1
|
Yang M, Qi Y, Gao P, Li L, Guo J, Zhao Y, Liu J, Chen Z, Yu L. Changes in the assembly and functional adaptation of endophytic microbial communities in Amorphophallus species with different levels of resistance to necrotrophic bacterial pathogen stress. Commun Biol 2025; 8:766. [PMID: 40389724 PMCID: PMC12089287 DOI: 10.1038/s42003-025-08196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Pcc is one of the key pathogenic factors responsible for destructive soft rot in konjac. To date, the assembly and functional adaptation of the plant endophytic microbiome under Pcc stress remain poorly understood. Here, we found that Pcc stress leads to rapid reorganization of the endogenous microbiome in multiple organs of both susceptible and resistant konjac plants. Under Pcc stress, the negative interactions within the bacterial-fungal interdomain network intensified, suggesting an increase in ecological competition between bacterial and fungal taxa. We further discovered that the relative abundance dynamics of the classes Dothideomycetes and Sordariomycetes, as core fungal taxa, changed in response to Pcc stress. By isolating culturable microorganisms, we demonstrated that 46 fungal strains strongly inhibited the growth of Pcc. This implies that endophytic fungal taxa in konjac may protect the host plant through ecological competition or by inhibiting the growth of pathogenic bacteria. Metagenomic analysis demonstrated that microbial communities associated with resistant Amorphophallus muelleri exhibited unique advantages over susceptible Amorphophallus konjac in enhancing environmental adaptability, regulating plant immune signaling, strengthening cell walls, and inducing defense responses. Our work provides important evidence that endophytic fungal taxa play a key role in the host plant's defense against necrotizing bacterial pathogens.
Collapse
Affiliation(s)
- Min Yang
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Penghua Gao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lifang Li
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jianwei Guo
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Yongteng Zhao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jiani Liu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Zebin Chen
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lei Yu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| |
Collapse
|
2
|
Kiige JK, Kavoo AM, Mwajita MR, Mogire D, Ogada S, Wekesa TB, Kiirika LM. Metagenomic characterization of bacterial abundance and diversity in potato cyst nematode suppressive and conducive potato rhizosphere. PLoS One 2025; 20:e0323382. [PMID: 40343892 PMCID: PMC12063837 DOI: 10.1371/journal.pone.0323382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Potato (Solanum tuberosum L.) is an important food crop in Kenya, providing a source of nutrition and income for many farmers. However, potato cyst nematodes (PCN) cause significant damage to potato plants, leading to substantial economic losses and threatening the nation's food security. Understanding the composition and functional potential of bacterial communities in the soil is important for developing sustainable biological control strategies against PCN and improving soil health. This cross-sectional purposive study examined the bacterial communities associated with PCN-suppressive and conducive potato rhizosphere from two major potato-producing counties in Kenya. We analyzed 180 soil samples from symptomatic and asymptomatic potato plants using shotgun metagenomics, followed by functional analysis to identify genes and metabolic pathways relevant to soil and plant health. Taxonomic classification revealed Enterobacteriaceae and Pseudomonadaceae as the most dominant bacterial families present. Within these families, the genera Pseudomonas and Enterobacter were highly abundant, both known for their plant growth-promoting traits, including biological control of soil pathogens and nutrient solubilization. KEGG and Pfam database analysis revealed pathways associated with nutrient cycling, transport systems, and metabolic functions. The abundance of iron-acquisition, chemotaxis, and diverse transport genes across analyzed samples suggests the presence of beneficial bacterial communities. This study provides the first report on bacterial ecology in PCN-infested rhizosphere in Kenya and its implications for soil health and PCN management.
Collapse
Affiliation(s)
- John Kamathi Kiige
- Department of Agricultural Sciences, Karatina University, Karatina, Kenya
| | - Agnes Mumo Kavoo
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mwashasha Rashid Mwajita
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Derleen Mogire
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Stephen Ogada
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Tofick Barasa Wekesa
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Novo Science Bio Solutions Limited, Nairobi, Kenya
| | - Leonard Muriithi Kiirika
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
3
|
Wang S, Nie JA, Wang J, Lv M, Li Q, Li M, Zhou B, Gao Z, Shi W. Progressing towards eco-friendly agricultural management: Utilizing Ginkgo biloba leaf litter for potato common scab control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125307. [PMID: 40233615 DOI: 10.1016/j.jenvman.2025.125307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Soil ecological degradation intensifies soil-borne crop diseases. Employing eco-friendly and economical strategies to restore soil health is imperative for managing soil diseases. Here, we focused on potato common scab (PCS), a worldwide soil-borne disease caused by Streptomyces spp., and evaluated the suppression effects of Ginkgo leaf litter (GL) and its extract (GE), while elucidating their mechanisms. The results showed that both GL and GE significantly reduced the PCS disease index, with GL achieving over 50 % suppression in both pot and field trials. Both treatments effectively antagonized the PCS pathogen, reducing its relative abundance in bulk soil and geocaulosphere soil. The soil bacterial community was significantly correlated with the disease index, with the bacterial community in bulk soil making a particularly notable contribution to disease suppression, accounting for 52 % of the effect. Furthermore, GL and GE enhanced the stochastic processes in bacterial community assembly, and increased the complexity of bacterial co-occurrence networks. Notably, the microbial community restructured by GE significantly inhibited the expression of the pathogen's toxin gene, txtAB, decreasing its level from 104.5 copies per gram of soil to 102.1 copies, marking a decline exceeding two orders of magnitude. ASV339 (Aeromicrobium) and ASV932 (Achromobacter) were identified as key microbes, and their respective strains, Aeromicrobium OH2-5 and Achromobacter YD1-3, were isolated. The growth curve and biomass of these strains were positively influenced by GE, demonstrating Ginkgo leaves' enriching effect on beneficial microorganisms. These strains exhibited potent antagonistic activity against the PCS pathogen. Additionally, GE alleviated reactive oxygen species stress and up-regulated the defense-related gene PR1 in potato plants. This study validates the potential of Ginkgo leaf litter as a soil amendment additive for suppressing PCS and reveals its multifaceted mechanisms.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ji-Ang Nie
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiguang Wang
- Shandong Future Biotechnology Co., Ltd., Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qingquan Li
- Institute of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Mingcong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Bo Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Lv M, Shi W, Xu J, He S, Wang L, Li M, Ma L, Wang J, Nie F, Xu B, Han Y, Zhou B, Gao Z. Exposure to thiazole pesticides disrupts pathogens and undermines keystone status of rare taxa within bacterial ecological networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117983. [PMID: 40037080 DOI: 10.1016/j.ecoenv.2025.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Considering the sensitivity of rare microbial taxa to environmental disturbances and their critical roles in ecosystems, it is essential to investigate how soil microbial communities (particularly rare microbes) respond to pesticide exposure. In this study, we found that thiazole pesticides significantly reduced the severity of potato common scab and effectively disrupted the pathogen's cell membrane integrity. Notably, hierarchical partitioning analysis indicated that the rare microbial taxa in potato geocaulosphere soil constitute key clusters influencing disease incidence. Within bacterial molecular ecological networks, nodes corresponding to these rare taxa generally exhibited higher degrees compared to those of more abundant taxa. However, pesticide exposure reduced the number of keystone nodes and substantially weakened the hub status of rare bacterial taxa in these networks. These findings suggest that, although thiazole pesticides effectively eradicate pathogens, they may also pose a non-negligible potential risk to rare taxa in agricultural ecosystems.
Collapse
Affiliation(s)
- Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jie Xu
- Zaozhuang Academy of Agricultural Sciences, Zaozhuang, Shandong 27710, PR China
| | - Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Mingcong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lanxiang Ma
- Zaozhuang Academy of Agricultural Sciences, Zaozhuang, Shandong 27710, PR China
| | - Jiguang Wang
- Shandong Future Biotechnology Co., Ltd., Tai'an, Shandong 271027, PR China
| | - Fengjie Nie
- Ningxia Academy of Agriculture and Forestry Sciences, Agricultural Biotechnology Research Center, Yinchuan, Ningxia 750000, PR China
| | - Bingjie Xu
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yifeng Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bo Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
5
|
Wang J, Song M, Yao L, Li P, Si E, Li B, Meng Y, Ma X, Yang K, Zhang H, Shang X, Wang H. Metagenomic analysis reveal the phytoremediation effects of monocropping and intercropping of halophytes Halogeton glomeratus and Suaeda glauca in saline soil of Northwestern China. BMC PLANT BIOLOGY 2025; 25:213. [PMID: 39966722 PMCID: PMC11834545 DOI: 10.1186/s12870-025-06225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
AIMS Planting halophytes is a widely used method of phytoremediation for saline soils. The succulent halophytes Halogeton glomeratus and Suaeda glauca are widely used for remediation of saline soil in the arid region of Northwestern China. However, whether intercropping of H. glomeratus and S. glauca can increase the improvement effect for saline soil is yet to be proved. MATERIALS AND METHODS Therefore, this study analyzed three phytoremediation planting modes: monocropping of H. glomeratus (Hg), monocropping of S. glauca (Sg), and H. glomeratus and S. glauca intercropping (Hg||Sg). These were applied in field experiments, with biomass and soil physicochemical properties measured for each treatment, and the mechanism was analyzed using macrogenomics. RESULTS After harvesting the halophytes after one season, the Hg treatment had the highest dry biomass and soil total dissolved salt content was reduced; correspondingly, soil pH were decreased and soil organic matter content were increased. The results showed that Actinobacteria, Acidobacteria and Proteobacteria were the dominant phylum under the four treatments. This suggests that Hg treatment was more capable of producing microorganisms favorable to saline soil remediation. CONCLUSIONS Thus, H. glomeratus monocropping is a more effective phytoremediation strategy for saline soil in the dry zone of Northwestern China.
Collapse
Affiliation(s)
- Juncheng Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Meini Song
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Pengcheng Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hong Zhang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China.
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
6
|
Wang Y, Feng J, Gao J, Han S, Li Q, Kong L, Wu Y. The occurrence of wheat crown rot correlates with the microbial community and function in rhizosphere soil. Front Microbiol 2025; 16:1538093. [PMID: 40008036 PMCID: PMC11850533 DOI: 10.3389/fmicb.2025.1538093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Wheat crown rot (WCR) is a significant soil-borne disease affecting wheat production worldwide. Understanding the impact of wheat crown rot on the structure and function of microbial communities in the wheat rhizosphere soil can provide a theoretical basis for the mining biological control resources against WCR. In this study, rhizosphere soils with varying WCR severities (light, moderate, severe) were analyzed for chemical properties, microbial community composition and functions using high-throughput sequencing. The results revealed that WCR decreased rhizosphere soil pH, the content of available nitrogen and phosphorus, and the abundance of beneficial taxa such as Bacillus and Streptomyces. Additionally, functional predictions showed that microbial communities adapted to WCR by enhancing signaling pathways and reducing their anabolic activity. From soil with light WCR occurrence, we isolated Bacillus velezensis BF-237, whose abundance was reduced by WCR. Greenhouse experiments demonstrated that BF-237 achieved a control efficiency of 56.61% against WCR in artificially inoculated sterilized soil and 53.32% in natural soil. This study clarifies the impact of wheat crown rot on the community structure, and function of rhizosphere soil microorganisms, alongside identifying a promising biocontrol agent. These findings contribute to understanding WCR pathogenesis and offer practical resources for its management.
