1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
Upadhyay P, Tyagi A, Agrawal S, Kumar A, Gupta S. Bidirectional Effect of Triphala on Modulating Gut-Brain Axis to Improve Cognition in the Murine Model of Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2300104. [PMID: 37767948 DOI: 10.1002/mnfr.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Indexed: 09/29/2023]
Abstract
SCOPE The emerging role of gut microbiota and their metabolites in the modulation of the gut-brain axis has received much attention as a new hope for the treatment of hard-to-treat chronic neurodegenerative diseases like Alzheimer's disease. The naturally occurring polyphenols can restore the gut-brain axis by modulating gut microbiota and brain neurotransmitters. The Indian traditional medicine Triphala, a rich source of polyphenols, has been used on humans based on Prakriti or disease conditions for many years. METHODS AND RESULTS In this study, the dual mode (morning and evening) action of Triphala is used to provide scientific evidence of its superior preventive and therapeutic efficacy in C57BL/6 and 5xFAD, APP/PS1 transgenic mouse model of Alzheimer's disease. The study observes that Triphala treatment has significantly improved cognitive function, by modulating the APP pathway, reducing inflammation, and restoring the gut-brain axis by increasing the gut microbiota phyla of Bacteroides, Proteobacteria, Actinobacteria, etc., involved in maintaining the gut homeostasis. CONCLUSIONS The study paves a new path for using dual modes of Triphala alone or in combination to treat incurable AD.
Collapse
Affiliation(s)
- Prabhat Upadhyay
- Molecular Sciences Lab, National Institute of Immunology New Delhi, Aruna Asaf Ali Marg, New Delhi, New Delhi, 110067, India
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Anurag Tyagi
- Molecular Sciences Lab, National Institute of Immunology New Delhi, Aruna Asaf Ali Marg, New Delhi, New Delhi, 110067, India
| | - Sakshi Agrawal
- Molecular Sciences Lab, National Institute of Immunology New Delhi, Aruna Asaf Ali Marg, New Delhi, New Delhi, 110067, India
| | - Anil Kumar
- Molecular Sciences Lab, National Institute of Immunology New Delhi, Aruna Asaf Ali Marg, New Delhi, New Delhi, 110067, India
| | - Sarika Gupta
- Molecular Sciences Lab, National Institute of Immunology New Delhi, Aruna Asaf Ali Marg, New Delhi, New Delhi, 110067, India
| |
Collapse
|
3
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
4
|
Yun H, Wang X, Wei C, Liu Q, Li X, Li N, Zhang G, Cui D, Liu R. Alterations of the intestinal microbiome and metabolome in women with rheumatoid arthritis. Clin Exp Med 2023; 23:4695-4706. [PMID: 37572155 DOI: 10.1007/s10238-023-01161-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Rheumatoid arthritis (RA) is more common in women, and many reports of sex differences have been reported in various aspects of RA. However, there has been a lack of specific research on women's gut flora. To assess the association between the gut flora and RA patients, this study combined the microbiome with metabolomics. Fecal samples from RA patients and healthy controls were collected for 16S rRNA sequencing. Nontargeted liquid chromatography-mass spectrometry was used to detect metabolites in fecal samples. We comprehensively used various analytical methods to reveal changes in intestinal flora and metabolites in female patients. The gut flora of RA patients was significantly different from that of healthy women. The abundance of Bacteroides, Megamonas and Oscillospira was higher in RA patients, while the abundance of Prevotella, Gemmiger and Roseburia was lower than that of healthy women. Gemmiger, Bilophila and Odoribacter represented large differences in microflora between RA and healthy women and could be used as potential microorganisms in the diagnosis. Fatty acid biosynthesis was significantly different between RA patients and healthy women in terms of metabolic pathways. There were different degrees of correlation between the gut flora and metabolites. Lys-Phe-Lys and heptadecasphin-4-enine can be used as potential markers for RA diagnosis. There was an extremely significant positive correlation between Megamonas, Dialister and rheumatoid factors, which was found for the first time. These findings indicated that alterations of these gut microbiome and metabolome may contribute to the diagnosis and treatment of RA patients.
Collapse
Affiliation(s)
- Haifeng Yun
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Jinling Institute of Technology, Nanjing, 211100, People's Republic of China
| | - Changjiang Wei
- Department of Surgery, The Fifth People's Hospital of Suzhou, 10 Guangqian Road, Suzhou, 215000, People's Republic of China
| | - Qiuhong Liu
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Xianyan Li
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Na Li
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qinchun Road, Hangzhou, 310003, People's Republic of China.
| | - Rui Liu
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
5
|
Upadhyay P, Kalra D, Nilakhe AS, Aggrawal V, Gupta S. Polyherbal formulation PL02 alleviates pain, inflammation, and subchondral bone deterioration in an osteoarthritis rodent model. Front Nutr 2023; 10:1217051. [PMID: 38045809 PMCID: PMC10693428 DOI: 10.3389/fnut.2023.1217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a debilitating disease with significant personal and socioeconomic burdens worldwide. Methods To address this, we developed a multitargeted formulation called PL02, which includes standardized extracts of Rosa canina L, Hippophae rhamnoides, and collagen peptide. We tested the pharmacological efficacy of PL02 in a rodent model of OA induced by Monosodium iodoacetate (MIA). Results Our results demonstrate that oral administration of PL02 has antioxidant effects by down-regulating NOS, reduces pain-related behavior, and mitigates inflammation by inhibiting IL-1b and TNF-α production, as well as downregulating CGRP1 and COX-II. PL02 also exhibits anti-catabolic and chondroprotective activity by significantly downregulating MMP13 and upregulating BCL2. Additionally, PL02 demonstrates chondrogenic activity by significantly upregulating SOX-9 (a master regulator of chondrogenesis), Coll-I, and aggrecan, which are major components of articular cartilage. Furthermore, PL02 prevents microarchitectural deterioration of subchondral bone. Conclusion Overall, PL02 is an orally active, multi-targeted therapy that not only alleviates pain and inflammation but also effectively halts cartilage and subchondral bone deterioration. It represents a safe and promising candidate for the treatment and management of OA.
Collapse
Affiliation(s)
- Prabhat Upadhyay
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diya Kalra
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| | | | - Vijay Aggrawal
- M/s Purobien Lifesciences Ltd, Baddi, Himachal Pradesh, India
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| |
Collapse
|
6
|
Sun J, Al-Ansi W, Fan M, Li Y, Qian H, Fan L, Wang L. Volatile compound dynamics in oats solid-state fermentation: A comparative study of Saccharomyces cerevisiae A3, Lactococcus lactis 4355, and Lactobacillus plantarum 2329 inoculations. Food Chem 2023; 437:137813. [PMID: 39491250 DOI: 10.1016/j.foodchem.2023.137813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Fermentation is a longstanding method that enhances food quality and finds extensive food processing and preservation applications. This study comprehensively studied the impact of oats fermentation by Saccharomyces cerevisiae A3 and Lactococcus lactis 4355 (T1), Saccharomyces cerevisiae A3, and Lactobacillus plantarum 2329 (T2) on volatile-compounds using UHPLC-MS/MS. A total of 74 volatile compounds were found in control samples (YM), 81 in T1 samples, and 60 in T2 samples. T2 samples showed the highest hydrocarbons, esters, and phenols (25.7%, 2.26%, and 0.32%) compared with T1 (21.6%, 1.29%, and 0.19%) and YM samples (18.6%, 1.86%, and 0), respectively. Moreover, volcano, Z-score scatter plot distributions, and KEGG-path analysis indicated that different metabolic pathways in YM-T1 and YM-T2 models, where glycerophospholipid-metabolic pathways were the dominant in T1, while ABC transporters-pathways were the prominent in T2. These findings offer valuable insights for future advancements of novel oat products with enhanced functionality.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Luan Y, Luo Y, Deng M. New advances in Nrf2-mediated analgesic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154598. [PMID: 36603339 DOI: 10.1016/j.phymed.2022.154598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.
