology, particularly in healthy individuals, after birth, but also in asthma. We describe some of the physiological features of the respiratory tract potentially favoring the installation of a dysbiotic microbiota. The gut microbiota feeds and matures the intestinal epithelium and is involved in immunity, when the principal role of the lung microbiota seems to be the orientation and balance of aspects of immune and epithelial responsiveness. This implies that the local and remote effects of bacterial communities are likely to be determinant in many respiratory diseases caused by viruses, allergens or genetic deficiency. Finally, we discuss the reciprocal connections between the gut and lungs that render these two compartments inseparable.
Collapse
Affiliation(s)
- Elliot Mathieu
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Unai Escribano-Vazquez
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphyne Descamps
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sabine Riffault
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aude Remot
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
43
|
Agarwal R, Johnson CT, Imhoff BR, Donlan RM, McCarty NA, García AJ. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat Biomed Eng 2018; 2:841-849. [PMID: 30854250 PMCID: PMC6408147 DOI: 10.1038/s41551-018-0263-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rachit Agarwal
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Barry R Imhoff
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rodney M Donlan
- Biofilm Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nael A McCarty
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
44
|
Singh N, Vats A, Sharma A, Arora A, Kumar A. Erratum to: The development of lower respiratory tract microbiome in mice. MICROBIOME 2017; 5:124. [PMID: 28934983 PMCID: PMC5607481 DOI: 10.1186/s40168-017-0335-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Nisha Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036, India
| | - Asheema Vats
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036, India
| | - Aditi Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036, India
| | - Amit Arora
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036, India.
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Microbial Type Culture Collection and Gene Bank (MTCC), Chandigarh, India.
- Present Address: Department of Medical Microbiology, PGIMER, Sector 12, Chandigarh, 160012, India.
| | - Ashwani Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh, 160036, India.
| |
Collapse
|