Collapse
Affiliation(s)
- Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Jian Feng
- Plant Protection Plant Inspection Station of Baoding City, Baoding, China
| | - Jianhai Gao
- Cangxian Agriculture and Rural Bureau, Cangxian, China
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Qiusheng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Lingxiao Kong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| |
Collapse
|
7
|
Liu H, Zhang Y, Zhang L, Liu Y, Chen Y, Shi Y. Nano-selenium strengthens potato resistance to potato scab induced by Streptomyces spp., increases yield, and elevates tuber quality by influencing rhizosphere microbiomes. FRONTIERS IN PLANT SCIENCE 2025; 16:1523174. [PMID: 39963528 PMCID: PMC11830815 DOI: 10.3389/fpls.2025.1523174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Introduction The application of selenium could directly or indirectly modulate the activity of antioxidant enzymes in crops, thereby mitigating the detrimental effects of abiotic and biotic stresses on crop health. However, there are few studies on the effects of nano-selenium fertilizer on potato scab caused by Streptomyces spp., potato yield and tuber quality. Methods We aimed to elucidate the impact of nano-selenium fertilizer on potato disease resistance, yield, tuber quality, antioxidant enzyme activity and rhizosphere soil bacterial communities, and to determine the optimal frequency and growth stages of nano-selenium fertilizer spraying. Results and discussion The application of nano-selenium fertilizer twice during the seedling stage significantly reduced the disease index of potato scab, enhanced potato yield, tuber quality (dry matter, Vitamin C, crude protein, and selenium content), and antioxidant enzyme activity (glutathione peroxidase, peroxidase, polyphenol oxidase, superoxide dismutase, and phenylalanine ammonia lyase). The diversity of the rhizosphere bacterial community of potatoes subjected to selenium fertilizer spraying at the seedling stage increased significantly, and concurrently, the symbiotic network of rhizosphere bacterial microbiome grew more complex. Beneficial microorganisms such as bacteria of the genus Bacillus were enriched in the rhizosphere soil. The current study provided theoretical support for the exploration of a potato selenium-enriched technology system and supplies scientific guidance for the utilization of nano-selenium.
Collapse
Affiliation(s)
- Haixu Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Zhang
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yingjie Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yufei Chen
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Qingshan L, Ruizhe Y, Lingying X, Yulong P, Qianyuan D, Xian W, Yue L, Yongbo X, Xingwang W, Mengqian X. Rhizosphere microbial community assembly as influenced by reductive soil disinfestation to resist successive cropping obstacle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1760-1770. [PMID: 39390738 DOI: 10.1002/jsfa.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Reductive soil disinfestation (RSD), which involves creating anaerobic conditions and incorporating large amounts of organic materials into the soil, has been identified as a reliable strategy for reducing soilborne diseases in successive cropping systems. However, limited research exists on the connections between soil microorganism composition and plant diseases under various types of organic material applications. This study aimed to evaluate the effects of distinct RSD strategies (control without soil amendment; RSD with 1500 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder and 37.5-41.3 kg ha-1 microbial agent) on the plant disease index, bacterial community composition and network structure in rhizosphere soil. RESULTS RSD treatments significantly reduced the occurrence of black shank disease in tobacco and increased soil bacterial diversity. High amounts of molasses powder in RSD treatments further enhanced disease inhibition and reduced fungal abundance and Shannon index. RSD also increased the relative abundance of bacterial phylum Firmicutes and fungal phylum Ascomycota, while decreasing the relative abundance of bacterial phyla Chloroflexi and Acidobacteriota and fungal phylum Basidiomycota in rhizosphere soil. A multiple regression model identified bacterial positive cohesion as the primary factor influencing the plant disease index, with a greater impact than bacterial negative cohesion and community stability. The competition among beneficial bacteria for creating a healthy rhizosphere environment is likely a key factor in the success of RSD in reducing plant disease risk. CONCLUSION RSD, especially with higher rates of molasses powder, is a viable strategy for controlling black shank disease in tobacco and promoting soil health by fostering beneficial microbial communities. This study provides guidelines for soil management and plant disease prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Qingshan
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Yang Ruizhe
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Xu Lingying
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Peng Yulong
- Zunyi Tobacco Company of Guizhou Tobacco Corporation, Zunyi, China
| | - Duan Qianyuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Wu Xian
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Luo Yue
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Xu Yongbo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Wu Xingwang
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Xu Mengqian
- School of Environments and Resource, Anqing Normal University, Anqing, China
| |
Collapse
|
9
|
Zhou Y, Jiang P, Ding Y, Zhang Y, Yang S, Liu X, Cao C, Luo G, Ou L. Deciphering the Distinct Associations of Rhizospheric and Endospheric Microbiomes with Capsicum Plant Pathological Status. MICROBIAL ECOLOGY 2025; 88:1. [PMID: 39890664 PMCID: PMC11785608 DOI: 10.1007/s00248-025-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Exploring endospheric and rhizospheric microbiomes and their associations can help us to understand the pathological status of capsicum (Capsicum annuum L.) for implementing appropriate management strategies. To elucidate the differences among plants with distinct pathological status in the communities and functions of the endospheric and rhizospheric microbiomes, the samples of healthy and diseased capsicum plants, along with their rhizosphere soils, were collected from a long-term cultivation field. The results indicated a higher bacterial richness in the healthy rhizosphere than in the diseased rhizosphere (P < 0.05), with rhizospheric bacterial diversity surpassing endospheric bacterial diversity. The community assemblies of both the endospheric and rhizospheric microbiomes were driven by a combination of stochastic and deterministic processes, with the stochastic processes playing a primary role. The majority of co-enriched taxa in the healthy endophyte and rhizosphere mainly belonged to bacterial Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal Ascomycota. Most of the bacterial indicators, primarily Alphaproteobacteria and Actinobacteria, were enriched in the healthy rhizosphere, but not in the diseased rhizosphere. In addition, most of the fungal indicators were enriched in both the healthy and diseased endosphere. The diseased endophyte constituted a less complex and stable microbial community than the healthy endophyte, and meanwhile, the diseased rhizosphere exhibited a higher complexity but lower stability than the healthy rhizosphere. Notably, only a microbial function, namely biosynthesis of other secondary metabolites, was higher in the healthy endophytes than in the diseased endophyte. These findings indicated the distinct responses of rhizospheric and endospheric microbiomes to capsicum pathological status, and in particular, provided a new insight into leveraging soil and plant microbial resources to enhance agriculture production.
Collapse
Affiliation(s)
- Yingying Zhou
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Pan Jiang
- Hunan Agricultural University, Changsha, 410128, China
| | - Yuanyuan Ding
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Yuping Zhang
- Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Sha Yang
- Hunan Agricultural University, Changsha, 410128, China
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China
| | - Xinhua Liu
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Gongwen Luo
- Hunan Agricultural University, Changsha, 410128, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| | - Lijun Ou
- Hunan Agricultural University, Changsha, 410128, China.
- Hunan Key Laboratory of Vegetable Biology, Changsha, 410128, China.
| |
Collapse
|
10
|
Bak GR, Lee KK, Clark IM, Mauchline TH, Kavamura VN, Jee S, Lee JT, Kim H, Lee YH. Changes in the potato rhizosphere microbiota richness and diversity occur in a growth stage-dependent manner. Sci Rep 2025; 15:2284. [PMID: 39825038 PMCID: PMC11748701 DOI: 10.1038/s41598-025-86944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025] Open
Abstract
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil. Rhizobacteria were most diverse at the tuber elongation stage, and dominant ASVs identified as Sphingomonas, Rhodanobacter, Sphingobium, Hyphomicrobium, and Solirubrobacter spp. In contrast, rhizosphere fungal diversity peaked at flowering stage, with Lecanicillium spp. being prominent. Furthermore, the abundance of saprophytic fungal genera, including Colletotrichum and Fusarium, and Alternaria, sharply increased at harvest stage, likely contributing to plant residue decomposition. Indicator taxa analysis highlighted the dominance of these genera at harvest. Network analysis revealed increased microbial complexity during the later growth stage, with 721 edges compared to 521 edges in the early growth stage. This increase included positive correlations between bacteria and negative correlations between bacteria and fungi. These changes suggest that microbial interactions become more interconnected and complex as potato plants mature. Our findings highlight the potential role of saprophytic fungi in shaping microbial dynamics during the later growth stage in rhizosphere soil.
Collapse
Affiliation(s)
- Gye-Ryeong Bak
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiseok Keith Lee
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL, 60637, USA
| | - Ian M Clark
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | - Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jeong-Tae Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Song Y, Atza E, Sánchez-Gil JJ, Akkermans D, de Jonge R, de Rooij PGH, Kakembo D, Bakker PAHM, Pieterse CMJ, Budko NV, Berendsen RL. Seed tuber microbiome can predict growth potential of potato varieties. Nat Microbiol 2025; 10:28-40. [PMID: 39730984 DOI: 10.1038/s41564-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024]
Abstract
Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields. By using time-resolved drone imaging of three trial fields in the next season to track crop development, we were able to link microbiome composition with potato vigour. We used microbiome data at varying taxonomic resolutions to build random forest predictive models and found that amplicon sequence variants provided the highest predictive accuracy for potato vigour. The model revealed variety-specific relationships between the seed tuber microbiome and next season's crop vigour in independent trial fields. With a coefficient of determination value of 0.69 for the best-performing variety, the model accurately predicted vigour in seed tubers from fields not previously included in the analysis. Moreover, the model identified key microbial indicators of vigour from which a Streptomyces, an Acinetobacter and a Cellvibrio amplicon sequence variant stood out as the most important contributors to the model's accuracy. This study shows that seed potato vigour can be reliably predicted based on the microbiota associated with seed tuber eyes, potentially guiding future microbiome-informed breeding strategies.
Collapse
Affiliation(s)
- Yang Song
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Elisa Atza
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Doretta Akkermans
- HZPC Research B.V., Department of Plant Pathology, Metslawier, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter G H de Rooij
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - David Kakembo
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Neil V Budko
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Chen P, Li J, Wei D, Chen Y, He C, Bao H, Jia Z, Ruan Y, Fan P. Soil fungal networks exhibit sparser interactions than bacterial networks in diseased banana plantations. Appl Environ Microbiol 2024; 90:e0157224. [PMID: 39513723 PMCID: PMC11653737 DOI: 10.1128/aem.01572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Soil microorganisms play a crucial role in suppressing soil-borne diseases. Although the composition of microbial communities in healthy versus diseased soils is somewhat understood, the interplay between microbial interactions and disease incidence remains unclear. This study used 16S rRNA and fungal internal transcribed spacer (ITS) sequencing to investigate the bacterial and fungal community composition in three soil types: forest soil (Z), soil from healthy banana plantations (H), and soil from diseased banana plantations (D). Principal coordinate analysis revealed significant differences among the bacterial and fungal community structures of the three soil types. Compared with those in forest soil, bacterial and fungal diversities significantly decreased in diseased banana soil. Key microorganisms, including the bacteria Chloroflexi and Pseudonocardia and the fungi Mortierellomycota and Moesziomyces, were significantly increased in soil from diseased banana plantations. Redundancy analysis revealed that total nitrogen and available phosphorus were the primary drivers of the soil microbial community structure. The neutral community model posited that the bacterial community assembly in banana plantations is predominantly governed by stochastic processes, whereas the fungal community assembly in banana plantations is primarily driven by deterministic processes. Furthermore, co-occurrence network analysis revealed that the proportion of positive edges in the fungal network of soil from diseased banana plantations was 5.92 times lower than that in soil from healthy banana plantations, and its fungal network structure was sparse and simple. In conclusion, reduced interactions within the fungal network were significantly linked to the epidemiology of Fusarium wilt. These findings underscore the critical role of soil fungal communities in modulating pathogens. IMPORTANCE Soil microorganisms are pivotal in mitigating soil-borne diseases. The intricate mechanisms underlying the interactions among microbes and their impact on disease occurrence remain enigmatic. This study underscores that a reduction in fungal network interactions correlates with the incidence of soil-borne Fusarium wilt.