Collapse
Affiliation(s)
- Yifan Luan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yaping Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
8
|
Sun Y, Zhou M, Luo L, Pan H, Zhang Q, Yu C. Metabolic profiles, bioactive compounds and antioxidant activity of rosehips from Xinjiang, China. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Lamichhane G, Pandey J, Devkota HP. Bioactive Chemical Constituents and Pharmacological Activities of Ponciri Fructus. Molecules 2022; 28:255. [PMID: 36615447 PMCID: PMC9821892 DOI: 10.3390/molecules28010255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Ponciri Fructus is a crude drug obtained from the dried immature fruits of Poncirus trifoliata (L). Raf. (Syn. Citrus trifoliata L.). This study aims to compile and analyze the ethnomedicinal uses, bioactive constituents, and pharmacological activities of Ponciri Fructus. Various online bibliographic databases namely, SciFinder, PubMed, Google Scholar, and Web of Science were used for collecting information on traditional uses, biological activities, and bioactive constituents. Concerning ethnomedicinal uses, Ponciri Fructus is extensively used in traditional Korean, Chinese, and Kampo medicines to mitigate allergic reactions, inflammation, edema, digestive complications, respiratory problems, spleen-related problems, liver complications, neuronal pain, hyperlipidemia, rheumatoid arthritis, cardiovascular problems, hernia, sinusitis, and insomnia. Several studies have shown that Ponciri Fructus is a major source of diverse classes of bioactive compounds namely flavonoids, terpenoids, coumarins, phytosterols, and alkaloids. Several in vivo and in vitro pharmacological activity evaluations such as antidiabetic, anti-obesity, anti-inflammatory, antiallergic, antimelanogenic, gastroprotective, anticancer, and neuroprotective effects have been conducted from Ponciri Fructus. However, scientific investigations focusing on bioassay-guided isolation and identification of specific bioactive constituents are limited. Therefore, an in-depth scientific investigation of Ponciri Fructus focusing on bioassay-guided isolation, mechanism based pharmacological studies, pharmacokinetic studies, and evaluation of possible toxicities is necessary in the future.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
10
|
Shal B, Amanat S, Khan AU, Lee YJ, Ali H, Din FU, Park Y, Khan S. Potential applications of PEGylated green gold nanoparticles in cyclophosphamide-induced cystitis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:130-146. [PMID: 35620802 DOI: 10.1080/21691401.2022.2078340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effect of green tea extract PEGylated gold nanoparticles (P-AuNPs) making use of its targeted and sustained drug delivery against cyclophosphamide (CYP)-induced cystitis. AuNPs were synthesized by reduction reaction of gold salts with green tea extract following the concept of green synthesis. Mostly spherical-shaped P-AuNPs were synthesized with an average size of 14.3 ± 3.3 nm. Pre-treatment with P-AuNPs (1, 10 mg/kg, i.p.) before CYP (150 mg/kg, i.p.) challenge suggested its uroprotective properties. P-AuNPs significantly reversed all pain-like behaviours and toxicities produced by CYP resulting in a decreased aspartate aminotransferase, alanine aminotransferase, C-reactive protein, and creatinine level. P-AuNPs increased anti-oxidant system by increasing the level of reduced glutathione, glutathione-S-transferase, catalase and superoxide dismutase, and reduced nitric oxide production in bladder tissue. Additionally, it attenuated hypokalaemia and hyponatremia, along with a decrease in Evans blue content in bladder tissue and peritoneal cavity. CYP-induced bladder tissue damage observed by macroscopic and histological findings were remarkably attenuated by P-AuNPs, along with reduced fibrosis of collagen fibre in bladder smooth muscles shown by Masson's trichrome staining. Additionally, alterations in hematological parameters and clinical scoring were also prevented by P-AuNPs suggesting its uroprotective effect.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Safa Amanat
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - You Jeong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Youmie Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
11
|
Anti-nociceptive effects of magnolol via inhibition of TRPV1/P2Y and TLR4/NF-κB signaling in a postoperative pain model. Life Sci 2022; 312:121202. [PMID: 36414090 DOI: 10.1016/j.lfs.2022.121202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
AIMS The current study explored the anti-nociceptive activity of magnolol in post-incisional inflammatory nociceptive pain. MAIN METHODS Preliminary, the anti-inflammatory, antioxidant, and cytoprotective potential of magnolol were confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. Next, an in-vivo model of planter incision surgery was established in BALB/c mice. Tramadol 50 mg/kg intraperitoneal (i.p.) and magnolol (0.1, 1, 10 mg/kg i.p. + 10 mg/kg intra planter) were administered after plantar incision surgery and behavior parameters were measured. KEY FINDINGS The results indicate that magnolol significantly suppressed post-incision-induced mechanical allodynia, thermal hyperalgesia, and paw edema. Magnolol promisingly inhibited post-incision induces nitric oxide (NO), malondialdehyde (MDA), eosinophil peroxidase (EPO), and neutrophil infiltration. Magnolol strongly attenuated post-incision inducing the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inhibited deoxyribonucleic acid (DNA) fragmentation. Magnolol markedly reverses post-incisional histopathological changes and biochemical composition of the incised paw. Magnolol markedly down-regulated post-incisional increase expression of transient receptor potential vanilloid 1 (TRPV1), purinergic (P2Y) nociceptors as well as toll-like receptor 4 (TLR4), nuclear factor kappa light chain enhancer of activated B cell (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) while upregulating the expression of inhibitor of nuclear kappa B alpha (IκB-α). SIGNIFICANCE The present study strongly suggests that magnolol significantly suppressed post-incisional inflammatory nociceptive pain by targeting TRPV1/P2Y and TLR4/NF-κB signaling.
