1
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
2
|
Wang T, Cui S, Liu X, Han L, Duan X, Feng S, Zhang S, Li G. LncTUG1 ameliorates renal tubular fibrosis in experimental diabetic nephropathy through the miR-145-5p/dual-specificity phosphatase 6 axis. Ren Fail 2023; 45:2173950. [PMID: 36794657 PMCID: PMC9937007 DOI: 10.1080/0886022x.2023.2173950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The renal interstitial fibrosis contributes to the progression and deterioration of diabetic nephropathy (DN). Long noncoding RNA taurine-up-regulated gene 1 (TUG1) in kidneys may be down-regulated by hyperglycemia. We aim to explore its role in tubular fibrosis caused by high glucose and the possible target genes of TUG1. In this study, a streptozocin-induced accelerated DN mouse model and a high glucose-stimulated HK-2 cells model was established to evaluate TUG1 expression. Potential targets of TUG1 were analyzed by online tools and confirmed by luciferase assay. A rescue experiment and gene silencing assay were used to investigate whether TUG1 plays its regulation role via miR-145-5p/dual-specificity phosphatase 6 (DUSP6) in HK2 cells. The effects of TUG1 on inflammation and fibrosis in high glucose treated tubular cells were evaluated by in vitro study, as well as in vivo DN mice model through AAV-TUG1 delivery. Results showed TUG1was downregulated in HK2 cells incubated with high glucose while miR-145-5p was upregulated. Overexpression of TUG1 alleviated renal injury by suppressing inflammation and fibrosis in vivo. Overexpression of TUG1 inhibited HK-2 cell fibrosis and relieved the inflammation. A mechanism study demonstrated that TUG1 directly sponged to miR-145-5p, and DUSP6 was identified as a target downstream of miR-145-5p. In addition, miR-145-5 overexpression and DUSP6 inhibition countervailed the impacts of TUG1. Our findings revealed that TUG1 overexpression alleviates kidney injury in DN mice and decreases the inflammatory response and fibrosis of high glucose-stimulated HK-2 cells via miR-145-5p/DUSP6 axis.
Collapse
Affiliation(s)
- Taoxia Wang
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Shubei Cui
- The First Department of Orthopedics, Handan Central Hospital, Handan, China
| | - Xiaoli Liu
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Li Han
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Xiaoting Duan
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Shuning Feng
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China,Sen Zhang State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guiying Li
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Hebei, China,CONTACT Guiying Li Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, No.81, Congtai Road, Congtai District, Handan city, 056000, Hebei Province, China
| |
Collapse
|
3
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
4
|
Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M. Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 2022; 13:904. [PMID: 36302749 PMCID: PMC9613878 DOI: 10.1038/s41419-022-05348-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Islet β cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet β cell specific Mut-Reg1cp knock-in have more severe β cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in β cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.
Collapse
Affiliation(s)
- Wan-Hui Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Qi Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Ya-Lin Liu
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Dan-Dan Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Li Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Jing Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Xiang-Hang Luo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Mi Yang
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| |
Collapse
|
5
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
6
|
Pang H, Fan W, Shi X, Li J, Wang Y, Luo S, Lin J, Huang G, Li X, Xie Z, Zhou Z. Characterization of lncRNA Profiles of Plasma-Derived Exosomes From Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:822221. [PMID: 35634499 PMCID: PMC9135040 DOI: 10.3389/fendo.2022.822221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDS Exosomes contain several types of transcripts, including long non-coding RNAs (lncRNAs), and have been shown to exert important effects in human diseases. However, the roles of exosomal lncRNAs in type 1 diabetes mellitus (T1DM) have not been well investigated. In the present study, we characterized the plasma-derived exosomal lncRNAs expression profiles of T1DM and predict their potential function in the pathogenesis of T1DM. MATERIAL AND METHODS Exosomal lncRNA expression profiles were detected by Illumina Hiseq platform (T1DM subjects N=10; age-, sex- matched Control subjects N=10). Six exosomal lncRNAs were selected to validate their expression level by using quantitative real-time PCR (qRT-PCR) (T1DM subjects N=30; age-, sex- matched Control subjects N=30). Bioinformatics analysis approaches were carried out to explore the potential biological function of differentially expressed lncRNAs. RESULTS A total of 162 differentially expressed exosomal lncRNAs were identified in T1DM patients compared with control subjects, among which 77 up-regulated and 85 down-regulated. The expression level of the selected six lncRNAs didn't show significant difference in the following qRT-PCR analysis. Gene Ontology analysis enriched terms such as activation of phospholipase D activity, neuronal cell body membrane, and calcium sensitive guanylate cyclase activator activity for cis-acting genes of lncRNAs, and metal ion binding for trans-acting genes. The most enriched Kyoto Encyclopedia of Genes and Genomes pathways for the lncRNAs were associated with oxidative phosphorylation and Parkinson's disease for cis-acting genes, and pathways in cancer as well as focal adhesion for trans-acting genes. CONCLUSIONS This study characterized the lncRNA profiles of plasma-derived exosomes from T1DM for the first time and these results highlighted the potential role of exosomal lncRNAs in T1DM pathogenesis. A better understanding of exosomal lncRNA profiling will provide novel insights into its molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Potential value of lncRNAs as a biomarker for proliferative diabetic retinopathy. Eye (Lond) 2022; 36:575-584. [PMID: 33767408 PMCID: PMC8873401 DOI: 10.1038/s41433-021-01507-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES To investigate the differences in lncRNAs expression in whole blood between diabetic retinopathy (DR) patients and healthy subjects, and to evaluate the potential value of lncRNAs as a diagnostic biomarker for proliferative diabetic retinopathy (PDR). METHODS A series of 34 PDR patients, 34 patients with non-proliferative DR (NPDR) and 34 healthy participants were enroled. Differentially expressed lncRNAs were demonstrated using high-throughput sequencing and validated using qRT-PCR. Gene Ontology (GO) was performed to explore the possible biological function of the differentially expressed lncRNAs. lncRNA/mRNA coexpression network was built to determine the targets of differentially expressed lncRNAs. Receiver operating characteristic (ROC) analysis was utilized to evaluate the diagnostic value of lncRNAs for PDR. RESULTS We identified 175 and 179 differentially expressed lncRNAs in PDR patients compared with control samples and NPDR patients, respectively. GO analysis showed that the various metabolic processes were possibly influenced by these dysregulated lncRNAs. Using the differently expressed lncRNAs data, we further identified 82 overlapping lncRNAs in PDR patients with NPDR and control subjects. Part of these overlapping lncRNAs was significantly correlated with nuclear factor kappa B (NF-κB) and Wnt signal pathways. ROC curves were constructed for two upregulated lncRNAs and the ROC analysis indicated that both of them had potential diagnostic value and could distinguish PDR from control subjects and NPDR patients. CONCLUSIONS LncRNAs expression was altered in PDR patients compared with NPDR and control subjects. Moreover, it provides a resource that lncRNAs might be novel diagnostic and prognostic biomarker for PDR.