Collapse
Affiliation(s)
- Peng Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinku Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Dandan Wei
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yanlin Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chen He
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huanyu Bao
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhongjun Jia
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunze Ruan
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| | - Pingshan Fan
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
13
|
Tang S, Luo Z, Zhu L, Yu Y, Zhu M, Yin H, Han L, Xu L, Niu J. Electrochemical degradation of aromatic organophosphate esters: Mechanisms, toxicity changes, and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136455. [PMID: 39522156 DOI: 10.1016/j.jhazmat.2024.136455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Aromatic organophosphate esters (AOPEs), including triphenyl phosphate (TPHP), tricresyl phosphate (TCP), and 2-ethylhexyl diphenyl phosphate (EHDPP), pose significant health and ecological risks. Electrochemical advanced oxidation process (EAOP) is effective in removing refractory pollutants. In this study, the degradation performance and detoxication ability of AOPEs by EAOP were investigated. Hydroxylation, oxidation, and bond cleavage products were identified as major degradation products (DPs) due to the reaction with ·OH and O₂·-. Toxicity assessments using ecological structure activity relationship (ECOSAR) model and flow cytometry (FCM) revealed the cytotoxicity and aquatic toxicity for DPs were significantly decreased. 16S rRNA gene sequencing of sediment exposure to AOPEs and DPs were applied to assess ecological toxicity, and results showed reduced bacterial richness and diversity with EHDPP and TCP, while TPHP slightly enhanced richness. AOPEs and DPs altered bacterial genera involved in carbon, nitrogen, sulfur cycling and organic compound degradation. Bacterial community assembly suggested elevated stochastic processes and reduced ecotoxicity, confirming AOPEs can be effectively detoxified by 10-min EAOP treatment. Molecular ecological network analysis indicated increased complexity and stability of bacterial communities with DPs. These findings comprehensively revealed the toxicity of AOPEs and their DPs and provided the first evidence of effective degradation and detoxification by EAOP from ecotoxicological perspective.
Collapse
Affiliation(s)
- Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Linbin Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Minghan Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
14
|
Yang J, Jia S, Li T, Zhang J, Zhang Y, Hao J, Zhao J. Delayed Sowing Reduced Verticillium Wilt by Altering Soil Temperature and Humidity to Enhance Beneficial Rhizosphere Bacteria of Sunflower. Microorganisms 2024; 12:2416. [PMID: 39770619 PMCID: PMC11676687 DOI: 10.3390/microorganisms12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. Soil was collected from multiple locations with different sowing dates to understand the underlying biological mechanisms driving this phenomenon. The soil bacterial community was characterized through 16S rRNA gene amplicon sequencing performed on the Illumina MiSeq platform, followed by comprehensive bioinformatics analysis. Microsclerotia numbers in soil were detected using both NP-10 selective medium and quantitative polymerase chain reaction (qPCR). By delaying the sowing date, the number of microsclerotia in soil and the biomass of V. dahliae colonized inside sunflower roots were reduced during the early developmental stages (V2-V6) of sunflowers. Amplicon sequencing revealed an increased abundance of bacterial genera, such as Pseudomonas, Azoarcus, and Bacillus in soil samples collected from delayed sowing plots. Five bacterial strains isolated from the delayed sowing plot exhibited strong antagonistic effects against V. dahliae. The result of the pot experiments indicated that supplying two different synthetic communities (SynComs) in the pot did increase the control efficiencies on SVW by 19.08% and 37.82% separately. Additionally, soil temperature and humidity across different sowing dates were also monitored, and a significant correlation between disease severity and environmental factors was observed. In conclusion, delayed sowing appears to decrease microsclerotia levels by recruiting beneficial rhizosphere bacteria, thereby reducing the severity of SVW.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Shuo Jia
- Hinngan League Institute of Agricultural and Husbandry Sciences, Ulanhot 134000, China
| | - Tie Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Yuanyuan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of CAAS, Hohhot 010010, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| |
Collapse
|
15
|
Geat N, Singh D, Saha P, Jatoth R, Babu PL, Devi GSR, Lakhran L, Singh D. Deciphering Phyllomicrobiome of Cauliflower Leaf: Revelation by Metagenomic and Microbiological Analysis of Tolerant and Susceptible Genotypes Against Black Rot Disease. Curr Microbiol 2024; 81:439. [PMID: 39488668 DOI: 10.1007/s00284-024-03969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Understanding the phyllomicrobiome dynamics in cauliflower plants holds significant promise for enhancing crop resilience against black rot disease, caused by Xanthomonas campestris pv. campestris. In this study, the culturable microbiome and metagenomic profile of tolerant (BR-161) and susceptible (Pusa Sharad) cauliflower genotypes were investigated to elucidate microbial interactions associated with disease tolerance. Isolation of phyllospheric bacteria from asymptomatic and black rot disease symptomatic leaves of tolerant and susceptible cultivars yielded 46 diverse bacterial isolates. Molecular identification via 16S rRNA sequencing revealed differences in the diversity of microbial taxa between genotypes and health conditions. Metagenomic profiling using next-generation sequencing elucidated distinct microbial communities, with higher diversity observed in black rot disease symptomatic leaf of BR-161. Alpha and beta diversity indices highlighted differences in microbial community structure and composition between genotypes and health conditions. Taxonomic analysis revealed a core microbiome consisting of genera such as Xanthomonas, Psychrobacillus, Lactobacillus, and Pseudomonas across all the samples. Validation through microbiological methods confirmed the presence of these key genera. The findings provide novel insights into the phyllomicrobiome of black rot-tolerant and susceptible genotypes of cauliflower. Harnessing beneficial microbial communities identified in this study offers promising avenues for developing sustainable strategies to manage black rot disease and enhance cauliflower crop health and productivity.
Collapse
Affiliation(s)
- Neelam Geat
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Agricultural Research Station, Mandor, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Crop Protection, ICAR- Indian Institute of Sugarcane Research, Lucknow, 226002, India.
| | - Partha Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajender Jatoth
- Agriculture College, Sircilla, Professor Jayashanker Telangana State Agricultural University Hyderabad, Telangana, 500030, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Lalita Lakhran
- Agricultural Research Station, Mandor, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Devendra Singh
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India.
| |
Collapse
|
16
|
Chen X, Jiang Z, He P, Tang X, Song H, Zhang T, Wei Z, Dong T, Zheng S, Tu X, Qin J, Chen J, Wang W. Effects of Anthracnose on the Structure and Diversity of Endophytic Microbial Communities in Postharvest Avocado Fruits. AGRONOMY 2024; 14:2487. [DOI: 10.3390/agronomy14112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study aimed to provide foundational research for the biological control of postharvest avocado fruits anthracnose and establish a microbial system of postharvest avocado fruits. The high-throughput sequencing of avocado fruits from the anthracnose-infected and healthy groups was performed using Illumina NovaSeq second-generation sequencing technology. The results revealed that, except for Colletotrichum sp. strain 38#, there were differences in the bacterial community structure of avocados before and after infection, as determined through alpha and beta diversity analysis. Additionally, there were significant differences in the endophytic fungal community structure, allowing clear differentiation between the infected and healthy avocados. The endophytic bacterial community was primarily composed of 4 phyla and 10 genera, with the Bacteroidota phylum and Chryseobacterium genus demonstrating sensitivity to anthracnose pathogens, as evidenced by a decrease in their relative abundance after infection. The endophytic fungal community was characterized by 3 phyla and 10 genera. After infection, the relative abundance of 2 phyla (Anthophyta and Basidiomycota) and 7 genera (Eucalyptus, Candida, Kluyveromyces, Talaromyces, Oidiodendron, Nigrospora, and Pestalotiopsis) decreased, whereas the relative abundance of the Colletotrichum genus increased dramatically. The LEfSe (Linear discriminant analysis Effect Size) analysis indicated that significant biomarkers were more prevalent in endophytic bacteria than in endophytic fungi in the avocados. In endophytic bacteria, the key biomarkers included the Firmicutes phylum (Bacilli class), Proteobacteria phylum (Gammaproteobacteria class, Pseudomonadales order, Pseudomonadaceae family, and Pseudomonas genus), Flavobacteriales order, Weeksellaceae family, and Chryseobacterium genus. In endophytic fungi, the important biomarkers were Saccharomycetes class (Saccharomycetales order), Glomerellales order (Glomerellaceae family and Colletotrichum genus), and Botryosphaeriales order (Botryosphaeriaceae family and Lasiodiplodia genus). These results may provide a theoretical basis for the development of future biological agents for avocado anthracnose.
Collapse
Affiliation(s)
- Xi Chen
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Zhuoen Jiang
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Peng He
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Xiuhua Tang
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Haiyun Song
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Tao Zhang
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Zhejun Wei
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Tao Dong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shufang Zheng
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Xinghao Tu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jian Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Sciences Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| |
Collapse
|
17
|
Ren H, Huang X, Wang Z, Abdallah Y, Ayoade SO, Qi X, Yu Z, Wang Q, Mohany M, Al-Rejaie SS, Li B, Li G. The epidemic occurrence of decline disease in bayberry trees altered plant and soil related microbiome and metabolome. ENVIRONMENTAL MICROBIOME 2024; 19:79. [PMID: 39449039 PMCID: PMC11515357 DOI: 10.1186/s40793-024-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND In China, decline disease with unknown etiology appeared as an epidemic among bayberry trees in the southern area of the Yangtze River. Furthermore, the use of beneficial microbes has been reported to be able to reduce the incidence of this disease, emphasizing the association of this disease with microorganisms. Therefore, it has become critical to uncover the microbiome's function and related metabolites in remodeling the immunity of bayberry trees under biotic or abiotic stresses. RESULTS The amplicon sequencing data revealed that decline disease significantly altered bacterial and fungal communities, and their metabolites in the four distinct niches, especially in the rhizosphere soils and roots. Furthermore, the microbial communities in the four niches correlated with the metabolites of the corresponding niches of bayberry plants, and the fungal and bacterial networks of healthy trees were shown to be more complex than those of diseased trees. In addition, the role of microbiome in the resistance of bayberry trees to the occurrence of decline disease was justified by the isolation, identification, and characterization of important microorganisms such as significantly enriched Bacillus ASV804, Pseudomonas ASV815 in healthy plants, and significantly enriched Stenotrophomonas ASV719 in diseased plants. CONCLUSION Overall, our study revealed that the occurrence of decline disease altered the microbiome and its metabolites in four ecological niches in particular rhizosphere soils and roots of bayberry, which provides new insight into the control of bayberry decline disease.
