1
|
Kawasaki T, Nagase A, Hayakawa K, Teshima F, Tanaka K, Zen H, Shishikura F, Sei N, Sakai T, Hayakawa Y. Infrared Free-Electron Laser: A Versatile Molecular Cutter for Analyzing Solid-State Biomacromolecules. ACS OMEGA 2025; 10:13860-13867. [PMID: 40256544 PMCID: PMC12004168 DOI: 10.1021/acsomega.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Free-electron lasers that oscillate in the infrared (IR) range of 1000 (10 μm) to 4000 cm-1 (2.5 μm) were applied to irradiate solid-phase polysaccharides and aromatic biomacromolecules. Synchrotron radiation IR microscopy (SR-IRM) and electrospray ionization mass spectroscopy (ESI-MS) analyses showed that N-acetyl glucosamine was isolated from the powdered exoskeleton of crayfish by irradiation at 1020 cm-1 (9.8 μm), resonating with the C-O stretching mode (νC-O). Irradiation at 3448 cm-1 (2.9 μm), which is resonant with the O-H stretching vibration (νO-H) of sulfonated lignin, dissociates the aggregate state and releases coniferyl aldehyde substituted with sulfinate, as shown by scanning electron microscopy, terahertz-coherent edge radiation spectroscopy, SR-IRM, and ESI-MS. These vibrational excitation reactions proceed at room temperature in the absence of solvent. Current and previous studies have demonstrated that intense IR lasers can be used as versatile tools for unveiling the internal structures of persistent biomacromolecules.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator
Laboratory, High Energy Accelerator Research
Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Nagase
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Ken Hayakawa
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Fumitsuna Teshima
- National
Institutes of Natural Sciences Institute for Molecular Science, UVSOR Synchrotron Facility, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kiyohisa Tanaka
- National
Institutes of Natural Sciences Institute for Molecular Science, UVSOR Synchrotron Facility, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Heishun Zen
- Institute
of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumio Shishikura
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Norihiro Sei
- Research
Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science
and Technology, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takeshi Sakai
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Yasushi Hayakawa
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| |
Collapse
|
2
|
Ghobashy MOI, Al-otaibi AS, Alharbi BM, Alshehri D, Ghabban H, Albalawi DA, Alenzi AM, Alatawy M, Alatawi FA, Algammal AM, Mir R, Mahrous YM. Metagenomic Characterization of Microbiome Taxa Associated with Coral Reef Communities in North Area of Tabuk Region, Saudia Arabia. Life (Basel) 2025; 15:423. [PMID: 40141768 PMCID: PMC11944186 DOI: 10.3390/life15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The coral microbiome is highly related to the overall health and the survival and proliferation of coral reefs. The Red Sea's unique physiochemical characteristics, such a significant north-south temperature and salinity gradient, make it a very intriguing research system. However, the Red Sea is rather isolated, with a very diversified ecosystem rich in coral communities, and the makeup of the coral-associated microbiome remains little understood. Therefore, comprehending the makeup and dispersion of the endogenous microbiome associated with coral is crucial for understanding how the coral microbiome coexists and interacts, as well as its contribution to temperature tolerance and resistance against possible pathogens. Here, we investigate metagenomic sequencing targeting 16S rRNA using DNAs from the sediment samples to identify the coral microbiome and to understand the dynamics of microbial taxa and genes in the surface mucous layer (SML) microbiome of the coral communities in three distinct areas close to and far from coral communities in the Red Sea. These findings highlight the genomic array of the microbiome in three areas around and beneath the coral communities and revealed distinct bacterial communities in each group, where Pseudoalteromonas agarivorans (30%), Vibrio owensii (11%), and Pseudoalteromonas sp. Xi13 (10%) were the most predominant species in samples closer to coral (a coral-associated microbiome), with the domination of Pseudoalteromonas_agarivorans and Vibrio_owensii in Alshreah samples distant from coral, while Pseudoalteromonas_sp._Xi13 was more abundant in closer samples. Moreover, Proteobacteria such as Pseudoalteromonas, Pseudomonas and Cyanobacteria were the most prevalent phyla of the coral microbiome. Further, Saweehal showed the highest diversity far from corals (52.8%) and in Alshreah (7.35%) compared to Marwan (1.75%). The microbial community was less diversified in the samples from Alshreah Far (5.99%) and Marwan Far (1.75%), which had comparatively lower values for all indices. Also, Vibrio species were the most prevalent microorganisms in the coral mucus, and the prevalence of these bacteria is significantly higher than those found in the surrounding saltwater. These findings reveal that there is a notable difference in microbial diversity across the various settings and locales, revealing that geographic variables and coral closeness affect the diversity of microbial communities. There were significant differences in microbial community composition regarding the proximity to coral. In addition, there were strong positive correlations between genera Pseudoalteromonas and Vibrio in close-to-coral environments, suggesting that these bacteria may play a synergistic role in Immunizing coral, raising its tolerance towards environmental stress and overall coral health.
