1
|
Lin DW, Carranza FG, Borrego S, Lauinger L, Dantas de Paula L, Pulipelli HR, Andronicos A, Hertel KJ, Kaiser P. Nutrient control of splice site selection contributes to methionine addiction of cancer. Mol Metab 2025; 93:102103. [PMID: 39862967 PMCID: PMC11834112 DOI: 10.1016/j.molmet.2025.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood. Here we find that methionine dependence is associated with severe dysregulation of pre-mRNA splicing. METHODS We used triple-negative breast cancer cells and their methionine-independent derivatives R8 to compare RNA expression profiles in methionine and homocysteine growth media. The data set was also analyzed for alternative splicing. RESULTS When tumorigenic cells were cultured in homocysteine medium, cancer cells failed to efficiently methylate the spliceosomal snRNP component SmD1, which resulted in reduced binding to the Survival-of-Motor-Neuron protein SMN leading to aberrant splicing. These effects were specific for cancer cells as neither Sm protein methylation nor splicing fidelity was affected when non-tumorigenic cells were cultured in homocysteine medium. Sm protein methylation is catalyzed by Protein Arginine Methyl Transferase 5 (Prmt5). Reducing methionine concentrations in the culture medium sensitized cancer cells to Prmt5 inhibition supporting a mechanistic link between methionine dependence of cancer and splicing. CONCLUSIONS Our results link nutritional demands to splicing changes and thereby provide a link between the cancer-specific metabolic phenomenon, described as methionine addiction over 40 years ago, with a defined cellular pathway that contributes to cancer cell proliferation.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Francisco G Carranza
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Stacey Borrego
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Linda Lauinger
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Lucas Dantas de Paula
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Harika R Pulipelli
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Anna Andronicos
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA.
| |
Collapse
|
2
|
Tedeschi G, Palomba F, Scipioni L, Digman MA. Multimodal Phasor Approach to study breast cancer cells invasion in 3D spheroid model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598307. [PMID: 38915530 PMCID: PMC11195137 DOI: 10.1101/2024.06.10.598307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We implemented a multimodal set of functional imaging techniques optimized for deep-tissue imaging to investigate how cancer cells invade surrounding tissues and how their physiological properties change in the process. As a model for cancer invasion of the extracellular matrix, we created 3D spheroids from triple-negative breast cancer cells (MDA-MB-231) and non-tumorigenic breast epithelial cells (MCF-10A). We analyzed multiple hallmarks of cancer within the same spheroid by combining a number of imaging techniques, such as metabolic imaging of NADH by Fluorescence Lifetime Imaging Microscopy (NADH-FLIM), hyperspectral imaging of a solvatochromic lipophilic dye (Nile Red) and extracellular matrix imaging by Second Harmonic Generation (SHG). We included phasor-based bioimage analysis of spheroids at three different time points, tracking both morphological and biological properties, including cellular metabolism, fatty acids storage, and collagen organization. Employing this multimodal deep-imaging framework, we observed and quantified cancer cell plasticity in response to changes in the environment composition.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Francesco Palomba
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Lorenzo Scipioni
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| |
Collapse
|
3
|
Zhang X, Zhao Z, Wang X, Zhang S, Zhao Z, Feng W, Xu L, Nie J, Li H, Liu J, Xiao G, Zhang Y, Li H, Lu M, Mai J, Zhou S, Zhao AZ, Li F. Deprivation of methionine inhibits osteosarcoma growth and metastasis via C1orf112-mediated regulation of mitochondrial functions. Cell Death Dis 2024; 15:349. [PMID: 38769167 PMCID: PMC11106329 DOI: 10.1038/s41419-024-06727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.
Collapse
Affiliation(s)
- Xindan Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xuepeng Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shiwei Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zilong Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Lijun Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Junhua Nie
- South China University of Technology School of Medicine, Guangzhou, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke Life Science Institute, Guangzhou, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou, China
| | - Gengmiao Xiao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Lu
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jialuo Mai
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Garg S, Miousse IR. Rescue of Methionine Dependence by Cobalamin in a Human Colorectal Cancer Cell Line. Nutrients 2024; 16:997. [PMID: 38613029 PMCID: PMC11013648 DOI: 10.3390/nu16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.
Collapse
Affiliation(s)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
5
|
Townsel A, Jaffe M, Wu Y, Henry CJ, Haynes KA. The Epigenetic Landscape of Breast Cancer, Metabolism, and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:37-53. [PMID: 39586992 DOI: 10.1007/978-3-031-66686-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity is a risk factor for developing breast cancer, and significantly increases mortality rates in patients diagnosed with this disease. Drivers of this unfortunate relationships are multifactorial, with obesity-induced changes in the epigenetic state of breast cancer cells being identified as a critical mechanism that impact survival, metastasis, and therapeutic responses. Recent studies have investigated the epigenetic landscape of breast cancer to elucidate the molecular interplay between the breast tissue epigenome and its cellular microenvironment. This chapter highlights studies that demonstrates the impact of obesity on the epigenome and metabolome of breast cancer cells. Furthermore, we discuss how obesity impacts the efficacy of chemotherapy and epigenetic targeting drugs, including the emergence of drug-resistance clonal populations. Delineating the relationships between the obesity and epigenetic changes in breast cancer cells will help identify therapeutic strategies which could improve survival outcomes in the rapidly growing number of patients with obesity and cancer.
Collapse
Affiliation(s)
- Ashley Townsel
- Department of Cancer Biology, Emory School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Yifei Wu
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
7
|
Zhang Y, Fan S, Wohlgemuth G, Fiehn O. Denoising Autoencoder Normalization for Large-Scale Untargeted Metabolomics by Gas Chromatography-Mass Spectrometry. Metabolites 2023; 13:944. [PMID: 37623887 PMCID: PMC10456436 DOI: 10.3390/metabo13080944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Large-scale metabolomics assays are widely used in epidemiology for biomarker discovery and risk assessments. However, systematic errors introduced by instrumental signal drifting pose a big challenge in large-scale assays, especially for derivatization-based gas chromatography-mass spectrometry (GC-MS). Here, we compare the results of different normalization methods for a study with more than 4000 human plasma samples involved in a type 2 diabetes cohort study, in addition to 413 pooled quality control (QC) samples, 413 commercial pooled plasma samples, and a set of 25 stable isotope-labeled internal standards used for every sample. Data acquisition was conducted across 1.2 years, including seven column changes. In total, 413 pooled QC (training) and 413 BioIVT samples (validation) were used for normalization comparisons. Surprisingly, neither internal standards nor sum-based normalizations yielded median precision of less than 30% across all 563 metabolite annotations. While the machine-learning-based SERRF algorithm gave 19% median precision based on the pooled quality control samples, external cross-validation with BioIVT plasma pools yielded a median 34% relative standard deviation (RSD). We developed a new method: systematic error reduction by denoising autoencoder (SERDA). SERDA lowered the median standard deviations of the training QC samples down to 16% RSD, yielding an overall error of 19% RSD when applied to the independent BioIVT validation QC samples. This is the largest study on GC-MS metabolomics ever reported, demonstrating that technical errors can be normalized and handled effectively for this assay. SERDA was further validated on two additional large-scale GC-MS-based human plasma metabolomics studies, confirming the superior performance of SERDA over SERRF or sum normalizations.