Collapse
Affiliation(s)
- Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Solabomi Olaitan Ayoade
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
18
|
Wu N, Shi W, Zhang L, Wang H, Liu W, Ren Y, Li X, Gao Z, Wang X. Dynamic alterations and ecological implications of rice rhizosphere bacterial communities induced by an insect-transmitted reovirus across space and time. MICROBIOME 2024; 12:189. [PMID: 39363340 PMCID: PMC11448278 DOI: 10.1186/s40168-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cereal diseases caused by insect-transmitted viruses are challenging to forecast and control because of their intermittent outbreak patterns, which are usually attributed to increased population densities of vector insects due to cereal crop rotations and indiscriminate use of pesticides, and lack of resistance in commercial varieties. Root microbiomes are known to significantly affect plant health, but there are significant knowledge gaps concerning epidemics of cereal virus diseases at the microbiome-wide scale under a variety of environmental and biological factors. RESULTS Here, we characterize the diversity and composition of rice (Oryza sativa) root-associated bacterial communities after infection by an insect-transmitted reovirus, rice black-streaked dwarf virus (RBSDV, genus Fijivirus, family Spinareoviridae), by sequencing the bacterial 16S rRNA gene amplified fragments from 1240 samples collected at a consecutive 3-year field experiment. The disease incidences gradually decreased from 2017 to 2019 in both Langfang (LF) and Kaifeng (KF). BRSDV infection significantly impacted the bacterial community in the rice rhizosphere, but this effect was highly susceptible to both the rice-intrinsic and external conditions. A greater correlation between the bacterial community in the rice rhizosphere and those in the root endosphere was found after virus infection, implying a potential relationship between the rice-intrinsic conditions and the rhizosphere bacterial community. The discrepant metabolites in rhizosphere soil were strongly and significantly correlated with the variation of rhizosphere bacterial communities. Glycerophosphates, amino acids, steroid esters, and triterpenoids were the metabolites most closely associated with the bacterial communities, and they mainly linked to the taxa of Proteobacteria, especially Rhodocyclaceae, Burkholderiaceae, and Xanthomonadales. In addition, the greenhouse pot experiments demonstrated that bulk soil microbiota significantly influenced the rhizosphere and endosphere communities and also regulated the RBSDV-mediated variation of rhizosphere bacterial communities. CONCLUSIONS Overall, this study reveals unprecedented spatiotemporal dynamics in rhizosphere bacterial communities triggered by RBSDV infection with potential implications for disease intermittent outbreaks. The finding has promising implications for future studies exploring virus-mediated plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P. R. China.
| | - Xiangdong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
19
|
Huang H, Li M, Guo Q, Zhang R, Zhang Y, Luo K, Chen Y. Influence of Drought Stress on the Rhizosphere Bacterial Community Structure of Cassava ( Manihot esculenta Crantz). Int J Mol Sci 2024; 25:7326. [PMID: 39000433 PMCID: PMC11242396 DOI: 10.3390/ijms25137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.
Collapse
Affiliation(s)
- Huling Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mingchao Li
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiying Guo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yindong Zhang
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Kai Luo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Zhang S, Zhang C, Wu J, Liu S, Zhang R, Handique U. Isolation, characterization and application of noble bacteriophages targeting potato common scab pathogen Streptomyces stelliscabiei. Microbiol Res 2024; 283:127699. [PMID: 38520838 DOI: 10.1016/j.micres.2024.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Bacteriophages have emerged as promising alternatives to pesticides for controlling bacterial pathogens in crops. Among these pathogens, Streptomyces stelliscabiei (syn. S. stelliscabiei) is a primary causative agent of potato common scab (PCS), resulting in substantial global economic losses. The traditional management methods for PCS face numerous challenges, highlighting the need for effective and environmentally friendly control strategies. In this study, we successfully isolated three novel bacteriophages, namely Psst1, Psst2, and Psst4, which exhibited a broad host range encompassing seven S. stelliscabiei strains. Morphological analysis revealed their distinct features, including an icosahedral head and a non-contractile tail. These phages demonstrated stability across a broad range of temperatures (20-50°C), pH (pH 3-11), and UV exposure time (80 min). Genome sequencing revealed double-stranded DNA phage with open reading frames encoding genes for phage structure, DNA packaging and replication, host lysis and other essential functions. These phages lacked genes for antibiotic resistance, virulence, and toxicity. Average nucleotide identity, phylogenetic, and comparative genomic analyses classified the three phages as members of the Rimavirus genus, with Psst1 and Psst2 representing novel species. All three phages efficiently lysed S. stelliscabiei in the liquid medium and alleviated scab symptom development and reduced pathogen abundance on potato slices. Furthermore, phage treatments of radish seedlings alleviated the growth inhibition caused by S. stelliscabiei with no disease symptoms. In soil potted experiments, phages significantly reduced disease incidence by 40%. This decrease is attributed to a reduction in pathogen density and the selection of S. stelliscabiei strains with reduced virulence and slower growth rates in natural environments. Our study is the first to report the isolation of three novel phages that infect S. stelliscabiei as a host bacterium. These phages exhibit a broad host range, and demonstrate stability under a variety of environmental conditions. Additionally, they demonstrate biocontrol efficacy against bacterial infections in potato slices, radish seedlings, and potted experiments, underscoring their significant potential as biocontrol agents for the effective management of PCS.
Collapse
Affiliation(s)
- Shihe Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Cheligeer Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Jian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Simiao Liu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Utpal Handique
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
21
|
Li X, Ren X, Ibrahim E, Kong H, Wang M, Xia J, Wang H, Shou L, Zhou T, Li B, Yan J. Response of Chinese cabbage ( Brassica rapa subsp. pekinensis) to bacterial soft rot infection by change of soil microbial community in root zone. Front Microbiol 2024; 15:1401896. [PMID: 38784798 PMCID: PMC11111923 DOI: 10.3389/fmicb.2024.1401896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Chinese cabbage, scientifically known as Brassica rapa subsp. pekinensis, is a highly popular vegetable in China for its delectable taste. However, the occurrence of bacterial soft rot disease poses a significant threat to its growth and overall development. Consequently, this study aimed to explore the defense mechanisms employed by Chinese cabbage against bacterial soft rot disease. Specifically, the investigation focused on understanding the relationship between the disease and the microbial communities present in the soil surrounding the roots of Chinese cabbage. Significant disparities were observed in the composition of microbial communities present in the root-zone soil of healthy Chinese cabbage plants compared to those affected by Pectobacterium brasiliense-caused soft rot disease. The analysis of 16S rRNA gene high-throughput sequencing results revealed a lower abundance of Proteobacteria (8.39%), Acidobacteriot (0.85), Sphingomonas (3.51%), and Vicinamibacteraceae (1.48%), whereas Firmicutes (113.76%), Bacteroidota (8.71%), Chloroflexi (4.89%), Actinobacteriota (1.71%), A4b (15.52%), Vicinamibacterales (1.62%), and Gemmatimonadaceae (1.35%) were more prevalent in healthy plant soils. Similarly, the analysis of ITS gene high-throughput sequencing results indicated a reduced occurrence of Chytridiomycota (23.58%), Basidiomycota (21.80%), Plectosphaerella (86.22%), and Agaricomycetes (22.57%) in healthy soils. In comparison, Mortierellomycota (50.72%), Ascomycota (31.22%), Podospora (485.08%), and Mortierella (51.59%) were more abundant in healthy plant soils. In addition, a total of 15 bacterial strains were isolated from the root-zone soil of diseased Chinese cabbage plants. These isolated strains demonstrated the ability to fix nitrogen (with the exception of ZT20, ZT26, ZT41, ZT45, and ZT61), produce siderophores and indole acetic acid (IAA), and solubilize phosphate. Notably, ZT14 (Citrobacter freundii), ZT33 (Enterobacter cloacae), ZT41 (Myroides odoratimimus), ZT52 (Bacillus paramycoides), ZT58 (Klebsiella pasteurii), ZT45 (Klebsiella aerogenes), and ZT32 (Pseudomonas putida) exhibited significant growth-promoting effects as determined by the plant growth promotion (PGP) tests. Consequently, this investigation not only confirmed the presence of the soft rot pathogen in Chinese cabbage plants in Hangzhou, China, but also advanced our understanding of the defense mechanisms employed by Chinese cabbage to combat soft rot-induced stress. Additionally, it identified promising plant-growth-promoting microbes (PGPMs) that could be utilized in the future to enhance the Chinese cabbage industry.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Haimin Kong
- Zhejiang Management Station of Cropland Quality and Fertilizer, Hangzhou, China
| | - Maofeng Wang
- Agricultural Office of Daciyan Town, Jiande, China
| | - Jiaojiao Xia
- Soil Fertilizer and Plant Protection Station in Qingtian County, Qingtian, Zhejiang, China
| | - Hong Wang
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Linfei Shou
- Station for the Plant Protection and Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Tiefeng Zhou
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Liu Z, Zhang J, Fan C, Sun S, An X, Sun Y, Gao T, Zhang D. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with fusarium oxysporum f. sp. cucumerinum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105875. [PMID: 38685217 DOI: 10.1016/j.pestbp.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Fusarium oxysporum (FO) is a typical soil-borne pathogenic fungus, and the cucumber wilt disease caused by F. oxysporum f. sp. cucumerinum (FOC) seriously affects crop yield and quality. Vermiculite is increasingly being used as a culture substrate; nevertheless, studies exploring the effectiveness and mechanisms of biocontrol bacteria in this substrate are limited. In this study, vermiculite was used as a culture substrate to investigate the control effect of Bacillus subtilis strain Z-14 on cucumber wilt and the rhizospheric microecology, focusing on colonization ability, soil microbial diversity, and rhizosphere metabolome. Pot experiments showed that Z-14 effectively colonized the cucumber roots, achieving a controlled efficacy of 61.32% for wilt disease. It significantly increased the abundance of Bacillus and the expression of NRPS and PKS genes, while reducing the abundance of FO in the rhizosphere. Microbial diversity sequencing showed that Z-14 reduced the richness and diversity of the rhizosphere bacterial community, increased the richness and diversity of the fungal community, and alleviated the effect of FO on the community structure of the cucumber rhizosphere. The metabolomics analysis revealed that Z-14 affected ABC transporters, amino acid synthesis, and the biosynthesis of plant secondary metabolites. Additionally, Z-14 increased the contents of phenylacetic acid, capsidol, and quinolinic acid, all of which were related to the antagonistic activity in the rhizosphere. Z-14 exhibited a significant control effect on cucumber wilt and influenced the microflora and metabolites in rhizospheric vermiculite, providing a theoretical basis for further understanding the control effect and mechanism of cucumber wilt in different culture substrates.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Jizong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Xutong An
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Yanheng Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China.