Collapse
Affiliation(s)
- Madeha O. I. Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faud A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yussri M. Mahrous
- Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
3
|
Mathew DE, Soni A, Dhimmar A, Gajjar A, Parab AS, Phakatkar SS, Sahastrabudhe H, Manohar CS, Shinde PB, Mantri VA. Characterization, Bio-Prospection, and Comparative Metagenomics of Bacterial Communities Revealing the Predictive Functionalities in Wild and Cultured Samples of Industrially Important Red Seaweed Gracilaria dura. Curr Microbiol 2025; 82:85. [PMID: 39821458 DOI: 10.1007/s00284-025-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The present study explores the microbial community associated with the industrially important red seaweed Gracilaria dura to determine the diversity and biotechnological potential through culture and metagenomics approaches. In the first part of the investigation, we isolated and characterized 75 bacterial morphotypes, with varied colony characteristics and metabolic diversity from the wild seaweed. Phylogenetic analysis identified isolates in Proteobacteria, Firmicutes, and Actinobacteria, with Bacillus sp. being prevalent. B. licheniformis and Streptomyces sp. were notable in producing important enzymes like L-asparaginase, and polysaccharide lyases. Antimicrobial activity was significant in 21% of isolates, effective against seaweed pathogens such as Vibrio and Xanthomonas. Rhodococcus pyridinivorans showed strong pyridine degradation, suggesting bioremediation potential. Several isolates exhibited phosphate solubilization and nitrate indicating the roles of bacteria as algal growth promoters and biocontrol agents. Subsequent metagenome analysis of wild and cultured samples provides insights into bacterial communities associated with G. dura, revealing their distribution and functional roles. Proteobacteria (~ 95%) dominated the communities, further bacterial groups involved in algal growth, carpospore liberation, stress resistance, biogeochemical cycles, and biomedical applications were identified. A notable difference in bacteriomes was observed between the samples, with 25% remaining stable. The samples are cultured in the lab to generate seedlings for farming and serve as germplasm storage during the monsoon season. Microbiome surveys are crucial for understanding the association of pathogens and the overall health of the seedlings, supporting successful seaweed farming. Our findings provide valuable insights into G. dura-associated microbial communities and their role in algal growth, which has aquacultural implications.
Collapse
Affiliation(s)
- Doniya Elze Mathew
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aastha Soni
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
| | - Asmita Dhimmar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Apexa Gajjar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Shankar Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
| | - Sumit Sudhir Phakatkar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harshal Sahastrabudhe
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Cathrine Sumathi Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod B Shinde
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Ramond P, Galand PE, Logares R. Microbial functional diversity and redundancy: moving forward. FEMS Microbiol Rev 2025; 49:fuae031. [PMID: 39689915 PMCID: PMC11756291 DOI: 10.1093/femsre/fuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Microbial functional ecology is expanding as we can now measure the traits of wild microbes that affect ecosystem functioning. Here, we review techniques and advances that could be the bedrock for a unified framework to study microbial functions. These include our newfound access to environmental microbial genomes, collections of microbial traits, but also our ability to study microbes' distribution and expression. We then explore the technical, ecological, and evolutionary processes that could explain environmental patterns of microbial functional diversity and redundancy. Next, we suggest reconciling microbiology with biodiversity-ecosystem functioning studies by experimentally testing the significance of microbial functional diversity and redundancy for the efficiency, resistance, and resilience of ecosystem processes. Such advances will aid in identifying state shifts and tipping points in microbiomes, enhancing our understanding of how and where will microbes guide Earth's biomes in the context of a changing planet.
Collapse
Affiliation(s)
- Pierre Ramond
- Institute of Marine Sciences (ICM-CSIC), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, 66650, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM-CSIC), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
5
|
Wang J, Schamp CN, Hudson LK, Chaggar HK, Bryan DW, Garman KN, Radosevich M, Denes TG. Whole-genome sequencing and metagenomics reveal diversity and prevalence of Listeria spp. from soil in the Nantahala National Forest. Microbiol Spectr 2025; 13:e0171224. [PMID: 39651889 PMCID: PMC11705966 DOI: 10.1128/spectrum.01712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Listeria spp. are widely distributed environmental bacteria associated with human foodborne illness. The ability to detect and characterize Listeria strains in the natural environment will contribute to improved understanding of transmission routes of contamination. The current standard for surveillance and outbreak source attribution is whole-genome sequencing (WGS) of Listeria monocytogenes clinical isolates. Recently, metagenomic sequencing has also been explored as a tool for the detection of Listeria spp. in environmental samples. This study evaluated soil samples from four locations across altitudes ranging from 1,500 to 4,500 ft in the Nantahala National Forest in North Carolina, USA. Forty-two Listeria isolates were cultured and sequenced, and 12 metagenomes of soil bacterial communities were generated. These isolates comprised 14 distinct strains from five species, including Listeria cossartiae subsp. cayugensis (n = 8; n represents the number of distinct strains), L. monocytogenes (n = 3), "Listeria swaminathanii" (Lsw) (n = 1), Listeria marthii (n = 1), and Listeria booriae (n = 1). Most strains (n = 13) were isolated from lower altitudes (1,500 or 2,500 ft), while the L. swaminathanii strain was isolated from both higher (4,500 ft) and lower (1,500 ft) altitudes. Metagenomic analysis of soil described a reduction in both bacterial community diversity and relative abundance of Listeria spp. as the altitude increased. Soil pH and cation exchange capacity were positively correlated (P < 0.05) with the abundance of Listeria spp. as detected by metagenomics. By integrating culture-independent metagenomics with culture-based WGS, this study advances current knowledge regarding distribution of Listeria spp. in the natural environment and suggests the potential for future use of culture-independent methods in tracking the transmission of foodborne pathogens. IMPORTANCE As a foodborne pathogen, Listeria continues to cause numerous illnesses in humans and animals. Studying the diversity and distribution of Listeria in soil is crucial for understanding potential sources of contamination and developing effective strategies to prevent foodborne outbreaks of listeriosis. Additionally, examining the ecological niches and survival mechanisms of Listeria in natural habitats provides insights into its persistence and adaptability, informing risk assessments and public health interventions. This research contributes to a broader understanding of microbial ecology and the factors influencing foodborne pathogen emergence, ultimately enhancing food safety and protecting public health. Moreover, using a metagenomic approach provides a detailed understanding of the soil microbial ecosystems, leading to more effective monitoring and control of foodborne pathogens. This study also highlights the potential for integrating metagenomics into routine surveillance systems for food safety in the near future.