Collapse
|
8
|
Wang Z, Huang K, Xu J, Liu J, Zheng Y. Insights from Dysregulated mRNA Expression Profile of β-Cells in Response to Proinflammatory Cytokines. J Immunol Res 2022; 2022:4542487. [PMID: 35103245 PMCID: PMC8800623 DOI: 10.1155/2022/4542487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that is characterized by autoimmunity and its mediated β-cell damage. Chronic exposure of β-cells to proinflammatory cytokines is known to regulate the expression of many genes, subsequently resulting in the impairment of some signaling pathways involved with insulin production and secretion and/or β-cell apoptosis. In our study, RNA sequencing technology was applied to identify differentially expressed mRNAs in MIN6 cells treated with a mix of cytokines, including IL-1β, TNF-α, and IFN-γ. The results showed 809 upregulated and 946 downregulated protein-coding mRNAs in MIN6 cells upon the stimulation of cytokines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of dysregulated genes. The networks of circRNA-mRNA were constructed between differentially mRNAs and dysregulated expressed circRNAs in our previous study. In addition, we selected 8 dysregulated mRNAs for further validation by quantitative real-time PCR. The RNA sequencing data showed 809 upregulated and 946 downregulated protein-coding mRNAs. GO analysis showed that the top 10 significant "biological processes," "cellular components," and "molecular functions" for upregulated mRNAs include "immune system process," "inflammatory response," and "innate immune response" and the top 10 for downregulated mRNAs include "cell cycle," "mitotic cytokinesis," and "cytoplasm." KEGG analysis showed that these differentially expressed genes were involved with "antigen processing and presentation," "TNF signaling pathway" and "type 1 diabetes," "cell cycle," "necroptosis," and "Rap1 signaling pathway." We also constructed the networks of differentially expressed circRNAs and mRNAs. We observed that upregulated circRNA 006029 and downregulated circRNA 000286 and 017277 were associated with the vast majority of selected dysregulated mRNAs, while circRNA 013053 was only related to the protein-coding gene, Slc7a2. To the summary, these data indicated that differentially expressed mRNAs may play key or partial roles in cytokine-mediated β-cell dysfunction and gave us the hint that circRNAs might regulate mRNAs, thereby contributing to the development of T1DM. The current study provided a systematic perspective on the potential functions and possible regulatory mechanisms of mRNAs in proinflammatory cytokine-induced β-cell destruction.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China
| | - Kunlin Huang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Xu
- Department of Metabolism and Endocrinology, The First People's Hospital of Pingjiang, Pingjiang, Hunan 414500, China
| | - Jia Liu
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Zheng
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Liu L, Wang Z, Wang Y, Luan J, Morrissey JJ, Naik RR, Singamaneni S. Plasmonically Enhanced CRISPR/Cas13a-Based Bioassay for Amplification-Free Detection of Cancer-Associated RNA. Adv Healthc Mater 2021; 10:e2100956. [PMID: 34369102 PMCID: PMC8542602 DOI: 10.1002/adhm.202100956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn-around time and extensive capital equipment. Here, an ultrasensitive and amplification-free RNA quantification method is demonstrated by integrating CRISPR-Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR-powered assay exhibits nearly 1000-fold lower limit-of-detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification-free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource-limited settings.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Yixuan Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rajesh R. Naik
- 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
11
|
Zhang L, Zhao X, Wang W. lncRNA and mRNA sequencing of the left testis in experimental varicocele rats treated with Morinda officinalis polysaccharide. Exp Ther Med 2021; 22:1136. [PMID: 34466146 PMCID: PMC8383328 DOI: 10.3892/etm.2021.10570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Varicocele is a common disease of the male reproductive system. Morinda (M.) officinalis is a Chinese herbal medicine, whose main bioactive component M. officinalis polysaccharide (MOP) is believed to have a therapeutic effect on varicocele; however, the underlying molecular mechanisms of this effect are poorly understood. In the present study, 24 rats were randomly divided into three groups: i) Control group; ii) experimental varicocele group; and iii) 300 mg/kg MOP administration group. Analysis of mRNA and long non-coding RNA (lncRNA) expression in rat left testicular tissue was performed. The results suggested that a total of 144 mRNAs and 63 lncRNAs, 63 mRNAs and 148 lncRNAs, and 173 mRNAs and 54 lncRNAs were differentially expressed between the varicocele non-treatment and control groups, the varicocele treatment and varicocele non-treatment groups, and the varicocele treatment and control groups, respectively. Following validation by reverse transcription-quantitative PCR, the Yip1 domain family member 7 (YIPF7) gene was identified as a key mediator of varicocele pathogenesis and repair effect of MOP. Additionally, genes such as purinergic receptor P2X 4 (P2RX4), transmembrane protein 225B (TMEM255B) and Wnt family member 9B (WNT9B) were confirmed to be differentially expressed between the varicocele non-treatment and control groups. We hypothesize that TMEM255B could be a potential novel diagnostic biomarker for varicocele; WNT9B and P2RX4 likely play notable roles in the pathophysiology of the disease through the Wnt signaling pathway and regulation of transmembrane ion channels, respectively. In summary, the present study delineated the molecular mechanisms underlying varicocele pathogenesis and the therapeutic effect of MOP, identified a potential novel diagnostic marker and therapeutic target for varicocele, and provided feasible directions for further studies in the future.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiaozhen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Wei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Key Laboratory of Aging and Neurodegenerative Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China.,Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
12
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
13
|
Shi Q, Yao H. Signature RNAS and related regulatory roles in type 1 diabetes mellitus based on competing endogenous RNA regulatory network analysis. BMC Med Genomics 2021; 14:133. [PMID: 34006268 PMCID: PMC8130321 DOI: 10.1186/s12920-021-00931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Our study aimed to investigate signature RNAs and their potential roles in type 1 diabetes mellitus (T1DM) using a competing endogenous RNA regulatory network analysis. METHODS Expression profiles of GSE55100, deposited from peripheral blood mononuclear cells of 12 T1DM patients and 10 normal controls, were downloaded from the Gene Expression Omnibus to uncover differentially expressed long non-coding RNAs (lncRNAs), mRNAs, and microRNAs (miRNAs). The ceRNA regulatory network was constructed, then functional and pathway enrichment analysis was conducted. AT1DM-related ceRNA regulatory network was established based on the Human microRNA Disease Database to carry out pathway enrichment analysis. Meanwhile, the T1DM-related pathways were retrieved from the Comparative Toxicogenomics Database (CTD). RESULTS In total, 847 mRNAs, 41 lncRNAs, and 38 miRNAs were significantly differentially expressed. The ceRNA regulatory network consisted of 12 lncRNAs, 10 miRNAs, and 24 mRNAs. Two miRNAs (hsa-miR-181a and hsa-miR-1275) were screened as T1DM-related miRNAs to build the T1DM-related ceRNA regulatory network, in which genes were considerably enriched in seven pathways. Moreover, three overlapping pathways, including the phosphatidylinositol signaling system (involving PIP4K2A, INPP4A, PIP4K2C, and CALM1); dopaminergic synapse (involving CALM1 and PPP2R5C); and the insulin signaling pathway (involving CBLB and CALM1) were revealed by comparing with T1DM-related pathways in the CTD, which involved four lncRNAs (LINC01278, TRG-AS1, MIAT, and GAS5-AS1). CONCLUSION The identified signature RNAs may serve as important regulators in the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Qinghong Shi
- Department of Clinical Laboratory, The Third Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin China
| | - Hanxin Yao
- Department of Clinical Laboratory, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, 130021 Jilin China
| |
Collapse
|
14
|
Imbalance between Expression of FOXC2 and Its lncRNA in Lymphedema-Distichiasis Caused by Frameshift Mutations. Genes (Basel) 2021; 12:genes12050650. [PMID: 33925370 PMCID: PMC8146868 DOI: 10.3390/genes12050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022] Open
Abstract
Forkhead-box C2 (FOXC2) is a transcription factor involved in lymphatic system development. FOXC2 mutations cause Lymphedema-distichiasis syndrome (LD). Recently, a natural antisense was identified, called lncRNA FOXC2-AS1, which increases FOXC2 mRNA stability. No studies have evaluated FOXC2 and FOXC2-AS1 blood expression in LD and healthy subjects. Here, we show that FOXC2 and FOXC-AS1 expression levels were similar in both controls and patients, and a significantly higher amount of both RNAs was observed in females. A positive correlation between FOXC2 and FOXC2-AS1 expression was found in both controls and patients, excluding those with frameshift mutations. In these patients, the FOXC2-AS1/FOXC2 ratio was about 1:1, while it was higher in controls and patients carrying other types of mutations. The overexpression or silencing of FOXC2-AS1 determined a significant increase or reduction in FOXC2 wild-type and frameshift mutant proteins, respectively. Moreover, confocal and bioinformatic analysis revealed that these variations caused the formation of nuclear proteins aggregates also involving DNA. In conclusion, patients with frameshift mutations presented lower values of the FOXC2-AS1/FOXC2 ratio, due to a decrease in FOXC2-AS1 expression. The imbalance between FOXC2 mRNA and its lncRNA could represent a molecular mechanism to reduce the amount of FOXC2 misfolded proteins, protecting cells from damage.
