1
|
Zhao H, Qiu X, Wang S, Wang Y, Xie L, Xia X, Li W. Multiple pathways through which the gut microbiota regulates neuronal mitochondria constitute another possible direction for depression. Front Microbiol 2025; 16:1578155. [PMID: 40313405 PMCID: PMC12043685 DOI: 10.3389/fmicb.2025.1578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
As a significant mental health disorder worldwide, the treatment of depression has long faced the challenges of a low treatment rate, significant drug side effects and a high relapse rate. Recent studies have revealed that the gut microbiota and neuronal mitochondrial dysfunction play central roles in the pathogenesis of depression: the gut microbiota influences the course of depression through multiple pathways, including immune regulation, HPA axis modulation and neurotransmitter metabolism. Mitochondrial function serves as a key hub that mediates mood disorders through mechanisms such as defective energy metabolism, impaired neuroplasticity and amplified neuroinflammation. Notably, a bidirectional regulatory network exists between the gut microbiota and mitochondria: the flora metabolite butyrate enhances mitochondrial biosynthesis through activation of the AMPK-PGC1α pathway, whereas reactive oxygen species produced by mitochondria counteract the flora composition by altering the intestinal epithelial microenvironment. In this study, we systematically revealed the potential pathways by which the gut microbiota improves neuronal mitochondrial function by regulating neurotransmitter synthesis, mitochondrial autophagy, and oxidative stress homeostasis and proposed the integration of probiotic supplementation, dietary fiber intervention, and fecal microbial transplantation to remodel the flora-mitochondrial axis, which provides a theoretical basis for the development of novel antidepressant therapies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Hongyi Zhao
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Qiu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xie
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuwen Xia
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
2
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Hernández-García J, Muro-Reche P, Orenes-Piñero E. Gut microbiota and microRNAs as biomarkers in Parkinson's disease: early identification, diagnostic and potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05271-6. [PMID: 40159518 DOI: 10.1007/s11010-025-05271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The gut microbiota can affect both the enteric and the central nervous system, influencing individuals and their brain regulation. In this work, different pieces of scientific evidence are discussed, showing the relationship between changes in the microbiota and neurocognitive deterioration, focussing on Parkinson's disease (PD). Other factors that may cause or contribute to PD aetiology are the interactions between environmental factors and genetic susceptibility. According to the existing literature, there are several methods for the identification of neurocognitive impairment in different neurological diseases. However, such methods do not allow early identification, and therefore, the possibility of using other types of more effective diagnostic biomarkers in PD has also been investigated. Since this disease is characterised by specific microRNA (miRNA) expression, and the gut microbiota is an important factor in both PD and miRNA expression, the aim of this review is thoroughly analysing the role of microbiota and microRNAs in PD development. In addition, the relationship between these two factors and potential treatments will be also discussed.
Collapse
Affiliation(s)
- Javier Hernández-García
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Avda. de las Fuerzas Armadas, S/N, Lorca, 30800, Murcia, Spain
| | - Patricia Muro-Reche
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Avda. de las Fuerzas Armadas, S/N, Lorca, 30800, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Avda. de las Fuerzas Armadas, S/N, Lorca, 30800, Murcia, Spain.
| |
Collapse
|
4
|
Li T, Liu Y, Duan T, Guo C, Liu B, Fu X, Wang L, Wang X, Dong X, Wang C, Lu Y, Wang Y, Shi L, Tian H, Yang X. Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism. Cell Metab 2025; 37:345-360.e6. [PMID: 39561765 DOI: 10.1016/j.cmet.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
Oligosaccharides are conventionally recognized as "passersby" in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose's regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring Lactobacillus in mice. Thereinto, miR-30a-5p that was downregulated (Log2FC < -2) in both mice and human feces following stachyose treatment could specifically suppress the growth of Lactobacillus reuteri. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct "talk" of oligosaccharides to intestine epithelium via membranous HSP90β.
Collapse
Affiliation(s)
- Ting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tianchi Duan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Lu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyuan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyue Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chennan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yalong Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
6
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Thompson SL, Ellegood J, Bowdish DM, Lerch JP, Foster JA. Sex- and brain region-specific alterations in brain volume in germ-free mice. iScience 2024; 27:111429. [PMID: 39735434 PMCID: PMC11681894 DOI: 10.1016/j.isci.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Several lines of evidence demonstrate that microbiota influence brain development. Using high-resolution ex vivo magnetic resonance imaging (MRI), this study examined the impact of microbiota status on brain volume and revealed microbiota-related differences that were sex and brain region dependent. Cortical and hippocampal regions demonstrate increased sensitivity to microbiota status during the first 5 weeks of postnatal life, effects that were greater in male germ-free mice. Conventionalization of germ-free mice at puberty did not normalize brain volume changes. These data add to the existing literature and highlight the need to focus more attention on early-life microbiota-brain axis mechanisms in order to understand the regulatory role of the microbiome in brain development.