Collapse
|
12
|
de Melo Candeia GLO, Costa WK, de Oliveira AM, Napoleão TH, Guedes Paiva PM, Ferreira MRA, Lira Soares LA. Anti-inflammatory, antinociceptive effects and involvement of opioid receptors in the antinociceptive activity of Eugenia uniflora leaves obtained with water, ethanol, and propylene glycol mixture. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115508. [PMID: 35779820 DOI: 10.1016/j.jep.2022.115508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia uniflora (Myrtaceae) is a species native to Brazil and has a traditional use in the treatment of inflammation. AIM OF THE STUDY To evaluate the anti-inflammatory and antinociceptive effects, and the involvement of opioid receptors in the antinociceptive activity of extract and fractions from Eugenia uniflora leaves. MATERIALS AND METHODS TLC and HPLC were used to characterize the spray-dried extract (SDE) and fractions. In the in vivo assays, Swiss (Mus musculus) mice were used. Carrageenan-induced hind-paw edema and carrageenan-induced peritonitis models were used to determine the anti-inflammatory effect of the extract (50, 100, or 200 mg/kg). Acetic acid-induced writhing, tail-flick, and formalin tests were used to determine the antinociceptive effect of the extract (50, 100, or 200 mg/kg). The aqueous (AqF) and ethyl acetate (EAF) fractions (6.25, 12.5, and 25 mg/kg) were then combined with naloxone to evaluate the involvement of opioid receptors in the antinociceptive activity. RESULTS In this work, the TLC and HPLC analysis evidenced the enrichment of EAF, which higher concentration of gallic acid (5.29 ± 0.0004 %w/w), and ellagic acid (1.28 ± 0.0002 %w/w) and mainly myricitrin (8.64 ± 0.0002 %w/w). The extract decreased the number of total leukocytes and neutrophils in the peritoneal cavity (p < 0.05), at doses of 100 and 200 mg/kg and showed significant inhibition in the increase of paw edema volume (p < 0.05). The treatment per oral route (doses of 50, 100, and 200 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhing (p < 0.05). The effect of the extract on the tail-flick test showed a significant increase in latency time of animals treated at doses of 200 and 100 mg/kg (p < 0.05). The extract and ethyl acetate fraction reduced the nociceptive effect in both phases of formalin at all tested doses. The naloxone reversed the antinociceptive effect of EAF, suggesting that opioid receptors are involved in mediating the antinociceptive activity of EAF of E. uniflora in the formalin test. CONCLUSION The current study demonstrates the anti-inflammatory and analgesic activities of water: ethanol: propylene glycol spray-dried extract from E. uniflora leaves using in vivo pharmacological models in mice. Our findings suggest that spray-dried extract and ethyl acetate fraction exhibit peripheral and central antinociceptive activity with the involvement of opioid receptors that may be related to the presence of flavonoids, mainly myricitrin.
Collapse
Affiliation(s)
- Glenda Laíssa Oliveira de Melo Candeia
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Wêndeo Kennedy Costa
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Alisson Macário de Oliveira
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
13
|
Khan A, Khan A, Shal B, Aziz A, Ahmad S, Amin MU, Ahmed MN, Zia-Ur-Rehman, Khan S. Ameliorative effect of two structurally divergent hydrazide derivatives against DSS-induced colitis by targeting Nrf2 and NF-κB signaling in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1167-1188. [PMID: 35851927 DOI: 10.1007/s00210-022-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The environmental factors and genetic vulnerability trigger the inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn's disease. Furthermore, the oxidative stress and inflammatory cytokines have been implicated in the aggravation of the IBDs. The aim of the present study was to investigate the effect of N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (NCHDH and NTHDH) compounds against the DSS-induced colitis in mice. The colitis was induced by 5% dextran sulfate sodium (DSS) dissolved in normal saline for 5 days. The effect of the NCHDH and NTHDH on the behavioral, biochemical, histological, and immunohistological parameters was assessed. The NCHDH and NTHDH treatment improved the behavioral parameters such as food intake, disease activity index, and diarrhea score significantly compared to DSS control. The NCHDH and NTHDH treatments significantly increased the antioxidant enzymes, whereas oxidative stress markers were markedly reduced. Similarly, the NCHDH and NTHDH treatments significantly suppressed the activity of nitric oxide (NO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO). The histological studies showed a significant reduction in inflammation, immune cell infiltration, and fibrosis in the NCHDH- and NTHDH-treated groups. The immunohistochemical results demonstrated that NCHDH and NTHDH treatments markedly increase the expression level of Nrf2, HO-1 (hemeoxygenase-1), TRX (thioredoxin reductase), and IκB compared to the DSS-induced group. In the same way, the NCHDH and NTHDH significantly reduced the NF-κB and COX-2 (cyclooxygenase-2) expression levels. The NCHDH and NTHDH treatment significantly improved the symptoms associated with colitis via inducing antioxidants and attenuating oxidative stress markers.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Muhammad Usman Amin
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Zia-Ur-Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
14
|
Basit A, Shutian T, Khan A, Khan SM, Shahzad R, Khan A, Khan S, Khan M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed Pharmacother 2022; 153:113322. [DOI: 10.1016/j.biopha.2022.113322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
|
15
|
Rai D, Tripathi AK, Sardar A, Pandey AR, Sinha S, Chutani K, Dhaniya G, Kothari P, Sashidhara KV, Trivedi R. A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis. Free Radic Biol Med 2022; 190:124-147. [PMID: 35963563 DOI: 10.1016/j.freeradbiomed.2022.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023]
Abstract
In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/β-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-β and β-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//β-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Kumar Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
16
|
Shal B, Khan A, Ullah Khan A, Ullah R, Naveed M, Ali G, Ul Islam S, Ul Haq I, Mirza B, Khan S. Coagulansin-A improves spatial memory in 5xFAD Tg mice by targeting Nrf-2/NF-κB and Bcl-2 pathway. Int Immunopharmacol 2022; 109:108860. [PMID: 35598479 DOI: 10.1016/j.intimp.2022.108860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
The present study was designed to investigate the underlying molecular signaling of Coagulansin-A (Coag-A) as a therapeutic agent against Alzheimer's disease (AD). Preliminarily, it exhibited a neuroprotective effect against H2O2-induced oxidative stress in HT-22 cells. The in vivo studies were performed by administering Coag-A (0.1, 1, and 10 mg/kg) intraperitoneally to 5xFAD transgenic (Tg) mouse model. Coag-A (10 mg/kg) significantly attenuated the cognitive decline compared to Tg mice group in the shallow water maze (SWM) and Y-maze test paradigms. The anti-aggregation potential of Coag-A was determined by performing Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimeter (DSC) analysis in the prefrontal cortex (PFC) and hippocampal (HC) regions of mice brain. The FT-IR spectra demonstrated the inhibition of amyloid beta (Aβ) through a decrease in β-sheet aggregation, along with the inhibition of changes in the lipids, proteins, and phospholipids. The DSC analysis displayed a low-temperature exotherm associated with the reversible process of aggregation of soluble protein fractions prior to denaturation. Furthermore, Coag-A treatment displayed a regular density of granule cells in H&E stained sections, along with a reduced amyloid load and PAS-positive granules in all the regions of interest in mice brain. The real-time polymerase chain reaction (q-PCR), western blot and immunohistochemical (IHC) analysis demonstrated antioxidant, anti-inflammatory, and anti-apoptotic effect of Coag-A by enhancing the expression of nuclear factor erythroid-2-related factor (Nrf-2) and reducing nuclear factor kappa B (NF-κB) and Bax protein expression. In addition, Coag-A significantly increased the antioxidant enzymes and proteins level, along with a reduced pro-inflammatory cytokines production.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Naveed
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Hayatabad, Peshawar 25,000, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
17
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
18
|
Khan A, Zhang L, Li CH, Khan AU, Shal B, Khan A, Ahmad S, Din FU, Rehman ZU, Wang F, Khan S. Suppression of NF-κB signaling by ECN in an arthritic model of inflammation. BMC Complement Med Ther 2022; 22:158. [PMID: 35698107 PMCID: PMC9195475 DOI: 10.1186/s12906-022-03629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from the Tussilago farfara Linneaus (Asteraceae), was evaluated against acute Carrageenan and chronic complete Freund's adjuvant (CFA)-induced arthritis in mice. METHODS Acute and chronic arthritis were induced by administering Carrageenan and CFA to the intraplantar surface of the mouse paw. Edema, mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia were assessed in the paw. Similarly, histological and immunohistological parameters were assessed following arthritis induced by CFA. Antioxidants, inflammatory cytokines, and oxidative stress markers were also studied in all the treated groups. RESULTS The ECN treatment significantly attenuated edema in the paw and elevated the nocifensive threshold following induction of this inflammatory model. Furthermore, ECN treatment markedly improved the arthritis index and distress symptoms, while attenuating the CFA-induced edema in the paw. ECN treatment also improved the histological parameters in the paw tissue compared to the control. At the same time, there was a significant reduction in edema and erosion in the ECN-treated group, as measured by radiographic analysis. Using the Comet's assay, we showed that ECN treatment protected the DNA from chronic CFA-induced arthritis. Immunohistochemistry analysis showed a marked decrease in the expression level of p-JNK (phosphorylated C-Jun N-terminal kinase), NF-κB (Nuclear factor-kappa B), COX-2 (Cyclooxygenase-2), and TNF-α (Tumour necrosis factor-alpha) compared to the CFA-treated group. Biophysical analysis involving molecular docking, molecular dynamics simulations, and binding free energies of ECN were performed to explore the underlying mechanism. CONCLUSION ECN exhibited significant anti-inflammatory and anti-arthritic activity against Carrageenan and CFA-induced models.