Collapse
|
15
|
Luo S, Deng M, Xie Z, Li X, Huang G, Zhou Z. Circulating circular RNAs profiles associated with type 1 diabetes. Diabetes Metab Res Rev 2021; 37:e3394. [PMID: 32798322 DOI: 10.1002/dmrr.3394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Circular RNAs (circRNAs) have recently been shown to exert important effects in human diseases. However, the roles of circRNAs in type 1 diabetes (T1D) are largely unknown. This study is to identify the circRNA expression profiles in the peripheral blood of patients with T1D and predict their potential regulatory mechanisms and coding potential. METHODS CircRNA expression profiles were detected by Arraystar human circRNA microarray. With real-time PCR validation, multiple bioinformatics approaches were used to explore their biological functions, construct the circRNA-miRNA-mRNA interactions, and predict circRNA coding potential. RESULTS A total of 93 differentially expressed circular transcripts were identified in T1D compared with controls, among which 30 were upregulated, and 63 were downregulated. Two circRNAs were identified to have significant differences by RT-PCR. Gene ontology analysis enriched terms such as cellular protein metabolic process, cytoplasm and zinc ion binding. The proposed molecular functions of these differentially expressed circRNAs, including cellular protein metabolic process, cytoplasm, and binding, may contribute to T1D. The most enriched pathways for these circRNAs were involved in protein processing in the endoplasmic reticulum. Hsa_circ_0072697 may be involved in 50 circRNA-miRNA-mRNA signalling pathways related to diabetes, such as circ_0072697-miR-15a-UBASH3A network. Furthermore, hsa_circ_0071224, hsa_circ_0002437, hsa_circ_0084429, hsa_circ_0072697, and hsa_circ_0000787 in T1D were considered to have the most coding potential involved in the pathogenesis of T1D. CONCLUSIONS These results showed that circRNAs are aberrantly expressed in the peripheral blood of patients with T1D and may play potential actions by interactions with miRNA and circRNA-derived peptides in the development of T1D.
Collapse
Affiliation(s)
- Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Min Deng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| |
Collapse
|
16
|
López–Noriega L, Rutter GA. Long Non-Coding RNAs as Key Modulators of Pancreatic β-Cell Mass and Function. Front Endocrinol (Lausanne) 2021; 11:610213. [PMID: 33628198 PMCID: PMC7897662 DOI: 10.3389/fendo.2020.610213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have sought to decipher the genetic and other mechanisms contributing to β-cell loss and dysfunction in diabetes mellitus. However, we have yet to fully understand the etiology of the disease or to develop satisfactory treatments. Since the majority of diabetes susceptibility loci are mapped to non-coding regions within the genome, understanding the functions of non-coding RNAs in β-cell biology might provide crucial insights into the pathogenesis of type 1 (T1D) and type 2 (T2D) diabetes. During the past decade, numerous studies have indicated that long non-coding RNAs play important roles in the maintenance of β-cell mass and function. Indeed, lncRNAs have been shown to be involved in controlling β-cell proliferation during development and/or β-cell compensation in response to hyperglycaemia. LncRNAs such as TUG-1 and MEG3 play a role in both β-cell apoptosis and function, while others sensitize β-cells to apoptosis in response to stress signals. In addition, several long non-coding RNAs have been shown to regulate the expression of β-cell-enriched transcription factors in cis or in trans. In this review, we provide an overview of the roles of lncRNAs in maintaining β-function and mass, and discuss their relevance in the development of diabetes.
Collapse
Affiliation(s)
- Livia López–Noriega
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Diabetes, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Diabetes, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Chi T, Lin J, Wang M, Zhao Y, Liao Z, Wei P. Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management. Front Endocrinol (Lausanne) 2021; 12:630032. [PMID: 34603195 PMCID: PMC8484715 DOI: 10.3389/fendo.2021.630032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes, a metabolic disease characterized by high blood glucose and other complications, has undefined causes and multiple risk factors, including inappropriate diet, unhealthy lifestyles, and genetic predisposition. The two most distinguished types of diabetes are type 1 and type 2 diabetes, resulting from the autoimmune impairment of insulin-generating pancreatic β cells and insulin insensitivity, respectively. Non-coding RNAs (ncRNAs), a cohort of RNAs with little transcriptional value, have been found to exert substantial importance in epigenetic and posttranscriptional modulation of gene expression such as messenger RNA (mRNA) silencing. This review mainly focuses on the pathology of type 2 diabetes (T2D) and ncRNAs as potential biomarkers in T2D development and clinical management. We consolidate the pathogenesis, diagnosis, and current treatments of T2D, and present the existing evidence on changes in multiple types of ncRNAs in response to various pathological changes and dysfunctions in different stages of T2D.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaran Lin
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yihan Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Peng Wei, ; Zehuan Liao,
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei, ; Zehuan Liao,
| |
Collapse
|
18
|
Propagation and Maintenance of Cancer Stem Cells: A Major Influence of the Long Non-Coding RNA H19. Cells 2020; 9:cells9122613. [PMID: 33291403 PMCID: PMC7762009 DOI: 10.3390/cells9122613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) represent a rare population of tumor cells that exhibit stem cell properties with the abilities of self-renewal and differentiation. These cells are now widely accepted to be responsible for tumor initiation, development, resistance to conventional therapies, and recurrence. Thus, a better understanding of the molecular mechanisms involved in the control of CSCs is essential to improve patient management in terms of diagnostics and therapies. CSCs are regulated by signals of the tumor microenvironment as well as intrinsic genetic and epigenetic modulators. H19, the first identified lncRNA is involved in the development and progression of many different cancer types. Recently, H19 has been demonstrated to be implicated in the regulation of CSCs in different types of cancers. The aim of this review is to provide an overview of the role and mechanisms of action of H19 in the regulation of CSCs. We summarize how H19 may regulate CSC division and cancer cell reprogramming, thus affecting metastasis and drug resistance. We also discuss the potential clinical implications of H19.