Collapse
Affiliation(s)
- Jia Wang
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Claire N. Schamp
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Harleen K. Chaggar
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Daniel W. Bryan
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Zhao Z, Liu S, Jiang S, Zhang D, Sha Z. Diversity and Potential Metabolic Characteristics of Culturable Copiotrophic Bacteria That Can Grow on Low-Nutrient Medium in Zhenbei Seamount in the South China Sea. MICROBIAL ECOLOGY 2024; 87:157. [PMID: 39708139 DOI: 10.1007/s00248-024-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea. The 648 isolated copiotrophic strains that could grow on low-nutrient medium were in 21 genera and 42 species. A total of 99.4% (644/648) of the bacteria were in the phylum Pseudomonadota, with 73.3% (472/644) in the class Gammaproteobacteria and 26.7% (172/644) in the class Alphaproteobacteria. Among the 42 representative isolates, Pseudoalteromonas arabiensis, Roseibium aggregatum, and Vibrio neocaledonicus were present in all layers of seawater and at almost all of the stations. Almost half of these species (20/42) contained genes that performed nitrate reduction, with confirmation by nitrate reduction testing. These isolates also contained genes that functioned in sulfur metabolism, including sulfate reduction, thiosulfate oxidation, thiosulfate disproportionation, and dimethylsulfoniopropionate degradation. GH23, CBM50, GT4, GT2, and GT51 were the main carbohydrate-active enzymes (CAZymes), and these five enzymes were present in all or almost all of the isolated strains. The most abundant classes of CAZymes were those associated with the degradation of chitin, starch, and cellulose. Collectively, our study of marine copiotrophic bacteria capable of growing on low-nutrient medium demonstrated the diversity of these species and their potential metabolic characteristics.
Collapse
Affiliation(s)
- Zhangqi Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Sizhen Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Jiang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechao Zhang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
7
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
9
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
10
|
Guseva K, Mohrlok M, Alteio L, Schmidt H, Pollak S, Kaiser C. Bacteria face trade-offs in the decomposition of complex biopolymers. PLoS Comput Biol 2024; 20:e1012320. [PMID: 39116194 PMCID: PMC11364420 DOI: 10.1371/journal.pcbi.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/30/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Although depolymerization of complex carbohydrates is a growth-limiting bottleneck for microbial decomposers, we still lack understanding about how the production of different types of extracellular enzymes affect individual microbes and in turn the performance of whole decomposer communities. In this work we use a theoretical model to evaluate the potential trade-offs faced by microorganisms in biopolymer decomposition which arise due to the varied biochemistry of different depolymerizing enzyme classes. We specifically consider two broad classes of depolymerizing extracellular enzymes, which are widespread across microbial taxa: exo-enzymes that cleave small units from the ends of polymer chains and endo-enzymes that act at random positions generating degradation products of varied sizes. Our results demonstrate a fundamental trade-off in the production of these enzymes, which is independent of system's complexity and which appears solely from the intrinsically different temporal depolymerization dynamics. As a consequence, specialists that produce either exo- or only endo-enzymes limit their growth to high or low substrate conditions, respectively. Conversely, generalists that produce both enzymes in an optimal ratio expand their niche and benefit from the synergy between the two enzymes. Finally, our results show that, in spatially-explicit environments, consortia composed of endo- and exo-specialists can only exist under oligotrophic conditions. In summary, our analysis demonstrates that the (evolutionary or ecological) selection of a depolymerization pathway will affect microbial fitness under low or high substrate conditions, with impacts on the ecological dynamics of microbial communities. It provides a possible explanation why many polysaccharide degraders in nature show the genetic potential to produce both of these enzyme classes.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Moritz Mohrlok
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lauren Alteio
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and innovation, Tulln, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Shaul Pollak
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Radaelli E, Palladino G, Nanetti E, Scicchitano D, Rampelli S, Airoldi S, Candela M, Marangi M. Meta-analysis of the Cetacea gut microbiome: Diversity, co-evolution, and interaction with the anthropogenic pathobiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172943. [PMID: 38714258 DOI: 10.1016/j.scitotenv.2024.172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Despite their critical roles in marine ecosystems, only few studies have addressed the gut microbiome (GM) of cetaceans in a comprehensive way. Being long-living apex predators with a carnivorous diet but evolved from herbivorous ancestors, cetaceans are an ideal model for studying GM-host evolutionary drivers of symbiosis and represent a valuable proxy of overall marine ecosystem health. Here, we investigated the GM of eight different cetacean species, including both Odontocetes (toothed whales) and Mysticetes (baleen whales), by means of 16S rRNA-targeted amplicon sequencing. We collected faecal samples from free-ranging cetaceans circulating within the Pelagos Sanctuary (North-western Mediterranean Sea) and we also included publicly available cetacean gut microbiome sequences. Overall, we show a clear GM trajectory related to host phylogeny and taxonomy (i.e., phylosymbiosis), with remarkable GM variations which may reflect adaptations to different diets between baleen and toothed whales. While most samples were found to be infected by protozoan parasites of potential anthropic origin, we report that this phenomenon did not lead to severe GM dysbiosis. This study underlines the importance of both host phylogeny and diet in shaping the GM of cetaceans, highlighting the role of neutral processes as well as environmental factors in the establishment of this GM-host symbiosis. Furthermore, the presence of potentially human-derived protozoan parasites in faeces of free-ranging cetaceans emphasizes the importance of these animals as bioindicators of anthropic impact on marine ecosystems.