Collapse
Affiliation(s)
- Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China
| | - Chang Hu Li
- Division of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, KPK, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quad-i-Azam University, Islamabad, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
19
|
Effects of Poncirin, a Citrus Flavonoid and Its Aglycone, Isosakuranetin, on the Gut Microbial Diversity and Metabolomics in Mice. Molecules 2022; 27:molecules27113641. [PMID: 35684581 PMCID: PMC9182171 DOI: 10.3390/molecules27113641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Poncirin (PC) and its aglycone, isosakuranetin (IR), occur naturally in citrus fruits. This study aimed to explore the pathways behind the different health benefits of PC and IR by evaluating the effect of these two bioactive flavonoids on the gut microbial diversity and metabolomics of mice. The 16S rRNA gene sequencing was used to analyze the alteration of gut microbiota in mice after PC and IR intervention. The metabolic impact of PC and IR in mice were studied using a metabolomics approach based on LC-MS analysis. Results showed that, after 7 days intervention, PC and IR multiplied the abundance of Parabacteroides in mice’s intestinal tracts by 1.2 and 1.0 times, respectively. PC increased the abundance of Bacteroides by 2.4 times. IR reduced the Allobaculum abundance by 1.0 time and increased Alloprevotella abundance by 1.5 times. When mice were given PC, their fecal acetic acid level increased by 1.8 times, while their isobutyric and isovaleric acid content increased by 1.2 and 1.3 times, respectively. Supplementation with IR had no significant effect on the content of short-chain fatty acids (SCFAs) in the feces of mice. The potential urine biomarkers of mice in the PC group were involved in the digestion and absorption of protein and carbohydrate, as well as the metabolism of amino acids, such as glycine, serine, threonine, tryptophan, D-arginine, D-ornithine, etc. IR mainly affected the amino acid metabolic pathways in mice, including taurine and hypotaurine metabolism, glutathione metabolism, histidine metabolism, D-glutamate metabolism, etc. This study provided valuable clues for future research on the health promoting mechanisms of PC and IR.
Collapse
|
20
|
Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomed Pharmacother 2022; 150:113073. [PMID: 35658216 DOI: 10.1016/j.biopha.2022.113073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a well-known type of age-related dementia. The present study was conducted to investigate the effect of xanthoangelol against memory deficit and neurodegeneration associated with AD. Preliminarily, xanthoangelol produced neuroprotective effect against H2O2-induced HT-22 cells. Furthermore, effect of xanthoangelol against scopolamine-induced amnesia in mice was determined by intraperitoneally (i.p.) administering xanthoangelol (1, 10 and 20 mg/kg), 30 min prior to induction. Mice were administered scopolamine at a concentration of 1 mg/kg; i.p. for the induction of amnesia associated with AD. Xanthoangelol dose dependently reduced the symptoms of Alzheimer's disease as observed by the results obtained from the behavioral analysis performed using Morris water maze and Y-maze test. The immunohistochemical analysis suggested that xanthoangelol significantly improved Keap-1/Nrf-2 signaling pathway. It greatly reduced the effects of oxidative stress and showed improvement in the anti-oxidant enzyme such as GSH, GST, SOD and catalase. Additionally, xanthoangelol decreased the expression of transient receptor potential vanilloid 1 (TRPV-1), a nonselective cation channel, involved in synaptic plasticity and memory. It activated the anti-oxidants and attenuated the apoptotic (Bax/Bcl-2) pathway. Xanthoangelol also significantly attenuated the scopolamine-induced neuroinflammation by the inhibition of interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α) levels. The histological analysis, showed a significant reduction in amyloid plaques by xanthoangelol. Therefore, the present study indicated that xanthoangelol has the ability to ameliorate the AD symptoms by attenuating neuroinflammation and neurodegeneration induced by scopolamine.
Collapse
|
21
|
Khatun A, Rahman M, Nesa ML, Looi CY, Wong WF, Hazni H, bin Mahdzir MA, Uddin SJ, Awang K, Shilpi JA. Analgesic, anti-inflammatory and NF-κB inhibitory activity of aerial parts of Cestrum diurnum. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cestrum diurnum L. (Solanaceae), locally known as buno-Hasnahena, is widely used in different traditional medicinal practices to treat pain, burn, swelling and related disorders. Adequate evidence is not available to support its medicinal properties for further use and drug development. Present study was designed to evaluate its traditional use in pain and inflammation with further characterisation of its chemical constituents through liquid chromatography-mass spectroscopic (LC-MS) analysis.
Methods
Antinociceptive and analgesic potential of methanol extract of the aerial parts of C. diurnum was carried out using carrageenan induced paw oedema and formalin induced paw licking test in mice at the oral doses of 150 and 300 mg/kg body weight. Inhibition of the inflammatory mediator nuclear factor kappa B (NF-κB) was evaluated by tumour necrosis factor α (TNF-α) induced NF-κB activation assay in macrophage cells at the concentration of 100 μg/ml. LC-MS analysis of the extract was performed to characterise the active component responsible for bioactivities.
Results
The extract significantly inhibited (p < 0.05) carrageenan induced paw oedema at both doses tested and the effect persisted throughout the entire experimental period of 3 h with the highest activity (50% inhibition) observed at 3rd h. Further, the extract significantly inhibited (p < 0.05) formalin induced paw licking both in the early and late phase at the aforementioned dose levels. The extract also downregulated the expression of NF-κB p65 protein in the TNF-α induced NF-κB activation assay. LC-MS analysis of the extract indicated the presence of some important secondary metabolites including nicotine, nornicotine, ursolic acid, vitamin D3 and its derivatives.