Collapse
Affiliation(s)
| | | | | | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, 451 Health Sciences Drive, Davis, CA 95616, USA; (Y.Z.); (S.F.); (G.W.)
| |
Collapse
|
8
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
9
|
Steward KF, Refai M, Dyer WE, Copié V, Lachowiec J, Bothner B. Acute stress reduces population-level metabolic and proteomic variation. BMC Bioinformatics 2023; 24:87. [PMID: 36882728 PMCID: PMC9993721 DOI: 10.1186/s12859-023-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Variation in omics data due to intrinsic biological stochasticity is often viewed as a challenging and undesirable feature of complex systems analyses. In fact, numerous statistical methods are utilized to minimize the variation among biological replicates. RESULTS We demonstrate that the common statistics relative standard deviation (RSD) and coefficient of variation (CV), which are often used for quality control or part of a larger pipeline in omics analyses, can also be used as a metric of a physiological stress response. Using an approach we term Replicate Variation Analysis (RVA), we demonstrate that acute physiological stress leads to feature-wide canalization of CV profiles of metabolomes and proteomes across biological replicates. Canalization is the repression of variation between replicates, which increases phenotypic similarity. Multiple in-house mass spectrometry omics datasets in addition to publicly available data were analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In addition, proteomics data sets were evaluated utilizing RVA to identify functionality of reduced CV proteins. CONCLUSIONS RVA provides a foundation for understanding omics level shifts that occur in response to cellular stress. This approach to data analysis helps characterize stress response and recovery, and could be deployed to detect populations under stress, monitor health status, and conduct environmental monitoring.
Collapse
Affiliation(s)
- Katherine F Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mohammed Refai
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - William E Dyer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Thermal Biology Institute, Montana State University, Bozeman, USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. .,Thermal Biology Institute, Montana State University, Bozeman, USA.
| |
Collapse
|
10
|
Aoki Y, Han Q, Kubota Y, Masaki N, Obara K, Tome Y, Bouvet M, Nishida K, Hoffman RM. Oncogenes and Methionine Addiction of Cancer: Role of c-MYC. Cancer Genomics Proteomics 2023; 20:165-170. [PMID: 36870694 PMCID: PMC9989672 DOI: 10.21873/cgp.20371] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND/AIM Methionine addiction is a general and fundamental hallmark of cancer cells, termed the Hoffman effect. Previously Vanhamme and Szpirer showed that methionine addiction could be induced by transfection of the activated HRAS1 gene to a normal cell line. In the present study, we investigated the role of the c-MYC oncogene in methionine addiction of cancer, by comparison of c-Myc expression and malignancy of methionine-addicted osteosarcoma cells and rare methionine-independent revertants, derived from the methionine-addicted cells. MATERIALS AND METHODS Methionine-independent revertant 143B osteosarcoma cells (143B-R) were derived from methionine-addicted parental 143B osteosarcoma cells (143B-P), by continuous culture in medium depleted of methionine by recombinant methioninase. To compare in vitro malignancy of methionine-addicted parental cells and methionine-independent revertant cells, the following experiments were performed: for 143B-P and 143B-R cells, cell proliferation capacity was measured with a cell-counting assay, and colony-formation capacity was determined on plastic and in soft agar, all in methionine-containing Dulbecco's Modified Eagle's Medium (DMEM). Tumor growth was measured in orthotopic xenograft nude-mouse models, to compare in vivo malignancy of 143B-P and 143B-R cells. c-MYC expression was examined with western immunoblotting and compared in 143B-P and 143B-R cells. RESULTS 143B-R cells had reduced cell proliferation capacity, compared to 143B-P cells, in methionine-containing medium (p=0.003). 143B-R cells had reduced colony formation capacity on plastic (p=0.003) and in soft agar, compared to 143B-P cells in methionine-containing medium. 143B-R cells had reduced tumor growth in orthotopic xenograft nude-mouse models, compared to 143B-P cells, (p=0.002). These results demonstrate that 143B-R methionine-independent revertant cells lost malignancy. Expression of c-MYC was reduced in 143B-R methionine-independent revertant osteosarcoma cells, compared to 143B-P cells, (p=0.0007). CONCLUSION The present study demonstrated that c-MYC expression is linked to malignancy and methionine addiction of cancer cells. The present study on c-MYC, and the previous study on HRAS1, suggest that oncogenes may play a role in methionine addiction, which is a hallmark of all cancers, as well as in malignancy.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Yutaro Kubota
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Koya Obara
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
11
|
Cornejo MA, Jardines E, Nishiyama A, Nakano D, Ortiz RM. Simultaneous SGLT2 inhibition and caloric restriction improves insulin resistance and kidney function in OLETF rats. Mol Cell Endocrinol 2023; 560:111811. [PMID: 36397615 DOI: 10.1016/j.mce.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022]
Abstract
SGLT2 inhibitors (SGLT2i) are emerging as a novel therapy for type 2 diabetes due to their effective hypoglycemic and potential cardio- and nephroprotective effects, while caloric restriction (CR) is a common behavioral modification to improve adiposity and insulin resistance. Therefore, both interventions simultaneously may potentially further improve metabolic syndrome by enhancing carbohydrate metabolism. To test this hypothesis, cohorts of 10-week old, male Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were treated with SGLT2i (10 mg luseoglifozin/kg/day x 4 wks) (OLETF only) and/or 30% CR (2 wks at 12 weeks of age). CR maintained body mass in both strains while SGLT2i alone did not have any effect on body mass. Simultaneous treatments decreased SBP in OLETF vs SGLT2i alone, decreased insulin resistance index (IRI), and increased creatinine clearance vs OLETF ad lib. Conversely, CR decreased albuminuria independent of SGLT2i. In conclusion, SGLT2i treatment by itself did not elicit significant improvements in insulin resistance, kidney function or blood pressure. However, when combined with CR, these changes where more profound than with CR alone without inducing chronic hypoglycemia.