| |
Collapse
|
23
|
Zheng X, Zheng Y, Chen T, Hou C, Zhou L, Liu C, Zheng J, Hu R. Effect of Laryngopharyngeal Reflux and Potassium-Competitive Acid Blocker (P-CAB) on the Microbiological Comprise of the Laryngopharynx. Otolaryngol Head Neck Surg 2024; 170:1380-1390. [PMID: 38385787 DOI: 10.1002/ohn.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To probe the microbiota composition progressing from healthy individuals to those with laryngopharyngeal reflux disease (LPRD) and subsequently undergoing potassium-competitive acid inhibitor (P-CAB) therapy. STUDY DESIGN Prospective case-control study. SETTING Academic Medical Center. METHODS Forty patients with LPRD and 51 patients without LPRD were recruited. An 8-week P-CAB therapy was initiated (post-T-LPRD), and 39 had return visits. In total, 130 laryngopharyngeal saliva samples were collected and sequenced by targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene using an Illumina MiSeq. Amplicon sequence variants (ASVs) and clinical indices were analyzed. RESULTS Alpha and beta diversities were compared among the non-LPRD, LPRD, and post-T-LPRD groups, and the Observed_ASVs were not significantly different. At the same time, the Shannon and Simpson indices, unweighted Unifrac, weighted Unifrac, and binary Jaccard distance were significantly different between non-LPRD and LPRD groups. In addition, significant differences were found in the abundance of Streptococcus, Prevotella, and Prevotellaceae in the LPRD versus non-LPRD groups, and Neisseria, Leptotrichia, and Allprevotella in the LPRD versus post-T-LPRD groups. The genera model was used to distinguish patients with LPRD from those without, and a better receiver operating characteristic curve was formed after combining the clinical indices of reflux symptom index, reflux finding score, and pepsin, with an area under the curve of 0.960. CONCLUSION Laryngopharyngeal microbial communities changed after laryngopharyngeal reflux and were modified further after P-CAB treatment, which provides a potential diagnostic value for LPRD, especially when combined with clinical indices.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yujin Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ting Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chenjie Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chaofeng Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jingyi Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Renyou Hu
- Chongqing Jinshan Science & Technology (Group) Co. Ltd., Chongqing, China
| |
Collapse
|
24
|
Lyu Q, Feng Z, Liu Y, Wang J, Xu L, Tian X, Yan Z, Ji G. Analysis of latrine fecal odor release pattern and the deodorization with composited microbial agent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:371-384. [PMID: 38432182 DOI: 10.1016/j.wasman.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
As an important source of malodor, the odor gases emitted from public toilet significantly interfered the air quality of living surroundings, resulting in environmental problem which received little attention before. Thus, this paper explored the odor release pattern of latrine feces and deodorization effect with composited microbial agent in Chengdu, China. The odor release rules were investigated in sealed installations with a working volume of 9 L for 20 days. The odor units (OU), ammonia (NH3), hydrogen sulfide (H2S) and total volatile organic compounds (TVOC) were selected to assess the release of malodorous gases under different temperature and humidity, while the highest malodor release was observed under 45℃, with OU and TVOC concentration was 643.91 ± 2.49 and 7767.33 ± 33.50 mg/m3, respectively. Microbes with deodorization ability were screened and mixed into an agent, which composited of Bacillus amyloliquefaciens, Lactobacillus plantarum, Enterococcus faecalis and Pichia fermentans. The addition of microbial deodorant could significantly suppress the release of malodor gas during a 20-day trial, and the removal efficiency of NH3, H2S, TVOC and OU was 81.50 %, 38.31 %, 64.38 %, and 76.86 %, respectively. The analysis of microbial community structure showed that temperature was the main environmental factor driving the microbial variations in latrine feces, while Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were the main bacteria phyla involved in the formation and emission of malodorous gases. However, after adding the deodorant, the abundance of Bacteroidetes, Proteobacteria and Actinobacteria were decreased, while the abundance of Firmicutes was increased. Furthermore, P. fermentans successfully colonized in fecal substrates and became the dominant fungus after deodorization. These results expanded the understanding of the odor release from latrine feces, and the composited microbial deodorant provided a valuable basis to the management of odor pollution.
Collapse
Affiliation(s)
- Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhaozhuo Feng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
25
|
Sun D, Huang Y, Wang Z, Tang X, Ye W, Cao H, Shen H. Soil microbial community structure, function and network along a mangrove forest restoration chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169704. [PMID: 38163592 DOI: 10.1016/j.scitotenv.2023.169704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Mangrove forests have high ecological, social and economic values, but due to environmental changes and human activities, natural mangrove forests have experienced serious degradations and reductions in distribution area worldwide. In the coastal zones of southern China, an introduced mangrove species, Sonneratia apetala, has been extensively used for mangrove restoration because of its rapid growth and strong environmental adaptability. However, little is known about how soil microorganisms vary with the restoration stages of the afforested mangrove forests. Here, we examined the changes in soil physicochemical properties and microbial biomass, community structure and function, and network in three afforested S. apetala forests with restoration time of 7, 12, and 18 years and compared them with a bare flat and a 60-year-old natural Kandelia obovata forest in a mangrove nature reserve. Our results showed that the contents of soil salinity, organic carbon, total nitrogen, ammonium nitrogen, and microbial biomass increased, while soil pH and bacterial alpha diversity decreased with afforestation age. Soil microbial community structure was significantly affected by soil salinity, organic carbon, pH, total nitrogen, ammonium nitrogen, available phosphorus, and available kalium, and susceptibility to environmental factors was more pronounced in bacterial than fungal community structure. The relative abundances of aerobic chemoheterotrophy were significantly higher in 12- and 18-year-old S. apetala than in K. obovata forest, while that of sulfate-reducing bacteria showed a decreasing trend with afforestation age. The abundance of dung saprotroph was significantly higher in 12- and 18-year-old S. apetala forests than in the natural forest. With the increasing afforestation age, the modularity of microbial networks increased, while stability and robustness decreased. Our results suggest that planting S. apetala contributes to improving soil fertility and microbial biomass but may make soil microbial networks more vulnerable.
Collapse
Affiliation(s)
- Dangge Sun
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyi Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Song Y, Spooren J, Jongekrijg CD, Manders EJHH, de Jonge R, Pieterse CMJ, Bakker PAHM, Berendsen RL. Seed tuber imprinting shapes the next-generation potato microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:12. [PMID: 38383442 PMCID: PMC10882817 DOI: 10.1186/s40793-024-00553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. RESULTS We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. CONCLUSIONS The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation.
Collapse
Affiliation(s)
- Yang Song
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jelle Spooren
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper D Jongekrijg
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ellen J H H Manders
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
27
|
Kang H, Chai A, Lin Z, Shi Y, Xie X, Li L, Fan T, Xiang S, Xie J, Li B. Deciphering Differences in Microbial Community Diversity between Clubroot-Diseased and Healthy Soils. Microorganisms 2024; 12:251. [PMID: 38399655 PMCID: PMC10893227 DOI: 10.3390/microorganisms12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.
Collapse
Affiliation(s)
- Huajun Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Zihan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| |
Collapse
|
28
|
Kang H, Lin Z, Yuan X, Shi Y, Xie X, Li L, Fan T, Li B, Chai A. The occurrence of clubroot in cruciferous crops correlates with the chemical and microbial characteristics of soils. Front Microbiol 2024; 14:1293360. [PMID: 38260873 PMCID: PMC10800485 DOI: 10.3389/fmicb.2023.1293360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, is a serious soil-borne disease in Brassica crops worldwide. It seriously occurs in conducive soils of southern China, while never happens in some areas of northern China with suppressive soils. To understanding the differences, we measured the soil suppressiveness, chemical properties, and microbial communities in suppressive and conducive soils by bioassay and sequencing of 16S and 18S rRNA amplicons. The biological basis of clubroot suppressiveness was supported by the ability to remove it by pasteurization. The pH value and calcium content in the suppressive soils were higher than those in the conducive soils. Suppressive soils were associated with higher fungal diversity and bacterial abundance. The fungal phyla Chytridiomycota, Olpidiomycota, and Mucoromycota and the bacterial phyla Acidobacteriota and Gemmatimonadota were enriched in suppressive soils. More abundant beneficial microbes, including Chaetomium and Lysobacter, were found in the suppressive soils than in the conducive soils. Molecular ecological network analysis revealed that the fungal network of suppressive soils was more complex than that of conducive soils. Our results indicate that plant health is closely related to soil physicochemical and biological properties. This study is of great significance for developing strategies for clubtroot disease prevention and control.
Collapse
Affiliation(s)
- Huajun Kang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zihan Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Luo X, Sun K, Li HR, Zhang XY, Pan YT, Luo DL, Wu YB, Jiang HJ, Wu XH, Ma CY, Dai CC, Zhang W. Depletion of protective microbiota promotes the incidence of fruit disease. THE ISME JOURNAL 2024; 18:wrae071. [PMID: 38691444 PMCID: PMC11654636 DOI: 10.1093/ismejo/wrae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.
Collapse
Affiliation(s)
- Xue Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Hao-Ran Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Xiang-Yu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Yi-Bo Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| |
Collapse
|
30
|
Petrushin IS, Filinova NV, Gutnik DI. Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. Int J Mol Sci 2024; 25:750. [PMID: 38255824 PMCID: PMC10815375 DOI: 10.3390/ijms25020750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Every land plant exists in a close relationship with microbial communities of several niches: rhizosphere, endosphere, phyllosphere, etc. The growth and yield of potato-a critical food crop worldwide-highly depend on the diversity and structure of the bacterial and fungal communities with which the potato plant coexists. The potato plant has a specific part, tubers, and the soil near the tubers as a sub-compartment is usually called the "geocaulosphere", which is associated with the storage process and tare soil microbiome. Specific microbes can help the plant to adapt to particular environmental conditions and resist pathogens. There are a number of approaches to modulate the microbiome that provide organisms with desired features during inoculation. The mechanisms of plant-bacterial communication remain understudied, and for further engineering of microbiomes with particular features, the knowledge on the potato microbiome should be summarized. The most recent approaches to microbiome engineering include the construction of a synthetic microbial community or management of the plant microbiome using genome engineering. In this review, the various factors that determine the microbiome of potato and approaches that allow us to mitigate the negative impact of drought and pathogens are surveyed.
Collapse
Affiliation(s)
- Ivan S. Petrushin
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (N.V.F.); (D.I.G.)
| | | | | |
Collapse
|
31
|
Zhao J, Cheng Y, Jiang N, Qiao G, Qin W. Rhizosphere-associated soil microbiome variability in Verticillium wilt-affected Cotinus coggygria. Front Microbiol 2024; 14:1279096. [PMID: 38249458 PMCID: PMC10797040 DOI: 10.3389/fmicb.2023.1279096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Verticillium wilt is the most devastating soil-borne disease affecting Cotinus coggygria in the progress of urban landscape construction in China. Methods To assess the variability of the rhizosphere-associated soil microbiome in response to Verticillium wilt occurrence, we investigated the microbial diversity, taxonomic composition, biomarker species, and co-occurrence network of the rhizosphere-associated soil in Verticillium wilt-affected C. coggygria using Illumina sequencing. Results The alpha diversity indices of the rhizosphere bacteria in Verticillium wilt-affected plants showed no significant variability compared with those in healthy plants, except for a moderate increase in the Shannon and Invsimpson indices, while the fungal alpha diversity indices were significantly decreased. The abundance of certain dominant or crucial microbial taxa, such as Arthrobacter, Bacillus, Streptomyces, and Trichoderma, displayed significant variations among different soil samples. The bacterial and fungal community structures exhibited distinct variability, as evidenced by the Bray-Curtis dissimilarity matrices. Co-occurrence networks unveiled intricate interactions within the microbial community of Verticillium wilt-affected C. coggygria, with greater edge numbers and higher network density. The phenomenon was more evident in the fungal community, showing increased positive interaction, which may be associated with the aggravation of Verticillium wilt with the aid of Fusarium. The proportions of bacteria involved in membrane transport and second metabolite biosynthesis functions were significantly enriched in the diseased rhizosphere soil samples. Discussion These findings suggested that healthy C. coggygria harbored an obviously higher abundance of beneficial microbial consortia, such as Bacillus, while Verticillium wilt-affected plants may recruit antagonistic members such as Streptomyces in response to Verticillium dahliae infection. This study provides a theoretical basis for understanding the soil micro-ecological mechanism of Verticillium wilt occurrence, which may be helpful in the prevention and control of the disease in C. coggygria from the microbiome perspective.