Collapse
Affiliation(s)
- Elena Radaelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Sabina Airoldi
- Tethys Research Institute, Viale G.B. Gadio 2, 20121 Milano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy.
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy.
| |
Collapse
|
12
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
13
|
Wang L, Xue M, Yan R, Xue J, Lu Z, Wen C. Insights into Chitin-Degradation Potential of Shewanella khirikhana JW44 with Emphasis on Characterization and Function of a Chitinase Gene SkChi65. Microorganisms 2024; 12:774. [PMID: 38674717 PMCID: PMC11052142 DOI: 10.3390/microorganisms12040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Chitin, a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc), can be degraded into valuable oligosaccharides by various chitinases. In this study, the genome of Shewanella khirikhana JW44, displaying remarkable chitinolytic activity, was investigated to understand its chitin-degradation potential. A chitinase gene SkChi65 from this strain was then cloned, expressed, and purified to characterize its enzymatic properties and substrate hydrolysis. Genome analysis showed that, of the 14 genes related to chitin utilization in JW44, six belonged to glycoside hydrolase (GH) families because of their functional domains for chitin binding and catalysis. The recombinant chitinase SkChi65, consisting of 1129 amino acids, was identified as a member of the GH18 family and possessed two chitin-binding domains with a typical motif of [A/N]KWWT[N/S/Q] and one catalytic domain with motifs of DxxDxDxE, SxGG, YxR, and [E/D]xx[V/I]. SkChi65 was heterologously expressed as an active protein of 139.95 kDa best at 37 °C with 1.0 mM isopropyl-β-d-thiogalactopyranoside induction for 6 h. Purified SkChi65 displayed high stability over the ranges of 30-50 °C and pH 5.5-8.0 with optima at 40 °C and pH 7.0. The kinetic parameters Km, Vmax, and kcat of SkChi65 towards colloidal chitin were 27.2 μM, 299.2 μMs-1, and 10,203 s-1, respectively. In addition to colloidal chitin, SkChi65 showed high activity towards glycol chitosan and crystalline chitin. After analysis by thin-layer chromatography, the main products were N,N'-diacetylchitobiose, and GlcNAc with (GlcNAc)2-6 used as substrates. Collectively, SkChi65 could exhibit both exo- and endochitinase activities towards diverse substrates, and strain JW44 has a high potential for industrial application with an excellent capacity for chitin bioconversion.
Collapse
Affiliation(s)
- Ling Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Rui Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhipeng Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
14
|
Maldonado-Ruiz K, Pedroza-Islas R, Pedraza-Segura L. Blue Biotechnology: Marine Bacteria Bioproducts. Microorganisms 2024; 12:697. [PMID: 38674641 PMCID: PMC11051736 DOI: 10.3390/microorganisms12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ocean is the habitat of a great number of organisms with different characteristics. Compared to terrestrial microorganisms, marine microorganisms also represent a vast and largely unexplored reservoir of bioactive compounds with diverse industrial applications like terrestrial microorganisms. This review examines the properties and potential applications of products derived from marine microorganisms, including bacteriocins, enzymes, exopolysaccharides, and pigments, juxtaposing them in some cases against their terrestrial counterparts. We discuss the distinct characteristics that set marine-derived products apart, including enhanced stability and unique structural features such as the amount of uronic acid and sulfate groups in exopolysaccharides. Further, we explore the uses of these marine-derived compounds across various industries, ranging from food and pharmaceuticals to cosmetics and biotechnology. This review also presents a broad description of biotechnologically important compounds produced by bacteria isolated from marine environments, some of them with different qualities compared to their terrestrial counterparts.
Collapse
Affiliation(s)
| | - Ruth Pedroza-Islas
- Department of Chemical, Industrial and Food Engineering, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico City 01210, Mexico; (K.M.-R.); (L.P.-S.)
| | | |
Collapse
|
15
|
Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, Parada-Pozo G, Rodríguez-Marconi S, Ribeiro CG, Flores-Herrera P, Guajardo M, Trefault N. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes. Sci Rep 2024; 14:6371. [PMID: 38493232 PMCID: PMC10944490 DOI: 10.1038/s41598-024-56480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Patricio Flores-Herrera
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Mariela Guajardo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile.
| |
Collapse
|
16
|
Steiner LX, Wiese J, Rahn T, Borchert E, Slaby BM, Hentschel U. Maribacter halichondriae sp. nov., isolated from the marine sponge Halichondria panicea, displays features of a sponge-associated life style. Antonie Van Leeuwenhoek 2024; 117:56. [PMID: 38489089 PMCID: PMC10942906 DOI: 10.1007/s10482-024-01950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
Collapse
Affiliation(s)
- Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany.
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Mitchell DG, Edgar A, Mateu JR, Ryan JF, Martindale MQ. The ctenophore Mnemiopsis leidyi deploys a rapid injury response dating back to the last common animal ancestor. Commun Biol 2024; 7:203. [PMID: 38374160 PMCID: PMC10876535 DOI: 10.1038/s42003-024-05901-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.