Collapse
Affiliation(s)
- Shawna L. Thompson
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dawn M.E. Bowdish
- Department of Medicine and McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford UK
| | - Jane A. Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Research Institute at St. Joe’s Hamilton, Hamilton, ON Canada
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
9
|
Tong CQ, Li MJ, Liu Y, Zhou Q, Sun WQ, Chen JY, Wang D, Li F, Chen ZJ, Song YH. Regulation of hippocampal miRNA expression by intestinal flora in anxiety-like mice. Eur J Pharmacol 2024; 984:177016. [PMID: 39369876 DOI: 10.1016/j.ejphar.2024.177016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study investigated the possible interaction between gut flora and miRNAs and the effect of both on anxiety disorders. The model group was induced with chronic restraint stress (CRS) and each group was tested for anxiety-like behaviour by open field test and elevated plus maze test. Meanwhile, the gut flora was analysed by 16S rRNA high-throughput sequencing. The miRNAs in hippocampus were analysed by high-throughput sequencing, and the key miRNAs were obtained by using the method of bioinformatics analysis. PCR was used to verify the significantly related key miRNAs. Spearman correlation analysis was used to explore the correlation between behaviour, key miRNAs and differential gut microbiota. The 16S rRNA high-throughput sequencing result showed that the gut flora was dysregulated in the model group. In particular, Verrucomicrobia, Akkermansia, Anaerostipes, Ralstonia, Burkholderia and Anaeroplasma were correlated with behaviour. The results of miRNA high-throughput sequencing analysis and bioinformatics analysis showed that 7 key miRNAs influenced the pathogenesis of anxiety, and qRT-PCR results were consistent with the high-throughput sequencing results. Mmu-miR-543-3p and mmu-miR-26a-5p were positively correlated with Verrucomicrobia, Akkermansia and Anaerostipes. Therefore, we infer that chronic stress caused the decrease of Akkermansia abundance, which may aggravate the decrease of mmu-miR-543-3p and mmu-miR-26a-5p expression, leading to the increase of SLC1A2 expression. In conclusion, gut flora has played an important influence on anxiety with changes in miRNAs.
Collapse
Affiliation(s)
- Chang-Qing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Meng-Jia Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Qin Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Wen-Qi Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Jia-Yi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Di Wang
- Department of traditional Chinese Medicine, Beijing ANDing hospital affiliated to capital University of medical sciences, Beijing, BJ, China
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Zi-Jie Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| | - Yue-Han Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| |
Collapse
|
10
|
Zheng YB, Jin X. Evidence for the Contribution of the miR-206/BDNF Pathway in the Pathophysiology of Depression. Int J Neuropsychopharmacol 2024; 27:pyae039. [PMID: 39219169 PMCID: PMC11461769 DOI: 10.1093/ijnp/pyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation, microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and recently were proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex. Until now, only a few studies have been conducted on rodents to understand the role of miR-206 in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviors remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
11
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
13
|
Beurel E, Nemeroff CB. Early Life Adversity, Microbiome, and Inflammatory Responses. Biomolecules 2024; 14:802. [PMID: 39062516 PMCID: PMC11275239 DOI: 10.3390/biom14070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Early life adversity has a profound impact on physical and mental health. Because the central nervous and immune systems are not fully mature at birth and continue to mature during the postnatal period, a bidirectional interaction between the central nervous system and the immune system has been hypothesized, with traumatic stressors during childhood being pivotal in priming individuals for later adult psychopathology. Similarly, the microbiome, which regulates both neurodevelopment and immune function, also matures during childhood, rendering this interaction between the brain and the immune system even more complex. In this review, we provide evidence for the role of the immune response and the microbiome in the deleterious effects of early life adversity, both in humans and rodent models.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Mulva Clinic for Neurosciences, University of Texas (UT) Dell Medical School, Austin, TX 78712, USA
- Mulva Clinic for Neurosciences, UT Austin Dell Medical School, Austin, TX 78712, USA
| |
Collapse
|
14
|
Contreras‐Rodriguez O, Blasco G, Biarnés C, Puig J, Arnoriaga‐Rodríguez M, Coll‐Martinez C, Gich J, Ramió‐Torrentà L, Motger‐Albertí A, Pérez‐Brocal V, Moya A, Radua J, Manuel Fernández‐Real J. Unraveling the gut-brain connection: The association of microbiota-linked structural brain biomarkers with behavior and mental health. Psychiatry Clin Neurosci 2024; 78:339-346. [PMID: 38421082 PMCID: PMC11488601 DOI: 10.1111/pcn.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