Conclusions
The results of this study supported the folkloric uses of the plant in pain and inflammations. The insights and observations suggest the action might involve downregulation of NF-κB p65 protein expression and/or inhibition of autacoids (histamine, serotonin, prostaglandin).
Collapse
|
22
|
Ullah H, Khan A, Bibi T, Ahmad S, Shehzad O, Ali H, Seo EK, Khan S. Comprehensive in vivo and in silico approaches to explore the hepatoprotective activity of poncirin against paracetamol toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:195-215. [PMID: 34994820 DOI: 10.1007/s00210-021-02192-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 01/05/2023]
Abstract
In the present study, poncirin was evaluated against paracetamol-induced liver injury using in vivo and computational approaches. Paracetamol was administered intraperitoneally (i.p,) to establish liver injury in mice and, subsequently, to investigate the hepatoprotective effect of poncirin (administered intraperitoneally) on liver injury. The effect of poncirin was evaluated against the liver injury markers and inflammatory cytokines. Similarly, in the present study, the antioxidants and oxidative stress parameters were also assessed following paracetamol-induced liver injury. The histological studies following liver injury were also assessed using H and E staining, Masson's trichrome staining, and periodic acid-Schiff staining. Similarly, the computational approach was used to assess the pharmacokinetic parameters of poncirin and its interaction with various protein targets. Poncirin markedly improved the antioxidant enzymes while attenuated the oxidative stress markers and inflammatory cytokines. Poncirin also markedly improved hematological parameters. Furthermore, poncirin treatment significantly improved the histological parameters using H and E staining, Masson's trichrome, and PAS staining compared to the control. Poncirin treatment also improved the liver function tests and liver synthetic activity compared to paracetamol treated group. The immunohistochemistry analysis revealed significant decrease in the inflammatory signaling protein such as nuclear factor kappa light chain enhancer of activated B cells (NF-κB), Jun N-terminal kinase (JNK), and cyclooxygenase-2 (COX-2) expression level compared to the paracetamol treated group. Computational analysis (molecular docking and molecular dynamic simulation) showed significant binding affinity of poncirin with the NF-κB, JNK, COX-2, IL-1β, IL-6, and TNF-α via multiple hydrophilic and hydrophobic binds. Similarly, the SwissADME software revealed that poncirin follows various drug-likeness rules and exhibited better pharmacokinetic parameters. Poncirin improved the sign and symptoms associated with liver injury using both in vivo and computational approaches.
Collapse
Affiliation(s)
- Hadayat Ullah
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmacy, Abasyn University, Peshawar, 25000, Pakistan
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - Hussain Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
23
|
Ozfırat E, Topal A, Akkoc A, Satar N, Ipek V, Pamukçular O, Uçkan E. Tarantula cubensis extract (Theranekron®) ınhibits ınflammation in carrageenan-ınduced acute paw edema in rats. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The aim of this study was to investigate the anti-inflammatory effect of alcoholic extract of Tarantula cubensis alcoholic extract (TCAE) in experimentally induced inflammation in rats. Fifty-four adult Sprague-Dawley male rats were randomly divided into nine groups. Paw edema was induced by 0.2mL subplantar (s.p.) injection of 1% carrageenan (CAR) into the right hind paw. Rats were treated with the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) (10mg/kg, p.o.) or TCAE at different doses (1, 10 or 100µg/kg) injected s.c. for systemic or s.p. for local anti-inflammatory effect. Saline was used as control. Changes in paw thickness, volume, and weight were calculated as percentages. Formalin-fixed paws were used for histopathological examination. We detected that TCAE applied s.c. at 10µg/kg and 100µg/kg doses resulted in thinner paw thickness, lower paw volume, and lower paw weights four hours after the induction of inflammation when compared with the INDO group (p<0.05). The paw edema inhibitory effect of TCAE applied at a dose of 10µg/kg, s.c. was 68% when compared with the INDO which had an inhibitory effect of 56%. These results were verified with similar histopathological findings. The anti-inflammatory feature of 10µg/kg of TCAE given systematically was similar to the effects of INDO. Our results suggest that TCAE has anti-inflammatory effects by reducing edema and decreasing inflammatory reaction. These results may be attributed to the inhibition of the production of proinflammatory mediators. Thus, TCAE may be considered as a potential anti-inflammatory agent for treating acute inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | - V. Ipek
- Burdur Mehmet Akif Ersoy University, Turkey
| | | | | |
Collapse
|
24
|
Wang R, Li L, Wang B. Poncirin ameliorates oxygen glucose deprivation/reperfusion injury in cortical neurons via inhibiting NOX4-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2022; 102:107210. [PMID: 34266770 DOI: 10.1016/j.intimp.2020.107210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Poncirin, a natural flavonoid present abundantly in citrus fruits, possesses anti-oxidant and anti-inflammatory activities that contribute to neuroprotection, but its roles and mechanisms in neuronal injury is still poorly understood. In this study, an oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in primary cortical neurons to induce neuronal injury in vitro. Poncirin effectively attenuated OGD/R-induced neuronal damage by enhancing cell viability, restraining lactate dehydrogenase release, and reducing apoptosis of neurons. Poncirin restrained mitochondrial dysfunction and oxidative stress by increasing mitochondrial membrane potential, declining reactive oxygen species production, lessening malondialdehyde generation, and increasing the activities of antioxidant enzymes in OGD/R-treated neurons. Poncirin also repressed inflammatory responses by reducing the secretion of pro-inflammatory factors, and inhibiting NLRP3 inflammasome activation. Importantly, poncirin administration notably abolished OGD/R-induced upregulation of NADPH oxidase 4 (NOX4), and overexpression of NOX4 neutralized poncirin-mediated neuroprotection. In conclusion, poncirin protects cortical neurons from OGD/R injury via inhibiting NOX4/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China.