Collapse
Affiliation(s)
- Manuel A Cornejo
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - Eira Jardines
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
13
|
Ding J, Feng YQ. Mass spectrometry-based metabolomics for clinical study: Recent progresses and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Aoki Y, Han Q, Tome Y, Yamamoto J, Kubota Y, Masaki N, Obara K, Hamada K, Wang JD, Inubushi S, Bouvet M, Clarke SG, Nishida K, Hoffman RM. Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front Oncol 2022; 12:1009548. [PMID: 36408173 PMCID: PMC9671209 DOI: 10.3389/fonc.2022.1009548] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 02/01/2024] Open
Abstract
Methionine addiction, a fundamental and general hallmark of cancer, known as the Hoffman Effect, is due to altered use of methionine for increased and aberrant transmethylation reactions. However, the linkage of methionine addiction and malignancy of cancer cells is incompletely understood. An isogenic pair of methionine-addicted parental osteosarcoma cells and their rare methionine-independent revertant cells enabled us to compare them for malignancy, their epithelial-mesenchymal phenotype, and pattern of histone-H3 lysine-methylation. Methionine-independent revertant 143B osteosarcoma cells (143B-R) were selected from methionine-addicted parental cells (143B-P) by their chronic growth in low-methionine culture medium for 4 passages, which was depleted of methionine by recombinant methioninase (rMETase). Cell-migration capacity was compared with a wound-healing assay and invasion capability was compared with a transwell assay in 143B-P and 143B-R cells in vitro. Tumor growth and metastatic potential were compared after orthotopic cell-injection into the tibia bone of nude mice in vivo. Epithelial-mesenchymal phenotypic expression and the status of H3 lysine-methylation were determined with western immunoblotting. 143B-P cells had an IC50 of 0.20 U/ml and 143B-R cells had an IC50 of 0.68 U/ml for treatment with rMETase, demonstrating that 143B-R cells had regained the ability to grow in low methionine conditions. 143B-R cells had reduced cell migration and invasion capability in vitro, formed much smaller tumors than 143B-P cells and lost metastatic potential in vivo, indicating loss of malignancy in 143B-R cells. 143B-R cells showed gain of the epithelial marker, ZO-1 and loss of mesenchymal markers, vimentin, Snail, and Slug and, an increase of histone H3K9me3 and H3K27me3 methylation and a decrease of H3K4me3, H3K36me3, and H3K79me3 methylation, along with their loss of malignancy. These results suggest that shifting the balance in histone methylases might be a way to decrease the malignant potential of cells. The present results demonstrate the rationale to target methionine addiction for improved sarcoma therapy.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Yutaro Kubota
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Koya Obara
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Kazuyuki Hamada
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Justin D. Wang
- School of Medicine, California University of Science and Medicine, Colton, CA, United States
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Robert M. Hoffman
- AntiCancer Inc, San Diego, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Sedillo JC, Cryns VL. Targeting the methionine addiction of cancer. Am J Cancer Res 2022; 12:2249-2276. [PMID: 35693095 PMCID: PMC9185618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Methionine is the initiator amino acid for protein synthesis, the methyl source for most nucleotide, chromatin, and protein methylation, and the carbon backbone for various aspects of the cellular antioxidant response and nucleotide biosynthesis. Methionine is provided in the diet and serum methionine levels fluctuate based on dietary methionine content. Within the cell, methionine is recycled from homocysteine via the methionine cycle, which is linked to nutrient status via one-carbon metabolism. Unlike normal cells, many cancer cells, both in vitro and in vivo, show high methionine cycle activity and are dependent on exogenous methionine for continued growth. However, the molecular mechanisms underlying the methionine dependence of diverse malignancies are poorly understood. Methionine deprivation initiates widespread metabolic alterations in cancer cells that enable them to survive despite limited methionine availability, and these adaptive alterations can be specifically targeted to enhance the activity of methionine deprivation, a strategy we have termed "metabolic priming". Chemotherapy-resistant cell populations such as cancer stem cells, which drive treatment-resistance, are also sensitive to methionine deprivation, suggesting dietary methionine restriction may inhibit metastasis and recurrence. Several clinical trials in cancer are investigating methionine restriction in combination with other agents. This review will explore new insights into the mechanisms of methionine dependence in cancer and therapeutic efforts to translate these insights into enhanced clinical activity of methionine restriction in cancer.
Collapse
Affiliation(s)
- Joni C Sedillo
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
16
|
Golbourn BJ, Halbert ME, Halligan K, Varadharajan S, Krug B, Mbah NE, Kabir N, Stanton ACJ, Locke AL, Casillo SM, Zhao Y, Sanders LM, Cheney A, Mullett SJ, Chen A, Wassell M, Andren A, Perez J, Jane EP, Premkumar DRD, Koncar RF, Mirhadi S, McCarl LH, Chang YF, Wu YL, Gatesman TA, Cruz AF, Zapotocky M, Hu B, Kohanbash G, Wang X, Vartanian A, Moran MF, Lieberman F, Amankulor NM, Wendell SG, Vaske OM, Panigrahy A, Felker J, Bertrand KC, Kleinman CL, Rich JN, Friedlander RM, Broniscer A, Lyssiotis C, Jabado N, Pollack IF, Mack SC, Agnihotri S. Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. NATURE CANCER 2022; 3:629-648. [PMID: 35422502 PMCID: PMC9551679 DOI: 10.1038/s43018-022-00348-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.
Collapse
Affiliation(s)
- Brian J Golbourn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Katharine Halligan
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pediatrics, Division of Hematology-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Srinidhi Varadharajan
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Nneka E Mbah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nisha Kabir
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail L Locke
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie M Casillo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua Zhao
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA
| | - Lauren M Sanders
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Allison Cheney
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Michelle Wassell
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Perez
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Esther P Jane
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel R David Premkumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert F Koncar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Shideh Mirhadi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lauren H McCarl
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh and Rangos Research Center Animal Imaging Core, Pittsburgh, PA, USA
| | - Taylor A Gatesman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea F Cruz
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Zapotocky
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Xiuxing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | | | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lieberman
- Department of Neurology, Adult Neurooncology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olena M Vaske
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - James Felker
- Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kelsey C Bertrand
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jeremy N Rich
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Broniscer
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Pediatrics, Division of Hematology-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Costas Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C Mack
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Yamamoto J, Inubushi S, Han Q, Tashiro Y, Sugisawa N, Hamada K, Aoki Y, Miyake K, Matsuyama R, Bouvet M, Clarke SG, Endo I, Hoffman RM. Linkage of methionine addiction, histone lysine hypermethylation, and malignancy. iScience 2022; 25:104162. [PMID: 35434545 PMCID: PMC9010622 DOI: 10.1016/j.isci.2022.104162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/19/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Methionine addiction, found in all types of cancer investigated, is because of the overuse of methionine by cancer cells for excess transmethylation reactions. In the present study, we compared the histone H3 lysine-methylation status and degree of malignancy between methionine-addicted cancer cells and their isogenic methionine-independent revertants, selected by their growth in low concentration of methionine. The methionine-independent revertans can grow on low levels of methionine or independently of exogenous methionine using methionine precursors, as do normal cells. In the methionine-independent revertants, the excess levels of trimethylated histone H3 lysine marks found in the methionine-addicted parental cancer cells were reduced or lost, and their tumorigenicity and experimental metastatic potential in nude mice were also highly reduced. Methionine addiction of cancer is linked with malignancy and hypermethylation of histone H3 lysines. The results of the present study thus provide a unique framework to further understand a fundamental basis of malignancy. Methionine(MET)-independent revertants were selected from MET-addicted cancer cells MET-independent revertants had greatly reduced malignancy MET-independent revertants have lost or reduced methylation of H3 lysine marks MET addiction, malignancy, and hypermethylated H3 lysine marks are linked
Collapse
Affiliation(s)
- Jun Yamamoto
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Sachiko Inubushi
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Qinghong Han
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA
| | - Yoshihiko Tashiro
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Kazuyuki Hamada
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Yusuke Aoki
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Robert M Hoffman
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, CA 92037-7220, USA
| |
Collapse
|
18
|
Fung AA, Hoang K, Zha H, Chen D, Zhang W, Shi L. Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism. Front Oncol 2022; 12:858017. [PMID: 35359364 PMCID: PMC8960266 DOI: 10.3389/fonc.2022.858017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that is difficult to diagnose due to its discriminating epidemiology and obscure metabolome. For the first time, 3D spatial and chemometric analyses uncover the unique lipid metabolome of TNBC under the tandem modulation of two key metabolites - insulin and methionine - using non-invasive optical techniques. By conjugating heavy water (D2O) probed Raman scattering with label-free two-photon fluorescence (TPF) microscopy, we observed altered de novo lipogenesis, 3D lipid droplet morphology, and lipid peroxidation under various methionine and insulin concentrations. Quantitative interrogation of both spatial and chemometric lipid metabolism under tandem metabolite modulation confirms significant interaction of insulin and methionine, which may prove to be critical therapeutic targets, and proposes a powerful optical imaging platform with subcellular resolution for metabolic and cancer research.