AIM The gut microbiota can influence human behavior. However, due to the massive multiple-testing problem, research into the relationship between microbiome ecosystems and the human brain faces drawbacks. This problem arises when attempting to correlate thousands of gut bacteria with thousands of brain voxels. METHODS We performed brain magnetic resonance imaging (MRI) scans on 133 participants and applied machine-learning algorithms (Ridge regressions) combined with permutation tests. Using this approach, we were able to correlate specific gut bacterial families with brain MRI signals, circumventing the difficulties of massive multiple testing while considering sex, age, and body mass index as confounding factors. RESULTS The relative abundance (RA) of the Selenomonadaceae, Clostridiaceae, and Veillonellaceae families in the gut was associated with altered cerebellar, visual, and frontal T2-mapping and diffusion tensor imaging measures. Conversely, decreased relative abundance of the Eubacteriaceae family was also linked to T2-mapping values in the cerebellum. Significantly, the brain regions associated with the gut microbiome were also correlated with depressive symptoms and attentional deficits. CONCLUSIONS Our analytical strategy offers a promising approach for identifying potential brain biomarkers influenced by gut microbiota. By gathering a deeper understanding of the microbiota-brain connection, we can gain insights into the underlying mechanisms and potentially develop targeted interventions to mitigate the detrimental effects of dysbiosis on brain function and mental health.
Collapse
Affiliation(s)
- Oren Contreras‐Rodriguez
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- Department of Psychiatry and Legal Medicine, Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
| | - Gerard Blasco
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Carles Biarnés
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Josep Puig
- Radiology Department CDIHospital Clinic of BarcelonaBarcelonaSpain
| | - Maria Arnoriaga‐Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
| | - Clàudia Coll‐Martinez
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Jordi Gich
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Lluís Ramió‐Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Anna Motger‐Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| | - Vicente Pérez‐Brocal
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
| | - Andrés Moya
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
- Institute for Integrative Systems Biology (I2SysBio)The Spanish National Research Council (CSIC‐UVEG), The University of ValenciaValènciaSpain
| | - Joaquim Radua
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
- Imaging of Mood‐ and Anxiety‐Related Disorders (IMARD) GroupInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Department of Medicine, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - José Manuel Fernández‐Real
- Health Institute Carlos III (ISCIII)MadridSpain
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| |
Collapse
|
15
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
16
|
Porru S, Esplugues A, Llop S, Delgado-Saborit JM. The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123732. [PMID: 38462196 DOI: 10.1016/j.envpol.2024.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The gut-brain axis is a crucial interface between the central nervous system and the gut microbiota. Recent evidence shows that exposure to environmental contaminants, such as heavy metals, can cause dysbiosis in gut microbiota, which may affect the gut-brain communication, impacting aspects of brain function and behavior. This systematic review of the literature aims to evaluate whether deleterious effects on brain function due to heavy metal exposure could be mediated by changes in the gut microbiota profile. Animal studies involving exposure to heavy metals and a comparison with a control group that evaluated neuropsychological outcomes and/or molecular outcomes along with the analysis of microbiota composition were reviewed. The authors independently assessed studies for inclusion, extracted data and assessed risk of bias using the protocol of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) for preclinical studies. A search in 3 databases yielded 16 eligible studies focused on lead (n = 10), cadmium (n = 1), mercury (n = 3), manganese (n = 1), and combined exposure of lead and manganese (n = 1). The animal species were rats (n = 7), mice (n = 4), zebrafish (n = 3), carp (n = 1) and fruit fly (n = 1). Heavy metals were found to adversely affect cognitive function, behavior, and neuronal morphology. Moreover, heavy metal exposure was associated with changes in the abundance of specific bacterial phyla, such as Firmicutes and Proteobacteria, which play crucial roles in gut health. In some studies, these alterations were correlated with learning and memory impairments and mood disorders. The interplay of heavy metals, gut microbiota, and brain suggests that heavy metals can induce direct brain alterations and indirect effects through the microbiota, contributing to neurotoxicity and the development of neuropsychological disorders. However, the small number of papers under review makes it difficult to draw definitive conclusions. Further research is warranted to unravel the underlying mechanisms and evaluate the translational implications for human health.