| | - Lei Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| | - Baogong Wang
- Department of Cardiology, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| |
Collapse
|
25
|
Shaban NZ, El-Kot SM, Awad OM, Hafez AM, Fouad GM. The antioxidant and anti-inflammatory effects of Carica Papaya Linn. seeds extract on CCl 4-induced liver injury in male rats. BMC Complement Med Ther 2021; 21:302. [PMID: 34969385 PMCID: PMC8719404 DOI: 10.1186/s12906-021-03479-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Oxidative stress (OS) and inflammation are the central pathogenic events in liver diseases. In this study, the protective and therapeutic role of Carica Papaya Linn. seeds extract (SE) was evaluated against the hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. Methods The air-dried papaya seeds were powdered and extracted with distilled water. The phytochemical ingredients, minerals, and antioxidant potentials were studied. For determination of the biological role of SE against hepatotoxicity induced by CCl4, five groups of adult male Sprague-Dawley rats were prepared (8 rats per each): C: control; SE: rats were administered with SE alone; CCl4: rats were injected subcutaneously with CCl4; SE-CCl4 group: rats were administered with SE orally for 2 weeks before and 8 weeks during CCl4 injection; SE-CCl4-SE group: Rats were administered with SE and CCl4 as mentioned in SE-CCl4 group with a prolonged administration with SE for 4 weeks after the stopping of CCl4 injection. Then, the markers of OS [lipid peroxidation (LP) and antioxidant parameters; glutathione (GSH), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx)], inflammation [nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-6], fibrosis [transforming growth factor (TGF)-β], apoptosis [tumor suppressor gene (p53)], liver and kidney functions beside liver histopathology were determined. Results The phytochemical analyses revealed that SE contains different concentrations of phenolics, flavonoids, terpenoids, and minerals so it has potent antioxidant activities. Therefore, the treatment with SE pre, during, and/or after CCl4 administration attenuated the OS induced by CCl4 where the LP was reduced, but the antioxidants (GSH, SOD, GST, and GPx) were increased. Additionally, these treatments reduced the inflammation, fibrosis, and apoptosis induced by CCl4, since the levels of NF-κB, TNF-α, IL-6, TGF-β, and p53 were declined. Accordingly, liver and kidney functions were improved. These results were confirmed by the histopathological results. Conclusions SE has protective and treatment roles against hepatotoxicity caused by CCl4 administration through the reduction of OS, inflammation, fibrosis, and apoptosis induced by CCl4 and its metabolites in the liver tissues. Administration of SE for healthy rats for 12 weeks had no adverse effects. Thus, SE can be utilized in pharmacological tools as anti-hepatotoxicity.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Sarah M El-Kot
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Olfat M Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Afaf M Hafez
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ghada M Fouad
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int J Pharm 2021; 610:121242. [PMID: 34737113 DOI: 10.1016/j.ijpharm.2021.121242] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The present study aimed to fabricate and evaluate the therapeutic efficacy of pH-responsive Ibuprofen (IB) nanoparticles (NPs) loaded transdermal hydrogel against rheumatoid arthritis (RA). The IB loaded Eudragit® L 100 (EL 100) nanoparticles were formulated through a modified nanoprecipitation technique and optimized using central composite design software. The optimized NPs were loaded into Carbopol® 934-based hydrogel by solvent evaporation method and were analyzed for physicochemical characteristics. The mean particle size of the prepared NPs was 48 nm with an entrapment efficiency of 90%. The transdermal hydrogel showed a pH-responsive sustained drug release and high penetration through the skin. Moreover, the prepared nanocarrier system exhibited therapeutic efficacy at inflamed joints' sites both in acute and chronic RA mice model. The therapeutic efficacy of the prepared formulation was confirmed through the results of various behavioral, biochemical, and cytokines-based assays. Similarly, the assessment of histopathological and radiological images, as well as the skin irritation studies further strengthens the potential use of the prepared formulation through the transdermal route. The current findings suggested that IB loaded pH-responsive NPs based transdermal hydrogel can be used as an efficient agent to manage RA.
Collapse
|
27
|
Raj Pandey A, Rai D, Singh SP, Tripathi AK, Sardar A, Ansari A, Mishra A, Bhagwati S, Bhatta RS, Siddiqi MI, Chattopadhyay N, Trivedi R, Sashidhara KV. Synthesis and Evaluation of Galloyl Conjugates of Flavanones as BMP-2 Upregulators with Promising Bone Anabolic and Fracture Healing Properties. J Med Chem 2021; 64:12487-12505. [PMID: 34410127 DOI: 10.1021/acs.jmedchem.1c00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular hybridization concept led us to design a series of galloyl conjugates of flavanones that have potent osteoblast differentiation ability in vitro and promote bone formation in vivo. An array of in vitro studies, especially gene expression of osteogenic markers, evinced compound 5e as the most potent bone anabolic agent, found to be active at 1 pM, which was then further assessed for its osteogenic potential in vivo. From in vivo studies on rat calvaria and a fracture defect model, we inferred that compound 5e, at an oral dose of 5 mg/(kg day), increased the expression of osteogenic genes (RUNX2, BMP-2, Col1, and OCN) and the bone formation rate and significantly promoted bone regeneration at the fracture site, as evidenced by the increased bone volume/tissue fraction compared with vehicle-treated rats. Furthermore, structure-activity relationship studies and pharmacokinetic studies suggest 5e as a potential bone anabolic lead for future osteoporosis drug development.
Collapse
Affiliation(s)
- Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Divya Rai
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Anjali Mishra
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sudha Bhagwati
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Ritu Trivedi
- Division of Endocrinology and Centre for Research on ASTHI, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
28
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Younas, Khan A, Shehzad O, Seo EK, Onder A, Khan S. Anti-allergic activities of Umbelliferone against histamine- and Picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complement Med Ther 2021; 21:215. [PMID: 34452623 PMCID: PMC8394045 DOI: 10.1186/s12906-021-03384-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current study was aimed to investigate the anti-allergic activities of the Umbelliferone (UMB) against the acute Histamine and chronic Picryl chloride (PiCl)-induced allergy in mice. UMB is a coumarin derivative (isolated from Angelica decursiva) found in various parts of the plants such as flowers, roots and, stems isolated from the plants of Umbelliferae family. METHODS The UMB (1, 10, 50 mg/kg) was administered intraperitoneally (i.p) half an h before or 2 h after the induction of allergic ear edema. The acute ear edema was induced by histamine (intradermally, i.d), while the chronic ear edema was induced by painting the PiCl (sensitized with the toluene) on the ear. The antioxidants and oxidative stress markers were assessed. The histological changes were assessed using Hematoxylin and eosin (H and E) and giemsa staining. The immunohistochemistry studies were performed to assess the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and inducible nitric oxide synthase (iNOS). The data was analyzed using one-way ANOVA tests followed by Tukey's test with p < 0.05 was chosen as criteria for statistical significance. RESULTS UMB treatment markedly reduced the allergic ear edema and ear weight compared to the negative control. Furthermore, the UMB attenuated the oxidative stress markers, while induced the antioxidants enzymes. Similarly, the UMB treatment significantly attenuated the serum immunoglobulin E (IgE) level. The UMB treatment markedly improved the histological parameters using H and E staining and Giemsa staining. The UMB administration induced the Nrf2 expression, while attenuated the iNOS expression. Furthermore, the computational analysis was performed to assess the interaction of the UMB with the various protein targets and to determine the mechanism of interaction with the target proteins. CONCLUSION In conclusion, the UMB treatment significantly alleviated the allergic symptoms, attenuating the oxidative stress, improved the histological features using in vivo and computational approaches.