Collapse
Affiliation(s)
- Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Júlia Ramon Mateu
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Teullet S, Tilak MK, Magdeleine A, Schaub R, Weyer NM, Panaino W, Fuller A, Loughry WJ, Avenant NL, de Thoisy B, Borrel G, Delsuc F. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems 2023; 8:e0038823. [PMID: 37650612 PMCID: PMC10654083 DOI: 10.1128/msystems.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Myrmecophagous mammals are specialized in the consumption of ants and/or termites. They do not share a direct common ancestor and evolved convergently in five distinct placental orders raising questions about the underlying adaptive mechanisms involved and the relative contribution of natural selection and phylogenetic constraints. Understanding how these species digest their prey can help answer these questions. More specifically, the role of their gut microbial symbionts in the digestion of the insect chitinous exoskeleton has not been investigated in all myrmecophagous orders. We generated 29 new gut metagenomes from nine myrmecophagous species to reconstruct more than 300 bacterial genomes in which we identified chitin-degrading enzymes. Studying the distribution of these chitinolytic bacteria among hosts revealed both shared and specific bacteria between ant-eating species. Overall, our results highlight the potential role of gut symbionts in the convergent dietary adaptation of myrmecophagous mammals and the evolutionary mechanisms shaping their gut microbiota.
Collapse
Affiliation(s)
- Sophie Teullet
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Amandine Magdeleine
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Roxane Schaub
- CIC AG/Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana, France
- Tropical Biome and immunopathology, Université de Guyane, Labex CEBA, DFR Santé, Cayenne, French Guiana, France
| | - Nora M. Weyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for African Ecology, School of Animals, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - W. J. Loughry
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Nico L. Avenant
- National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
19
|
da Silva DMG, Pedrosa FR, Ângela Taipa M, Costa R, Keller-Costa T. Widespread occurrence of chitinase-encoding genes suggests the Endozoicomonadaceae family as a key player in chitin processing in the marine benthos. ISME COMMUNICATIONS 2023; 3:109. [PMID: 37838809 PMCID: PMC10576748 DOI: 10.1038/s43705-023-00316-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Chitin is the most abundant natural polymer in the oceans, where it is primarily recycled by chitin-degrading microorganisms. Endozoicomonadaceae (Oceanospirillales) bacteria are prominent symbionts of sessile marine animals, particularly corals, and presumably contribute to nutrient cycling in their hosts. To reveal the chitinolytic potential of this iconic, animal-dwelling bacterial family, we examined 42 publicly available genomes of cultured and uncultured Endozoicomonadaceae strains for the presence of chitinase-encoding genes. Thirty-two of 42 Endozoicomonadaceae genomes harbored endo-chitinase- (EC 3.2.1.14), 25 had exo-chitinase- (EC 3.2.1.52) and 23 polysaccharide deacetylase-encoding genes. Chitinases were present in cultured and uncultured Endozoicomonadaceae lineages associated with diverse marine animals, including the three formally described genera Endozoicomonas, Paraendozoicomonas and Kistimonas, the new genus Candidatus Gorgonimonas, and other, yet unclassified, groups of the family. Most endo-chitinases belonged to the glycoside hydrolase family GH18 but five GH19 endo-chitinases were also present. Many endo-chitinases harbored an active site and a signal peptide domain, indicating the enzymes are likely functional and exported to the extracellular environment where endo-chitinases usually act. Phylogenetic analysis revealed clade-specific diversification of endo-chitinases across the family. The presence of multiple, distinct endo-chitinases on the genomes of several Endozoicomonadaceae species hints at functional variation to secure effective chitin processing in diverse micro-niches and changing environmental conditions. We demonstrate that endo-chitinases and other genes involved in chitin degradation are widespread in the Endozoicomonadaceae family and posit that these symbionts play important roles in chitin turnover in filter- and suspension-feeding animals and in benthic, marine ecosystems at large.
Collapse
Affiliation(s)
- Daniela M G da Silva
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Filipa R Pedrosa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - M Ângela Taipa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tina Keller-Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
20
|
Cocean G, Cocean A, Garofalide S, Pelin V, Munteanu BS, Pricop DA, Motrescu I, Dimitriu DG, Cocean I, Gurlui S. Dual-Pulsed Laser Ablation of Oyster Shell Producing Novel Thin Layers Deposed to Saccharomyces cerevisiae. Polymers (Basel) 2023; 15:3953. [PMID: 37836002 PMCID: PMC10575290 DOI: 10.3390/polym15193953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Dual-pulsed (DPL) laser deposition using oyster shells as targets was studied in order to find out if this method can replace the use of high-power pulsed lasers. Aspects related to changes in the morphological structure of the thin layer but also to the chemical composition of the obtained thin layer were analyzed and compared with the target as well as with the thin layers obtained with a higher power pulsed laser in a single-pulsed (SPL) regime. Orthorhombic structures were noticed with Scanning Electron Microscopy for the thin film obtained in DPL mode compared to the irregular particles obtained in SPL mode. The deacetylation process during ablation was evidenced by Fourier Transform Infrared spectroscopy, resulting in chitosan-based thin films. The effect of the obtained thin films of chitosan on the cells of baker's yeast (Saccharomyces cerevisiae) was studied. Restoration of the yeast paste into initial yeast was noticed mainly when the hemp fabric was used as support for the coating with yeas which was after that coated with chitosan thin film produced by DPL method.