Collapse
Affiliation(s)
- Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Khang Hoang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Honghao Zha
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Derek Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Wenxu Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Mass recovery following caloric restriction reverses lipolysis and proteolysis, but not gluconeogenesis, in insulin resistant OLETF rats. PLoS One 2021; 16:e0252360. [PMID: 34727112 PMCID: PMC8562784 DOI: 10.1371/journal.pone.0252360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Caloric restriction (CR) is one of the most important behavioral interventions to reduce excessive abdominal adiposity, which is a risk factor for the development of insulin resistance. Previous metabolomics studies have characterized substrate metabolism during healthy conditions; however, the effects of CR and subsequent mass recovery on shifts in substrate metabolism during insulin resistance (IR) have not been widely investigated. To assess the effects of acute CR and the subsequent mass recovery on shifts in substrate metabolism, a cohort of 15-week old Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were calorie restricted (CR: 50% × 10 days) with or without partial body mass recovery (PR; 73% x 7 days), along with their respective ad libitum controls. End-of-study plasma samples were analyzed for primary carbon metabolites by gas chromatography (GC) time-of-flight (TOF) mass spectrometry (MS) data acquisition. Data analysis included PCA, Pearson correlation vs previously reported variables (adipose and body masses, and insulin resistance index, IRI), and metabolomics maps (MetaMapp) generated for the most significant group comparisons. All treatments elicited a significant group differentiation in at least one principal component. CR improved TCA cycle in OLETF, and increased lipolysis and proteolysis. These changes were reversed after PR except for gluconeogenesis. Plasma lipid concentrations were inversely correlated to IRI in LETO, but not OLETF. These shifts in substrate metabolism suggest that the CR-induced decreases in adipose may not be sufficient to more permanently alter substrate metabolism to improve IR status during metabolic syndrome.
Collapse
|
20
|
Tan Z, Ge C, Feng D, Xu C, Cao B, Xie Y, Zhou H, Wang G, Aa J. The Interleukin-6/Signal Transducer and Activator of Transcription-3/Cystathionine γ-Lyase Axis Deciphers the Transformation Between the Sensitive and Resistant Phenotypes of Breast Cancer Cells. Drug Metab Dispos 2021; 49:985-994. [PMID: 34462267 DOI: 10.1124/dmd.121.000571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7S, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular specialty to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotypes in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells. SIGNIFICANCE STATEMENT: Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.
Collapse
Affiliation(s)
- Zhaoyi Tan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Chun Ge
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Dong Feng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Chen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Bei Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Honghao Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| |
Collapse
|
21
|
Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, Pérez-Plasencia C. Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Front Oncol 2021; 11:676562. [PMID: 34692471 PMCID: PMC8531643 DOI: 10.3389/fonc.2021.676562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.
Collapse
Affiliation(s)
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedra-CONACYT, Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
| | | | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - David Cantú-De León
- Unidad de Investigación en Cáncer, Instituto Nacional de Cancerología , Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Tatekawa S, Ofusa K, Chijimatsu R, Vecchione A, Tamari K, Ogawa K, Ishii H. Methylosystem for Cancer Sieging Strategy. Cancers (Basel) 2021; 13:5088. [PMID: 34680237 PMCID: PMC8534198 DOI: 10.3390/cancers13205088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
As cancer is a genetic disease, methylation defines a biologically malignant phenotype of cancer in the association of one-carbon metabolism-dependent S-adenosylmethionine (SAM) as a methyl donor in each cell. Methylated substances are involved in intracellular metabolism, but via intercellular communication, some of these can also be secreted to affect other substances. Although metabolic analysis at the single-cell level remains challenging, studying the "methylosystem" (i.e., the intercellular and intracellular communications of upstream regulatory factors and/or downstream effectors that affect the epigenetic mechanism involving the transfer of a methyl group from SAM onto the specific positions of nucleotides or other metabolites in the tumor microenvironment) and tracking these metabolic products are important research tasks for understanding spatial heterogeneity. Here, we discuss and highlight the involvement of RNA and nicotinamide, recently emerged targets, in SAM-producing one-carbon metabolism in cancer cells, cancer-associated fibroblasts, and immune cells. Their significance and implications will contribute to the discovery of efficient methods for the diagnosis of and therapeutic approaches to human cancer.
Collapse
Affiliation(s)
- Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (S.T.); (K.T.)
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (K.O.); (R.C.)
- Food and Life-Science Laboratory, Prophoenix Division, Idea Consultants, Inc., Osaka 559-8519, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (K.O.); (R.C.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, Via di Grottarossa, 1035-00189 Rome, Italy;
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (S.T.); (K.T.)
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (S.T.); (K.T.)
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (K.O.); (R.C.)
| |
Collapse
|
23
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
24
|
Impact of the Pd 2Spm (Spermine) Complex on the Metabolism of Triple-Negative Breast Cancer Tumors of a Xenograft Mouse Model. Int J Mol Sci 2021; 22:ijms221910775. [PMID: 34639114 PMCID: PMC8509401 DOI: 10.3390/ijms221910775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.