Collapse
Affiliation(s)
- Juan Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanli Cheng
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Nan Jiang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Guanghang Qiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wentao Qin
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
32
|
Huang Y, Hu H, Yue E, Ying W, Niu T, Yan J, Lu Q, Ruan S. Role of plant metabolites in the formation of bacterial communities in the rhizosphere of Tetrastigma hemsleyanum. Front Microbiol 2023; 14:1292896. [PMID: 38163074 PMCID: PMC10754964 DOI: 10.3389/fmicb.2023.1292896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg, commonly known as Sanyeqing (SYQ), is an important traditional Chinese medicine. The content of bioactive constituents varies in different cultivars of SYQ. In the plant growth related researches, rhizosphere microbiome has gained significant attention. However, the role of bacterial communities in the accumulation of metabolites in plants have not been investigated. Herein, the composition of bacterial communities in the rhizosphere soils and the metabolites profile of different SYQ cultivars' roots were analyzed. It was found that the composition of microbial communities varied in the rhizosphere soils of different SYQ cultivars. The high abundance of Actinomadura, Streptomyces and other bacteria was found to be associated with the metabolites profile of SYQ roots. The findings suggest that the upregulation of rutin and hesperetin may contribute to the high bioactive constituent in SYQ roots. These results provide better understanding of the metabolite accumulation pattern in SYQ, and also provide a solution for enhancing the quality of SYQ by application of suitable microbial consortia.
Collapse
Affiliation(s)
- Yuqing Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Erkui Yue
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Tianxin Niu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
33
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
34
|
Bai XH, Yao Q, Li G, Guan GX, Fan Y, Cao X, Ma HG, Zhang MM, Fang L, Hong A, Zhai D. Bacterial Microbiome Differences between the Roots of Diseased and Healthy Chinese Hickory ( Carya cathayensis) Trees. J Microbiol Biotechnol 2023; 33:1299-1308. [PMID: 37528558 PMCID: PMC10619558 DOI: 10.4014/jmb.2304.04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Carya cathayensis is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in C. cathayensis result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in C. cathayensis are not clearly understood. In this study, Proteobacteria, Acidobacteria, and Actinobacteria were found to be the most dominant bacterial communities (accounting for approximately 80.32% of the total) in the root tissue, rhizosphere soil, and bulk soil of healthy C. cathayensis specimens. Further analysis revealed the abundance of genera belonging to Proteobacteria, namely, Acidibacter, Bradyrhizobium, Paraburkholderia, Sphaerotilus, and Steroidobacter, was higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. In addition, the abundance of four genera belonging to Actinobacteria, namely, Actinoallomurus, Actinomadura, Actinocrinis, and Gaiella, was significantly higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. Altogether, these results suggest that disruption in the balance of these bacterial communities may be associated with the development of root rot in C. cathayensis, and further, our study provides theoretical guidance for the isolation and control of pathogens and diseases related to this important tree species.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| | - Qi Yao
- Forestry Science and Technology Promotion Center of Shexian, Huangshan, Anhui 245200, P.R. China
| | - Genshan Li
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| | - Guan-Xiu Guan
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| | - Yan Fan
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P.R. China
| | - Xiufeng Cao
- Forestry Science and Technology Promotion Center of Shexian, Huangshan, Anhui 245200, P.R. China
| | - Hong-Guang Ma
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| | - Mei-Man Zhang
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| | - Lishan Fang
- Huangshan Tianzhiyuan Agricultural Products Co., Ltd., Huangshan, Anhui 245213, P.R. China
| | - Aijuan Hong
- Huangshan Shanye Local Specialty Co., Ltd., Huangshan, Anhui 245200, P.R. China
| | - Dacai Zhai
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui 245041, P.R. China
| |
Collapse
|
35
|
Khatri S, Chaudhary P, Shivay YS, Sharma S. Role of Fungi in Imparting General Disease Suppressiveness in Soil from Organic Field. MICROBIAL ECOLOGY 2023; 86:2047-2059. [PMID: 37010558 DOI: 10.1007/s00248-023-02211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Soil microbial communities are key players responsible for imparting suppressive potential to the soil against soil-borne phytopathogens. Fungi have an immense potential to inhibit soil-borne phytopathogens, but the fungal counterpart has been less explored in this context. We assessed the composition of fungal communities in soil under long-term organic and conventional farming practice, and control soil. The disease-suppressive potential of organic field was already established. A comparative analysis of the disease suppressiveness contributed by the fungal component of soil from conventional and organic farms was assessed using dual culture assays. The quantification of biocontrol markers and total fungi was done; the characterization of fungal community was carried out using ITS-based amplicon sequencing. Soil from organic field exhibited higher disease-suppressive potential than that from conventional farming, against the pathogens selected for the study. Higher levels of hydrolytic enzymes such as chitinase and cellulase, and siderophore production were observed in soil from the organic field compared to the conventional field. Differences in community composition were observed under conventional and organic farming, with soil from organic field exhibiting specific enrichment of key biocontrol fungal genera. The fungal alpha diversity was lower in soil from the organic field compared to the conventional field. Our results highlight the role of fungi in contributing to general disease-suppressive ability of the soil against phytopathogens. The identification of fungal taxa specifically associated with organic farming can aid in understanding the mechanism of disease suppression under such a practice, and can be exploited to induce general disease suppressiveness in otherwise conducive soil.
Collapse
Affiliation(s)
- Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Priya Chaudhary
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India
| | - Yashbir S Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India.
| |
Collapse
|
36
|
Tie Z, Wang P, Chen W, Tang B, Yu Y, Liu Z, Zhao S, Khan FH, Zhang X, Xi H. Different responses of the rhizosphere microbiome to Verticillium dahliae infection in two cotton cultivars. Front Microbiol 2023; 14:1229454. [PMID: 37637103 PMCID: PMC10450913 DOI: 10.3389/fmicb.2023.1229454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Verticillium wilt is a disastrous disease caused by Verticillium dahliae that severely damages the production of cotton in China. Even under homogeneous conditions, the same cotton cultivar facing V. dahliae tends to either stay healthy or become seriously ill and die. This binary outcome may be related to the interactions between microbiome assembly and plant health. Understanding how the rhizosphere microbiome responds to V. dahliae infection is vital to controlling Verticillium wilt through the manipulation of the microbiome. In this study, we evaluated the healthy and diseased rhizosphere microbiome of two upland cotton cultivars that are resistant to V. dahliae, Zhong 2 (resistant) and Xin 36 (susceptible), using 16S rRNA and ITS high-throughput sequencing. The results showed that the healthy rhizosphere of both resistant cultivar and susceptible cultivar had more unique bacterial ASVs than the diseased rhizosphere, whereas fewer unique fungal ASVs were found in the healthy rhizosphere of resistant cultivar. There were no significant differences in alpha diversity and beta diversity between the resistant cultivar and susceptible cultivar. In both resistant cultivar and susceptible cultivar, bacterial genera such as Pseudomonas and Acidobacteria bacterium LP6, and fungal genera such as Cephalotrichum and Mortierella were both highly enriched in the diseased rhizosphere, and Pseudomonas abundance in diseased rhizospheres was significantly higher than that in the healthy rhizosphere regardless of the cultivar type. However, cultivar and V. dahliae infection can cause composition changes in the rhizosphere bacterial and fungal communities, especially in the relative abundances of core microbiome members, which varied significantly, with different responses in the two cotton cultivars. Analysis of co-occurrence networks showed that resistant cultivar has a more complex network relationship than susceptible cultivar in the bacterial communities, and V. dahliae has a significant impact on the bacterial community structure. These findings will further broaden the understanding of plant-rhizosphere microbiome interactions and provide an integrative perspective on the cotton rhizosphere microbiome, which is beneficial to cotton health and production.