Collapse
|
19
|
Liu Y, Du X, Cui J, Li C, Guo M, Lv J, Liu X, Dou J, Du X, Fang H, Chen Z. A Genome-Wide Analysis of Long Noncoding RNAs in Circulating Leukocytes and Their Differential Expression in Type 1 Diabetes Patients. J Diabetes Res 2020; 2020:9010314. [PMID: 33299893 PMCID: PMC7710437 DOI: 10.1155/2020/9010314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression at different levels in various diseases, including type 1 diabetes (T1D). However, the expression of circulating lncRNAs in leukocytes in T1D has not been well documented. To identify differentially expressed lncRNAs between T1D patients and healthy controls, RNA sequencing was performed on samples of leukocytes collected from both healthy persons and T1D patients. The categories, enriched pathways, coexpression networks, and the characteristics of novel lncRNAs were analyzed to provide an extensive profile. qPCR was adopted to validate the differential expression of lncRNAs in the validation cohort. A total of 14,930 lncRNAs and 16,063 mRNAs were identified in the peripheral blood leukocyte of T1D patients. After optimization using an adjusted p value (threshold of <0.05), 393 circulating lncRNAs were identified, of which 69 were downregulated and 324 were upregulated in T1D patients. Gene Ontology analysis indicated that these lncRNAs and mRNAs were enriched in the immune system category. Further analysis showed that 61.28% of the novel lncRNAs were conserved in humans. A set of 12 lncRNAs were selected for qPCR validation, and 9 of 12 lncRNAs were confirmed to show significant differential expression between the T1D and control validation cohorts. Among the 9 confirmed lncRNAs, lncRNA MSTRG.128697 and lncRNA MSTRG.128958 were novel and human-specific; however, further validation is required. lncRNA MSTRG.63013 has orthologous sequences in the mouse genome and was identified as a key node for etiology and pathophysiology in animal studies, which will help understand the epigenetic mechanisms of T1D complications.
Collapse
Affiliation(s)
- Yihan Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoming Du
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin 300041, China
| | - Jia Cui
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingtao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Geng G, Zhang Z, Cheng L. Identification of a Multi-Long Noncoding RNA Signature for the Diagnosis of Type 1 Diabetes Mellitus. Front Bioeng Biotechnol 2020; 8:553. [PMID: 32719778 PMCID: PMC7350420 DOI: 10.3389/fbioe.2020.00553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023] Open
Abstract
Due to the increasing prevalence of type 1 diabetes mellitus (T1DM) and its complications, there is an urgent need to identify novel methods for predicting the occurrence and understanding the pathogenetic mechanisms of the disease. Accumulated data have demonstrated the potential of long noncoding RNAs (lncRNAs), as biomarkers in establishing diagnosis and predicting prognosis of numerous diseases. Yet, little is known about the expression patterns and regulatory roles of lncRNAs in the pathogenesis of T1DM and whether they can be used as diagnostic biomarkers for the disease. To further explore these questions, in the present study, we conducted a comparative analysis of the expression patterns of lncRNAs between 20 T1DM patients and 42 health controls by retrospectively analyzing a published microarray data set. Our results indicate that, compared with healthy controls, diabetic patients had altered levels of lncRNAs. Then, we used three time cross-validation strategy and support vector machine to propose a specific 26-lncRNA signature (termed 26LncSigT1DM). This 26LncSigT1DM signature can be used to effectively distinguish between healthy and diabetic individuals (area under the curve = 0.825) of a validation cohort. After the 26LncSigT1DM was prospectively validated, we used Pearson correlation to identify 915 mRNAs, whose expression levels were positively correlated with those of the 26 lncRNAs. According to their Gene Ontology annotations, these mRNAs participate in processes including cellular response to stimulus, cell communication, multicellular organismal process, and cell motility. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the genes encoding the 915 mRNAs may be associated with the NOD-like receptor signaling pathway, transforming growth factor β signaling pathway, and mineral absorption, suggesting that the deregulation of these lncRNAs may mediate inflammatory abnormalities and immune dysfunctions, which jointly promote the pathogenesis of T1DM. Thus, our study identifies a novel diagnostic tool and may shed more light on the molecular mechanisms underlying the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Guannan Geng
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zicheng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc Natl Acad Sci U S A 2020; 117:9022-9031. [PMID: 32284404 DOI: 10.1073/pnas.1914353117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic β-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in β-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in β-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic β-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.
Collapse
|
22
|
Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, Pan Y, Zhang YF, Du H, Li L, Jin L. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia 2020; 63:811-824. [PMID: 32008054 DOI: 10.1007/s00125-020-05090-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Although obesity is a predisposing factor for pancreatic beta cell dysfunction, the mechanisms underlying its negative effect on insulin-secreting cells is still poorly understood. The aim of this study was to identify islet long non-coding RNAs (lncRNAs) involved in obesity-mediated beta cell dysfunction. METHODS RNA sequencing was performed to analyse the islets of high-fat diet (HFD)-fed mice and those of normal chow-fed mice (NCD). The function in beta cells of the selected lncRNA 1810019D21Rik (referred to in this paper as ROIT [regulator of insulin transcription]) was assessed after its overexpression or knockdown in MIN6 cells and primary islet cells, as well as in siRNA-treated mice. Then, RNA pull-down, RNA immunoprecipitation, coimmunoprecipitation and bisulphite sequencing were performed to investigate the mechanism of ROIT regulation of islet function. RESULTS ROIT was dramatically downregulated in the islets of the obese mice, as well as in the sera of obese donors with type 2 diabetes, and was suppressed by HNF1B. Overexpression of ROIT in MIN6 cells and islets led to improved glucose homeostasis and insulin transcription. Investigation of the mechanism involved showed that ROIT bound to DNA methyltransferase 3a and caused its degradation through the ubiquitin proteasome pathway, which blocked the methylation of the Nkx6.1 promoter. CONCLUSIONS/INTERPRETATION These findings functionally suggest a novel link between obesity and beta cell dysfunction via ROIT. Elucidating a precise mechanism for the effect of obesity on lncRNA expression will broaden our understanding of the pathophysiological development of diabetes and facilitate the design of better tools for diabetes prevention and treatment. DATA AVAILABILITY The raw RNA sequencing data are available from the NCBI Gene Expression Omnibus (GEO series accession number GSE139991).