Collapse
|
25
|
Zhang S, Cui T, Duan Y, Zhang H, Wang B, Chen H, Ni J, Shen Y, Xiao-Ai Lv. Radix Tetrastigma Extracts Enhance the Chemosensitivity in Triple-Negative Breast Cancer Via Inhibiting PI3K/Akt/mTOR-Mediated Autophagy. Clin Breast Cancer 2021; 22:89-97. [PMID: 34535390 DOI: 10.1016/j.clbc.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Drug resistance in tumors is one of the major factors that leads to chemotherapy failure. This study aims to investigate the effect of Radix Tetrastigma extracts (RTEs) on Taxol-induced autophagy and the chemosensitivity against drug resistance in triple-negative breast cancer (TNBC). METHODS Taxol-resistant MDA-MB-468 (MDA-MB-468/Taxol) cells were induced and treated with RTEs and/or Taxol. Mice were subcutaneously inoculated with MDA-MB- 468/Taxol cells to establish xenograft models. The associated protein levels were measured by western blotting. Flow cytometry, CCK-8 and EdU assay were performed to detect cell apoptosis, viability, and proliferation, respectively. RESULTS In MDA-MB-468/Taxol cells, RTEs & Taxol treatment increased cell apoptosis, reduced cell viability and proliferation, up-regulated anti-autophagy marker LC3I/LC3II ratio, and enhanced mTOR level. With RTEs & Taxol treatment, mTOR silencing downregulated LC3I/LC3II ratio, increased cell viability and proliferation, and reduced cell apoptosis, while mTOR overexpression showed the opposite results. PI3K inhibitor reduced AKT and mTOR levels, and the effects on cell activities were similar to the results of mTOR silencing. After RTEs & Taxol injection, xenograft tumor was smaller, and AKT, mTOR, LC3I/LC3II ratio and apoptotic marker cleaved caspase-3 were increased. CONCLUSION RTEs enhanced the chemosensitivity of resistant TNBC cells to Taxol through inhibiting PI3K/Akt/mTOR-mediated autophagy. MICRO RTEs exerted anti-tumor effects in various cancers, and this study determined its role in TNBC. Taxol-resistant MDA-MB-468 cells were induced and xenograft models were established. We found that RTEs inhibited autophagy of MDA-MB-468/Taxol cells and reduced tumor growth. Inhibition of PI3K/Akt/mTOR pathway promoted autophagy of MDA-MB-468/Taxol cells. We may provide a new potential strategy for TNBC treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tongxing Cui
- General Surgery department, the affiliated Qingdao Municipal Hospital of Qingdao university, Qingdao 266000, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hongchen Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Bei Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Huiling Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junjie Ni
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yilin Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Ai Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
26
|
Coleman MF, O’Flanagan CH, Pfeil AJ, Chen X, Pearce JB, Sumner S, Krupenko SA, Hursting SD. Metabolic Response of Triple-Negative Breast Cancer to Folate Restriction. Nutrients 2021; 13:nu13051637. [PMID: 34068120 PMCID: PMC8152779 DOI: 10.3390/nu13051637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Triple-negative breast cancers (TNBCs), accounting for approximately 15% of breast cancers, lack targeted therapy. A hallmark of cancer is metabolic reprogramming, with one-carbon metabolism essential to many processes altered in tumor cells, including nucleotide biosynthesis and antioxidant defenses. We reported that folate deficiency via folic acid (FA) withdrawal in several TNBC cell lines results in heterogenous effects on cell growth, metabolic reprogramming, and mitochondrial impairment. To elucidate underlying drivers of TNBC sensitivity to folate stress, we characterized in vivo and in vitro responses to FA restriction in two TNBC models differing in metastatic potential and innate mitochondrial dysfunction. Methods: Metastatic MDA-MB-231 cells (high mitochondrial dysfunction) and nonmetastatic M-Wnt cells (low mitochondrial dysfunction) were orthotopically injected into mice fed diets with either 2 ppm FA (control), 0 ppm FA, or 12 ppm FA (supplementation; in MDA-MB-231 only). Tumor growth, metabolomics, and metabolic gene expression were assessed. MDA-MB-231 and M-Wnt cells were also grown in media with 0 or 2.2 µM FA; metabolic alterations were assessed by extracellular flux analysis, flow cytometry, and qPCR. Results: Relative to control, dietary FA restriction decreased MDA-MB-231 tumor weight and volume, while FA supplementation minimally increased MDA-MB-231 tumor weight. Metabolic studies in vivo and in vitro using MDA-MB-231 cells showed FA restriction remodeled one-carbon metabolism, nucleotide biosynthesis, and glucose metabolism. In contrast to findings in the MDA-MB-231 model, FA restriction in the M-Wnt model, relative to control, led to accelerated tumor growth, minimal metabolic changes, and modest mitochondrial dysfunction. Increased mitochondrial dysfunction in M-Wnt cells, induced via chloramphenicol, significantly enhanced responsiveness to the cytotoxic effects of FA restriction. Conclusions: Given the lack of targeted treatment options for TNBC, uncovering metabolic vulnerabilities that can be exploited as therapeutic targets is an important goal. Our findings suggest that a major driver of TNBC sensitivity to folate restriction is a high innate level of mitochondrial dysfunction, which can increase dependence on one-carbon metabolism. Thus, folate deprivation or antifolate therapy for TNBCs with metabolic inflexibility due to their elevated levels of mitochondrial dysfunction may represent a novel precision-medicine strategy.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
| | - Ciara H. O’Flanagan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
| | - Xuewen Chen
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
| | - Jane B. Pearce
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
| | - Susan Sumner
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Sergey A. Krupenko
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; (M.F.C.); (C.H.O.); (A.J.P.); (X.C.); (J.B.P.); (S.S.); (S.A.K.)
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
27
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
28
|
Morozova E, Anufrieva N, Koval V, Lesnova E, Kushch A, Timofeeva V, Solovieva A, Kulikova V, Revtovich S, Demidkina T. Conjugates of methionine γ-lyase with polysialic acid: Two approaches to antitumor therapy. Int J Biol Macromol 2021; 182:394-401. [PMID: 33839182 DOI: 10.1016/j.ijbiomac.2021.03.201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The methionine dependence is a well known phenomenon in metabolism of cancer cells. Methionine γ-lyase (EC 4.4.1.11, MGL) catalyzes the γ-elimination reaction of L-methionine and thus could effectively inhibit the growth of malignant cells. Recently we have demonstrated that the mutant form of the enzyme C115H MGL can be used as a component of the pharmacological pair enzyme/S-(allyl/alkyl)-L-cysteine sulfoxides to yield thiosulfinates in situ. Thiosulfinates were shown to be toxic to various cancer cell lines. Therefore the application of the enzyme in enzyme pro-drug therapy may be promising. The conjugates of MGL and C115H MGL with polysialic acid were obtained and their kinetic and pharmacokinetic parameters were determined. The formation of polysialic shell around the enzyme was confirmed by atomic force microscopy. The half-life of conjugated enzymes increased 3-6 times compared to the native enzyme. The cytotoxic effect of conjugated MGL against methionine dependent cancer cell lines was increased two times compared to the values for the native enzymes. The anticancer efficiency of thiosulfinates produced by pharmacological pair C115H MGL/S-(allyl/alkyl)-L-cysteine sulfoxides was demonstrated in vitro. The results indicate that the conjugates of MGL with polysialic acid could be new antitumor drugs.