Collapse
Affiliation(s)
- Zhanjiang Tie
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Peng Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Weijian Chen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Binghui Tang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, Xinjiang, China
| | - Yu Yu
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Zheng Liu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Sifeng Zhao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Faisal Hayat Khan
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - XueKun Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Xi
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
37
|
Yang F, Jiang H, Chang G, Liang S, Ma K, Cai Y, Tian B, Shi X. Effects of Rhizosphere Microbial Communities on Cucumber Fusarium wilt Disease Suppression. Microorganisms 2023; 11:1576. [PMID: 37375078 DOI: 10.3390/microorganisms11061576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Cucumber Fusarium wilt is a worldwide soil-borne disease that seriously restricts the yield and quality of cucumber. The rhizosphere soil microbiome, as the first line of defense against pathogens invading plant roots, plays a key role in rhizosphere immune formation and function. The purpose of this study was to reveal the key microecological factors and dominant microbial flora affecting cucumber resistance and susceptibility to Fusarium wilt by analyzing the physical and chemical properties and microbial flora of rhizosphere soil with different degrees of susceptibility and resistance to cucumber Fusarium wilt, thereby laying a foundation to establish cucumber resistance to the Fusarium wilt rhizosphere core microbiome. Firstly, Illumina Miseq sequencing technology was used to evaluate the physical and chemical properties and microbial groups of cucumber rhizosphere soil at different health levels, and the key environmental factors and microbial factors related to cucumber Fusarium wilt were screened out. Subsequently, PICRUSt2 and FUNGuild were used to predict the functions of rhizosphere bacteria and fungi. Combined with functional analysis, the possible interactions among soil physical and chemical properties, cucumber rhizosphere microorganisms, and Fusarium wilt were summarized. The results showed that the available potassium content in the rhizosphere soil of healthy cucumber decreased by 10.37% and 0.56%, respectively, compared with the rhizosphere soil of severely susceptible cucumber and mildly susceptible cucumber. Exchangeable calcium content increased by 25.55% and 5.39%; the α diversity Chao1 index of bacteria and fungi in the rhizosphere soil of healthy cucumber was significantly lower than that in the rhizosphere soil of seriously infected cucumber, and the MBC content of its physical and chemical properties was also significantly lower than that in the rhizosphere soil of seriously infected cucumber. There was no significant difference in the Shannon and Simpson diversity indexes between healthy cucumber rhizosphere soil and seriously infected cucumber rhizosphere soil. The results of the β diversity analysis showed that the bacterial and fungal community structure of healthy cucumber rhizosphere soil was significantly different from that of severely and mildly infected cucumber rhizosphere soil. At the genus level, through statistical analysis, LEfSe analysis, and RDA analysis, the key bacterial and fungal genera with potential biomarker values were screened out as SHA_26, Subgroup_22, MND1, Aeromicrobium, TM7a, Pseudorhodoplanes, Kocuria, Chaetomium, Fusarium, Olpidium, and Scopulariopsis, respectively. The bacteria SHA_26, Subgroup_22, and MND1 related to cucumber Fusarium wilt inhibition belong to Chloroflexi, Acidobacteriota, and Proteobacteria, respectively. Chaetomiacea belongs to Sordariomycates. The results of functional prediction showed that changes to the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway in the bacterial microbiota were concentrated in tetracycline biosynthesis, selenocompound metabolism, lipopolysaccharide biosynthesis, etc., which were mainly involved in the metabolism of terpenoids and polyketides, energy metabolism, metabolism of other amino acids, glycan biosynthesis and metabolism, lipid metabolism, cell growth and death, transcription, metabolism of cofactors and vitamins, and biosynthesis of other secondary metabolites. The difference in fungi was mainly dung saprotroph-ectomycorrhizal-soil saprotroph-wood saprotroph. Through the correlation analysis and functional predictions of the key environmental factors, microbial flora, and cucumber health index in cucumber rhizosphere soil, we determined that the inhibition of cucumber Fusarium wilt was a synergistic effect of environmental factors and microbial flora, and a model diagram was drawn to briefly explain its mechanism. This work will provide a basis for the biological control of cucumber Fusarium wilt in the future.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaozheng Chang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Yuxin Cai
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
38
|
Wang R, Cheng X, Chi D, Liu S, Li Q, Chen B, Xi M. M 1A and m 7G modification-related genes are potential biomarkers for survival prognosis and for deciphering the tumor immune microenvironment in esophageal squamous cell carcinoma. Discov Oncol 2023; 14:99. [PMID: 37314494 DOI: 10.1007/s12672-023-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most common esophageal malignancy, and RNA methylation has been reported to be involved in the tumorigenesis of ESCC. However, no study has explored methylation modifications in m1A and m7G as prognostic markers for survival prediction in ESCC. METHODS Public gene-expression data and clinical annotation of 254 patients obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases were analyzed to identify potential consensus clusters of m1A and m7G modification-related genes. The RNA-seq of 20 patients in Sun Yat-Sen University Cancer Center was used as the validation set. Following screening for relevant differentially expressed genes (DEGs) and enrichment pathways were elucidated. DEGs were used to construct risk models using the randomForest algorithm, and the prognostic role of the models was assessed by applying Kaplan-Meier analysis. Extent of immune cell infiltration, drug resistance, and response to cancer treatment among different clusters and risk groups were also evaluated. RESULTS Consensus clustering analysis based on m1A and m7G modification patterns revealed three potential clusters. In total, 212 RNA methylation-related DEGs were identified. The methylation-associated signature consisting of 6 genes was then constructed to calculate methylation-related score (MRScore) and patients were dived into MRScore-high and MRScore-low groups. This signature has satisfied prognostic value for survival of ESCC (AUC = 0.66, 0.67, 0.64 for 2-, 3-, 4- year OS), and has satisfied performance in the validation SYSUCC cohort (AUC = 0.66 for 2- and 3-year OS). Significant correlation between m1A and m7G modification-related genes and immune cell infiltration, and drug resistance was also observed. CONCLUSIONS Transcriptomic prognostic signatures based on m1A and m7G modification-related genes are closely associated with immune cell infiltration in ESCC patients and have important correlations with the therapeutic sensitivity of multiple chemotherapeutic agents.
Collapse
Affiliation(s)
- Ruixi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Xingyuan Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Dongmei Chi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shiliang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China.
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China.
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
39
|
Tang T, Wang F, Fang G, Mao T, Guo J, Kuang H, Sun G, Guo X, Duan Y, You J. Coptischinensis Franch root rot infection disrupts microecological balance of rhizosphere soil and endophytic microbiomes. Front Microbiol 2023; 14:1180368. [PMID: 37303806 PMCID: PMC10248259 DOI: 10.3389/fmicb.2023.1180368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ecological balance of the plant microbiome, as a barrier against pathogens, is very important for host health. Coptis chinensis is one of the important medicinal plants in China. In recent years, Illumina Miseq high-throughput sequencing technology was frequently used to analyze root rot pathogens and the effects of root rot on rhizosphere microorganisms of C. chinensis. But the effects of root rot infection on rhizosphere microecological balance of C. chinensis have received little attention. Methods In this study, Illumina Miseq high-throughput sequencing technology was applied to analyze the impact on microbial composition and diversity of C. chinensis by root rot. Results The results showed that root rot infection had significant impact on bacterial α-diversity in rhizome samples, but had no significant effect on that in leaf samples and rhizosphere soil samples, while root rot infection exhibited significant impact on the fungal α-diversity in leaf samples and rhizosphere soil samples, and no significant impact on that in rhizome samples. PCoA analysis showed that the root rot infection had a greater impact on the fungal community structure in the rhizosphere soil, rhizome, and leaf samples of C. chinensis than on the bacterial community structure. Root rot infection destroyed the microecological balance of the original microbiomes in the rhizosphere soil, rhizome, and leaf samples of C. chinensis, which may also be one of the reasons for the serious root rot of C. chinensis. Discussion In conclusion, our findings suggested that root rot infection with C. chinensis disrupts microecological balance of rhizosphere soil and endophytic microbiomes. The results of this study can provide theoretical basis for the prevention and control of C. chinensis root rot by microecological regulation.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Guobin Fang
- Hubei Provincial Plant Protection Station, Wuhan, China
| | - Ting Mao
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Jie Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Hui Kuang
- Hubei Provincial Plant Protection Station, Wuhan, China
| | | | - Xiaoliang Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
40
|
Chen S, Cao P, Li T, Wang Y, Liu X. Microbial diversity patterns in the root zone of two Meconopsis plants on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15361. [PMID: 37250704 PMCID: PMC10224674 DOI: 10.7717/peerj.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
In the extreme alpine climate of the Qinghai-Tibet Plateau (QTP), plant growth and reproduction are limited by extremely cold temperatures, low soil moisture, and scarce nutrient availability. The root-associated microbiome indirectly promotes plant growth and plays a role in the fitness of plants on the QTP, particularly in Tibetan medicinal plants. Despite the importance of the root-associated microbiome, little is known about the root zone. This study used high-throughput sequencing to investigate two medicinal Meconopsis plants, M. horridula and M. integrifolia, to determine whether habitat or plant identity had a more significant impact on the microbial composition of the roots. The fungal sequences were obtained using ITS-1 and ITS-2, and bacterial sequences were obtained using 16S rRNA. Different microbial patterns were observed in the microbial compositions of fungi and bacteria in the root zones of two Meconopsis plants. In contrast to bacteria, which were not significantly impacted by plant identity or habitat, the fungi in the root zone were significantly impacted by plant identity, but not habitat. In addition, the synergistic effect was more significant than the antagonistic effect in the correlation between fungi and bacteria in the root zone soil. The fungal structure was influenced by total nitrogen and pH, whereas the structure of bacterial communities was influenced by soil moisture and organic matter. Plant identity had a greater influence on fungal structure than habitat in two Meconopsis plants. The dissimilarity of fungal communities suggests that more attention should be paid to fungi-plant interactions.
Collapse
Affiliation(s)
- Shuting Chen
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ting Li
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yuyan Wang
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Xing Liu
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Li G, Wang K, Qin Q, Li Q, Mo F, Nangia V, Liu Y. Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:19. [PMID: 37039929 PMCID: PMC10090257 DOI: 10.1186/s12284-023-00636-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As climate change events become more frequent, drought is an increasing threat to agricultural production and food security. Crop rhizosphere microbiome and root exudates are critical regulators for drought adaptation, yet our understanding on the rhizosphere bacterial communities and root exudate composition as affected by drought stress is far from complete. In this study, we performed 16S rRNA gene amplicon sequencing and widely targeted metabolomic analysis of rhizosphere soil and root exudates from two contrasting rice genotypes (Nipponbare and Luodao 998) exposed to drought stress. RESULTS A reduction in plant phenotypes was observed under drought, and the inhibition was greater for roots than for shoots. Additionally, drought exerted a negligible effect on the alpha diversity of rhizosphere bacterial communities, but obviously altered their composition. In particular, drought led to a significant enrichment of Actinobacteria but a decrease in Firmicutes. We also found that abscisic acid in root exudates was clearly higher under drought, whereas lower jasmonic acid and L-cystine concentrations. As for plant genotypes, variations in plant traits of the drought-tolerant genotype Luodao 998 after drought were smaller than those of Nipponbare. Interestingly, drought triggered an increase in Bacillus, as well as an upregulation of most organic acids and a downregulation of all amino acids in Luodao 998. Notably, both Procrustes analysis and Mantel test demonstrated that rhizosphere microbiome and root exudate metabolomic profiles were highly correlated. A number of differentially abundant genera responded to drought and genotype, including Streptomyces, Bacillus and some members of Actinobacteria, were significantly associated with organic acid and amino acid contents in root exudates. Further soil incubation experiments showed that Streptomyces was regulated by abscisic acid and jasmonic acid under drought. CONCLUSIONS Our results reveal that both drought and genotype drive changes in the compositions of rice rhizosphere bacterial communities and root exudates under the greenhouse condition, and that organic acid exudation and suppression of amino acid exudation to select specific rhizosphere bacterial communities may be an important strategy for rice to cope with drought. These findings have important implications for improving the adaptability of rice to drought from the perspective of plant-microbe interactions.
Collapse
Affiliation(s)
- Gege Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qun Qin
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas, 999055, Rabat, Morocco
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Wang Z, Hu X, Solanki MK, Pang F. A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5030-5041. [PMID: 36946724 DOI: 10.1021/acs.jafc.2c08017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbes are accepted as the foremost drivers of the rhizosphere ecology that influences plant health in direct or indirect ways. In recent years, the rapid development of gene sequencing technology has greatly facilitated the study of plant microbiome structure and function, and various plant-associated microbiomes have been categorized. Additionally, there is growing research interest in plant-disease-related microbes, and some specific microflora beneficial to plant health have been identified. This Review discusses the plant-associated microbiome's biological control pathways and functions to modulate plant defense against pathogens. How do plant microbiomes enhance plant resistance? How does the plant core microbiome-associated synthetic microbial community (SynCom) improve plant health? This Review further points out the primary need to develop smart agriculture practices using SynComs against plant diseases. Finally, this Review provides ideas for future opportunities in plant disease control and mining new microbial resources.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Xiaohu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice 40-701, Poland
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, Guangxi 537000, China
| |
Collapse
|
43
|
Kuang L, Li T, Wang B, Peng J, Li J, Li P, Jiang J. Diseased-induced multifaceted variations in community assembly and functions of plant-associated microbiomes. Front Microbiol 2023; 14:1141585. [PMID: 37007500 PMCID: PMC10060855 DOI: 10.3389/fmicb.2023.1141585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Plant-associated microorganisms are believed to be part of the so-called extended plant phenotypes, affecting plant growth and health. Understanding how plant-associated microorganisms respond to pathogen invasion is crucial to controlling plant diseases through microbiome manipulation. In this study, healthy and diseased (bacterial wilt disease, BWD) tomato (Solanum lycopersicum L.) plants were harvested, and variations in the rhizosphere and root endosphere microbial communities were subsequently investigated using amplicon and shotgun metagenome sequencing. BWD led to a significant increase in rhizosphere bacterial diversity in the rhizosphere but reduced bacterial diversity in the root endosphere. The ecological null model indicated that BWD enhanced the bacterial deterministic processes in both the rhizosphere and root endosphere. Network analysis showed that microbial co-occurrence complexity was increased in BWD-infected plants. Moreover, higher universal ecological dynamics of microbial communities were observed in the diseased rhizosphere. Metagenomic analysis revealed the enrichment of more functional gene pathways in the infected rhizosphere. More importantly, when tomato plants were infected with BWD, some plant-harmful pathways such as quorum sensing were significantly enriched, while some plant-beneficial pathways such as streptomycin biosynthesis were depleted. These findings broaden the understanding of plant–microbiome interactions and provide new clues to the underlying mechanism behind the interaction between the plant microbiome and BWD.
Collapse
Affiliation(s)
- Lu Kuang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Li
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baozhan Wang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junwei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiangang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Pengfa Li
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Pengfa Li
| | - Jiandong Jiang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiandong Jiang
| |
Collapse
|
44
|
Zhang Y, Cao B, Pan Y, Tao S, Zhang N. Metabolite-Mediated Responses of Phyllosphere Microbiota to Rust Infection in Two Malus Species. Microbiol Spectr 2023; 11:e0383122. [PMID: 36916990 PMCID: PMC10101083 DOI: 10.1128/spectrum.03831-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Plants recruit beneficial microbes to enhance their ability to fight pathogens. However, the current understanding of microbial recruitment is largely limited to belowground systems (root exudates and the rhizosphere). It remains unclear whether the changes in leaf metabolites induced by infectious pathogens can actively recruit beneficial microbes to mitigate the growth of foliar pathogens. In this study, we integrated microbiome and metabolomic analyses to systematically explore the dynamics of phyllosphere fungal and bacterial communities and key leaf metabolites in two crabapple species (Malus sp. "Flame" and Malus sp. "Kelsey") at six stages following infection with Gymnosporangium yamadae. Our results showed that the phyllosphere microbiome changed during lesion expansion, as highlighted by a reduction in bacterial alpha-diversity and an increase in fungal alpha-diversity; a decreasing and then an increasing complexity of the microbial co-occurrence network was observed in Kelsey and a decreasing complexity occurred in Flame. In addition, nucleotide sugars, diarylheptanoids, and carboxylic acids with aromatic rings were more abundant in early stages of collection, which positively regulated the abundance of bacterial orders Pseudomonadales (in Kelsey), Acidimicrobiales, Bacillales, and Flavobacteriales (in Flame). In addition, metabolites such as flavonoids, lignin precursors, terpenoids, coumarins, and quaternary ammonium salts enriched with the expansion of lesions had a positive regulatory effect on fungal families Rhynchogastremataceae and Golubeviaceae (in Flame) and the bacterial order Actinomycetales (in Kelsey). Our findings highlight that plants may also influence phyllosphere microorganisms by adjusting leaf metabolites in response to biotic stress. IMPORTANCE Our findings demonstrate the response patterns of bacterial and fungal communities in the Malus phyllosphere to rust fungus G. yamadae infection, and they also reveal how the phyllosphere microbiome changes with the expansion of lesions. We identified several metabolites whose relative abundance varied significantly with lesion expansion. Using a framework for assessing the role of leaf metabolites in shaping the phyllosphere microbiome of the two Malus species, we identified several specific metabolites that have profoundly selective effects on the microbial community. In conclusion, our study provides new evidence of the ecological niche of the phyllosphere in supporting the "cry for help" strategy for plants.
Collapse
Affiliation(s)
- Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yumei Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| |
Collapse
|
45
|
Li Y, Lei S, Cheng Z, Jin L, Zhang T, Liang LM, Cheng L, Zhang Q, Xu X, Lan C, Lu C, Mo M, Zhang KQ, Xu J, Tian B. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. MICROBIOME 2023; 11:48. [PMID: 36895023 PMCID: PMC9999639 DOI: 10.1186/s40168-023-01484-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.
Collapse
Affiliation(s)
- Ye Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shaonan Lei
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Zhiqiang Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lingyue Jin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Ting Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Linjie Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Qinyi Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Canhua Lan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Chaojun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Baoyu Tian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
46
|
Yan K, Zhou J, Feng C, Wang S, Haegeman B, Zhang W, Chen J, Zhao S, Zhou J, Xu J, Wang H. Abundant fungi dominate the complexity of microbial networks in soil of contaminated site: High-precision community analysis by full-length sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160563. [PMID: 36455747 DOI: 10.1016/j.scitotenv.2022.160563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
During the past decade, the characterization of microbial community in soil of contaminated sites was primarily done by high-throughput short-read amplicon sequencing. However, due to the similarity of 16S rRNA and ITS genes amplicon sequences, the short-read approach often limits the microbial composition analysis at the species level. Here, we simultaneously performed full-length and short-read amplicon sequencing to clarify the community composition and ecological status of different microbial taxa in contaminated soil from a high-resolution perspective. We found that (1) full-length 16S rRNA gene sequencing gave better resolution for bacterial identification at all levels, while there were no significant differences between the two sequencing platforms for fungal identification in some samples. (2) Abundant taxa were vital for microbial co-occurrences network constructed by both full-length and short-read sequencing data, and abundant fungal species such as Mortierella alpine, Fusarium solani, Mrakia frigida, and Chaetomium homopilatum served as the keystone species. (3) Heavy metal correlated with the microbial community significantly, and bacterial community and its abundant taxa were assembled by deterministic process, while the other taxa were dominated by stochastic process. These findings contribute to the understanding of the ecological mechanisms and microbial interactions in site soil ecosystems and demonstrate that full-length sequencing has the potential to provide more details of microbial community.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahang Zhou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suyuan Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bart Haegeman
- Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, Centre National de Recherche Scientifique, France
| | - Weirong Zhang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Ali S, Tyagi A, Bae H. Plant Microbiome: An Ocean of Possibilities for Improving Disease Resistance in Plants. Microorganisms 2023; 11:microorganisms11020392. [PMID: 36838356 PMCID: PMC9961739 DOI: 10.3390/microorganisms11020392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant diseases pose a serious threat to crop production and the agricultural economy across the globe. Currently, chemical pesticides are frequently employed to combat these infections, which cause environmental toxicity and the emergence of resistant pathogens. Moreover, the genetic manipulation of plant defense pathways and the breeding of resistant genes has attained limited success due to the rapid evolution of pathogen virulence and resistance, together with host range expansion. Additionally, due to climate change and global warming, the occurrence of multiple stresses during disease outbreak has further impacted overall crop growth and productivity, posing a serious threat to food security. In this regard, harnessing the plant beneficial microbiome and its products can provide novel avenues for disease resistance in addition to boosting agricultural output, soil fertility and environmental sustainability. In plant-beneficial microbiome interactions, induced systemic resistance (ISR) has emerged as a key mechanism by which a beneficial microbiome primes the entire plant system for better defense against a wide range of phytopathogens and pests. In this review, we provide the recent developments on the role of plant beneficial microbiomes in disease resistance. We also highlight knowledge gaps and discuss how the plant immune system distinguishes pathogens and beneficial microbiota. Furthermore, we provide an overview on how immune signature hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), shape plant beneficial microbiome. We also discuss the importance of various high-throughput tools and their integration with synthetic biology to design tailored microbial communities for disease resistance. Finally, we conclude by highlighting important themes that need future attention in order to fill the knowledge gaps regarding the plant immune system and plant-beneficial-microbiome-mediated disease resistance.
Collapse
|
48
|
Jing Z, Lu Z, Zhao Z, Cao W, Wang W, Ke Y, Wang X, Sun W. Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems. J Environ Sci (China) 2023; 124:176-186. [PMID: 36182128 DOI: 10.1016/j.jes.2021.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/16/2023]
Abstract
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies. However, previous studies have focused on the microbial composition and diversity of the drinking water distribution systems (DWDSs), with little discussion on microbial molecular ecological networks (MENs) in different water supply networks. MEN analysis explores the potential microbial interaction and the impact of environmental stress, to explain the characteristics of microbial community structures. In this study, the random matrix theory-based network analysis was employed to investigate the impact of seasonal variation including water source switching on the networks of three DWDSs that used different disinfection methods. The results showed that microbial interaction varied slightly with the seasons but was significantly influenced by different DWDSs. Proteobacteria, identified as key species, play an important role in the network. Combined UV-chlorine disinfection can effectively reduce the size and complexity of the network compared to chlorine disinfection alone, ignoring seasonal variations, which may affect microbial activity or control microbial regrowth in DWDSs. This study provides new insights for analyzing the dynamics of microbial interactions in DWDSs.
Collapse
Affiliation(s)
- Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfeng Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
49
|
Li QM, Zhang D, Zhang JZ, Zhou ZJ, Pan Y, Yang ZH, Zhu JH, Liu YH, Zhang LF. Crop rotations increased soil ecosystem multifunctionality by improving keystone taxa and soil properties in potatoes. Front Microbiol 2023; 14:1034761. [PMID: 36910189 PMCID: PMC9995906 DOI: 10.3389/fmicb.2023.1034761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023] Open
Abstract
Continuous cropping of the same crop leads to soil degradation and a decline in crop production, and these impacts could be mitigated through rotation cropping. Although crop rotation enhances soil fertility, microbial community diversity, and potato yield, its effects on the soil ecosystem multifunctionality (EMF) remain unclear. In the present research, we comparatively examined the effects of potato continuous cropping (PP) and rotation cropping [potato-oat rotation (PO) and potato-forage maize rotation (PFM)] on the soil EMF as well as the roles of keystone taxa, microbes abundance, and chemical properties in EMF improvement. It was demonstrated that soil EMF is increased in rotation cropping (PO and PFM) than PP. Soil pH was higher in rotation cropping (PO and PFM) than in PP, while total phosphorus (TP) and available phosphorus (AP) were significantly decreased than that in PP. Rotation cropping (PO and PFM) markedly changed the bacterial and fungal community compositions, and improved the potential plant-beneficial fungi, e.g., Schizothecium and Chaetomium, while reducing the abundances of the potentially phytopathogenic fungi, e.g., Alternaria, Fusarium, Verticillium dahiae, Gibberella, Plectosphaerella, Colletotrichum, Phoma, and Lectera in comparison with PP. Also, co-occurrence patterns for bacteria and fungi were impacted by crop rotation, and keystone taxa, e.g., Nitrospira.1, Lysinibacillus, Microlunatus.1, Sphingomonas.3, Bryobacter.1, Micromonospora, and Schizothecium, were enriched in PO and PFM than PP. The structural equation model (SEM) further demonstrated that cropping systems increased soil ecosystem multifunctionality through regulating SOM and keystone taxa (Schizothecium1), and keystone taxa were mediated by soil pH. This study suggested that rotation cropping might contribute to the improvement of soil ecosystem multifunctionality as well as the development of disease-suppressive soils in comparison with potato continuous cropping.
Collapse
Affiliation(s)
- Qing-Mei Li
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dai Zhang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ji-Zong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhi-Jun Zhou
- Practice and Training Center, Hebei Agricultural University, Baoding, China
| | - Yang Pan
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhi-Hui Yang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jie-Hua Zhu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China.,College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yu-Hua Liu
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Li-Feng Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
50
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|