Collapse
Affiliation(s)
- Fang Fang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yu Hong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Dan Wei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ting Sheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Jia Min Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yan Feng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Hong Du
- Department of Endocrinology, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, People's Republic of China
| | - Ling Li
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. Int J Mol Sci 2020; 21:E1027. [PMID: 32033158 PMCID: PMC7037361 DOI: 10.3390/ijms21031027] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/17/2023] Open
Abstract
The application of a new generation of sequencing techniques has revealed that most of the genome has already been transcribed. However, only a small part of the genome codes proteins. The rest of the genome "dark matter" belongs to divergent groups of non-coding RNA (ncRNA), that is not translated into proteins. There are two groups of ncRNAs, which include small and long non-coding RNAs (sncRNA and lncRNA respectively). Over the last decade, there has been an increased interest in lncRNAs and their interaction with cellular components. In this review, we presented the newest information about the human lncRNA interactome. The term lncRNA interactome refers to cellular biomolecules, such as nucleic acids, proteins, and peptides that interact with lncRNA. The lncRNA interactome was characterized in the last decade, however, understanding what role the biomolecules associated with lncRNA play and the nature of these interactions will allow us to better understand lncRNA's biological functions in the cell. We also describe a set of methods currently used for the detection of lncRNA interactome components and the analysis of their interactions. We think that such a holistic and integrated analysis of the lncRNA interactome will help to better understand its potential role in the development of organisms and cancers.
Collapse
Affiliation(s)
| | | | | | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland (M.K.K.); (M.E.K.)
| |
Collapse
|
24
|
Lecerf C, Le Bourhis X, Adriaenssens E. The long non-coding RNA H19: an active player with multiple facets to sustain the hallmarks of cancer. Cell Mol Life Sci 2019; 76:4673-4687. [PMID: 31338555 PMCID: PMC11105575 DOI: 10.1007/s00018-019-03240-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Cancer cells exhibit hallmarks in terms of proliferation, resistance to cell death, angiogenesis, invasion, metastasis, and genomic instability. Despite the progress in cancer research and the comprehension of tumorigenesis mechanisms, cancer remains a major issue in public health. A better understanding of the molecular factors associated with the appearance or progression of cancer may allow the development of therapeutic alternatives. Increasing data highlight the role of long non-coding RNAs in many diseases, including cancer. The long non-coding RNA H19 was the first discovered riboregulator, and it has been shown to be involved at multiple steps of tumorigenesis. Indeed, this lncRNA exert its action at various molecular scales. Understanding the role of H19 in cancer progression may allow to set up therapeutic strategies to prevent tumor expansion and metastatic dissemination. In this review, we will summarize the overexpression of the long non-coding RNA H19 in several types of cancer and the multiple implications of the long non-coding RNA H19 in the different hallmarks that define human cancer.
Collapse
Affiliation(s)
- Clément Lecerf
- INSERM, U908, 59000, Lille, France
- Univ. Lille, U908 - CPAC - Cell plasticity and Cancer, 59000, Lille, France
| | - Xuefen Le Bourhis
- INSERM, U908, 59000, Lille, France
- Univ. Lille, U908 - CPAC - Cell plasticity and Cancer, 59000, Lille, France
| | - Eric Adriaenssens
- INSERM, U908, 59000, Lille, France.
- Univ. Lille, U908 - CPAC - Cell plasticity and Cancer, 59000, Lille, France.
| |
Collapse
|
25
|
Huang QY, Liu GF, Qian XL, Tang LB, Huang QY, Xiong LX. Long Non-Coding RNA: Dual Effects on Breast Cancer Metastasis and Clinical Applications. Cancers (Basel) 2019; 11:E1802. [PMID: 31744046 PMCID: PMC6896003 DOI: 10.3390/cancers11111802] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.
Collapse
Affiliation(s)
- Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Guo-Feng Liu
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
| |
Collapse
|
26
|
Li K, Ma YB, Tian YH, Xu XL, Gao Y, He YQ, Pan WT, Zhang JW, He CJ, Wei L. Silencing lncRNA SNHG6 suppresses proliferation and invasion of breast cancer cells through miR-26a/VASP axis. Pathol Res Pract 2019; 215:152575. [DOI: 10.1016/j.prp.2019.152575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023]
|
27
|
Wang J, Gao X, Liu J, Wang J, Zhang Y, Zhang T, Zhang H. Effect of intravitreal conbercept treatment on the expression of Long Noncoding RNAs and mRNAs in Proliferative Diabetic Retinopathy Patients. Acta Ophthalmol 2019; 97:e902-e912. [PMID: 30900812 DOI: 10.1111/aos.14083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate the effect of conbercept on the expression of long noncoding RNAs (lncRNAs) and mRNAs in the fibrovascular membranes of proliferative diabetic retinopathy (PDR) patients. METHODS Twenty patients, diagnosed with PDR, who underwent pars plana vitrectomy (PPV), were recruited for this study. Ten patients were treated for PPV alone (Control Group), and the others received conbercept injections before PPV (Treated Group). The fibrovascular membranes were harvested during surgery. Expression of lncRNAs and mRNAs in the membranes was tested using lncRNA Arrays. Bioinformatics analyses were performed to identify the related biological modules and pathways of the differentially expressed genes. A lncRNA/mRNA coexpression network was built to identify the correlations between lncRNAs and mRNAs. Real-time PCR was conducted to verify the microarray results. RESULTS We identified 427 differentially expressed lncRNAs, of which 263 were upregulated and 164 were downregulated. Gene ontology (GO) analysis indicated that these lncRNAs-coexpressed mRNAs targeted various metabolic processes, especially the gluconeogenesis. Kyoto Encyclopaedia of Genes and Genomes (KEGG) results indicated that 16 pathways had significant differences in gene expression, including gluconeogenesis, HIF-1 signalling pathway, NOD-like receptor pathway, etc. The lncRNA/mRNA coexpression network revealed that many differentially expressed lncRNAs were enriched in the HIF-1, TNF-α and NOD-like receptor pathways. LincRNAs were the largest category and further bioinformatics analysis implied that these lincRNAs-coexpressed mRNAs were mainly involved in PDR-related biological processes and pathological pathways. CONCLUSION Conbercept treatment can change the expression profiles of lncRNAs and mRNAs in the fibrovascular membranes of PDR patients. A complete understanding of the relationship between lncRNAs and anti-VEGF drugs may contribute to new therapeutic regimen for PDR.