Collapse
Affiliation(s)
- Younas
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
30
|
Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7285-7302. [PMID: 34160206 DOI: 10.1021/acs.jafc.1c02015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavones are an important class of bioactive constituents in foods, and their structural diversity enables them to interact with different targets. In particular, flavones are known for their anti-inflammatory activity. Herein, we summarized commonly applied in vitro, in vivo, and clinical models in testing anti-inflammatory activity of flavones. The anti-inflammatory structure-activity relationship of flavones was systematically mapped and supported with cross comparisons of that with flavanones, flavanols, and isoflavones. Hydroxyl groups (-OH) are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and C-4' positions enhance while -OH at the C-6, C-7, C-8, and C-3' positions attenuate their activity. Moreover, the C2-C3 single bond, -OH at the C-3 and B-ring positions undermine flavone aglycones' activity. Most of the flavone aglycones function through NF-κB, MAPK, and JNK-STAT pathways, and their possible cell binding targets are kinase, aryl hydrocarbon receptor (AhR), G-protein coupled receptors, and estrogen receptors. However, the structure and anti-inflammatory activity relationship of flavones were unclear, and further research shall be conducted to close the gap in order to guide development of evidence-based functional foods.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| |
Collapse
|
31
|
Shal B, Khan A, Khan AU, Ullah R, Ali G, Islam SU, Haq IU, Ali H, Seo EK, Khan S. Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. Int J Mol Sci 2021; 22:6603. [PMID: 34203049 PMCID: PMC8234641 DOI: 10.3390/ijms22126603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aims to determine the neuroprotective effect of Bergenin against spatial memory deficit associated with neurodegeneration. Preliminarily, the protective effect of Bergenin was observed against H2O2-induced oxidative stress in HT-22 and PC-12 cells. Further studies were performed in 5xFAD Tg mouse model by administering Bergenin (1, 30 and 60 mg/kg; orally), whereas Bergenin (60 mg/kg) significantly attenuated the memory deficit observed in the Y-maze and Morris water maze (MWM) test. Fourier transform-infrared (FT-IR) spectroscopy displayed restoration of lipids, proteins and their derivatives compared to the 5xFAD Tg mice group. The differential scanning calorimeter (DSC) suggested an absence of amyloid beta (Aβ) aggregation in Bergenin-treated mice. The immunohistochemistry (IHC) analysis suggested the neuroprotective effect of Bergenin by increasing Reelin signaling (Reelin/Dab-1) and attenuated Aβ (1-42) aggregation in hippocampal regions of mouse brains. Furthermore, IHC and western blot results suggested antioxidant (Keap-1/Nrf-2/HO-1), anti-inflammatory (TLR-4/NF-kB) and anti-apoptotic (Bcl-2/Bax/Caspase-3) effect of Bergenin. Moreover, a decrease in Annexin V/PI-stained hippocampal cells suggested its effect against neurodegeneration. The histopathological changes were reversed significantly by Bergenin. In addition, a remarkable increase in antioxidant level with suppression of pro-inflammatory cytokines, oxidative stress and nitric oxide production were observed in specific regions of the mouse brains.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Eun-Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| |
Collapse
|
32
|
Zhu X, Yue L, Fan C, Liu Y, Wang Y, Zhao H. Mechanism of Cdk5-synaptophysin-SNARE pathway in acute and chronic inflammatory pain. Am J Transl Res 2021; 13:1075-1084. [PMID: 33841641 PMCID: PMC8014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Currently, there is no favorable treatment plan for inflammatory pain, so exploring new analgesics is still a research hotspot in this area. Cyclin-dependent protein kinase 5 (Cdk5) is a pain-related protein kinase, but its mechanism in inflammatory pain has not been clarified. This research aimed to explore the mechanism of Cdk5-synaptophysin (Syn)-soluble N-ethylmaleimide-sensitivity factor (NSF) attachment protein receptor (SNARE) in acute and chronic inflammatory pain. METHODS Rat models of acute and chronic inflammatory pain were induced by formalin and complete Freund's adjuvant (CFA), separately, and some rats injected with normal saline through intraplantar injection were divided into a control group. Thirty minutes before modeling, rats were given Cdk5 inhibitor (Roscovitine, Ros), SNARE scavenger (botulinum toxin A, BTTA), glutamate receptor inhibitor (MK801), and dimethyl sulfoxide (DMSO) through spinal canals, and the paw withdrawal threshold (PWT) and thermal withdrawal latency (PWL) at difference time points were compared. RESULTS Compared with rats in the control group, those in the rat models of acute and chronic inflammatory pain showed lower PWT and PWL, higher Cdk5 enzyme level, tight correlation of Cdk5 with Syn, SNARE, p25 proteins, and higher levels of Cdk5, Syn and SNARE. And the above situation was dramatically reversed under intervention of Ros, BTTA and MK801. CONCLUSION Cdk5-Syn-SNARE pathway is a therapeutic target for inflammatory pain. Blocking the activation of this pathway is beneficial to exert analgesic effect.
Collapse
Affiliation(s)
- Xichun Zhu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Lihui Yue
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Chunyan Fan
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yuting Liu
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Yong Wang
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| | - Hongwei Zhao
- Department of Pain Management, Hebei General Hospital Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
33
|
Khan A, Khan A, Khalid S, Shal B, Kang E, Lee H, Laumet G, Seo EK, Khan S. 7β-(3-Ethyl- cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro- Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules 2021; 26:E181. [PMID: 33401491 PMCID: PMC7795484 DOI: 10.3390/molecules26010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Eunwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Hwaryeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| |
Collapse
|
34
|
da Silva FC, de Souza AH, Bassoli BK, Prates GA, Daudt C, Meneguetti DUDO, Corrêa ÁP, de Oliveira IB, Schons SDV, Fialho MFP, Correa DS, Picada JN, Ferraz ADBF. Myrciaria dubia Juice (camu-camu) Exhibits Analgesic and Antiedematogenic Activities in Mice. J Med Food 2020; 24:626-634. [PMID: 33337272 DOI: 10.1089/jmf.2020.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Myrciaria dubia (Myrtaceae) fruit is traditionally used to treat malnutrition due to its high levels of vitamin C and phenolic compounds. Because of its composition, this plant is very promising in the research of novel natural treatment for pain disorders. This study analyzed the phytochemical profile of M. dubia juice and assessed its antinociceptive and antiedematogenic potential. The phytochemical profile was determined through high-performance liquid chromatography (HPLC), the oral antinociceptive effect of M. dubia 50% juice (Md50) was evaluated by formalin, hot plate and Complete Freund's Adjuvant tests and the antiedematogenic activity by paw edema. HPLC revealed the presence of ascorbic acid, rutin, and ellagic acid as major compounds. Md50 showed an antinociceptive effect in the acute and chronic phases of the formalin test. In the hot plate test, Md50 also induced an antinociceptive effect of 0.5 up to 6 h, showing antinociceptive and antiedematogenic potential without changing the spontaneous locomotion of animals. All protocols were submitted and approved by the Ethics Committee for use of Animals of the Lutheran University of Brazil (protocol No. 2013-30P).