Collapse
Affiliation(s)
- E Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - N Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - E Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - V Timofeeva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - A Solovieva
- N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - V Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - S Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - T Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
29
|
Borrego SL, Fahrmann J, Hou J, Lin DW, Tromberg BJ, Fiehn O, Kaiser P. Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res 2021; 62:100056. [PMID: 33647277 PMCID: PMC8042402 DOI: 10.1016/j.jlr.2021.100056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as "methionine dependence", "methionine stress sensitivity", or the Hoffman effect. The response of lipids to Met stress, however, is not well-understood. Using mass spectroscopy, label-free vibrational microscopy, and next-generation sequencing, we characterize the response of lipids to Met stress in the triple-negative breast cancer cell line MDA-MB-468 and its Met stress insensitive derivative, MDA-MB-468res-R8. Lipidome analysis identified an immediate, global decrease in lipid abundances with the exception of triglycerides and an increase in lipid droplets in response to Met stress specifically in MDA-MB-468 cells. Furthermore, specific gene expression changes were observed as a secondary response to Met stress in MDA-MB-468, resulting in a downregulation of fatty acid metabolic genes and an upregulation of genes in the unfolded protein response pathway. We conclude that the extensive changes in lipid abundance during Met stress is a direct consequence of the modified metabolic profile previously described in Met stress-sensitive cells. The changes in lipid abundance likely results in changes in membrane composition inducing the unfolded protein response we observe.
Collapse
Affiliation(s)
- Stacey L Borrego
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Johannes Fahrmann
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA; Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jue Hou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Bruce J Tromberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
30
|
Altundag Ö, Çelebi-Saltik B. From Embryo to Adult: One Carbon Metabolism in Stem Cells. Curr Stem Cell Res Ther 2021; 16:175-188. [PMID: 32652922 DOI: 10.2174/1574888x15666200712191308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells' studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| |
Collapse
|
31
|
Sensing and Signaling of Methionine Metabolism. Metabolites 2021; 11:metabo11020083. [PMID: 33572567 PMCID: PMC7912243 DOI: 10.3390/metabo11020083] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Availability of the amino acid methionine shows remarkable effects on the physiology of individual cells and whole organisms. For example, most cancer cells, but not normal cells, are hyper dependent on high flux through metabolic pathways connected to methionine, and diets restricted for methionine increase healthy lifespan in model organisms. Methionine's impact on physiology goes beyond its role in initiation of translation and incorporation in proteins. Many of its metabolites have a major influence on cellular functions including epigenetic regulation, maintenance of redox balance, polyamine synthesis, and phospholipid homeostasis. As a central component of such essential pathways, cells require mechanisms to sense methionine availability. When methionine levels are low, cellular response programs induce transcriptional and signaling states to remodel metabolic programs and maintain methionine metabolism. In addition, an evolutionary conserved cell cycle arrest is induced to ensure cellular and genomic integrity during methionine starvation conditions. Methionine and its metabolites are critical for cell growth, proliferation, and development in all organisms. However, mechanisms of methionine perception are diverse. Here we review current knowledge about mechanisms of methionine sensing in yeast and mammalian cells, and will discuss the impact of methionine imbalance on cancer and aging.
Collapse
|
32
|
Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14. Oncotarget 2020; 11:4490-4503. [PMID: 33400734 PMCID: PMC7721610 DOI: 10.18632/oncotarget.27758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cells typically enhance their metabolic capacity to sustain their higher rate of growth and proliferation. One way to elevate the nutrient intake into cancer cells is to increase the expression of genes encoding amino acid transporters, which may represent targetable vulnerabilities. Here, we study the regulation and function of the broad amino acid transporter SLC6A14 in combination with metabolic stress, providing insights into an uncharacterized aspect of the transporter activity. We analyze the pattern of transcriptional changes in a panel of breast cancer cell lines upon metabolic stress and found that SLC6A14 expression levels are increased in the absence of methionine. Methionine deprivation, which can be achieved via modulation of dietary methionine intake in tumor cells, in turn leads to a heightened activation of the AMP-activated kinase (AMPK) in SLC6A14-deficient cells. While SLC6A14 genetic deficiency does not have a major impact on cell proliferation, combined depletion of AMPK and SLC6A14 leads to an increase in apoptosis upon methionine starvation, suggesting that combined targeting of SLC6A14 and AMPK can be exploited as a therapeutic approach to starve tumor cells.
Collapse
|
33
|
In Silico Prediction of Metabolic Fluxes in Cancer Cells with Altered S-adenosylmethionine Decarboxylase Activity. Cell Biochem Biophys 2020; 79:37-48. [PMID: 33040301 DOI: 10.1007/s12013-020-00949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
This paper investigates the redistribution of metabolic fluxes in the cell with altered activity of S-adenosylmethionine decarboxylase (SAMdc, EC: 4.1.1.50), the key enzyme of the polyamine cycle and the common target for antitumor therapy. To address these goals, a stoichiometric metabolic model was developed that includes five metabolic pathways: polyamine, methionine, methionine salvage cycles, folic acid cycle, and the pathway of glutathione and taurine synthesis. The model is based on 51 reactions involving 57 metabolites, 31 of which are internal metabolites. All calculations were performed using the method of Flux Balance Analysis. The outcome indicates that the inactivation of SAMdc results in a significant increase in fluxes through the methionine, the taurine and glutathione synthesis, and the folate cycles. Therefore, when using therapeutic agents inactivating SAMdc, it is necessary to consider the possibility of cellular tumor metabolism reprogramming. S-adenosylmethionine affects serine methylation and activates serine-dependent de novo ATP synthesis. Methionine-depleted cell becomes methionine-dependent, searching for new sources of methionine. Inactivation of SAMdc enhances the transformation of S-adenosylmethionine to homocysteine and then to methionine. It also intensifies the transsulfuration process activating the synthesis of glutathione and taurine.
Collapse
|
34
|
Lee KB, Ang L, Yau WP, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020; 10:E362. [PMID: 32899527 PMCID: PMC7570231 DOI: 10.3390/metabo10090362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Kian Boon Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| |
Collapse
|
35
|
Wang L, Ren B, Hui Y, Chu C, Zhao Z, Zhang Y, Zhao B, Shi R, Ren J, Dai X, Liu Z, Liu X. Methionine Restriction Regulates Cognitive Function in High-Fat Diet-Fed Mice: Roles of Diurnal Rhythms of SCFAs Producing- and Inflammation-Related Microbes. Mol Nutr Food Res 2020; 64:e2000190. [PMID: 32729963 DOI: 10.1002/mnfr.202000190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/15/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Methionine restriction (MR) is known to potently alleviate inflammation and improve gut microbiome in obese mice. The gut microbiome exhibits diurnal rhythmicity in composition and function, and this, in turn, drives oscillations in host metabolism. High-fat diet (HFD) strongly altered microbiome diurnal rhythmicity, however, the role of microbiome diurnal rhythmicity in mediating the improvement effects of MR on obesity-related metabolic disorders remains unclear. METHODS AND RESULTS 10-week-old male C57BL/6J mice are fed a low-fat diet or HFD for 4 weeks, followed with a full diet (0.86% methionine, w/w) or a methionine-restricted diet (0.17% methionine, w/w) for 8 weeks. Analyzing microbiome diurnal rhythmicity at six time points, the results show that HFD disrupts the cyclical fluctuations of the gut microbiome in mice. MR partially restores these cyclical fluctuations, which lead to time-specifically enhance the abundance of short-chain fatty acids producing bacteria, increases the acetate and butyric, and dampens the oscillation of inflammation-related Desulfovibrionales and Staphylococcaceae over the course of 1 day. Notably, MR, which protects against systemic inflammation, influences brain function and synaptic plasticity. CONCLUSION MR could serve as a potential nutritional intervention for attenuating obesity-induced cognitive impairments by balancing the circadian rhythm in microbiome-gut-brain homeostasis.