Collapse
Affiliation(s)
- Jiawei Wang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Xue Gao
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Jing Liu
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Jing Wang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Yue Zhang
- Department of surgery The Second Hospital of Shandong University Jinan People's Republic of China
| | - Tonghe Zhang
- Department of ophthalmology The second people's Hospital of Jinan 148# Jingyi Road Jinan People's Republic of China
| | - Han Zhang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| |
Collapse
|
28
|
Wong WK, Jiang G, Sørensen AE, Chew YV, Lee-Maynard C, Liuwantara D, Williams L, O'Connell PJ, Dalgaard LT, Ma RC, Hawthorne WJ, Joglekar MV, Hardikar AA. The long noncoding RNA MALAT1 predicts human pancreatic islet isolation quality. JCI Insight 2019; 5:129299. [PMID: 31361602 DOI: 10.1172/jci.insight.129299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.
Collapse
Affiliation(s)
- Wilson Km Wong
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Cody Lee-Maynard
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Lindy Williams
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ronald C Ma
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
29
|
The emerging role of lncRNAs in inflammatory bowel disease. Exp Mol Med 2018; 50:1-14. [PMID: 30523244 PMCID: PMC6283835 DOI: 10.1038/s12276-018-0188-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell–cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD. Studying long noncoding RNAs (lncRNAs) may improve diagnosis and treatment of inflammatory bowel disease (IBD). These RNAs are found between genes in DNA regions previously thought to be “junk,” and have recently been shown to be important in development of various diseases. IBD, which includes both Crohn’s disease and ulcerative colitis, damages the digestive tract lining, causing pain and chronic diarrhea. A better understanding of IBD’s complex causes is needed to identify more effective treatments. Flemming Pociot at the Steno Diabetes Center in Gentofte, Denmark, and co-workers reviewed recent research linking lncRNAs and IBD. They discuss how lncRNAs’ roles in immunity and inflammation influence IBD development, describing how particular lncRNAs are related to IBD. Promising avenues for further research are highlighted, including the use of lncRNAs as biomarkers of IBD, which can be difficult to diagnose.
Collapse
|
30
|
Cell Type-Selective Expression of Circular RNAs in Human Pancreatic Islets. Noncoding RNA 2018; 4:ncrna4040038. [PMID: 30486482 PMCID: PMC6316812 DOI: 10.3390/ncrna4040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding distinct cell-type specific gene expression in human pancreatic islets is important for developing islet regeneration strategies and therapies to improve β-cell function in type 1 diabetes (T1D). While numerous transcriptome-wide studies on human islet cell-types have focused on protein-coding genes, the non-coding repertoire, such as long non-coding RNA, including circular RNAs, remains mostly unexplored. Here, we explored transcriptional landscape of human α-, β-, and exocrine cells from published total RNA sequencing (RNA-seq) datasets to identify circular RNAs (circRNAs). Our analysis revealed that circRNAs are highly abundant in both α- and β-cells. We identified 10,830 high-confidence circRNAs expressed in human α-, β-, and exocrine cells. The most highly expressed candidates were MAN1A2, RMST, and HIPK3 across the three cell-types. Alternate circular isoforms were observed for circRNAs in the three cell-types, indicative of potential distinct functions. Highly selective α- and β-cell circRNAs were identified, which is suggestive of their potential role in regulating β-cell function.