Collapse
Affiliation(s)
- Francisco Carlos da Silva
- Department of Biological Sciences, São Lucas Ji-Paraná University Center (UniSL), Ji-Paraná, Brazil.,Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alessandra Hübner de Souza
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Gleiciane Alves Prates
- Department of Biological Sciences, São Lucas Ji-Paraná University Center (UniSL), Ji-Paraná, Brazil
| | - Cíntia Daudt
- Center of Natural and Biological Sciences, Federal University of Acre (UFAC), Rio Branco, Brazil
| | - Dionatas Ulises de Oliveira Meneguetti
- Laboratory of Physiopharmacology, Post-Graduation Program in Sciences of Health of Western Amazonia, Federal University of Acre (UFAC), Rio Branco, Brazil
| | | | | | - Sandro de Vargas Schons
- Department of Post-Graduation Program in Environmental Sciences, Federal University of Rondônia (UNIR), Rolim de Moura, Brazil
| | - Maria Fernanda Pessano Fialho
- Department of Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Dione Silva Correa
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jaqueline Nascimento Picada
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alexandre de Barros Falcão Ferraz
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
35
|
Ali H, Khan A, Ali J, Ullah H, Khan A, Ali H, Irshad N, Khan S. Attenuation of LPS-induced acute lung injury by continentalic acid in rodents through inhibition of inflammatory mediators correlates with increased Nrf2 protein expression. BMC Pharmacol Toxicol 2020; 21:81. [PMID: 33239093 PMCID: PMC7687815 DOI: 10.1186/s40360-020-00458-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Background Acute lung injury (ALI) together with acute respiratory distress syndrome (ARDS) are associated with high rate of mortality and morbidity in patients. In the current study, the anti-inflammatory effects of continentalic acid (CNT) in LPS-induced acute lung injury model was explored. Methods The acute lung injury model was established by administering LPS (5 mg/kg) intraperitonealy. Following LPS administration, the survival rate, temperature changes and lung Wet/Dry ratio were assessed. The antioxidants (GSH, GST, Catalase and SOD) and oxidative stress markers (MDA, NO, MPO) were evaluated in all the treated groups. Similarly, the cytokines such as IL-1β, IL-6 and TNF-α were analyzed using ELISA assay. The histological changes were determined using H and E staining, while Nrf2 and iNOS level were determined using immunohistochemistry analysis. The molecular docking analysis was performed to assess the pharmacokinetics parameters and interaction of the CNT with various protein targets. Results The results showed that CNT dose dependently (10, 50 and 100 mg/kg) reduced mortality rate, body temperature and lungs Wet/Dry ratio. CNT post-treatment significantly inhibited LPS-induced production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. The CNT post-treatment markedly improved the hematological parameters, while significantly reduced the MPO (indicator of the neutrophilic infiltration) activity compared to the LPS treated group. Furthermore, the CNT (100 mg/kg) post-administration remarkably inhibited the lung Wet/Dry ratio. The CNT (100 mg/kg) treated group showed marked reduction in the oxidative stress markers such as malonaldehyde (MDA) and Nitric oxide (NO) concentration, while induced the level of the anti-oxidant enzymes such as GST, GSH, Catalase and SOD. Similarly, the CNT markedly reduced the iNOS expression level, while induced the Nrf2 protein expression. Additionally, the molecular docking study showed significant binding interaction with the Nrf2, p65, Keap1, HO-1, IL-1β, IL-6, TNF-α and COX-2, while exhibited excellent physicochemical properties. Conclusion The CNT showed marked protection against the LPS-induced lung injury and improved the behavioral, biochemical and histological parameters. Furthermore, the CNT showed significant interaction with several protein targets and exhibited better physicochemical properties.
Collapse
Affiliation(s)
- Hassan Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawad Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hadayat Ullah
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadeem Irshad
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
36
|
Yang LX, Chen FY, Yu HL, Liu PY, Bao XY, Xia SN, Gu Y, Xu Y, Cao X. Poncirin suppresses lipopolysaccharide (LPS)-induced microglial inflammation and ameliorates brain ischemic injury in experimental stroke in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1344. [PMID: 33313089 PMCID: PMC7723616 DOI: 10.21037/atm-20-3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Based on accumulating evidence, excessive activation of microglia-mediated inflammatory responses plays an essential role in ischemic stroke. Poncirin (Pon) exerts anti-hyperalgesic, anti-osteoporotic and anti-tumor effects on various diseases. However, the roles of Pon in microglial activation and the underlying mechanism have not been elucidated. This study aimed to explore whether Pon inhibits lipopolysaccharide (LPS)-induced microglial neuroinflammation and protects against brain ischemic injury in experimental stroke in mice. Methods Primary microglia cells were prepared from the cerebral cortices of 1- to 2-day-old C57BL/6J mice. Murine BV2 cells and primary microglia were stimulated with LPS and the effects of a non-cytotoxic concentration of Pon on LPS-stimulated pro-inflammatory factors were measured using real-time PCR and enzyme-linked immunosorbent assays (ELISAs). Western blot analyses were used for mechanistic studies. In an in vivo study, 8-week-old male C57BL/6J mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). Pon (30 mg/kg, i.p.) or the same volume of saline was administered after the MCAO model was established, and the infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. We also evaluated animal behaviours, the expression of pro-inflammatory cytokines and microglial activation in the ischemic hemisphere. Results Pon prevented the release of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and tumor necrosis factor-alpha (TNF-α) in both BV2 cells and primary microglia stimulated with LPS. The inhibitory effects of Pon were associated with the regulation of the ERK1/2, JNK and nuclear factor kappa B (NF-κB) signaling pathways. In mice that underwent MCAO, Pon administration decreased the lesion size and improved neurological deficits. Furthermore, Pon attenuated the production of inflammatory cytokines mainly by restraining microglial activation after ischemic stroke. Conclusions Based on the findings from the present study, Pon provides neuroprotection through its anti-inflammatory effects on microglia and it may be a useful treatment for ischemic stroke.
Collapse
Affiliation(s)
- Li-Xuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Fang-Yu Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hai-Long Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
37
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|
38
|
Ullah H, Khan A, Baig MW, Ullah N, Ahmed N, Tipu MK, Ali H, Khan S. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice. BMC Complement Med Ther 2020; 20:115. [PMID: 32307011 PMCID: PMC7168870 DOI: 10.1186/s12906-020-02906-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background In the present study, the poncirin which is flavonoid-7-o-glycosides (isolated from the Poncirus trifoliata) in nature was evaluated against the Carbon tetra chloride (CCL4)-induced liver injury. The poncirin have been reported for various anti-inflammatory, analgesic activity etc. Based on the previous studies it was anticipated that the poncirin will ameliorate CCL4-induced liver injury. Methods The CCL4-induced acute and chronic liver injury model (albino BALB/c mice) was used. Following the induction of the liver injury various parameters such as food and water intake, body weight and weight to dry ratio changes were assessed. Furthermore, various hematological, biochemical parameters and histological studies such as hemotoxylin and eosin (H and E) staining were performed. The poncirin treatment was also evaluated against the pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) using enzyme link immunosorbant assay (ELISA). The Swiss Target prediction software was used to investigate interaction of the poncirin on the various hepatic enzymes. Results The poncirin treatment markedly improved the behavioral parameters such as food and water intake. The liver weight variation was attenuated and total body was improved markedly. The hematological and biochemical parameters were significantly improved compared to the CCL4 treated groups. The anti-oxidants were induced, while oxidative stress markers were reduced promisingly. The H and E staining showed that poncirin treatment significantly improved the histology of liver compared to the CCL4 treated group. Furthermore, the poncirin treatment also evidently decreased the inflammatory mediators. Conclusions The poncirin treatment showed marked improvement in behavioral, biochemical and histological parameters following CCL4-induced liver injury. Additionally, the poncirin treatment also markedly improved the antioxidant enzymes, attenuated the oxidative stress markers and inflammatory cytokines.
Collapse
Affiliation(s)
- Hadayat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashrafullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naseem Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|