Collapse
Affiliation(s)
- Simona Porru
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Ana Esplugues
- Faculty of Nursing and Podiatry, Universitat de València, C/Menendez Pelayo S/n, 46010, València, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Juana María Delgado-Saborit
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain.
| |
Collapse
|
17
|
Schwarcz R, Foo A, Sathyasaikumar KV, Notarangelo FM. The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine. Int J Mol Sci 2024; 25:3679. [PMID: 38612489 PMCID: PMC11011989 DOI: 10.3390/ijms25073679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (A.F.); (K.V.S.)
| | | | | | | |
Collapse
|
18
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Chen S, Li M, Tong C, Wang Y, He J, Shao Q, Liu Y, Wu Y, Song Y. Regulation of miRNA expression in the prefrontal cortex by fecal microbiota transplantation in anxiety-like mice. Front Psychiatry 2024; 15:1323801. [PMID: 38410679 PMCID: PMC10894985 DOI: 10.3389/fpsyt.2024.1323801] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Background The gut-brain axis and gut microbiota have emerged as key players in emotional disorders. Recent studies suggest that alterations in gut microbiota may impact psychiatric symptoms through brain miRNA along the gut-brain axis. However, direct evidence linking gut microbiota to the pathophysiology of generalized anxiety disorder (GAD) via brain miRNA is limited. In this study, we explored the effects of fecal microbiota transplantation (FMT) from GAD donors on gut microbiota and prefrontal cortex miRNA in recipient mice, aiming to understand the relationship between these two factors. Methods Anxiety scores and gut microbiota composition were assessed in GAD patients, and their fecal samples were utilized for FMT in C57BL/6J mice. Anxiety-like behavior in mice was evaluated using open field and elevated plus maze tests. High-throughput sequencing of gut microbiota 16S rRNA and prefrontal cortex miRNA was performed. Results The fecal microbiota of GAD patients exhibited a distinct microbial structure compared to the healthy group, characterized by a significant decrease in Verrucomicrobia and Akkermansia, and a significant increase in Actinobacteria and Bacteroides. Subsequent FMT from GAD patients to mice induced anxiety-like behavior in recipients. Detailed analysis of gut microbiota composition revealed lower abundances of Verrucomicrobia, Akkermansia, Bifidobacterium, and Butyricimonas, and higher abundances of Deferribacteres, Allobaculum, Bacteroides, and Clostridium in mice that received FMT from GAD patients. MiRNA analysis identified five key miRNAs affecting GAD pathogenesis, including mmu-miR-10a-5p, mmu-miR-1224-5p, mmu-miR-218-5p, mmu-miR-10b-5p, and mmu-miR-488-3p. Notably, mmu-miR-488-3p showed a strong negative correlation with Verrucomicrobia and Akkermansia. Conclusion This study demonstrates that anxiety-like behavior induced by human FMT can be transmitted through gut microbiota and is associated with miRNA expression in the prefrontal cortex. It is inferred that the reduction of Akkermansia caused by FMT from GAD patients leads to the upregulation of mmu-miR-488-3p expression, resulting in the downregulation of its downstream target gene Creb1 and interference with its related signaling pathway. These findings highlight the gut microbiota's crucial role in the GAD pathophysiology.