Collapse
Affiliation(s)
- Georgiana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Rehabilitation Hospital Borsa, 1 Floare de Colt Street, 435200 Borsa, Romania
| | - Alexandru Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Silvia Garofalide
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Vasile Pelin
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Bogdanel Silvestru Munteanu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Daniela Angelica Pricop
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Astronomy and Astrophysics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, Astronomical Observatory, 11 Carol I, 700506 Iasi, Romania
| | - Iuliana Motrescu
- Sciences Department & Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Gheorghe Dimitriu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Iuliana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Silviu Gurlui
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| |
Collapse
|
21
|
Yi Y, Liu S, Hao Y, Sun Q, Lei X, Wang Y, Wang J, Zhang M, Tang S, Tang Q, Zhang Y, Liu X, Wang Y, Xiao X, Jian H. A systematic analysis of marine lysogens and proviruses. Nat Commun 2023; 14:6013. [PMID: 37758717 PMCID: PMC10533544 DOI: 10.1038/s41467-023-41699-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are ubiquitous in the oceans, exhibiting high abundance and diversity. Here, we systematically analyze existing genomic sequences of marine prokaryotes to compile a Marine Prokaryotic Genome Dataset (MPGD, consisting of over 12,000 bacterial and archaeal genomes) and a Marine Temperate Viral Genome Dataset (MTVGD). At least 40% of the MPGD genomes contain one or more proviral sequences, indicating that they are lysogens. The MTVGD includes over 12,900 viral contigs or putative proviruses, clustered into 10,897 viral genera. We show that lysogens and proviruses are abundant in marine ecosystems, particularly in the deep sea, and marine lysogens differ from non-lysogens in multiple genomic features and growth properties. We reveal several virus-host interaction networks of potential ecological relevance, and identify proviruses that appear to be able to infect (or to be transferred between) different bacterial classes and phyla. Auxiliary metabolic genes in the MTVGD are enriched in functions related to carbohydrate metabolism. Finally, we experimentally demonstrate the impact of a prophage on the transcriptome of a representative marine Shewanella bacterium. Our work contributes to a better understanding of the ecology of marine prokaryotes and their viruses.
Collapse
Affiliation(s)
- Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Lei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yecheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingxue Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
22
|
Pentekhina I, Nedashkovskaya O, Seitkalieva A, Gorbach V, Slepchenko L, Kirichuk N, Podvolotskaya A, Son O, Tekutyeva L, Balabanova L. Chitinolytic and Fungicidal Potential of the Marine Bacterial Strains Habituating Pacific Ocean Regions. Microorganisms 2023; 11:2255. [PMID: 37764100 PMCID: PMC10535946 DOI: 10.3390/microorganisms11092255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Screening for chitinolytic activity in the bacterial strains from different Pacific Ocean regions revealed that the highly active representatives belong to the genera Microbulbifer, Vibrio, Aquimarina, and Pseudoalteromonas. The widely distributed chitinolytic species was Microbulbifer isolated from the sea urchin Strongylocentrotus intermedius. Among seventeen isolates with confirmed chitinolytic activity, only the type strain P. flavipulchra KMM 3630T and the strains of putatively new species Pseudoalteromonas sp. B530 and Vibrio sp. Sgm 5, isolated from sea water (Vietnam mollusc farm) and the sea urchin S. intermedius (Peter the Great Gulf, the Sea of Japan), significantly suppressed the hyphal growth of Aspergillus niger that is perspective for the biocontrol agents' development. The results on chitinolytic activities and whole-genome sequencing of the strains under study, including agarolytic type strain Z. galactanivorans DjiT, found the new functionally active chitinase structures and biotechnological potential.
Collapse
Affiliation(s)
- Iuliia Pentekhina
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Molecular Biology, Biotechnology and Bioinformatics Center, R&D, Arnika Ltd., Volno-Nadezhdinskoe, 692481 Vladivostok, Russia
| | - Olga Nedashkovskaya
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| | - Aleksandra Seitkalieva
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| | - Vladimir Gorbach
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| | - Lubov Slepchenko
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| | - Natalya Kirichuk
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| | - Anna Podvolotskaya
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Molecular Biology, Biotechnology and Bioinformatics Center, R&D, Arnika Ltd., Volno-Nadezhdinskoe, 692481 Vladivostok, Russia
| | - Oksana Son
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Molecular Biology, Biotechnology and Bioinformatics Center, R&D, Arnika Ltd., Volno-Nadezhdinskoe, 692481 Vladivostok, Russia
| | - Liudmila Tekutyeva
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Molecular Biology, Biotechnology and Bioinformatics Center, R&D, Arnika Ltd., Volno-Nadezhdinskoe, 692481 Vladivostok, Russia
| | - Larissa Balabanova
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (A.S.); (L.S.); (A.P.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia; (O.N.); (V.G.); (N.K.)