Collapse
|
31
|
Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. Onco Targets Ther 2018; 11:8001-8012. [PMID: 30519041 PMCID: PMC6235328 DOI: 10.2147/ott.s172379] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Breast cancer is still one of the major public health burdens worldwide, although there is tremendous progress in early diagnosis and treatment of breast cancer. Tamoxifen was one of the most popular endocrine therapies for early-stage estrogen receptor (ER) + breast cancer patients. However, a high incidence of drug resistance develops along with poor prognosis in breast cancer. Currently, long noncoding RNAs (lncRNAs) are emerging and are well suited to play a role in the development of cancer and tamoxifen resistance. However, there is little reported about the relationship of breast cancer resistance to tamoxifen and lncRNA H19. Here, we validated that lncRNA H19 was highly expressed in breast cancer especially in patients with late stage (III and IV), compared to normal tissues and early stage cancers (I and II). Methods Quantitative polymerase chain reaction (qPCR) was utilized for comparison of lncRNA H19 expression level in breast cancers with different stages. qPCR and Western blotting were used to detect gene and protein, respectively. Results We found that lncRNA H19 expression level manipulated breast cancer cell proliferation both in parental breast cancer cell lines and tamoxifen-resistant cell lines. Knockdown of lncRNA H19 elevated tamoxifen sensitivity for promoting cell growth and inhibiting apoptosis in tamoxifen-resistant breast cancer cells. Moreover, knockdown of H19 inhibited Wnt pathway and epithelia–mesenchymal transition in tamoxifen-resistance breast cancer cells. Conclusion Taken together, the results of this study provided the evidence for H19 in regulating tamoxifen-resistant breast cancer and might provide novel options in the future treatment of tamoxifen-resistance breast cancer patients.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, People's Republic of China
| | - Guijun Hao
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, People's Republic of China
| | - Yue Sun
- Department of Internal Medicine,
| | - Liye Li
- Department of Surgery (Breast Surgery), Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, People's Republic of China
| | | |
Collapse
|
32
|
Font-Cunill B, Arnes L, Ferrer J, Sussel L, Beucher A. Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Front Genet 2018; 9:524. [PMID: 30459811 PMCID: PMC6232259 DOI: 10.3389/fgene.2018.00524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
The transcriptional programs of differentiated cells are tightly regulated by interactions between cell type-specific transcription factors and cis-regulatory elements. Long non-coding RNAs (lncRNAs) have emerged as additional regulators of gene transcription. Current evidence indicates that lncRNAs are a very heterogeneous group of molecules. For example, selected lncRNAs have been shown to regulate gene expression in cis or trans, although in most cases the precise underlying molecular mechanisms is unknown. Recent studies have uncovered a large number of lncRNAs that are selectively expressed in pancreatic islet cells, some of which were shown to regulate β cell transcriptional programs. A subset of such islet lncRNAs appears to control the expression of β cell-specific transcription factor (TF) genes by local cis-regulation. In this review, we discuss current knowledge of molecular mechanisms underlying cis-regulatory lncRNAs and discuss challenges involved in using genetic perturbations to define their function. We then discuss known examples of pancreatic islet lncRNAs that appear to exert cis-regulation of TF genes. We propose that cis-regulatory lncRNAs could represent a molecular target for modulation of diabetes-relevant genes.
Collapse
Affiliation(s)
- Berta Font-Cunill
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Luis Arnes
- Department of Systems Biology, Columbia University Medical Center, New York, NY, United States.,Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, United States
| | - Jorge Ferrer
- Department of Medicine, Imperial College London, London, United Kingdom.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anthony Beucher
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Singer RA, Sussel L. Islet Long Noncoding RNAs: A Playbook for Discovery and Characterization. Diabetes 2018; 67:1461-1470. [PMID: 29937433 PMCID: PMC6054438 DOI: 10.2337/dbi18-0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Diabetes is a complex group of metabolic disorders that can be accompanied by several comorbidities, including increased risk of early death. Decades of diabetes research have elucidated many genetic drivers of normal islet function and dysfunction; however, a lack of suitable treatment options suggests our knowledge about the disease remains incomplete. The establishment of long noncoding RNAs (lncRNAs), once dismissed as "junk" DNA, as essential gene regulators in many biological processes has redefined the central role for RNA in cells. Studies showing that misregulation of lncRNAs can lead to disease have contributed to the emergence of lncRNAs as attractive candidates for drug targeting. These findings underscore the need to reexamine islet biology in the context of a regulatory role for RNA. This review will 1) highlight what is known about lncRNAs in the context of diabetes, 2) summarize the strategies used in lncRNA discovery pipelines, and 3) discuss future directions and the potential impact of studying the role of lncRNAs in diabetes.
Collapse
Affiliation(s)
- Ruth A Singer
- Columbia University Medical Center, New York, NY
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Graduate School of Arts and Sciences, Columbia University Medical Center, New York, NY
| | - Lori Sussel
- Columbia University Medical Center, New York, NY
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
34
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
35
|
Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018; 22:2055-2061. [PMID: 29392896 PMCID: PMC5867120 DOI: 10.1111/jcmm.13515] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non-coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017; 6:e162. [PMID: 29333267 PMCID: PMC5750451 DOI: 10.1038/cti.2017.51] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed in this review.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
37
|
Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. Int J Mol Sci 2017; 18:ijms18112319. [PMID: 29099749 PMCID: PMC5713288 DOI: 10.3390/ijms18112319] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is one of the most common causes of cancer related deaths in women. Despite the progress in early detection and use of new therapeutic targets associated with development of novel therapeutic options, breast cancer remains a major problem in public health. Indeed, even if the survival rate has improved for breast cancer patients, the number of recurrences within five years and the five-year relative survival rate in patients with metastasis remain dramatic. Thus, the discovery of new molecular actors involved in breast progression is essential to improve the management of this disease. Numerous data indicate that long non-coding RNA are implicated in breast cancer development. The oncofetal lncRNA H19 was the first RNA identified as a riboregulator. Studying of this lncRNA revealed its implication in both normal development and diseases. In this review, we summarize the different mechanisms of action of H19 in human breast cancer.
Collapse
|
38
|
Donadel G, Pastore D, Della-Morte D, Capuani B, Lombardo MF, Pacifici F, Bugliani M, Grieco FA, Marchetti P, Lauro D. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes. Int J Mol Sci 2017; 18:2234. [PMID: 29068419 PMCID: PMC5713204 DOI: 10.3390/ijms18112234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.
Collapse
Affiliation(s)
- Giulia Donadel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy.
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco F Lombardo
- Agenzia regionale per la protezione ambientale (ARPA) Lazio, Sezione di Roma, 00173 Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco Bugliani
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Fabio A Grieco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | - Piero Marchetti
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|