Collapse
Affiliation(s)
- Simin Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengjia Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wu
- Liuzhou Key laboratory of infection disease and immunology, Research Center of Medical Sciences, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Sheet S, Jang SS, Kim JH, Park W, Kim D. A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle. Sci Rep 2024; 14:315. [PMID: 38172605 PMCID: PMC10764957 DOI: 10.1038/s41598-023-51037-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jae Hwan Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| |
Collapse
|
21
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Tan S, Chen W, Kong G, Wei L, Xie Y. Peripheral inflammation and neurocognitive impairment: correlations, underlying mechanisms, and therapeutic implications. Front Aging Neurosci 2023; 15:1305790. [PMID: 38094503 PMCID: PMC10716308 DOI: 10.3389/fnagi.2023.1305790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 08/22/2024] Open
Abstract
Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Lane JM, Wright RO, Eggers S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci Biobehav Rev 2023; 153:105337. [PMID: 37524139 PMCID: PMC10592180 DOI: 10.1016/j.neubiorev.2023.105337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In the United States, adolescent obesity is a growing epidemic associated with maladaptive executive functioning. Likewise, data link the microbiome to obesity. Emerging microbiome research has demonstrated an interconnection between the gut microbiome and the brain, indicating a bidirectional communication system within the gut-microbiome-brain axis in the pathophysiology of obesity. This narrative review identifies and summarizes relevant research connecting adolescent obesity as it relates to three core domains of executive functioning and the contribution of the gut microbiome in the relationship between obesity and executive functions in adolescence. The review suggests that (1) the interconnection between obesity, executive function, and the gut microbiome is a bidirectional connection, and (2) the gut microbiome may mediate the neurobiological pathways between obesity and executive function deficits. The findings of this review provide valuable insights into obesity-associated executive function deficits and elucidate the possible mediation role of the gut microbiome.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
24
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
25
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Lin S, Wang H, Qiu J, Li M, Gao E, Wu X, Xu Y, Chen G. Altered gut microbiota profile in patients with perimenopausal panic disorder. Front Psychiatry 2023; 14:1139992. [PMID: 37304433 PMCID: PMC10249373 DOI: 10.3389/fpsyt.2023.1139992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Females in the perimenopausal period are susceptible to mood disorders. Perimenopausal panic disorder (PPD) is characterized by repeated and unpredictable panic attacks during perimenopause, and it impacts the patient's physical and mental health and social function. Pharmacotherapy is limited in the clinic, and its pathological mechanism is unclear. Recent studies have demonstrated that gut microbiota is strongly linked to emotion; however, the relation between PPD and microbiota is limitedly known. Methods This study aimed to discover specific microbiota in PPD patients and the intrinsic connection between them. Gut microbiota was analyzed in PPD patients (n = 40) and healthy controls (n = 40) by 16S rRNA sequencing. Results The results showed reduced α-diversity (richness) in the gut microbiota of PPD patients. β-diversity indicated that PPD and healthy controls had different intestinal microbiota compositions. At the genus level, 30 species of microbiota abundance had significantly different between the PPD and healthy controls. In addition, HAMA, PDSS, and PASS scales were collected in two groups. It was found that Bacteroides and Alistipes were positively correlated with PASS, PDSS, and HAMA. Discussion Bacteroides and Alistipes dysbiosis dominate imbalanced microbiota in PPD patients. This microbial alteration may be a potential pathogenesis and physio-pathological feature of PPD. The distinct gut microbiota can be a potential diagnostic marker and a new therapeutic target for PPD.
Collapse
Affiliation(s)
- Shen Lin
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongjin Wang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingjing Qiu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ebin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaofeng Wu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guizhen Chen
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Guedes BFS, Cardoso SM, Esteves AR. The Impact of microRNAs on Mitochondrial Function and Immunity: Relevance to Parkinson's Disease. Biomedicines 2023; 11:biomedicines11051349. [PMID: 37239020 DOI: 10.3390/biomedicines11051349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's Disease (PD), the second most common neurodegenerative disorder, is characterised by the severe loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) and by the presence of Lewy bodies. PD is diagnosed upon the onset of motor symptoms, such as bradykinesia, resting tremor, rigidity, and postural instability. It is currently accepted that motor symptoms are preceded by non-motor features, such as gastrointestinal dysfunction. In fact, it has been proposed that PD might start in the gut and spread to the central nervous system. Growing evidence reports that the gut microbiota, which has been found to be altered in PD patients, influences the function of the central and enteric nervous systems. Altered expression of microRNAs (miRNAs) in PD patients has also been reported, many of which regulate key pathological mechanisms involved in PD pathogenesis, such as mitochondrial dysfunction and immunity. It remains unknown how gut microbiota regulates brain function; however, miRNAs have been highlighted as important players. Remarkably, numerous studies have depicted the ability of miRNAs to modulate and be regulated by the host's gut microbiota. In this review, we summarize the experimental and clinical studies implicating mitochondrial dysfunction and immunity in PD. Moreover, we gather recent data on miRNA involvement in these two processes. Ultimately, we discuss the reciprocal crosstalk between gut microbiota and miRNAs. Studying the bidirectional interaction of gut microbiome-miRNA might elucidate the aetiology and pathogenesis of gut-first PD, which could lead to the application of miRNAs as potential biomarkers or therapeutical targets for PD.
Collapse
Affiliation(s)
- Beatriz F S Guedes
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
28
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
29
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
31
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
32
|
Li Q, Zhang J, Gao Z, Zhang Y, Gu J. Gut microbiota-induced microRNA-206-3p increases anxiety-like behaviors by inhibiting expression of Cited2 and STK39. Microb Pathog 2023; 176:106008. [PMID: 36736544 DOI: 10.1016/j.micpath.2023.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. The purpose of this study is to evaluate the clinical significance of gut microbiota regulating microRNA (miR)-206-3p as a biomarker in the anxiety-like behaviors. METHODS Initially, bioinformatics analysis was performed to predict the related factors for gut microbiota affecting anxiety-like behaviors. Next, the anxiety-like behaviors in mice were measured by multiple experiments. Western blot analysis, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were utilized to measure the levels of 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), and neutrophil expressed (NE) in brain tissues and serum and cAMP responsive element binding protein 1 (CREB) phosphorylation in brain tissues of germ-free (GF) mice. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-206-3p and Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (Cited2)/serine/threonine kinase 39 (STK39). Ectopic expression and depletion experiments of miR-206-3p were conducted to determine the expression of miR-206-3p and mRNA and protein levels of Cited2, and STK39 in HT22 cells and brain tissues. Finally, transmission electron microscope (TEM) was used to observe the effects of miR-206-3p on hippocampal mitochondria and synapses. RESULTS Gut microbiota could elevate miR-206-3p expression in brain tissues to increase the anxiety-like behaviors. GF mice displayed the increased levels of 5-HT, BDNF, and NE in brain tissues and serum and CREB phosphorylation in brain tissues. Cited2/STK39 was identified as the target genes of miR-206-3p. Upregulated miR-206-3p increased anxiety-like behaviors by promoting degeneration of mitochondria and synapses in hippocampus via downregulation of Cited2 and STK39. CONCLUSIONS In conclusion, the key findings of the current study demonstrate that gut microbiota aggravated anxiety-like behaviors via the miR-206-3p/Cited2/STK39 axis.
Collapse
Affiliation(s)
- Qian Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Jie Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Zhitao Gao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yujuan Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jingyang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| |
Collapse
|
33
|
Laricchiuta D, Panuccio A, Picerni E, Biondo D, Genovesi B, Petrosini L. The body keeps the score: The neurobiological profile of traumatized adolescents. Neurosci Biobehav Rev 2023; 145:105033. [PMID: 36610696 DOI: 10.1016/j.neubiorev.2023.105033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Trauma-related disorders are debilitating psychiatric conditions that affect people who have directly or indirectly witnessed adversities. Experiencing multiple types of traumas appears to be common during childhood, and even more so during adolescence. Dramatic brain/body transformations occurring during adolescence may provide a highly responsive substrate to external stimuli and lead to trauma-related vulnerability conditions, such as internalizing (anxiety, depression, anhedonia, withdrawal) and externalizing (aggression, delinquency, conduct disorders) problems. Analyzing relations among neuronal, endocrine, immune, and biochemical signatures of trauma and internalizing and externalizing behaviors, including the role of personality traits in shaping these conducts, this review highlights that the marked effects of traumatic experience on the brain/body involve changes at nearly every level of analysis, from brain structure, function and connectivity to endocrine and immune systems, from gene expression (including in the gut) to the development of personality.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Eleonora Picerni
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
34
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
35
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
36
|
Cruz-Pereira JS, Moloney GM, Bastiaanssen TF, Boscaini S, Tofani G, Borras-Bisa J, van de Wouw M, Fitzgerald P, Dinan TG, Clarke G, Cryan JF. Prebiotic supplementation modulates selective effects of stress on behavior and brain metabolome in aged mice. Neurobiol Stress 2022; 21:100501. [DOI: 10.1016/j.ynstr.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
|
37
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Yan XY, Yao JP, Li YQ, Zhang W, Xi MH, Chen M, Li Y. Global trends in research on miRNA-microbiome interaction from 2011 to 2021: A bibliometric analysis. Front Pharmacol 2022; 13:974741. [PMID: 36110534 PMCID: PMC9468484 DOI: 10.3389/fphar.2022.974741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
An increasing number of research suggests that the microRNA (miRNA)-microbiome interaction plays an essential role in host health and diseases. This bibliometric analysis aimed to identify the status of global scientific output, research hotspots, and frontiers regarding the study of miRNA-microbiome interaction over the past decade. We retrieved miRNA-microbiome-related studies published from 2011 to 2021 from the Web of Science Core Collection database; the R package bibliometrix was used to analyze bibliometric indicators, and VOSviewer was used to visualize the field status, hotspots, and research trends of miRNA-microbiome interplay. In total, 590 articles and reviews were collected. A visual analysis of the results showed that significant increase in the number of publications over time. China produced the most papers, and the United States contributed the highest number of citations. Shanghai Jiaotong University and the University of California Davis were the most active institutions in the field. Most publications were published in the areas of biochemistry and molecular biology. Yu Aiming was the most prolific writer, as indicated by the h-index and m-index, and Liu Shirong was the most commonly co-cited author. A paper published in the International Journal of Molecular Sciences in 2017 had the highest number of citations. The keywords "expression" and "gut microbiota" appeared most frequently, and the top three groups of diseases that appeared among keywords were cancer (colorectal, et al.), inflammatory bowel disease (Crohn's disease and ulcerative colitis), and neurological disorders (anxiety, Parkinson's disease, et al.). This bibliometric study revealed that most studies have focused on miRNAs (e.g., miR-21, miR-155, and miR-146a), gut microbes (e.g., Escherichia coli, Bifidobacterium, and Fusobacterium nucleatum), and gut bacteria metabolites (e.g., butyric acid), which have the potential to improve the diagnosis, treatment, and prognosis of diseases. We found that therapeutic strategies targeting the miRNA-microbiome axis focus on miRNA drugs produced in vitro; however, some studies suggest that in vivo fermentation can greatly increase the stability and reduce the degradation of miRNA. Therefore, this method is worthy of further research.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Han Xi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Clinical Medicine School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Liu G, Yu Q, Tan B, Ke X, Zhang C, Li H, Zhang T, Lu Y. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022; 14:2104089. [PMID: 35876011 PMCID: PMC9327780 DOI: 10.1080/19490976.2022.2104089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that gut microbiota as a critical mediator of gut-brain axis plays an important role in human health. Altered gut microbial profiles have been implicated in increasing the vulnerability of psychiatric disorders, such as autism, depression, and schizophrenia. However, the cellular and molecular mechanisms underlying the association remain unknown. Here, we modified the gut microbiome with antibiotics in newborn mice, and found that gut microbial alteration induced behavioral impairment by decreasing adult neurogenesis and long-term potentiation of synaptic transmission, and altering the gene expression profile in hippocampus. Reconstitution with normal gut flora produced therapeutic effects against both adult neurogenesis and behavioral deficits in the dysbiosis mice. Furthermore, our results show that circulating metabolites changes mediate the effect of gut dysbiosis on hippocampal plasticity and behavior outcomes. Elevating the serum 4-methylphenol, a small aromatic metabolite produced by gut bacteria, was found to induce autism spectrum disorder (ASD)-like behavior impairment and hippocampal dysfunction. Together our finding demonstrates that early-life gut dysbiosis and its correlated metabolites change contribute to hippocampal dysfunction and behavior impairment, hence highlight the potential microbiome-mediated therapies for treating psychiatric disorders.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Chen Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,CONTACT Youming Lu Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan4030030, China
| |
Collapse
|
40
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 1200] [Impact Index Per Article: 400.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
41
|
Lyubashina OA, Sivachenko IB, Panteleev SS. Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2022; 42:389-417. [PMID: 33030712 PMCID: PMC11441296 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| |
Collapse
|
42
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
43
|
Kassan A, Ait-Aissa K, Kassan M. Gut Microbiota Regulates the Sympathetic Nerve Activity and Peripheral Serotonin Through Hypothalamic MicroRNA-204 in Order to Increase the Browning of White Adipose Tissue in Obesity. Cureus 2022; 14:e21913. [PMID: 35155042 PMCID: PMC8820388 DOI: 10.7759/cureus.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
The prevalence of obesity is increasing worldwide, and novel therapeutic strategies such as enhancement of thermogenic pathways in white adipose tissue (WAT) are gaining more attention. The gut/brain axis plays an essential role in promoting the browning of WAT. However, the mechanism by which this axis regulates WAT function is not fully understood. On the other hand, the role of microRNAs (miRNAs) in the control of WAT browning has already been established. Therefore, understanding the communication pathways linking the gut/brain axis and miRNAs might establish a promising intervention for obesity. Our published data showed that microRNA-204 (miR-204), a microRNA that plays an important role in the control of the central nervous system (CNS) and the pathogenesis of obesity, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that controls the browning of WAT by acting as a potential link between the gut microbiota and the brain. In this review, we summarized the current knowledge about communication pathways between the brain, gut, and miR-204 and examined the literature to discuss potential research directions that might lead to a better understanding of the mechanisms underlying the browning of WAT in obesity.
Collapse
Affiliation(s)
- Adam Kassan
- Pharmacy, West Coast University, Los Angeles, USA
| | | | - Modar Kassan
- Physiology, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
44
|
D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022; 10:diseases10010009. [PMID: 35225861 PMCID: PMC8883943 DOI: 10.3390/diseases10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
D-amino acids may play key roles for specific physiological functions in different organs including the brain. Importantly, D-amino acids have been detected in several neurological disorders such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease conditions. Relationships between D-amino acids and neurophysiology may involve the significant contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids are known as a physiologically active substance, constituting useful biomarkers of several brain disorders including schizophrenia. In this review, we wish to provide an outline of the roles of D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which may shed light on some of the superior diagnoses and/or treatments of schizophrenia.
Collapse
|
45
|
One Giant Leap from Mouse to Man: The Microbiota-Gut-Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022; 14:nu14030568. [PMID: 35276927 PMCID: PMC8840472 DOI: 10.3390/nu14030568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiota–gut–brain axis is a bidirectional communication pathway that enables the gut microbiota to communicate with the brain through direct and indirect signaling pathways to influence brain physiology, function, and even behavior. Research has shown that probiotics can improve several aspects of health by changing the environment within the gut, and several lines of evidence now indicate a beneficial effect of probiotics on mental and brain health. Such evidence has prompted the arrival of a new term to the world of biotics research: psychobiotics, defined as any exogenous influence whose effect on mental health is bacterially mediated. Several taxonomic changes in the gut microbiota have been reported in neurodevelopmental disorders, mood disorders such as anxiety and depression, and neurodegenerative disorders such as Alzheimer’s disease. While clinical evidence supporting the role of the gut microbiota in mental and brain health, and indeed demonstrating the beneficial effects of probiotics is rapidly accumulating, most of the evidence to date has emerged from preclinical studies employing different animal models. The purpose of this review is to focus on the role of probiotics and the microbiota–gut–brain axis in relation to mood disorders and to review the current translational challenges from preclinical to clinical research.
Collapse
|
46
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
47
|
Diviccaro S, Caputi V, Cioffi L, Giatti S, Lyte JM, Caruso D, O’Mahony SM, Melcangi RC. Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. Int J Mol Sci 2021; 22:ijms222212551. [PMID: 34830433 PMCID: PMC8622241 DOI: 10.3390/ijms222212551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography–tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17β-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Fayetteville, AR 72701, USA
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Department of Anatomy and Neuroscience, University College Cork, T12 ND89 Cork, Ireland
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
- Correspondence: ; Tel.: +39-02-50318238; Fax: +39-02-50318202
| |
Collapse
|
48
|
Zhou H, Yuan Y, Wang H, Xiang W, Li S, Zheng H, Wen Y, Ming Y, Chen L, Zhou J. Gut Microbiota: A Potential Target for Cancer Interventions. Cancer Manag Res 2021; 13:8281-8296. [PMID: 34764691 PMCID: PMC8572730 DOI: 10.2147/cmar.s328249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a crucial role in many physiological processes in the human body. Dysbiosis can disrupt the intestinal barrier and alter metabolism and immune responses, leading to the development of diseases. Over the past few decades, evidence has accumulated linking changes in the composition of the gut microbiota to dozens of seemingly unrelated conditions, including cancer. Overall, the gut microbiota mainly affects the occurrence and development of cancer by damaging host DNA, forming and maintaining a pro-inflammatory environment, and affecting host immune responses. In addition, the gut microbiota can also affect the efficacy and toxicity of chemotherapy, radiotherapy, and immunotherapy. Scientists attempt to improve the efficacy and decrease the toxicity of these treatment modalities by fine-tuning the gut microbiota. The aim of this review is to assist researchers and clinicians in developing new strategies for the detection and treatment of tumors by providing the latest information on the intestinal microbiome and cancer, as well as exploring potential application prospects and mechanisms of action.
Collapse
Affiliation(s)
- Hu Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Yuan Yuan
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China.,Department of Operation and Anaesthesia, Yibin First People's Hospital, Yibin, Sichuan, People's Republic of China
| | - Haorun Wang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Shenjie Li
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Haowen Zheng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Yuqi Wen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, People's Republic of China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan, People's Republic of China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, People's Republic of China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
50
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|