Collapse
Affiliation(s)
- Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Hui
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.,Department of Food Science, University of Copenhagen, Copenhagen, 1958, Denmark
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenting Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junli Ren
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
36
|
Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, Ettayebi I, Fortier AM, Savage P, Fedor AN, Liu X, Guilhamon P, Lima-Fernandes E, Murison A, Kuasne H, Ba-alawi W, Cescon DW, Arrowsmith CH, De Carvalho DD, Haibe-Kains B, Locasale JW, Park M, Lupien M. Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discov 2020; 10:1312-1329. [DOI: 10.1158/2159-8290.cd-19-1493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
|
37
|
Evaluation of MDA-MB-468 Cell Culture Media Analysis in Predicting Triple-Negative Breast Cancer Patient Sera Metabolic Profiles. Metabolites 2020; 10:metabo10050173. [PMID: 32349447 PMCID: PMC7281562 DOI: 10.3390/metabo10050173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by limited survival, poor prognosis, and high recurrence. Understanding the metabolic adaptations of TNBC could help reveal improved treatment regiments. Here we performed a comprehensive 1H NMR metabolic characterization of the MDA-MB-468 cell line, a commonly used model of TNBC, followed by an analysis of serum samples obtained from TNBC patients and healthy controls. MDA-MB-468 cells were cultured, and changes in the metabolic composition of the medium were monitored for 72 h. Based on time courses, metabolites were categorized as being consumed, being produced, or showing a mixed behavior. When comparing TNBC and control samples (HC), and by using multivariate and univariate analyses, we identified nine metabolites with differing profiles). The serum of TNBC patients was characterized by higher levels of glucose, glutamine, citrate, and acetoacetate and by lower levels of lactate, alanine, tyrosine, glutamate, and acetone. A comparative analysis between MDA-MB-468 cell culture media and TNBC patients' serum identified a potential systemic response to the carcinogenesis-associated processes, highlighting that MDA-MB-468 cells footprint does not reflect metabolic changes observed in studied TNBC serum fingerprint.
Collapse
|
38
|
Methionine Dependence of Cancer. Biomolecules 2020; 10:biom10040568. [PMID: 32276408 PMCID: PMC7226524 DOI: 10.3390/biom10040568] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Tumorigenesis is accompanied by the reprogramming of cellular metabolism. The shift from oxidative phosphorylation to predominantly glycolytic pathways to support rapid growth is well known and is often referred to as the Warburg effect. However, other metabolic changes and acquired needs that distinguish cancer cells from normal cells have also been discovered. The dependence of cancer cells on exogenous methionine is one of them and is known as methionine dependence or the Hoffman effect. This phenomenon describes the inability of cancer cells to proliferate when methionine is replaced with its metabolic precursor, homocysteine, while proliferation of non-tumor cells is unaffected by these conditions. Surprisingly, cancer cells can readily synthesize methionine from homocysteine, so their dependency on exogenous methionine reflects a general need for altered metabolic flux through pathways linked to methionine. In this review, an overview of the field will be provided and recent discoveries will be discussed.
Collapse
|
39
|
Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med 2020; 17:44-59. [PMID: 32296576 PMCID: PMC7142847 DOI: 10.20892/j.issn.2095-3941.2019.0210] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Since triple-negative breast cancer (TNBC) was first defined over a decade ago, increasing studies have focused on its genetic and molecular characteristics. Patients diagnosed with TNBC, compared to those diagnosed with other breast cancer subtypes, have relatively poor outcomes due to high tumor aggressiveness and lack of targeted treatment. Metabolic reprogramming, an emerging hallmark of cancer, is hijacked by TNBC to fulfill bioenergetic and biosynthetic demands; maintain the redox balance; and further promote oncogenic signaling, cell proliferation, and metastasis. Understanding the mechanisms of metabolic remodeling may guide the design of metabolic strategies for the effective intervention of TNBC. Here, we review the metabolic reprogramming of glycolysis, oxidative phosphorylation, amino acid metabolism, lipid metabolism, and other branched pathways in TNBC and explore opportunities for new biomarkers, imaging modalities, and metabolically targeted therapies.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Surgical Oncology (Breast Center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianjin Jiang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenfang Dong
- Department of Surgical Oncology (Breast Center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
40
|
Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med 2020; 52:15-30. [PMID: 31980738 PMCID: PMC7000687 DOI: 10.1038/s12276-020-0375-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023] Open
Abstract
Over 90 years ago, Otto Warburg's seminal discovery of aerobic glycolysis established metabolic reprogramming as one of the first distinguishing characteristics of cancer1. The field of cancer metabolism subsequently revealed additional metabolic alterations in cancer by focusing on central carbon metabolism, including the citric acid cycle and pentose phosphate pathway. Recent reports have, however, uncovered substantial non-carbon metabolism contributions to cancer cell viability and growth. Amino acids, nutrients vital to the survival of all cell types, experience reprogrammed metabolism in cancer. This review outlines the diverse roles of amino acids within the tumor and in the tumor microenvironment. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, amino acid derivatives contribute to epigenetic regulation and immune responses linked to tumorigenesis and metastasis. Furthermore, in discussing the transporters and transaminases that mediate amino acid uptake and synthesis, we identify potential metabolic liabilities as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth L. Lieu
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Tu Nguyen
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Shawn Rhyne
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Jiyeon Kim
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
41
|
Mojarrad P, Zamani S, Seyedhamzeh M, Omoomi FD, Karimpourfard N, Hadadian S, Ebrahimi SES, Hamedani MP, Farzaneh J, Ardestani MS. Novel radiopharmaceutical (Technetium-99m)-(DOTA-NHS-ester)-Methionine as a SPECT-CT tumor imaging agent. Eur J Pharm Sci 2020; 141:105112. [DOI: 10.1016/j.ejps.2019.105112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
42
|
Hoffman RM. Is the Hoffman Effect for Methionine Overuse Analogous to the Warburg Effect for Glucose Overuse in Cancer? Methods Mol Biol 2019; 1866:273-278. [PMID: 30725423 DOI: 10.1007/978-1-4939-8796-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The general cancer-specific metabolic defect of methionine (MET) dependence is due to MET overuse for aberrant transmethylation reactions. The excess use of MET for aberrant transmethylation reactions apparently diverts methyl groups from DNA. The resulting global DNA hypomethylation is also a general phenomenon in cancer and leads to unstable genomes and aneuploid karyotypes. The excessive and aberrant use of MET in cancer is readily observed in [11C]-MET-PET imaging, where high uptake of [11C]-MET results in a very strong and selective tumor signal compared to normal tissue background for brain cancer and possibly other cancers. [11C]-MET is superior to [18C]-fluorodeoxyglucose (FDG) for PET imaging, suggesting that MET overuse in cancer ("Hoffman effect") is greater than glucose overuse in cancer ("Warburg effect").
