1
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Hoffmann GV, Gottschlich A, Subklewe M, Kobold S. Novel approaches to CAR T cell target identification in acute myeloid leukemia. Curr Opin Pharmacol 2025; 82:102524. [PMID: 40311558 DOI: 10.1016/j.coph.2025.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Identifying safe and effective CAR T cell targets in acute myeloid leukemia (AML) is challenging due to the disease's complexity and overlap with normal hematopoiesis. This review highlights advances in target discovery for AML, emphasizing innovative approaches. Structural surfaceomics identifies tumor-specific protein conformations, while AI-driven single-cell RNA sequencing integrates multi-source data to pinpoint optimal targets. Refined cell surface capture technology maps the AML surfaceome without relying on predefined antibodies. These strategies enhance CAR T cell specificity and minimize off-tumor effects, offering promising pathways for safer and more effective AML treatments and broader cancer therapies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
3
|
Minopoli A, Perini G, Cui L, Palmieri V, De Spirito M, Papi M. Biomaterial-Driven 3D Scaffolds for Immune Cell Expansion toward Personalized Immunotherapy. Acta Biomater 2025:S1742-7061(25)00351-4. [PMID: 40348072 DOI: 10.1016/j.actbio.2025.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/12/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Immunotherapy has emerged as a transformative medical approach in recent years, providing novel treatments for cancer eradication, autoimmune disorders, and infectious diseases. Fundamental to the success of therapy is the enrichment of the immune cell population, particularly T cells, natural killer cells, and dendritic cells. However, achieving a robust and long-term proliferation of immune cells is still challenging both in vivo and ex vivo. In vivo expansion leverages the patient's natural microenvironment and regulatory mechanisms through therapeutic interventions like immune checkpoint inhibitors, cytokine therapy, and targeted antibodies. This approach fosters long-term immune memory and sustained protection. In contrast, ex vivo expansion involves isolation, manipulation, and expansion of the immune cells under controlled conditions before reinfusion, allowing for precise control over the process and generating potent immune cell populations. Hydrogels, due to their tunable biomechanical properties, high biocompatibility, and ability to mimic the extracellular matrix, provide an ideal platform for both in vivo and ex vivo immune cell expansion. For instance, hydrogel-based scaffolds or beads can facilitate a controlled and efficient expansion of immune cells ex vivo, whereas injectable and implantable hydrogels can provide innovative solutions for enhancing immune cell activity within the patient supporting prolonged immune cell activity. This review aims to elucidate the importance of hydrogel-based strategies in immune cell expansion, advancing the development of effective, personalized immunotherapies to improve patient outcomes. STATEMENT OF SIGNIFICANCE: This review highlights the transformative potential of hydrogel-based 3D scaffolds in advancing personalized immunotherapy. By integrating in vivo and ex vivo strategies, hydrogels provide an innovative platform to enhance immune cell expansion, addressing critical challenges in immunotherapy. The discussion emphasizes the unique biomechanical and biochemical tunability of hydrogels, enabling precise mimicry of the extracellular matrix to support T cell proliferation, activation, and memory formation. These advances offer scalable, cost-effective solutions for producing high-quality immune cells, contributing to more effective cancer treatments, autoimmune disease management, and infectious disease control. By bridging materials science and immunology, this work underscores the pivotal role of hydrogels in shaping the future of immune-based therapies.
Collapse
Affiliation(s)
- Antonio Minopoli
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy; Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy.
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy.
| |
Collapse
|
4
|
de Jong D, Ahmed S, Dsouza B, Salvatore M, May B, Huang S, Gordillo C, Reshef R, Capaccione KM. CAR T-cell therapy chest CT manifestations. Clin Imaging 2025; 121:110439. [PMID: 40054048 DOI: 10.1016/j.clinimag.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
PURPOSE CAR T-cell therapy is an emerging anti-cancer therapeutic using modified T cells to attack a patient's cancer. The purpose of this study was to assess chest CT findings in patients undergoing CAR T-cell therapy to determine the most common CT manifestations. METHODS We performed a retrospective test-retest study analyzing cases of patients who received CAR T-cell therapy who underwent chest CT prior to therapy and after therapy; a total of 349 patients were identified. CAR T-cell therapy was first administered in the mid 2010's, however we assessed for pre-treatment scans prior to this date. We reviewed patient's charts to collect demographic and clinical data. Two cardiothoracic radiologists reviewed chest CT scans prior to and post CAR T-cell therapy to determine new radiologic features post therapy. We analyzed which findings correlated with specific radiologic features on chest CT using student's t-tests or Chi squared tests. RESULTS Pleural effusion was the most common CT manifestation resulting from CAR T-cell therapy, found in 26.3 % of patients. Patients with CT manifestations were more likely to present with dyspnea and cough (p = 0.000031 and p = 0.02, respectively). DISCUSSION New symptoms in patients treated with CAR T-cell therapy may be an important harbinger of radiologic abnormalities. Clinicians should have a high index of suspicion for pleural effusions in patients presenting with symptoms who have undergone CAR T-cell therapy.