| |
Collapse
|
23
|
Characterization of a Marine Diatom Chitin Synthase Using a Combination of Meta-Omics, Genomics, and Heterologous Expression Approaches. mSystems 2023; 8:e0113122. [PMID: 36790195 PMCID: PMC10134812 DOI: 10.1128/msystems.01131-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
β-Chitin has important ecological and physiological roles and potential for widespread applications, but the characterization of chitin-related enzymes from β-chitin producers was rarely reported. Querying against the Tara Oceans Gene Atlas, 4,939 chitin-related unique sequences from 12 Pfam accessions were found in Bacillariophyta metatranscriptomes. Putative chitin synthase (CHS) sequences are decreasingly present in Crustacea (39%), Stramenopiles (16%) and Insecta (14%) from the Marine Atlas of Tara Oceans Unigenes version 1 Metatranscriptomes (MATOUv1+T) database. A CHS gene from the model diatom Thalassiosira pseudonana (Thaps3_J4413, designated TpCHS1) was identified. Homology analysis of TpCHS1 in Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP), PhycoCosm, and the PLAZA diatom omics data set showed that Mediophyceae and Thalassionemales species were potential new β-chitin producers besides Thalassiosirales. TpCHS1 was overexpressed in Saccharomyces cerevisiae and Phaeodactylum tricornutum. In transgenic P. tricornutum lines, TpCHS1-eGFP localizes to the Golgi apparatus and plasma membrane and predominantly accumulates in the cleavage furrow during cell division. Enhanced TpCHS1 expression could induce abnormal cell morphology and reduce growth rates in P. tricornutum, which might be ascribed to the inhibition of the G2/M phase. S. cerevisiae was proved to be a better system for expressing large amounts of active TpCHS1, which effectively incorporates UDP-N-acetylglucosamine in radiometric in vitro assays. Our study expands the knowledge on chitin synthase taxonomic distribution in marine eukaryotic microbes, and is the first to collectively characterize an active marine diatom CHS which may play an important role during cell division. IMPORTANCE As the most abundant biopolymer in the oceans, the significance of chitin and its biosynthesis is rarely demonstrated in diatoms, which are the main contributors to the primary productivity of the oceans, ascribed to their huge biomass and efficient photosynthesis. We retrieved genes involved in chitin-based metabolism against the Tara Oceans Gene Atlas to expand our knowledge about their diversity and distribution in the marine environment. Potential new producers of chitin were found from the analysis of various algal transcriptome and genome databases. Heterologous expression confirms that Thalassiosira pseudonana contains an active chitin synthase (CHS) which may play an important role in the cell division process of diatoms. This study provides new insight into CHS geographic and taxonomic distribution in marine eukaryotic microbes, as well as into a new CHS functioning in the biosynthesis of β-chitin in diatoms.
Collapse
|
24
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Almeida JF, Marques M, Oliveira V, Egas C, Mil-Homens D, Viana R, Cleary DFR, Huang YM, Fialho AM, Teixeira MC, Gomes NCM, Costa R, Keller-Costa T. Marine Sponge and Octocoral-Associated Bacteria Show Versatile Secondary Metabolite Biosynthesis Potential and Antimicrobial Activities against Human Pathogens. Mar Drugs 2022; 21:md21010034. [PMID: 36662207 PMCID: PMC9860996 DOI: 10.3390/md21010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Collapse
Affiliation(s)
- João F. Almeida
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Matilde Marques
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology (CNC), Rua Larga—Faculdade de Medicina, University of Coimbra, 3004-504 Coimbra, Portugal
- Biocant—Transfer Technology Association, BiocantPark, 3060-197 Cantanhede, Portugal
| | - Dalila Mil-Homens
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Romeu Viana
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Daniel F. R. Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City 880-011, Taiwan
| | - Arsénio M. Fialho
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel C. Teixeira
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Newton C. M. Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| | - Tina Keller-Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| |
Collapse
|
26
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
27
|
Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. MICROBIOME 2022; 10:151. [PMID: 36138466 PMCID: PMC9502895 DOI: 10.1186/s40168-022-01343-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lydia Kozma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- École Polytechnique Fédérale de Lausanne, Écublens, Switzerland
| | - Sandra G. Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Rodolfo Toscan
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jorge Gonçalves
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
28
|
Liu J, Xu Q, Wu Y, Sun D, Zhu J, Liu C, Liu W. Carbohydrate-binding modules of ChiB and ChiC promote the chitinolytic system of Serratia marcescens BWL1001. Enzyme Microb Technol 2022; 162:110118. [DOI: 10.1016/j.enzmictec.2022.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
|
29
|
Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC, Fialho AM, Costa R, Keller-Costa T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina ( Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar Drugs 2022; 20:423. [PMID: 35877716 PMCID: PMC9323603 DOI: 10.3390/md20070423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the ‘Sponge Microbiome Project’ dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Patrícia Paula
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Paulo da Silva
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Cacho Teixeira
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsénio Mendes Fialho
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rodrigo Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Tina Keller-Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
30
|
Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life. Nat Commun 2022; 13:638. [PMID: 35136058 PMCID: PMC8826442 DOI: 10.1038/s41467-022-28129-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023] Open
Abstract
The Central Arctic Ocean is one of the most oligotrophic oceans on Earth because of its sea-ice cover and short productive season. Nonetheless, across the peaks of extinct volcanic seamounts of the Langseth Ridge (87°N, 61°E), we observe a surprisingly dense benthic biomass. Bacteriosponges are the most abundant fauna within this community, with a mass of 460 g C m−2 and an estimated carbon demand of around 110 g C m−2 yr−1, despite export fluxes from regional primary productivity only sufficient to provide <1% of this required carbon. Observed sponge distribution, bulk and compound-specific isotope data of fatty acids suggest that the sponge microbiome taps into refractory dissolved and particulate organic matter, including remnants of an extinct seep community. The metabolic profile of bacteriosponge fatty acids and expressed genes indicate that autotrophic symbionts contribute significantly to carbon assimilation. We suggest that this hotspot ecosystem is unique to the Central Arctic and associated with extinct seep biota, once fueled by degassing of the volcanic mounts. This study reports the discovery of dense sponge gardens across the peaks of permanently ice-covered, extinct volcanic seamounts of the Langseth Ridge and on the remnants of a now extinct seep ecosystem. Using approaches to sample and infer food and energy sources to this ice-covered community, the authors suggest that the sponges use refractory organic matter trapped in the extinct seep community on which they sit.
Collapse
|
31
|
Multiple bacterial partners in symbiosis with the nudibranch mollusk Rostanga alisae. Sci Rep 2022; 12:169. [PMID: 34997021 PMCID: PMC8742107 DOI: 10.1038/s41598-021-03973-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
The discovery of symbiotic associations extends our understanding of the biological diversity in the aquatic environment and their impact on the host’s ecology. Of particular interest are nudibranchs that unprotected by a shell and feed mainly on sponges. The symbiotic association of the nudibranch Rostanga alisae with bacteria was supported by ample evidence, including an analysis of cloned bacterial 16S rRNA genes and a fluorescent in situ hybridization analysis, and microscopic observations. A total of 74 clones belonging to the phyla α-, β-, γ-Proteobacteria, Actinobacteria, and Cyanobacteria were identified. FISH confirmed that bacteriocytes were packed with Bradyrhizobium, Maritalea, Labrenzia, Bulkholderia, Achromobacter, and Stenotrophomonas mainly in the foot and notum epidermis, and also an abundance of Synechococcus cyanobacteria in the intestinal epithelium. An ultrastructural analysis showed several bacterial morphotypes of bacteria in epidermal cells, intestine epithelium, and in mucus layer covering the mollusk body. The high proportion of typical bacterial fatty acids in R. alisae indicated that symbiotic bacteria make a substantial contribution to its nutrition. Thus, the nudibranch harbors a high diversity of specific endo- and extracellular bacteria, which previously unknown as symbionts of marine invertebrates that provide the mollusk with essential nutrients. They can provide chemical defense against predators.
Collapse
|
32
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-42. [DOI: 10.1007/978-3-030-83783-9_72-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|
33
|
Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Front Microbiol 2021; 12:780469. [PMID: 34987488 PMCID: PMC8721230 DOI: 10.3389/fmicb.2021.780469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering.
Collapse
Affiliation(s)
- Victor Mataigne
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nathan Vannier
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
| | | | | |
Collapse
|
34
|
Coral holobionts and biotechnology: from Blue Economy to coral reef conservation. Curr Opin Biotechnol 2021; 74:110-121. [PMID: 34861476 DOI: 10.1016/j.copbio.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.
Collapse
|
35
|
Vargas-Suárez M, Savín-Gámez A, Domínguez-Malfavón L, Sánchez-Reyes A, Quirasco-Baruch M, Loza-Tavera H. Exploring the polyurethanolytic activity and microbial composition of landfill microbial communities. Appl Microbiol Biotechnol 2021; 105:7969-7980. [PMID: 34554272 DOI: 10.1007/s00253-021-11571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The microbial composition of polyurethane degrading communities has been barely addressed, and it is unknown if microenvironmental conditions modify its composition, affecting its biodegradative capacity. The polyurethanolytic activity and taxonomic composition of five microbial communities, selected by enrichment in the polyether-polyurethane-acrylic (PE-PU-A) coating PolyLack®, from deteriorated PU foams collected at different microenvironments in a municipal landfill (El Bordo Poniente, BP) were explored. All BP communities grew similarly in PolyLack® as the sole carbon source, although BP1, BP4, and BP5 showed better performance than BP2 and BP7. FTIR spectroscopy showed that ester, urethane, ether, aromatic and aliphatic groups, and the acrylate component were targets of the biodegradative activity. Extracellular esterase activity was higher at 5 days of cultivation and decreased at 21 days, while urease activity showed the opposite. Microbial composition analysis, assessed by 16S rDNA V3 region PCR-DGGE, revealed a preponderance of Rhizobiales and Micrococcales. The reported PU-degrading genera Paracoccus, Acinetobacter, and Pseudomonas were identified. In contrast, Advenella, Bordetella, Microbacterium, Castellaniella, and Populibacterium, some of them xenobiotics degraders, can be considered potentially PU-degrading genera. Correspondence analysis identified independent groups for all communities, except the BP4 and BP5. Although partial taxonomic redundancy was detected, unique OTUs were identified, e.g., three members of the Weeksellaceae family were present only in the BP4/BP5 group. These results suggest that the microenvironmental conditions where the landfill microbial communities were collected shaped their taxonomical composition, impacting their PE-PU biodegradative capacities. These BP communities represent valuable biological material for the treatment of PU waste and other xenobiotics. KEY POINTS: • Landfill microbial communities display slightly different capacities for growing in polyether-polyurethane-acrylic. • Ester, urethane, ether, aromatic, aliphatic, and acrylate groups were attacked. • Esterase activity was more significant at early culture times while urease activity at latter. • Landfill microenvironments shape partial taxonomical redundancy in the communities. • Best communities' performance seems to be related to unique members' composition.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Alba Savín-Gámez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Lilianha Domínguez-Malfavón
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco-Baruch
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico.
| |
Collapse
|
36
|
The Roseibium album (Labrenzia alba) Genome Possesses Multiple Symbiosis Factors Possibly Underpinning Host-Microbe Relationships in the Marine Benthos. Microbiol Resour Announc 2021; 10:e0032021. [PMID: 34435855 PMCID: PMC8388533 DOI: 10.1128/mra.00320-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we announce the genomes of eight Roseibium album (synonym Labrenzia alba) strains that were obtained from the octocoral Eunicella labiata. Genome annotation revealed multiple symbiosis factors common to all genomes, such as eukaryotic-like repeat protein- and multidrug resistance-encoding genes, which likely underpin symbiotic relationships with marine invertebrate hosts.
Collapse
|