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
43
|
Combs JA, DeNicola GM. The Non-Essential Amino Acid Cysteine Becomes Essential for Tumor Proliferation and Survival. Cancers (Basel) 2019; 11:cancers11050678. [PMID: 31100816 PMCID: PMC6562400 DOI: 10.3390/cancers11050678] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
The non-essential amino acid cysteine is used within cells for multiple processes that rely on the chemistry of its thiol group. Under physiological conditions, many non-transformed tissues rely on glutathione, circulating cysteine, and the de novo cysteine synthesis (transsulfuration) pathway as sources of intracellular cysteine to support cellular processes. In contrast, many cancers require exogeneous cystine for proliferation and viability. Herein, we review how the cystine transporter, xCT, and exogenous cystine fuel cancer cell proliferation and the mechanisms that regulate xCT expression and activity. Further, we discuss the potential contribution of additional sources of cysteine to the cysteine pool and what is known about the essentiality of these processes in cancer cells. Finally, we discuss whether cyst(e)ine dependency and associated metabolic alterations represent therapeutically targetable metabolic vulnerabilities.
Collapse
Affiliation(s)
- Joseph A Combs
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
44
|
Fan S, Kind T, Cajka T, Hazen SL, Tang WHW, Kaddurah-Daouk R, Irvin MR, Arnett DK, Barupal DK, Fiehn O. Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal Chem 2019; 91:3590-3596. [DOI: 10.1021/acs.analchem.8b05592] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sili Fan
- West Coast Metabolomics
Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Tobias Kind
- West Coast Metabolomics
Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Tomas Cajka
- West Coast Metabolomics
Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
- Department of Metabolomics, Institute of Physiology CAS, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 1720 Second Avenue South, Birmingham, Alabama 35294, United States
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, 121 Washington Avenue, Lexington, Kentucky 40508, United States
| | - Dinesh K. Barupal
- West Coast Metabolomics
Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Oliver Fiehn
- West Coast Metabolomics
Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| |
Collapse
|
45
|
Roci I, Watrous JD, Lagerborg KA, Lafranchi L, Lindqvist A, Jain M, Nilsson R. Mapping Metabolic Events in the Cancer Cell Cycle Reveals Arginine Catabolism in the Committed SG 2M Phase. Cell Rep 2019; 26:1691-1700.e5. [PMID: 30759381 PMCID: PMC6663478 DOI: 10.1016/j.celrep.2019.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations in cell-cycle regulation and cellular metabolism are associated with cancer transformation, and enzymes active in the committed cell-cycle phase may represent vulnerabilities of cancer cells. Here, we map metabolic events in the G1 and SG2M phases by combining cell sorting with mass spectrometry-based isotope tracing, revealing hundreds of cell-cycle-associated metabolites. In particular, arginine uptake and ornithine synthesis are active during SG2M in transformed but not in normal cells, with the mitochondrial arginase 2 (ARG2) enzyme as a potential mechanism. While cancer cells exclusively use ARG2, normal epithelial cells synthesize ornithine via ornithine aminotransferase (OAT). Knockdown of ARG2 markedly reduces cancer cell growth and causes G2M arrest, while not inducing compensation via OAT. In human tumors, ARG2 is highly expressed in specific tumor types, including basal-like breast tumors. This study sheds light on the interplay between metabolism and cell cycle and identifies ARG2 as a potential metabolic target.
Collapse
Affiliation(s)
- Irena Roci
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Lorenzo Lafranchi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
46
|
Zheng Y, Cantley LC. Toward a better understanding of folate metabolism in health and disease. J Exp Med 2019; 216:253-266. [PMID: 30587505 PMCID: PMC6363433 DOI: 10.1084/jem.20181965] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Folate metabolism is crucial for many biochemical processes, including purine and thymidine monophosphate (dTMP) biosynthesis, mitochondrial protein translation, and methionine regeneration. These biochemical processes in turn support critical cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. Not surprisingly, abnormal folate metabolism has been causally linked with a myriad of diseases. In this review, we provide a historical perspective, delve into folate chemistry that is often overlooked, and point out various missing links and underdeveloped areas in folate metabolism for future exploration.
Collapse
Affiliation(s)
- Yuxiang Zheng
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Lewis C Cantley
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
47
|
Borrego SL, Lin DW, Kaiser P. Isolation and Characterization of Methionine-Independent Clones from Methionine-Dependent Cancer Cells. Methods Mol Biol 2019; 1866:37-48. [PMID: 30725406 DOI: 10.1007/978-1-4939-8796-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike normal cells, transformed cells are unable to grow when methionine in the growth media is restricted. Reversion to methionine independence is a rare event in transformed and malignant cells. Methionine-independent revertants provide an excellent system to identify metabolic signatures and molecular characteristics associated with methionine dependency of transformed cells. Revertants maintain the genetic background and general growth behavior of the parental cell line, except that they proliferate under methionine restriction such as in methionine-free media supplemented with homocysteine. Here we describe a general approach to generate methionine-independent revertants using the example of the triple-negative breast cancer cell line MDA-MB-468. To validate and characterize reversion we describe assays to evaluate cell proliferation and anchorage-independent growth in soft agar.
Collapse
Affiliation(s)
- Stacey L Borrego
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Metabolomics and 16S rRNA sequencing of human colorectal cancers and adjacent mucosa. PLoS One 2018; 13:e0208584. [PMID: 30576312 PMCID: PMC6303059 DOI: 10.1371/journal.pone.0208584] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
Collapse
|
49
|
Yin J, Ren W, Chen S, Li Y, Han H, Gao J, Liu G, Wu X, Li T, Woo Kim S, Yin Y. Metabolic Regulation of Methionine Restriction in Diabetes. Mol Nutr Food Res 2018; 62:e1700951. [PMID: 29603632 DOI: 10.1002/mnfr.201700951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Indexed: 12/16/2022]
Abstract
Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction (MR) and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway (PPP), and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Yuying Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Hui Han
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Jing Gao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xin Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| |
Collapse
|
50
|
Vale N, Ferreira A, Matos J, Fresco P, Gouveia MJ. Amino Acids in the Development of Prodrugs. Molecules 2018; 23:E2318. [PMID: 30208629 PMCID: PMC6225300 DOI: 10.3390/molecules23092318] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/03/2023] Open
Abstract
Although drugs currently used for the various types of diseases (e.g., antiparasitic, antiviral, antibacterial, etc.) are effective, they present several undesirable pharmacological and pharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistance against drugs upon chronic treatment. Consequently, their potential clinical applications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted in improvements in several properties, namely increased bioavailability, decreased toxicity of the parent drug, accurate delivery to target tissues or organs, and prevention of fast metabolism. Herein, we provide an overview of models currently in use of prodrug design with amino acids. Furthermore, we review the challenges related to the permeability of poorly absorbed drugs and transport and deliver on target organs.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Abigail Ferreira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Joana Matos
- SpiroChem AG, Rosental Area, WRO-1074-3, Mattenstrasse 24, 4058 Basel, Switzerland.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Maria João Gouveia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|