Collapse
Affiliation(s)
| | - Saheeb Ahmed
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Belinda Dsouza
- Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| | - Mary Salvatore
- Department of Radiology, Jacobi Medical Center/North Central Bronx Hospital, New York, NY, USA
| | - Benjamin May
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Sophia Huang
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Christian Gordillo
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Ran Reshef
- Department of Radiology, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
5
|
Saeidpour Masouleh S, Nasiri K, Ostovar Ravari A, Saligheh Rad M, Kiani K, Sharifi Sultani A, Nejati ST, Nabi Afjadi M. Advances and challenges in CAR-T cell therapy for head and neck squamous cell carcinoma. Biomark Res 2025; 13:69. [PMID: 40312353 PMCID: PMC12044960 DOI: 10.1186/s40364-025-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains among the most aggressive malignancies with limited treatment options, especially in recurrent and metastatic cases. Despite advances in surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors, survival rates remain suboptimal due to tumor heterogeneity, immune evasion, and treatment resistance. In recent years, Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized hematologic cancer treatment by genetically modifying T cells to target tumor-specific antigens like CD19, CD70, BCMA, EGFR, and HER2, leading to high remission rates. Its success is attributed to precise antigen recognition, sustained immune response, and long-term immunological memory, though challenges like cytokine release syndrome and antigen loss remain. Notably, its translation to solid tumors, including HNSCC, faces significant challenges, such as tumor microenvironment (TME)-induced immunosuppression, antigen heterogeneity, and limited CAR T-cell infiltration. To address these barriers, several tumor-associated antigens (TAAs), including EGFR, HER2 (ErbB2), B7-H3, CD44v6, CD70, CD98, and MUC1, have been identified as potential CAR T-cell targets in HNSCC. Moreover, innovative approaches, such as dual-targeted CAR T-cells, armored CARs, and CRISPR-engineered modifications, aim to enhance efficacy and overcome resistance. Notably, combination therapies integrating CAR T-cells with immune checkpoint inhibitors (e.g., PD-1/CTLA-4 blockade) and TGF-β-resistant CAR T designs are being explored to improve therapeutic outcomes. This review aimed to elucidate the current landscape of CAR T-cell therapy in HNSCC, by exploring its mechanisms, targeted antigens, challenges, emerging strategies, and future therapeutic potential.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ava Ostovar Ravari
- Faculty of Dentistry, Haybusak University of Medical Sciences, Yerevan, Armenia
| | - Mona Saligheh Rad
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Kiarash Kiani
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Yu R, Ji X, Zhang P, Zhang H, Qu H, Dong W. The potential of chimeric antigen receptor -T cell therapy for endocrine cancer. World J Surg Oncol 2025; 23:153. [PMID: 40264184 PMCID: PMC12012980 DOI: 10.1186/s12957-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Endocrine cancer, a relatively rare and heterogeneous tumor with diverse clinical features. The facile synthesis of hormones further complicates endocrine cancer treatment. Thus, the development of safe and effective systemic treatment approaches, such as chimeric antigen receptor (CAR) T cell therapy, is imperative to enhance the prognosis of patients with endocrine cancer. Although this therapy has achieved good results in the treatment of hematological malignancies, it encounters diverse complications and challenges in the context of endocrine cancer. This review delineates the generation of CAR-T cells, examines the potential of CAR-T cell therapy for endocrine cancer, enumerates pivotal antigens linked to endocrine cancer, encapsulates the challenges confronted with CAR-T cell therapy for endocrine cancer, and expounds upon strategies to overcome these limitations. The primary objective is to provide insightful perspectives that can contribute to the advancement of CAR-T cell therapy in the field of endocrine cancer.
Collapse
Affiliation(s)
- Ruonan Yu
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, Liaoning, 110840, China.
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
7
|
Xi X, Guo S, Gu Y, Wang X, Wang Q. Challenges and opportunities in single-domain antibody-based tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189284. [PMID: 39947441 DOI: 10.1016/j.bbcan.2025.189284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Single-domain antibodies (sdAbs) have emerged as a promising tool in tumor immunotherapy, garnering significant attention in recent years due to their unique structure and superior properties. Unlike traditional antibodies, sdAbs exhibit several advantages, including small molecular weight, high stability, strong affinity, and high specificity. These characteristics enable sdAbs to effectively target and eliminate tumor cells within the complex tumor microenvironment. Moreover, their structural advantages enhance tissue penetration and reduce immunogenicity, thereby increasing their potential for clinical application. The potential applications of sdAbs include novel immune checkpoint inhibitors, bispecific antibody drugs, innovative immune cell therapies, antibody-drug conjugate therapies, and tumor molecular imaging diagnostics. Despite the promising prospects, several challenges of sdAb-based tumor immunotherapy still require further investigation. This review aims to summarize the status of sdAb-based immunotherapy, identify the challenges encountered, and evaluate the clinical research and application potential of sdAbs in this field.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
| | - Shasha Guo
- Shandong Women's University, 250355 Jinan, People's Republic of China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuekai Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China.
| |
Collapse
|
8
|
Guo S, Xi X. Nanobody-enhanced chimeric antigen receptor T-cell therapy: overcoming barriers in solid tumors with VHH and VNAR-based constructs. Biomark Res 2025; 13:41. [PMID: 40069884 PMCID: PMC11899093 DOI: 10.1186/s40364-025-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
CAR-T cells are genetically modified T lymphocytes that express chimeric antigen receptors (CAR) on their surfaces. These receptors enable T lymphocytes to recognize specific antigens on target cells, triggering a response that leads to targeted cytotoxicity. While CAR-T therapy has effectively treated various blood cancers, it faces significant challenges in addressing solid tumors. These challenges include identifying precise tumor antigens, overcoming antigen evasion, and enhancing the function of CAR-T cells within the tumor microenvironment. Single domain antibody, versatile tools with low immunogenicity, high stability, and strong affinity, show promise for improving the efficacy of CAR-T cells against solid tumors. By addressing these challenges, single domain antibody has the potential to overcome the limitations associated with ScFv antibody-based CAR-T therapies. This review highlights the benefits of utilizing single domain antibody in CAR-T therapy, particularly in targeting tumor antigens, and explores development strategies that could advance the field.
Collapse
Affiliation(s)
- Shasha Guo
- Shandong Women's University, Jinan, 250300, People's Republic of China.
| | - