1
|
Zou L, Zhang Z, Chen J, Guo R, Tong X, Ju Y, Lu H, Yang H, Wang J, Zong Y, Xu X, Jin X, Xiao L, Jia H, Zhang T, Liu X. Unraveling the impact of host genetics and factors on the urinary microbiome in a young population. mBio 2024; 15:e0277324. [PMID: 39513726 PMCID: PMC11633168 DOI: 10.1128/mbio.02773-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
The significance of the urinary microbiome in maintaining health and contributing to disease development is increasingly recognized. However, a comprehensive understanding of this microbiome and its influencing factors remains elusive. Utilizing whole metagenomic and whole-genome sequencing, along with detailed metadata, we characterized the urinary microbiome and its influencing factors in a cohort of 1,579 Chinese individuals. Our findings unveil the distinctiveness of the urinary microbiome from other four body sites, delineating five unique urotypes dominated by Gardnerella vaginalis, Sphingobium fluviale, Lactobacillus iners, Variovorax sp. PDC80, and Acinetobacter junii, respectively. We identified 108 host factors significantly influencing the urinary microbiome, collectively explaining 12.92% of the variance in microbial composition. Notably, gender-related factors, including sex hormones, emerged as key determinants in defining urotype groups, microbial composition and pathways, with the urinary microbiome exhibiting strong predictive ability for gender (area under the curve [AUC] = 0.843). Furthermore, we discovered 43 genome-wide significant associations between host genetic loci and specific urinary bacteria, Acinetobacter in particular, linked to eight host loci (P < 5 × 10-8). These associations were also modulated by gender and sex hormone levels. In summary, our study provides novel insights into the impact of host genetics and other factors on the urinary microbiome, shedding light on its implications for host health and disease. IMPORTANCE The urinary microbiome, essential to human health, reveals its unique qualities in our study of 1,579 Chinese individuals. We identified distinctive microbial profiles, or "urotypes," and uncovered strong gender-related influences, particularly from sex hormones, on these microbial communities. Our research highlights significant genetic associations affecting specific urinary bacteria, indicating a deep interaction between our genetics and our microbiome. These insights not only enhance our understanding of the urinary microbiome's role in health and disease but also open new pathways for personalized medical strategies, making our findings crucial for future diagnostic and therapeutic innovations. This work underscores the intricate relationship between our body's biological processes and the microorganisms within, providing valuable knowledge for both scientific and medical communities.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmei Ju
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Xun Xu
- BGI Research, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Liang Xiao
- BGI Research, Shenzhen, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Huijue Jia
- Institute of Precision Medicine–Greater Bay Area (Guangzhou), Fudan University, Guangzhou, China
| | - Tao Zhang
- BGI Research, Wuhan, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, China
| | - Xiaomin Liu
- BGI Research, Wuhan, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, China
| |
Collapse
|
2
|
Schettini F, Gattazzo F, Nucera S, Rubio Garcia E, López-Aladid R, Morelli L, Fontana A, Vigneri P, Casals-Pascual C, Iebba V, Generali D. Navigating the complex relationship between human gut microbiota and breast cancer: Physiopathological, prognostic and therapeutic implications. Cancer Treat Rev 2024; 130:102816. [PMID: 39182440 DOI: 10.1016/j.ctrv.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The human body represents the habitat of trillions of symbiotic microorganisms, collectively known as human microbiota, approximately half of which residing in the gut. The development of next-generation sequencing techniques has boosted the profiling of human microbiota in recent years. A growing body of evidence seems to support a strict relationship between the disruption of the mutualistic relationship between the microbiota and the host (i.e., dysbiosis) and the development of several diseases, including breast malignancies. Breast cancer still represents the most frequent cause of cancer-related death in women. Its complex relationship with gut microbiota is the object of a growing body of evidence. In fact, the interaction with the host immune system and a direct impact of gut microbiota on estrogen, lipid and polyphenols metabolism, seem to potentially affect breast tumor development, progression and response to treatments. In this review, in an attempt to help oncologists navigating this rapidly-evolving research field, we provide an essential overview on the taxonomy, main analytical techniques and terminology most commonly adopted. We discuss what is currently known regarding the interaction between gut microbiota and breast cancer and potential efforts to harness this complex interplay for therapeutic purposes, and revise main ongoing studies. We also briefly provide an overview on breast cancer intratumoral microbiota and its potential role beyond gut microbiota.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.
| | - Federica Gattazzo
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy; Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sabrina Nucera
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elisa Rubio Garcia
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ruben López-Aladid
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Climent Casals-Pascual
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Valerio Iebba
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
3
|
Ju Y, Zhang Z, Liu M, Lin S, Sun Q, Song Z, Liang W, Tong X, Jie Z, Lu H, Cai K, Chen P, Jin X, Zhang W, Xu X, Yang H, Wang J, Hou Y, Xiao L, Jia H, Zhang T, Guo R. Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome. Genome Biol 2024; 25:257. [PMID: 39380016 PMCID: PMC11463039 DOI: 10.1186/s13059-024-03389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. RESULTS Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male's. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. CONCLUSIONS In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
Collapse
Affiliation(s)
- Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Mingliang Liu
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shutian Lin
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sun
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- Department of Statistical Sciences, University of Toronto, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
| | | | - Weiting Liang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI Research, Shenzhen, 518210, China
| | - Kaiye Cai
- BGI Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D, Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | - Yong Hou
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Huijue Jia
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511458, China.
| | - Tao Zhang
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| | - Ruijin Guo
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| |
Collapse
|
4
|
Chen N, Hao L, Zhang Z, Qin C, Jie Z, Pan H, Duan J, Huang X, Zhang Y, Gao H, Lu R, Sun T, Yang H, Shi J, Liang M, Guo J, Gao Q, Zhao X, Dou Z, Xiao L, Zhang S, Jin X, Xu X, Yang H, Wang J, Jia H, Zhang T, Kristiansen K, Chen C, Zhu L. Insights into the assembly of the neovaginal microbiota in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome patients. Nat Commun 2024; 15:7808. [PMID: 39242555 PMCID: PMC11379825 DOI: 10.1038/s41467-024-52102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Neovaginas are surgically constructed to correct uterovaginal agenesis in women with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome or as part of gender-affirming surgery for transfeminine individuals. Understanding the assembly of the neovaginal microbiota is crucial for guiding its management. To address this, we conducted a longitudinal study on MRKH patients following laparoscopic peritoneal vaginoplasty. Our findings reveal that the early microbial assemblage exhibited stochastic characteristics, accompanied with a notable bloom of Enterococcus faecalis and genital Mycoplasmas. While both the pre-surgery dimple microbiota and the fecal microbiota constituted the primary species pool, the neovaginal microbiota developed into a microbiota that resembled that of a normal vagina at 6-12 months post-surgery, albeit with a bacterial vaginosis (BV)-like structure. By 2-4 years post-surgery, the neovaginal microbiota had further evolved into a structure closely resembling with the homeostatic pre-surgery dimple microbiota. This concords with the development of the squamous epithelium in the neovagina and highlights the pivotal roles of progressive selective forces imposed by the evolving neovaginal environment and the colonization tropism of vaginal species. Notably, we observed that strains of Lactobacillus crispatus colonizing the neovagina primarily originated from the dimple. Since L. crispatus is generally associated with vaginal health, this finding suggests potential avenues for future research to promote its colonization.
Collapse
Affiliation(s)
- Na Chen
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Lilan Hao
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
| | - Zhe Zhang
- BGI-Research, Shenzhen, 518083, China
| | - Chenglu Qin
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Zhuye Jie
- BGI-Research, Shenzhen, 518083, China
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hongxin Pan
- Department of Gynecology, Southern University of Science and Technology Hospital, 6019 liuxian street, Shenzhen, 518000, China
| | - Jiali Duan
- Chinese Academy of Medical Sciences & Peking Union Medical College, 4+4 Medical Doctor Program, No.9 Dongdansantiao, 100730, Beijing, China
| | - Xincheng Huang
- BGI-Research, Shenzhen, 518083, China
- China National GeneBank, BGI-Research, Shenzhen, 518210, China
| | - Yunhong Zhang
- Social Affairs Bureau of Suzhou National New and Hi-tech Industrial Development Zone, Suzhou, 215163, China
| | - Hongqin Gao
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Ruike Lu
- Suzhou National New and Hi-tech Industrial Development Zone Center for Maternal and Child Health and Family Planning Service, Suzhou, 215163, China
| | - Tianshu Sun
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Hua Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Jinqiu Shi
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Maolian Liang
- Department of Obstetrics and Gynaecology, The 3rd Affiliated Hospital of Shenzhen University, Luohu hospital, Shenzhen, 518000, Guangdong, China
| | - Jianbin Guo
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Qianqian Gao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Xiaoyue Zhao
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Zhiyuan Dou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China
| | - Liang Xiao
- BGI-Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI-Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI-Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Huijue Jia
- BGI-Research, Shenzhen, 518083, China
- School of Life Sciences, Fudan University, Shanghai, 200433, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458, China
| | - Tao Zhang
- BGI Research, Wuhan, 430074, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, Guangdong, 518083, China.
| | - Karsten Kristiansen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Research, Qingdao, 266555, China.
| | - Chen Chen
- BGI-Research, Shenzhen, 518083, China.
- Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, 100005, Beijing, China.
| |
Collapse
|
5
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
6
|
Qin Y, Tong X, Mei WJ, Cheng Y, Zou Y, Han K, Yu J, Jie Z, Zhang T, Zhu S, Jin X, Wang J, Yang H, Xu X, Zhong H, Xiao L, Ding PR. Consistent signatures in the human gut microbiome of old- and young-onset colorectal cancer. Nat Commun 2024; 15:3396. [PMID: 38649355 PMCID: PMC11035630 DOI: 10.1038/s41467-024-47523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of young-onset colorectal cancer (yCRC) has been increasing in recent decades, but little is known about the gut microbiome of these patients. Most studies have focused on old-onset CRC (oCRC), and it remains unclear whether CRC signatures derived from old patients are valid in young patients. To address this, we assembled the largest yCRC gut metagenomes to date from two independent cohorts and found that the CRC microbiome had limited association with age across adulthood. Differential analysis revealed that well-known CRC-associated taxa, such as Clostridium symbiosum, Peptostreptococcus stomatis, Parvimonas micra and Hungatella hathewayi were significantly enriched (false discovery rate <0.05) in both old- and young-onset patients. Similar strain-level patterns of Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were observed for oCRC and yCRC. Almost all oCRC-associated metagenomic pathways had directionally concordant changes in young patients. Importantly, CRC-associated virulence factors (fadA, bft) were enriched in both oCRC and yCRC compared to their respective controls. Moreover, the microbiome-based classification model had similar predication accuracy for CRC status in old- and young-onset patients, underscoring the consistency of microbial signatures across different age groups.
Collapse
Affiliation(s)
- Youwen Qin
- BGI Research, Shenzhen, 518083, China.
- BGI Genomics, Shenzhen, 518083, China.
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | - Wei-Jian Mei
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yanshuang Cheng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Kai Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Jiehai Yu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
| | - Tao Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, Shenzhen, China
- BGI Research, Wuhan, 430074, China
| | - Shida Zhu
- BGI Genomics, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanzi Zhong
- BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Huang S, Gao S, Shao Y, Li P, Lu J, Xu K, Zhou Z, Li Y, Du J. Gut microbial metabolite trimethylamine N-oxide induces aortic dissection. J Mol Cell Cardiol 2024; 189:25-37. [PMID: 38395296 DOI: 10.1016/j.yjmcc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Aortic dissection (AD) is the most catastrophic vascular disease with a high mortality rate. Trimethylamine N-oxide (TMAO), a gut microbial metabolite, has been implicated in the pathogenesis of cardiovascular diseases. However, the role of TMAO in AD and the underlying mechanisms remain unclear. This study aimed to explore the effects of TMAO on AD. Plasma and fecal samples from patients with AD and healthy individuals were collected to analyze TMAO levels and gut microbial species, respectively. The plasma levels of TMAO were significantly higher in 253 AD patients compared with those in 98 healthy subjects (3.47, interquartile range (IQR): 2.33 to 5.18 μM vs. 1.85, IQR: 1.40 to 3.35 μM; p < 0.001). High plasma TMAO levels were positively associated with AD severity. An increase in the relative abundance of TMA-producing genera in patients with AD was revealed using 16S rRNA sequencing. In the angiotensin II or β-aminopropionitrile-induced rodent model of AD, mice fed a TMAO-supplemented diet were more likely to develop AD compared to mice fed a normal diet. Conversely, TMAO depletion mitigated AD formation in the BAPN model. RNA sequencing of aortic endothelial cells isolated from mice administered TMAO revealed significant upregulation of genes involved in inflammatory pathways. The in vitro experiments verified that TMAO promotes endothelial dysfunction and activates nuclear factor (NF)-κB signaling. The in vivo BAPN-induced AD model confirmed that TMAO increased aortic inflammation. Our study demonstrates that the gut microbial metabolite TMAO aggravates the development of AD at least in part by inducing endothelial dysfunction and inflammation. This study provides new insights into the etiology of AD and ideas for its management.
Collapse
Affiliation(s)
- Shan Huang
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shijuan Gao
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yihui Shao
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jie Lu
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ke Xu
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yulin Li
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Jie Du
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
8
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
9
|
Maghini DG, Dvorak M, Dahlen A, Roos M, Doyle B, Kuersten S, Bhatt AS. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat Biotechnol 2024; 42:328-338. [PMID: 37106038 DOI: 10.1038/s41587-023-01754-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
To gain insight into the accuracy of microbial measurements, it is important to evaluate sources of bias related to sample condition, preservative method and bioinformatic analyses. There is increasing evidence that measurement of the total count and concentration of microbes in the gut, or 'absolute abundance', provides a richer source of information than relative abundance and can correct some conclusions drawn from relative abundance data. However, little is known about how preservative choice can affect these measurements. In this study, we investigated how two common preservatives and short-term storage conditions impact relative and absolute microbial measurements. OMNIgene GUT OMR-200 yields lower metagenomic taxonomic variation between different storage temperatures, whereas Zymo DNA/RNA Shield yields lower metatranscriptomic taxonomic variation. Absolute abundance quantification reveals two different causes of variable Bacteroidetes:Firmicutes ratios across preservatives. Based on these results, we recommend OMNIgene GUT OMR-200 preservative for field studies and Zymo DNA/RNA Shield for metatranscriptomics studies, and we strongly encourage absolute quantification for microbial measurements.
Collapse
Affiliation(s)
- Dylan G Maghini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alex Dahlen
- Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | | | - Boryana Doyle
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Rodger G, Chau K, Aranega-Bou P, Roohi A, Moore G, Hopkins KL, Hopkins S, Walker AS, Stoesser N. A workflow for the detection of antibiotic residues, measurement of water chemistry and preservation of hospital sink drain samples for metagenomic sequencing. J Hosp Infect 2024; 144:128-136. [PMID: 38145816 PMCID: PMC7617466 DOI: 10.1016/j.jhin.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Hospital sinks are environmental reservoirs that harbour healthcare-associated (HCA) pathogens. Selective pressures in sink environments, such as antibiotic residues, nutrient waste and hardness ions, may promote antibiotic resistance gene (ARG) exchange between bacteria. However, cheap and accurate sampling methods to characterize these factors are lacking. AIMS To validate a workflow to detect antibiotic residues and evaluate water chemistry using dipsticks. Secondarily, to validate boric acid to preserve the taxonomic and ARG ('resistome') composition of sink trap samples for metagenomic sequencing. METHODS Antibiotic residue dipsticks were validated against serial dilutions of ampicillin, doxycycline, sulfamethoxazole and ciprofloxacin, and water chemistry dipsticks against serial dilutions of chemical calibration standards. Sink trap aspirates were used for a 'real-world' pilot evaluation of dipsticks. To assess boric acid as a preservative of microbial diversity, the impact of incubation with and without boric acid at ∼22 °C on metagenomic sequencing outputs was evaluated at Day 2 and Day 5 compared with baseline (Day 0). FINDINGS The limits of detection for each antibiotic were: 3 μg/L (ampicillin), 10 μg/L (doxycycline), 20 μg/L (sulfamethoxazole) and 8 μg/L (ciprofloxacin). The best performing water chemistry dipstick correctly characterized 34/40 (85%) standards in a concentration-dependent manner. One trap sample tested positive for the presence of tetracyclines and sulphonamides. Taxonomic and resistome composition were largely maintained after storage with boric acid at ∼22 °C for up to five days. CONCLUSIONS Dipsticks can be used to detect antibiotic residues and characterize water chemistry in sink trap samples. Boric acid was an effective preservative of trap sample composition, representing a low-cost alternative to cold-chain transport.
Collapse
Affiliation(s)
- G Rodger
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection, University of Oxford, Oxford, UK
| | - K Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection, University of Oxford, Oxford, UK
| | - P Aranega-Bou
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, UK
| | - A Roohi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection, University of Oxford, Oxford, UK
| | - G Moore
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, UK
| | | | - S Hopkins
- UK Health Security Agency, Colindale, UK
| | - A S Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - N Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
11
|
He Y, Qi A, Gu Y, Zhang C, Wang Y, Yang W, Bi L, Gong Y, Jiao L, Xu L. Clinical Efficacy and Gut Microbiota Regulating-Related Effect of Si-Jun-Zi Decoction in Postoperative Non-Small Cell Lung Cancer Patients: A Prospective Observational Study. Integr Cancer Ther 2024; 23:15347354241237973. [PMID: 38504436 PMCID: PMC10953039 DOI: 10.1177/15347354241237973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.
Collapse
Affiliation(s)
- Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Yu S, Wang H, Cui L, Wang J, Zhang Z, Wu Z, Lin X, He N, Zou Y, Li S. Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice. Food Funct 2023; 14:9892-9906. [PMID: 37853813 DOI: 10.1039/d3fo02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.
Collapse
Affiliation(s)
- Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
13
|
Zhai X, Castro-Mejía JL, Gobbi A, Aslampaloglou A, Kot W, Nielsen DS, Deng L. The impact of storage buffer and storage conditions on fecal samples for bacteriophage infectivity and metavirome analyses. MICROBIOME 2023; 11:193. [PMID: 37635262 PMCID: PMC10463696 DOI: 10.1186/s40168-023-01632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND There is an increasing interest in investigating the human gut virome for its influence on the gut bacterial community and its putative influence on the trajectory towards health or disease. Most gut virome studies are based on sequencing of stored fecal samples. However, relatively little is known about how conventional storage buffers and storage conditions affect the infectivity of bacteriophages and influence the downstream metavirome sequencing. RESULTS We demonstrate that the infectivity and genome recovery rate of different spiked bacteriophages (T4, c2 and Phi X174) are variable and highly dependent on storage buffers. Regardless of the storage temperature and timespan, all tested phages immediately lost 100% (DNA/RNA Shield) or more than 90% (StayRNA and RNAlater) of their infectivity. Generally, in SM buffer at 4 °C phage infectivity was preserved for up to 30 days and phage DNA integrity was maintained for up to 100 days. While in CANVAX, the most effective buffer, all spiked phage genomes were preserved for at least 100 days. Prolonged storage time (500 days) at - 80 °C impacted viral diversity differently in the different buffers. Samples stored in CANVAX or DNA/RNA Shield buffer had the least shifts in metavirome composition, after prolonged storage, but they yielded more contigs classified as "uncharacterised". Moreover, in contrast to the SM buffer, these storage buffers yielded a higher fraction of bacterial DNA in metavirome-sequencing libraries. We demonstrated that the latter was due to inactivation of the DNases employed to remove extra-cellular DNA during virome extraction. The latter could be partly avoided by employing additional washing steps prior to virome extraction. CONCLUSION Fecal sample storage buffers and storage conditions (time and temperature) strongly influence bacteriophage infectivity and viral composition as determined by plaque assay and metavirome sequencing. The choice of buffer had a larger effect than storage temperature and storage time on the quality of the viral sequences and analyses. Based on these results, we recommend storage of fecal virome samples at in SM buffer at 4 °C for the isolation of viruses and at - 80 °C for metagenomic applications if practically feasible (i.e., access to cold storage). For fecal samples stored in other buffers, samples should be cleared of these buffers before viral extraction and sequencing. Video Abstract.
Collapse
Affiliation(s)
- Xichuan Zhai
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Alex Gobbi
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Antonios Aslampaloglou
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Ling Deng
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Qi F, Fan S, Fang C, Ge L, Lyu J, Huang Z, Zhao S, Zou Y, Huang L, Liu X, Liang Y, Zhang Y, Zhong Y, Zhang H, Xiao L, Zhang X. Orally administrated Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 can restore the vaginal health of patients recovering from bacterial vaginosis. Front Immunol 2023; 14:1125239. [PMID: 37575226 PMCID: PMC10415204 DOI: 10.3389/fimmu.2023.1125239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.
Collapse
Affiliation(s)
- Fengyuan Qi
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Lan Ge
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhuoqi Huang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaowei Zhao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongke Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiyi Zhong
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Jie Z, Zhu Q, Zou Y, Wu Q, Qin M, He D, Lin X, Tong X, Zhang J, Jie Z, Luo W, Xiao X, Chen S, Wu Y, Guo G, Zheng S, Li Y, Lai W, Yang H, Wang J, Xiao L, Chen J, Zhang T, Kristiansen K, Jia H, Zhong S. A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model. iScience 2023; 26:106960. [PMID: 37378328 PMCID: PMC10291474 DOI: 10.1016/j.isci.2023.106960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
By a survey of metagenome-wide association studies (MWAS), we found a robust depletion of Bacteroides cellulosilyticus, Faecalibacterium prausnitzii, and Roseburia intestinalis in individuals with atherosclerotic cardiovascular disease (ACVD). From an established collection of bacteria isolated from healthy Chinese individuals, we selected B. cellulosilyticus, R. intestinalis, and Faecalibacterium longum, a bacterium related to F. prausnitzii, and tested the effects of these bacteria in an Apoe/- atherosclerosis mouse model. We show that administration of these three bacterial species to Apoe-/- mice robustly improves cardiac function, reduces plasma lipid levels, and attenuates the formation of atherosclerotic plaques. Comprehensive analysis of gut microbiota, plasma metabolome, and liver transcriptome revealed that the beneficial effects are associated with a modulation of the gut microbiota linked to a 7α-dehydroxylation-lithocholic acid (LCA)-farnesoid X receptor (FXR) pathway. Our study provides insights into transcriptional and metabolic impact whereby specific bacteria may hold promises for prevention/treatment of ACVD.
Collapse
Affiliation(s)
- Zhuye Jie
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Qian Zhu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Qili Wu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Min Qin
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | | | | | | | | | - Zhu Jie
- BGI-Shenzhen, Shenzhen, China
| | - Wenwei Luo
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Shiyu Chen
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yonglin Wu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Gongjie Guo
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Shufen Zheng
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
16
|
Hu X, Xia K, Dai M, Han X, Yuan P, Liu J, Liu S, Jia F, Chen J, Jiang F, Yu J, Yang H, Wang J, Xu X, Jin X, Kristiansen K, Xiao L, Chen W, Han M, Duan S. Intermittent fasting modulates the intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes 2023; 9:19. [PMID: 37029135 PMCID: PMC10081985 DOI: 10.1038/s41522-023-00386-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average loss of 3.67 kg body weight accompanied with improved clinical parameters was observed irrespective of initial anthropometric and gut microbiota status. Fecal samples were collected before and after the intervention and subjected to shotgun metagenomic sequencing. De novo assembly yielded 2934 metagenome-assembled genomes (MAGs). Profiling revealed significant enrichment of Parabacteroides distasonis and Bacteroides thetaiotaomicron after the intervention, with inverse correlations between their relative abundances and parameters related to obesity and atherosclerotic cardiovascular diseases (ASCVD). MAGs enriched after the intervention showed high richness and diversity of carbohydrate-active enzymes, with an increased relative abundances of genes related to succinate production and glutamate fermentation.
Collapse
Affiliation(s)
- Xiangwei Hu
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Xia
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Minhui Dai
- Department of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaofeng Han
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Shiwei Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biological Technology Co., Ltd, Ningbo, 315012, China
| | - Jiayu Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Fangfang Jiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jieyao Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Chen
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Mo Han
- BGI-Shenzhen, Shenzhen, 518083, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|
17
|
Water Extract of Chrysanthemum indicum L. Flower Inhibits Capsaicin-Induced Systemic Low-Grade Inflammation by Modulating Gut Microbiota and Short-Chain Fatty Acids. Nutrients 2023; 15:nu15051069. [PMID: 36904069 PMCID: PMC10005712 DOI: 10.3390/nu15051069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Systemic low-grade inflammation induced by unhealthy diet has become a common health concern as it contributes to immune imbalance and induces chronic diseases, yet effective preventions and interventions are currently unavailable. The Chrysanthemum indicum L. flower (CIF) is a common herb with a strong anti-inflammatory effect in drug-induced models, based on the theory of "medicine and food homology". However, its effects and mechanisms in reducing food-induced systemic low-grade inflammation (FSLI) remain unclear. This study showed that CIF can reduce FSLI and represents a new strategy to intervene in chronic inflammatory diseases. In this study, we administered capsaicin to mice by gavage to establish a FSLI model. Then, three doses of CIF (7, 14, 28 g·kg-1·day-1) were tested as the intervention. Capsaicin was found to increase serum TNF-α levels, demonstrating a successful model induction. After a high dose of CIF intervention, serum levels of TNF-α and LPS were reduced by 62.8% and 77.44%. In addition, CIF increased the α diversity and number of OTUs in the gut microbiota, restored the abundance of Lactobacillus and increased the total content of SCFAs in the feces. In summary, CIF inhibits FSLI by modulating the gut microbiota, increasing SCFAs levels and inhibiting excessive LPS translocation into the blood. Our findings provided a theoretical support for using CIF in FSLI intervention.
Collapse
|
18
|
Yang Z, Zhang Y, Stubbe-Espejel A, Zhao Y, Liu M, Li J, Zhao Y, Tong G, Liu N, Qi L, Hutchins A, Lin S, Li Y. Vaginal microbiota and personal risk factors associated with HPV status conversion—A new approach to reduce the risk of cervical cancer? PLoS One 2022; 17:e0270521. [PMID: 35944043 PMCID: PMC9362946 DOI: 10.1371/journal.pone.0270521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vaginal microbiota (VMB) is associated with changes in Human papilloma virus (HPV) status, which consequently influences the risk of cervical cancer. This association was often confounded by personal risk factors. This pilot research aimed to explore the relationship between vaginal microbiota, personal risk factors and their interactions with HPV status conversion to identify the vaginal microbiota that was associated with HPV clearance under heterogeneous personal risk factors. A total of 38 women participated by self-collecting a cervicovaginal mucus (CVM) sample that was sent for metagenomics sequencing. Most of the participants also filled in personal risk factors questionnaire through an eHealth platform and authorized the use of their previous HPV genotyping results stored in this eHealth platform. Based on the two HPV results, the participants were grouped into three cohorts, namely HPV negative, HPV persistent infection, and HPV status conversion. The relative abundance of VMB and personal factors were compared among these three cohorts. A correlation investigation was performed between VMB and the significant personal factors to characterize a robustness of the panel for HPV status change using R programming. At baseline, 12 participants were HPV-negative, and 22 were HPV-positive. Within one year, 18 women remained HPV-positive, 12 were HPV-negative and 4 participants showed HPV clearance. The factors in the eHealth questionnaire were systematically evaluated which identified several factors significantly associated with persistent HPV infection, including age, salary, history of reproductive tract infection, and the total number of sexual partners. Concurrent vaginal microbiome samples suggest that a candidate biomarker panel consisting of Lactobacillus gasseri, Streptococcus agalactiae, and Timona prevotella bacteria, which may be associated with HPV clearance. This pilot study indicates a stable HPV status-related vaginal microbe environment. To establish a robust biomarker panel for clinical use, larger cohorts will be recruited into follow-up studies.
Collapse
Affiliation(s)
| | - Ye Zhang
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | | | - Yumei Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Mengping Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Yanping Zhao
- BGI-Shenzhen, Shenzhen Key Laboratory of Unknown Pathogen, Shenzhen, China
| | - Guoqing Tong
- Shouguang Hospital of Traditional Chinese Medicine, Reproduction Medicine Center Shanghai, China
| | - Na Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Le Qi
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Andrew Hutchins
- Department of Biology, Southern University of Science and Technology, Xueyuan Lu, Shenzhen, China
| | - Songqing Lin
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Yantao Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
19
|
Su W, Du Y, Lian F, Wu H, Zhang X, Yang W, Duan Y, Pan Y, Liu W, Wu A, Zhao B, Wu C, Wu S. Standards for Collection, Preservation, and Transportation of Fecal Samples in TCM Clinical Trials. Front Cell Infect Microbiol 2022; 12:783682. [PMID: 35521221 PMCID: PMC9065286 DOI: 10.3389/fcimb.2022.783682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Unlike chemical drugs with a single or a few kinds of active compounds, traditional Chinese medicines (TCMs)uses herbal formulas composed of numerous kinds of chemical constituents. Therefore, TCM clinical trials require unique and stricter standards for collecting, preserving, and transporting fecal samples than those used for chemical drugs. Unfortunately, there are no special standards for processing fecal samples in TCM clinical trials. Methods We invited interdisciplinary experts within TCM clinical trials and gut microbiome research to help formulate this standard. After more than a year's in-depth discussion and amendments, we achieved a standard via expert interviews, literature research, questionnaire surveys, and public opinion solicitation. This standard has been reviewed and approved by the Standards Office of China of the Association of Chinese medicine. Results We established a sample information processing method prior to TCM clinical sample collection, which is adapted to the unique features of TCM. The method formulates detailed processing requirements for TCM information in addition to the factors that may disturb the gut microbiome. We also constructed a set of methods for collecting, preserving, and transporting fecal samples that meet the characteristics of TCM. These methods formulate detailed operating specifications on the collection approaches, storage conditions, transportation requirements, and management of fecal samples. Conclusions This standard guides the information processing prior to sample collection and the standard operating procedures for the collection, preservation, and transportation of fecal samples in TCM clinical trials, which also can be used as a reference by clinicians and researchers in modern medicines.
Collapse
Affiliation(s)
- Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yawei Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenli Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanming Pan
- The 7th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Weijng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Zhao
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Furuhashi H, Takayasu L, Isshi K, Hara Y, Ono S, Kato M, Sumiyama K, Suda W. Effect of storage temperature and flash-freezing on salivary microbiota profiles based on 16S rRNA-targeted sequencing. Eur J Oral Sci 2022; 130:e12852. [PMID: 35049092 DOI: 10.1111/eos.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
The sample storage environment affects gut microbial profiles as assessed using 16S rRNA sequencing. However, the influence of storage condition on human salivary microbial profiles has not been well characterized. Here, we performed an observational study to assess the robustness of microbiota profiles in three different storage environments (-80°C after flash-freezing, -80°C, and -15°C; all for 14 days) compared to immediate DNA extraction using the MiSeq Illumina platform. Notably, the 16S rRNA V1-V2 region amplicon sequencing revealed no difference in microbiota profiles between the immediate extraction and each of three storage conditions. An almost perfect correlation was shown between the immediate extraction and the -15°C storage group for relative abundance at the genus and operational taxonomic unit levels. The intraindividual UniFrac distances among storage methods were significantly shorter than those of interindividual distances. None of the amount of extracted DNA, the α-diversity indices, or the relative abundance at the phylum/genus/operational taxonomic unit level differed among storage methods. These findings indicate that a storage temperature of -15°C without flash-freezing may be optimal in terms of cost advantage and simplicity in 16S rRNA sequencing-based salivary microbial research.
Collapse
Affiliation(s)
- Hiroto Furuhashi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Lena Takayasu
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kimio Isshi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Hara
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Shingo Ono
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Kato
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuki Sumiyama
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
21
|
Zhu J, Tian L, Chen P, Han M, Song L, Tong X, Sun X, Yang F, Lin Z, Liu X, Liu C, Wang X, Lin Y, Cai K, Hou Y, Xu X, Yang H, Wang J, Kristiansen K, Xiao L, Zhang T, Jia H, Jie Z. Over 50,000 Metagenomically Assembled Draft Genomes for the Human Oral Microbiome Reveal New Taxa. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:246-259. [PMID: 34492339 PMCID: PMC9684161 DOI: 10.1016/j.gpb.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 01/05/2023]
Abstract
The oral cavity of each person is home to hundreds of bacterial species. While taxa for oral diseases have been studied using culture-based characterization as well as amplicon sequencing, metagenomic and genomic information remains scarce compared to the fecal microbiome. Here, using metagenomic shotgun data for 3346 oral metagenomic samples together with 808 published samples, we obtain 56,213 metagenome-assembled genomes (MAGs), and more than 64% of the 3589 species-level genome bins (SGBs) contain no publicly available genomes. The resulting genome collection is representative of samples around the world and contains many genomes from candidate phyla radiation (CPR) that lack monoculture. Also, it enables the discovery of new taxa such as a genus Candidatus Bgiplasma within the family Acholeplasmataceae. Large-scale metagenomic data from massive samples also allow the assembly of strains from important oral taxa such as Porphyromonas and Neisseria. The oral microbes encode genes that could potentially metabolize drugs. Apart from these findings, a strongly male-enriched Campylobacter species was identified. Oral samples would be more user-friendly collected than fecal samples and have the potential for disease diagnosis. Thus, these data lay down a genomic framework for future inquiries of the human oral microbiome.
Collapse
Affiliation(s)
- Jie Zhu
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Liu Tian
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Peishan Chen
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China
| | - Mo Han
- BGI-Shenzhen, Shenzhen 518083, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Liju Song
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Tong
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Xing Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Kaiye Cai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China,BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen 518083, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark,Corresponding authors.
| |
Collapse
|
22
|
Jie Z, Chen C, Hao L, Li F, Song L, Zhang X, Zhu J, Tian L, Tong X, Cai K, Zhang Z, Ju Y, Yu X, Li Y, Zhou H, Lu H, Qiu X, Li Q, Liao Y, Zhou D, Lian H, Zuo Y, Chen X, Rao W, Ren Y, Wang Y, Zi J, Wang R, Liu N, Wu J, Zhang W, Liu X, Zong Y, Liu W, Xiao L, Hou Y, Xu X, Yang H, Wang J, Kristiansen K, Jia H. Life History Recorded in the Vagino-cervical Microbiome Along with Multi-omes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:304-321. [PMID: 34118463 PMCID: PMC9684086 DOI: 10.1016/j.gpb.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 01/05/2023]
Abstract
The vagina contains at least a billion microbial cells, dominated by lactobacilli. Here we perform metagenomic shotgun sequencing on cervical and fecal samples from a cohort of 516 Chinese women of reproductive age, as well as cervical, fecal, and salivary samples from a second cohort of 632 women. Factors such as pregnancyhistory, delivery history, cesarean section, and breastfeeding were all more important than menstrual cycle in shaping the microbiome, and such information would be necessary before trying to interpret differences between vagino-cervical microbiome data. Greater proportion of Bifidobacterium breve was seen with older age at sexual debut. The relative abundance of lactobacilli especially Lactobacillus crispatus was negatively associated with pregnancy history. Potential markers for lack of menstrual regularity, heavy flow, dysmenorrhea, and contraceptives were also identified. Lactobacilli were rare during breastfeeding or post-menopause. Other features such as mood fluctuations and facial speckles could potentially be predicted from the vagino-cervical microbiome. Gut and salivary microbiomes, plasma vitamins, metals, amino acids, and hormones showed associations with the vagino-cervical microbiome. Our results offer an unprecedented glimpse into the microbiota of the female reproductive tract and call for international collaborations to better understand its long-term health impact other than in the settings of infection or pre-term birth.
Collapse
Affiliation(s)
- Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China,Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Chen Chen
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China,Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark,Corresponding authors.
| | - Lilan Hao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fei Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Liju Song
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Jie Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Liu Tian
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Tong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Kaiye Cai
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhe Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yanmei Ju
- BGI-Shenzhen, Shenzhen 518083, China,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xinlei Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongcheng Zhou
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Qiang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Heng Lian
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Zuo
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuan Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Na Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Wei Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Zong
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Liang Xiao
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China,BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China,Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark,BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen 518083, China,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| |
Collapse
|
23
|
Liu H, Li X, Zhu Y, Huang Y, Zhang Q, Lin S, Fang C, Li L, Lv Y, Mei W, Peng X, Yin J, Liu L. Effect of Plant-Derived n-3 Polyunsaturated Fatty Acids on Blood Lipids and Gut Microbiota: A Double-Blind Randomized Controlled Trial. Front Nutr 2022; 9:830960. [PMID: 35223959 PMCID: PMC8873928 DOI: 10.3389/fnut.2022.830960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Background Several cardioprotective mechanisms attributed to n-3 polyunsaturated fatty acids (PUFAs) have been widely documented. Significant interest has recently focused on the role of human gut microbiota in metabolic disorders. However, the role of plant-derived n-3 PUFAs on blood lipid profiles is controversial and the effect on gut microbiota is still unclear. Objectives We aimed to perform a double-blind randomized controlled trial to test the effect of plant-derived n-3 PUFAs on the blood lipids and gut microbiota of patients with marginal hyperlipidemia. Methods According to the inclusion and exclusion criteria, 75 participants with marginal hyperlipidemia were randomly assigned to the intervention group (supplied with n-3 PUFA-enriched plant oil) or control group (supplied with corn oil), respectively, for a 3-month treatment. Participants and assessors were blinded to the allocation. The primary outcomes of the trial were the changes in serum lipid levels. Secondary outcomes were changes in gut microbiota and metabolites. For the primary outcomes, we conducted both an intent-to-treat (ITT) analysis and a per protocol (PP) analysis. For the secondary outcomes, we only conducted the PP analysis among the participants who provided fecal sample. Results Fifty-one participants completed the trial. Relative to the control group, the n-3 PUFA supplementation resulted in significant reduction in total cholesterol (TC) levels (−0.43 mmol/L, 95% CI−0.84 to−0.01 mmol/L, P < 0.05). The n-3 PUFA supplementation was also associated with significantly increased relative abundance of Bacteroidetes in phylum level (P < 0.01; false discovery rate (FDR) corrected p = 0.11), and decreased the ratio between Firmicutes and Bacteroidetes (P < 0.05; FDR corrected p = 0.16). At genus level, the intervention of plant derived n-3 PUFAs resulted in a significant decrease in relative abundance of Phascolarctobacterium (P < 0.01; FDR corrected p = 0.18) and Veillonella (P < 0.01; FDR corrected p = 0.18) after the intervention. Conclusions Our results demonstrated that plant-derived n-3 PUFAs beneficially affected the serum levels of TC and decreased the ratio between Firmicutes and Bacteroidetes during the 12-week intervention period, which might confer advantageous consequences for lipid metabolism and intestinal health.
Collapse
Affiliation(s)
- Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiawei Yin
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liegang Liu
| |
Collapse
|
24
|
Acosta H, Sadahira T, Sekito T, Maruyama Y, Iwata T, Araki M, Ogawa K, Tsuboi I, Wada K. Post-prostate biopsy acute bacterial prostatitis and screening cultures using selective media: An overview. Int J Urol 2022; 29:486-493. [PMID: 35144308 DOI: 10.1111/iju.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
The development of several culture media and the availability to isolate and treat pathogens prior to a surgical procedure give us the ability to minimize treatment-related complications, and ultimately results in better outcomes for patients and avoidance of unwanted post-procedure inpatient admissions. In the last decade, an increasing incidence of multidrug-resistant Escherichia coli, especially extended-spectrum beta-lactamase-producing E. coli and fluoroquinolone-resistant pathogens, has been reported. These resistant species frequently colonize the rectal flora and gain access to the systemic circulation via the rectal plexus following a prostate biopsy. The bacteria can eventually lead to life-threatening complications, which is especially important in high-risk patients with multiple co-morbidities. Previously published studies have focused on the isolation of these pathogens with selective media before an invasive procedure and the potential benefits of incorporating the use of selective media as a mandatory pre-operative step. This preventive measure will allow us to offer a tailored prophylactic treatment that benefits patients and reduces the economic burden for the hospital.
Collapse
Affiliation(s)
- Herik Acosta
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takanori Sekito
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Yuki Maruyama
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takehiro Iwata
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kohei Ogawa
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ichiro Tsuboi
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Koichiro Wada
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
25
|
Abstract
Integrative analysis of high-quality metagenomics and metabolomics data from fecal samples provides novel clues for the mechanism underpinning gut microbe-human interactions. However, data regarding the influence of fecal collection methods on both metagenomics and metabolomics are sparse. Six fecal collection methods (the gold standard [GS] [i.e., immediate freezing at −80°C with no solution], 95% ethanol, RNAlater, OMNIgene Gut, fecal occult blood test [FOBT] cards, and Microlution) were used to collect 88 fecal samples from eight healthy volunteers for whole-genome shotgun sequencing (WGSS) and untargeted metabolomic profiling. Metrics assessed included the abundances of predominant phyla and α- and β-diversity at the species, gene, and pathway levels. Intraclass correlation coefficients (ICCs) were calculated for microbes and metabolites to estimate (i) stability (day 4 versus day 0 within each method), (ii) concordance (day 0 for each method versus the GS), and (iii) reliability (day 4 for each method versus the GS). For the top 4 phyla and microbial diversity metrics at the species, gene, and pathway levels, generally high stability and reliability were observed for most methods except for 95% ethanol; similar concordances were seen for different methods. For metabolomics data, 95% ethanol showed the highest stability, concordance, and reliability (median ICCs = 0.71, 0.71, and 0.65, respectively). Taken together, OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles. We recommend using separate collecting methods for gut metagenomic sequencing and fecal metabolomic profiling in large population studies. IMPORTANCE The choice of fecal collection method is essential for studying gut microbe-human interactions in large-scale population-based research. In this study, we examined the effects of fecal collection methods and storage time at ambient temperature on variations in the gut microbiome community composition; microbial diversity metrics at the species, gene, and pathway levels; antibiotic resistance genes; and metabolome profiling. Our findings suggest using different fecal sample collection methods for different data generation purposes. OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles.
Collapse
|
26
|
Common SM, Yun Y, Silva-Fletcher A, Thitaram C, Janyamethakul T, Khammesri S, Molenaar FM. Developing a non-invasive method of detecting elephant endotheliotropic herpesvirus infections using faecal samples. Vet Rec 2021; 190:e833. [PMID: 34472109 DOI: 10.1002/vetr.833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Elephant endotheliotropic herpesvirus (EEHV)-associated haemorrhagic disease (EEHV-HD) is a leading cause of death in Asian elephant calves across the world. Cases of EEHV-HD have been detected in free-living calves through post-mortem examination (PME) indicating the presence of the virus in the wild. In the absence of a non-invasive sampling method, little research into free-living populations has been possible. This study aimed to provide evidence that faeces can be used as a non-invasive sampling method for the detection of EEHV excretion using quantitative polymerase chain reaction. METHODS Serial saliva swabs and faecal samples were taken from five captive Asian elephants in Thailand over 12 weeks. To ensure the presence of detectable elephant DNA within the sample, qPCR was run for amplification of the Asian elephant tumour necrosis factor (TNF-α) gene, EEHV1 and EEHV4. RESULTS Of 28 sample pairs, seven saliva samples were positive for EEHV, of which two had paired positive faecal samples. CONCLUSIONS This study presents the first evidence that EEHV is excreted in faeces at detectable levels. This method may in future be used for improved understanding of the epidemiology of EEHV in free-living elephant populations, as well as detection of EEHV excretion in captive herds.
Collapse
Affiliation(s)
- Sophie M Common
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW8 7LS, UK.,The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Yaoprapa Yun
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | | | - Chatchote Thitaram
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | | | - Siripat Khammesri
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | - Fieke M Molenaar
- Whipsnade Zoo, Zoological Society of London, Dunstable, Bedfordshire, UK
| |
Collapse
|
27
|
Dairy consumption and physical fitness tests associated with fecal microbiome in a Chinese cohort. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Jie Z, Liang S, Ding Q, Li F, Sun X, Lin Y, Chen P, Cai K, Zhou H, Lu H, Wang X, Zhang T, Xiao L, Yang H, Wang J, Hou Y, Kristiansen K, Jia H, Xu X. Disease trends in a young Chinese cohort according to fecal metagenome and plasma metabolites. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Chen C, Hao L, Zhang Z, Tian L, Zhang X, Zhu J, Jie Z, Tong X, Xiao L, Zhang T, Jin X, Xu X, Yang H, Wang J, Kristiansen K, Jia H. Cervicovaginal microbiome dynamics after taking oral probiotics. J Genet Genomics 2021; 48:716-726. [PMID: 34391676 DOI: 10.1016/j.jgg.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
The vaginal microbiota is less complex than the gut microbiota, and the colonization of Lactobacillus in the female vagina is considered to be critical for reproductive health. Oral probiotics have been suggested as promising means to modulate vaginal homeostasis in the general population. In this study, 60 Chinese women were followed for over a year before, during, and after treatment with the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillusreuteri RC-14. Shotgun metagenomic data of 1334 samples from multiple body sites did not support a colonization route of the probiotics from the oral cavity to the intestinal tract and then to the vagina. Our analyses enable the classification of the cervicovaginal microbiome into a stable state and a state of dysbiosis. The microbiome in the stable group steadily maintained a relatively high abundance of Lactobacilli over one year, which was not affected by probiotic intake, whereas in the dysbiosis group, the microbiota was more diverse and changed markedly over time. Data from a subset of the dysbiosis group suggests this subgroup possibly benefited from supplementation with the probiotics, indicating that probiotics supplementation can be prescribed for women in a subclinical microbiome setting of dysbiosis, providing opportunities for targeted and personalized microbiome reconstitution.
Collapse
Affiliation(s)
- Chen Chen
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Universitetsparken 13, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Lilan Hao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhe Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Liu Tian
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Jie Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Universitetsparken 13, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Xin Tong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Universitetsparken 13, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Universitetsparken 13, University of Copenhagen, DK-2100 Copenhagen, Denmark; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
30
|
Pérez-Burillo S, Hinojosa-Nogueira D, Navajas-Porras B, Blasco T, Balzerani F, Lerma-Aguilera A, León D, Pastoriza S, Apaolaza I, Planes FJ, Francino MP, Rufián-Henares JÁ. Effect of Freezing on Gut Microbiota Composition and Functionality for In Vitro Fermentation Experiments. Nutrients 2021; 13:nu13072207. [PMID: 34199047 PMCID: PMC8308218 DOI: 10.3390/nu13072207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota has a profound effect on human health and is modulated by food and bioactive compounds. To study such interaction, in vitro batch fermentations are performed with fecal material, and some experimental designs may require that such fermentations be performed with previously frozen stools. Although it is known that freezing fecal material does not alter the composition of the microbial community in 16S rRNA gene amplicon and metagenomic sequencing studies, it is not known whether the microbial community in frozen samples could still be used for in vitro fermentations. To explore this, we undertook a pilot study in which in vitro fermentations were performed with fecal material from celiac, cow’s milk allergic, obese, or lean children that was frozen (or not) with 20% glycerol. Before fermentation, the fecal material was incubated in a nutritious medium for 6 days, with the aim of giving the microbial community time to recover from the effects of freezing. An aliquot was taken daily from the stabilization vessel and used for the in vitro batch fermentation of lentils. The microbial community structure was significantly different between fresh and frozen samples, but the variation introduced by freezing a sample was always smaller than the variation among individuals, both before and after fermentation. Moreover, the potential functionality (as determined in silico by a genome-scaled metabolic reconstruction) did not differ significantly, possibly due to functional redundancy. The most affected genus was Bacteroides, a fiber degrader. In conclusion, if frozen fecal material is to be used for in vitro fermentation purposes, our preliminary analyses indicate that the functionality of microbial communities can be preserved after stabilization.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Daniel Hinojosa-Nogueira
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Beatriz Navajas-Porras
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Telmo Blasco
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Francesco Balzerani
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
| | - Daniel León
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
| | - Silvia Pastoriza
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Iñigo Apaolaza
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Francisco J. Planes
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Maria Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
- CIBER en Epidemiología y Salud Pública, 28001 Madrid, Spain
| | - José Ángel Rufián-Henares
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-28-41; Fax: +34-958-24-95-77
| |
Collapse
|
31
|
Jie Z, Liang S, Ding Q, Li F, Tang S, Wang D, Lin Y, Chen P, Cai K, Qiu X, Li Q, Liao Y, Zhou D, Lian H, Zuo Y, Chen X, Rao W, Ren Y, Wang Y, Zi J, Wang R, Zhou H, Lu H, Wang X, Zhang W, Zhang T, Xiao L, Zong Y, Liu W, Yang H, Wang J, Hou Y, Liu X, Kristiansen K, Zhong H, Jia H, Xu X. A transomic cohort as a reference point for promoting a healthy human gut microbiome. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
A guide to human microbiome research: study design, sample collection, and bioinformatics analysis. Chin Med J (Engl) 2021; 133:1844-1855. [PMID: 32604176 PMCID: PMC7469990 DOI: 10.1097/cm9.0000000000000871] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide medical researchers, especially those without a bioinformatics background, with an easy-to-understand summary of the concepts and technologies used in microbiome research. First, we define primary concepts such as microbiota, microbiome, and metagenome. Then, we discuss study design schemes, the methods of sample size calculation, and the methods for improving the reliability of research. We emphasize the importance of negative and positive controls in this section. Next, we discuss statistical analysis methods used in microbiome research, focusing on problems with multiple comparisons and ways to compare β-diversity between groups. Finally, we provide step-by-step pipelines for bioinformatics analysis. In summary, the meticulous study design is a key step to obtaining meaningful results, and appropriate statistical methods are important for accurate interpretation of microbiome data. The step-by-step pipelines provide researchers with insights into newly developed bioinformatics analysis methods.
Collapse
|
33
|
Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, Gao Y, Zhang X, Yu M, Liu Y, Zhang Y, Kristiansen K, Jia H, Brix S, Cai K. The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories. Gastroenterology 2021; 160:2029-2042.e16. [PMID: 33482223 DOI: 10.1053/j.gastro.2021.01.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Elucidating key factors affecting personal responses to food is the first step toward implementing personalized nutrition strategies in for example weight loss programs. Here, we aimed to identify factors of importance for individual weight loss trajectories in a natural setting where participants were provided dietary advice but otherwise asked to self-manage the daily caloric intake and data reporting. METHODS A 6-month weight-reduction program with longitudinal collection of dietary, physical activity, body weight, and fecal microbiome data as well as single-nucleotide polymorphism genotypes in 83 participants was conducted, followed by integration of the high-dimensional data to define the most determining factors for weight loss in a dietician-guided, smartphone-assisted dieting program. RESULTS The baseline gut microbiota was found to outperform other factors as a predieting predictor of individual weight loss trajectories. Weight loss was also linked to the magnitude of changes in abundances of certain bacterial species during dieting. Ruminococcus gnavus (MGS0160) was significantly enriched in obese individuals and decreased during weight loss. Akkermansia muciniphila (MGS0120) and Alistipes obesi (MGS0342) were significantly enriched in lean individuals, and their abundance increased during dieting. Finally, Blautia wexlerae (MGS0575) and Bacteroides dorei (MGS0187) were the strongest predictors for weight loss when present in high abundance at baseline. CONCLUSION Altogether, the baseline gut microbiota was found to excel as a central personal factor in capturing the relationship between dietary factors and weight loss among individuals on a dieting program.
Collapse
Affiliation(s)
- Zhuye Jie
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, China
| | - Xinlei Yu
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China
| | - Yinghua Liu
- Chinese PLA General Hospital, Beijing, China
| | - Lijun Sun
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China
| | - Peishan Chen
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Qiuxia Ding
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuan Gao
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China
| | | | | | | | - Yong Zhang
- Chinese PLA General Hospital, Beijing, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, Shandong 266555, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, Shenzhen, China
| | - Susanne Brix
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, Shandong 266555, China; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Kaiye Cai
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China.
| |
Collapse
|
34
|
Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol 2021; 7:11. [PMID: 33685524 PMCID: PMC7941982 DOI: 10.1186/s40748-021-00131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration.
Collapse
Affiliation(s)
- Jacob A F Westaway
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Roger Huerlimann
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| | - Catherine M Miller
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia
| | - Yoga Kandasamy
- Townsville University Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Robert Norton
- Pathology Queensland, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Donna Rudd
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| |
Collapse
|
35
|
Liu X, Tang S, Zhong H, Tong X, Jie Z, Ding Q, Wang D, Guo R, Xiao L, Xu X, Yang H, Wang J, Zong Y, Liu W, Liu X, Zhang Y, Brix S, Kristiansen K, Hou Y, Jia H, Zhang T. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discov 2021; 7:9. [PMID: 33563976 PMCID: PMC7873036 DOI: 10.1038/s41421-020-00239-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has been established as a key environmental factor to health. Genetic influences on the gut microbiome have been reported, yet, doubts remain as to the significance of genetic associations. Here, we provide shotgun data for whole genome and whole metagenome from a Chinese cohort, identifying no <20% genetic contribution to the gut microbiota. Using common variants-, rare variants-, and copy number variations-based association analyses, we identified abundant signals associated with the gut microbiome especially in metabolic, neurological, and immunological functions. The controversial concept of enterotypes may have a genetic attribute, with the top two loci explaining 11% of the Prevotella-Bacteroides variances. Stratification according to gender led to the identification of differential associations in males and females. Our two-stage metagenome genome-wide association studies on a total of 1295 individuals unequivocally illustrates that neither microbiome nor GWAS studies could overlook one another in our quest for a better understanding of human health and diseases.
Collapse
Affiliation(s)
- Xiaomin Liu
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen,, Guangdong 518120, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen,, Guangdong 518083, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen,, Guangdong 518120, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Xin Tong
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Shenzhen Key Laboratory of Cognition and Gene Research, BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Qiuxia Ding
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Dan Wang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen,, Guangdong 518120, China
| | - Ruidong Guo
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao,, Shandong 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen,, Guangdong 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou,, Zhejiang 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou,, Zhejiang 310058, China
| | - Yang Zong
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Weibin Liu
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Yong Zhang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
| | - Susanne Brix
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Yong Hou
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China.
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen,, Guangdong 518083, China.
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen,, Guangdong 518083, China.
- China National Genebank, BGI-Shenzhen, Shenzhen,, Guangdong 518120, China.
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
36
|
Short MI, Hudson R, Besasie BD, Reveles KR, Shah DP, Nicholson S, Johnson-Pais TL, Weldon K, Lai Z, Leach RJ, Fongang B, Liss MA. Comparison of rectal swab, glove tip, and participant-collected stool techniques for gut microbiome sampling. BMC Microbiol 2021; 21:26. [PMID: 33446094 PMCID: PMC7809826 DOI: 10.1186/s12866-020-02080-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Studies of the gut microbiome are becoming increasingly important. Such studies require stool collections that can be processed or frozen in a timely manner so as not to alter the microbial content. Due to the logistical difficulties of home-based stool collection, there has been a challenge in selecting the appropriate sample collection technique and comparing results from different microbiome studies. Thus, we compared stool collection and two alternative clinic-based fecal microbiome collection techniques, including a newer glove-based collection method. RESULTS We prospectively enrolled 22 adult men from our prostate cancer screening cohort SABOR (San Antonio Biomarkers of Risk for prostate cancer) in San Antonio, TX, from 8/2018 to 4/2019. A rectal swab and glove tip sample were collected from each participant during a one-time visit to our clinics. A single stool sample was collected at the participant's home. DNA was isolated from the fecal material and 16 s rRNA sequencing of the V1-V2 and V3-V4 regions was performed. We found the gut microbiome to be similar in richness and evenness, noting no differences in alpha diversity among the collection methods. The stool collection method, which remains the gold-standard method for the gut microbiome, proved to have different community composition compared to swab and glove tip techniques (p< 0.001) as measured by Bray-Curtis and unifrac distances. There were no significant differences in between the swab and glove tip samples with regard to beta diversity (p> 0.05). Despite differences between home-based stool and office-based fecal collection methods, we noted that the distance metrics for the three methods cluster by participant indicating within-person similarities. Additionally, no taxa differed among the methods in a Linear Discriminant Analysis Effect Size (LEfSe) analysis comparing all-against-all sampling methods. CONCLUSION The glove tip method provides similar gut microbiome results as rectal swab and stool microbiome collection techniques. The addition of a new office-based collection technique could help easy and practical implementation of gut microbiome research studies and clinical practice.
Collapse
Affiliation(s)
- Meghan I Short
- University of Texas Health San Antonio, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Robert Hudson
- Department of Urology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Kelly R Reveles
- The University of Texas at Austin, College of Pharmacy, Austin, TX, USA
| | - Dimpy P Shah
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Susannah Nicholson
- Department of Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Korri Weldon
- University of Texas Health San Antonio, Genome Sequencing Facility, Greehey Children's Cancer Research Institute (GCCRI), San Antonio, TX, USA
| | - Zhao Lai
- University of Texas Health San Antonio, Genome Sequencing Facility, Greehey Children's Cancer Research Institute (GCCRI), San Antonio, TX, USA
| | - Robin J Leach
- Department of Urology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bernard Fongang
- University of Texas Health San Antonio, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- The University of Texas at Austin, College of Pharmacy, Austin, TX, USA.
| |
Collapse
|
37
|
Yang L, Hou K, Zhang B, Ouyang C, Lin A, Xu S, Ke D, Fang L, Chen Q, Wu J, Yan C, Lian Y, Jiang T, He J, Wang H, Fu Y, Xiao C, Chen Z. Preservation of the fecal samples at ambient temperature for microbiota analysis with a cost-effective and reliable stabilizer EffcGut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140423. [PMID: 32615432 DOI: 10.1016/j.scitotenv.2020.140423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
With the increasing researches on the role of gut microbiota in human health and disease, appropriate storage method of fecal samples at ambient temperature would conveniently guarantee the precise and reliable microbiota results. Nevertheless, less choice of stabilizer that is cost-efficient and feasible to be used in longer preservation period obstructed the large-scale metagenomics studies. Here, we evaluated the efficacy of a guanidine isothiocyanate-based reagent method EffcGut and compared it with the other already used storage method by means of 16S rRNA gene sequencing technology. We found that guanidine isothiocyanate-based reagent method at ambient temperature was not inferior to OMNIgene·GUT OM-200 and it could retain the similar bacterial community as that of -80 °C within 24 weeks. Furthermore, bacterial diversity and community structure difference were compared among different sample fraction (supernatant, suspension and precipitate) preserved in EffcGut and -80 °C. We found that supernatant under the preservation of EffcGut retained the similar community structure and composition as that of the low temperature preservation method.
Collapse
Affiliation(s)
- Luxi Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen, China; Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, the First Affiliated Hospital of Shantou University Medical College, China
| | - Bangzhou Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen, China; Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Cong Ouyang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Shuangbin Xu
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Dongxian Ke
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Lujing Fang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Qiongyun Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingtong Wu
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Lian
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Tao Jiang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital, Xiamen University, China
| | - Han Wang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yousi Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Zhangran Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen, China; Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Gut Microbiota and Liver Fibrosis: One Potential Biomarker for Predicting Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3905130. [PMID: 32685479 PMCID: PMC7322594 DOI: 10.1155/2020/3905130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Purpose To investigate the relationship between gut microbiota and liver fibrosis and establish a microbiota biomarker for detecting and staging liver fibrosis. Methods 131 Wistar rats were used in our study, and liver fibrosis was induced by carbon tetrachloride. Stool samples were collected within 72 hours after the last administration. The V4 regions of 16S rRNA gene were amplified. The sequencing data was processed using the Quantitative Insights Into Microbial Ecology (QIIME version 1.9). The diversity, principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS), and linear discriminant analysis (LDA) effect size (LEfSe) were performed. Random-Forest classification was performed for discriminating the samples from different groups. Microbial function was assessed using the PICRUST. Results The Simpson in the control group was lower than that in the liver fibrosis group (p = 0.048) and differed significantly among different fibrosis stages (p = 0.047). The Chao1 index in the control group was higher than that in the liver fibrosis group (p < 0.001). NMDS analysis showed a marked difference between the control and liver fibrosis groups (p < 0.001). PCoA analysis indicated the different community composition between the control and liver fibrosis groups with variances of PC1 13.76% and PC2 5.89% and between different liver fibrosis stages with variances of PC1 10.51% and PC2 7.78%. LEfSe analysis showed alteration of gut microbiota in the liver fibrosis group. Biomarkers obtained from Random-Forest classification showed excellent diagnostic accuracy in prediction of liver fibrosis with AUROCs of 0.99. The AUROCs were 0.77~0.84 in prediction of stage F4. There were six increased and 17 decreased metabolic functions in the liver fibrosis group and 6 metabolic functions significantly differed among four liver fibrosis stages. Conclusion Gut microbiota is a potential biomarker for detecting and staging liver fibrosis with high diagnostic accuracies.
Collapse
|
39
|
Peng Z, Zhu X, Wang Z, Yan X, Wang G, Tang M, Jiang A, Kristiansen K. Comparative Analysis of Sample Extraction and Library Construction for Shotgun Metagenomics. Bioinform Biol Insights 2020; 14:1177932220915459. [PMID: 32546984 PMCID: PMC7271268 DOI: 10.1177/1177932220915459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Human fecal specimens, serve as important materials, are widely used in the field of microbiome research, in which inconsistent results have been a pressing issue. The possible attribute factors have been proposed including the specimen status after preservation, extracted DNA quality, library preparation protocol, and sample DNA input. In this study, quality comparisons for shotgun metagenomics sequencing were performed between 2 DNA extraction methods for fresh and freeze-thaw samples, 2 library preparation protocols, and various sample inputs. The results indicate that Mag-Bind® Universal Metagenomics Kit (OM) outperformed DNeasy PowerSoil Kit (QP) with a higher DNA quantity. Controlling on library preparation protocol, OM detected on-average more genes than QP. For library construction comparison by controlling on the same DNA sample, KAPA Hyper Prep Kit (KH) outperformed the TruePrep DNA Library Prep Kit V2 (TP) with the higher number of detected genes number and Shannon index. No significant differences were found in taxonomy between 2 library preparation protocols using the fresh, freeze-thaw and mock community samples. No significant difference was observed between 250 and 50 ng DNA inputs for library preparation on both fresh and freeze-thaw samples. Through the preliminary study, a combined protocol is recommended for performing metagenomics studies, by using OM method plus KH protocol as well as suitable DNA quantity on either fresh or freeze-thaw samples. Our findings provide clues for potential variations from various DNA extraction methods, library protocols, and sample DNA inputs, which are critical for consistent and comprehensive profiling of the human gut microbiome.
Collapse
Affiliation(s)
- Zonghui Peng
- BGI Americas Corporation, Cambridge, MA, USA.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, Shenzhen, China
| |
Collapse
|
40
|
Ma J, Sheng L, Hong Y, Xi C, Gu Y, Zheng N, Li M, Chen L, Wu G, Li Y, Yan J, Han R, Li B, Qiu H, Zhong J, Jia W, Li H. Variations of Gut Microbiome Profile Under Different Storage Conditions and Preservation Periods: A Multi-Dimensional Evaluation. Front Microbiol 2020; 11:972. [PMID: 32536906 PMCID: PMC7267014 DOI: 10.3389/fmicb.2020.00972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gut dysbiosis is heavily involved in the development of various human diseases. There are thousands of publications per year for investigating the role of gut microbiota in diseases. However, emerging evidence has indicated the frequent data inconsistency between different studies, which is largely overlooked. There are many factors that can cause data variation and inconsistency during the process of microbiota study, in particular, sample storage conditions and sequencing process. Here, we systemically evaluated the impacts of six fecal sample storage conditions (three non-commercial storage protocols, −80°C, −80°C with 70% ethanol (ET_−80°C), 4°C with 70% ethanol (ET_4°C), and three commercial storage reagents, OMNIgeneGUT OMR-200 (GT) and MGIEasy (MGIE) at room temperature, and Longsee at 4°C (LS) on gut microbiome profile based on 16S rRNA gene sequencing. In addition, we also investigated the impacts of storage periods (1 and 2 weeks, or 6 months) and sequencing platform on microbiome profile. The efficacy of storage conditions was evaluated by DNA yield and quality, α and β diversity, relative abundance of the dominant and functional bacteria associated with short-chain fatty acid (SCFA) production, and BAs metabolism. Our current study suggested that −80°C was acceptable for fecal sample storage, and the addition of 70% ethanol had some benefits in maintaining the microbial community structure. Meanwhile, we found that samples in ET_4°C and GT reagents were comparable, both of them introduced some biases in α or β diversity, and the relative abundance of functional bacteria. Samples stored in MGIE reagent resulted in the least variation, whereas the most obvious variations were introduced by LS reagents. In addition, our results indicated that variations caused by storage condition were larger than that of storage time and sequencing platform. Collectively, our study provided a multi-dimensional evaluation on the impacts of storage conditions, storage time periods, and sequencing platform on gut microbial profile.
Collapse
Affiliation(s)
- Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Sheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Hong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuchu Xi
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Gu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Zheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengci Li
- Shanghai Key Laboratory of Diabetes Mellitus, Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Linlin Chen
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaosong Wu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Juan Yan
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Qiu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,University of Hawaii Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Zhou Y, Liu C, Zhou R, Lu A, Huang B, Liu L, Chen L, Luo B, Huang J, Tian Z. SEQdata-BEACON: a comprehensive database of sequencing performance and statistical tools for performance evaluation and yield simulation in BGISEQ-500. BioData Min 2019; 12:21. [PMID: 31807141 PMCID: PMC6857306 DOI: 10.1186/s13040-019-0209-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The sequencing platform BGISEQ-500 is based on DNBSEQ technology and provides high throughput with low costs. This sequencer has been widely used in various areas of scientific and clinical research. A better understanding of the sequencing process and performance of this system is essential for stabilizing the sequencing process, accurately interpreting sequencing results and efficiently solving sequencing problems. To address these concerns, a comprehensive database, SEQdata-BEACON, was constructed to accumulate the run performance data in BGISEQ-500. RESULTS A total of 60 BGISEQ-500 instruments in the BGI-Wuhan lab were used to collect sequencing performance data. Lanes in paired-end 100 (PE100) sequencing using 10 bp barcode were chosen, and each lane was assigned a unique entry number as its identification number (ID). From November 2018 to April 2019, 2236 entries were recorded in the database containing 65 metrics about sample, yield, quality, machine state and supplies information. Using a correlation matrix, 52 numerical metrics were clustered into three groups signifying yield-quality, machine state and sequencing calibration. The distributions of the metrics also delivered information about patterns and rendered clues for further explanation or analysis of the sequencing process. Using the data of a total of 200 cycles, a linear regression model well simulated the final outputs. Moreover, the predicted final yield could be provided in the 15th cycle of the early stage of sequencing, and the corresponding R2 of the 200th and 15th cycle models were 0.97 and 0.81, respectively. The model was run with the test sets obtained from May 2019 to predict the yield, which resulted in an R2 of 0.96. These results indicate that our simulation model was reliable and effective. CONCLUSIONS Data sources, statistical findings and application tools provide a constantly updated reference for BGISEQ-500 users to comprehensively understand DNBSEQ technology, solve sequencing problems and optimize run performance. These resources are available on our website http://seqBEACON.genomics.cn:443/home.html.
Collapse
Affiliation(s)
- Yanqiu Zhou
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Chen Liu
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Rongfang Zhou
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Anzhi Lu
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Biao Huang
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Liling Liu
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Ling Chen
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Bei Luo
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Jin Huang
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| | - Zhijian Tian
- BGI-Wuhan Clinical Laboratories, Building B2, No.666 Gaoxin Road, Wuhan East lake Hi-tech Development zone, Wuhan, 430074 China
| |
Collapse
|
42
|
Ilett EE, Jørgensen M, Noguera-Julian M, Daugaard G, Murray DD, Helleberg M, Paredes R, Lundgren J, Sengeløv H, MacPherson C. Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing. Sci Rep 2019; 9:13351. [PMID: 31527823 PMCID: PMC6746779 DOI: 10.1038/s41598-019-49956-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Collection of faecal samples for microbiome analysis in acutely sick patients is logistically difficult, particularly if immediate freezing is required (i.e. fresh-frozen, or FF sampling). Previous studies in healthy/non-hospitalized volunteers have shown that chemical stabilization (i.e. stabilized-frozen, or SF sampling) allows room-temperature storage with comparable results to FF samples. To test this in a hospital setting we compared FF and SF approaches across 17 patients undergoing haematopoietic stem cell transplantation (HSCT) using both 16S rRNA gene and shotgun metagenomic sequencing. A paired (same stool specimen) comparison of FF and SF samples was made, with an overall comparable level in relative taxonomic abundances between the two sampling techniques. Though shotgun metagenomic sequencing found significant differences for certain bacterial genera (P < 0.001), these were considered minor methodological effects. Within-sample diversity of either method was not significantly different (Shannon diversity P16SrRNA = 0.68 and Pshotgun = 0.89) and we could not reject the null hypothesis that between-sample variation in FF and SF were equivalent (P16SrRNA = 0.98 and Pshotgun = 1.0). This indicates that SF samples can be used to reliably study the microbiome in acutely sick patient populations, thus creating and enabling further outcomes-based metagenomic studies on similarly valuable cohorts.
Collapse
Affiliation(s)
- Emma E Ilett
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Mette Jørgensen
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Marc Noguera-Julian
- Institut de Recerca de la SIDA - IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Gedske Daugaard
- Department of Oncology, Rigshospitalet Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Daniel D Murray
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Marie Helleberg
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Roger Paredes
- Institut de Recerca de la SIDA - IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain.,Infectious Diseases Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jens Lundgren
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Cameron MacPherson
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
43
|
Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat Microbiol 2019; 4:1851-1861. [PMID: 31332384 DOI: 10.1038/s41564-019-0498-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023]
Abstract
Neonates at risk of childhood atopy and asthma exhibit perturbation of the gut microbiome, metabolic dysfunction and increased concentrations of 12,13-diHOME in their faeces. However, the mechanism, source and contribution of this lipid to allergic inflammation remain unknown. Here, we show that intra-abdominal treatment of mice with 12,13-diHOME increased pulmonary inflammation and decreased the number of regulatory T (Treg) cells in the lungs. Treatment of human dendritic cells with 12,13-diHOME altered expression of PPARγ-regulated genes and reduced anti-inflammatory cytokine secretion and the number of Treg cells in vitro. Shotgun metagenomic sequencing of neonatal faeces indicated that bacterial epoxide hydrolase (EH) genes are more abundant in the gut microbiome of neonates who develop atopy and/or asthma during childhood. Three of these bacterial EH genes (3EH) specifically produce 12,13-diHOME, and treatment of mice with bacterial strains expressing 3EH caused a decrease in the number of lung Treg cells in an allergen challenge model. In two small birth cohorts, an increase in the copy number of 3EH or the concentration of 12,13-diHOME in the faeces of neonates was found to be associated with an increased probability of developing atopy, eczema or asthma during childhood. Our data indicate that elevated 12,13-diHOME concentrations impede immune tolerance and may be produced by bacterial EHs in the neonatal gut, offering a mechanistic link between perturbation of the gut microbiome during early life and atopy and asthma during childhood.
Collapse
|
44
|
Moossavi S, Engen PA, Ghanbari R, Green SJ, Naqib A, Bishehsari F, Merat S, Poustchi H, Keshavarzian A, Malekzadeh R. Assessment of the impact of different fecal storage protocols on the microbiota diversity and composition: a pilot study. BMC Microbiol 2019; 19:145. [PMID: 31253096 PMCID: PMC6599303 DOI: 10.1186/s12866-019-1519-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
Background Fecal samples are currently the most commonly studied proxy for gut microbiota. The gold standard of sample handling and storage for microbiota analysis is maintaining the cold chain during sample transfer and immediate storage at − 80 °C. Gut microbiota studies in large-scale, population-based cohorts require a feasible sample collection protocol. We compared the effect of three different storage methods and mock shipment: immediate freezing at − 80 °C, in 95% ethanol stored at room temperature (RT) for 48 h, and on blood collection card stored at RT for 48 h, on the measured composition of fecal microbiota of eight healthy, female volunteers by sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq. Results Shared operational taxonomic units (OTUs) between different methods were 68 and 3% for OTUs > 0.01 and < 0.01% mean relative abundance within each group, respectively. α and β-diversity measures were not significantly impacted by different storage methods. With the exception of Actinobacteria, fecal microbiota profiles at the phylum level were not significantly affected by the storage method. Actinobacteria was significantly higher in samples collected on card compared to immediate freezing (1.6 ± 1.1% vs. 0.4 ± 0.2%, p = 0.005) mainly driven by expansion of Actinobacteria relative abundance in fecal samples stored on card in two individuals. There was no statistically significant difference at lower taxonomic levels tested. Conclusion Consistent results of the microbiota composition and structure for different storage methods were observed. Fecal collection on card could be a suitable alternative to immediate freezing for fecal microbiota analysis using 16S rRNA gene amplicon sequencing. Electronic supplementary material The online version of this article (10.1186/s12866-019-1519-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shirin Moossavi
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ankur Naqib
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Shahin Merat
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali Avenue, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali Avenue, Tehran, Iran
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology, Rush University Medical Center, Chicago, IL, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali Avenue, Tehran, Iran.
| |
Collapse
|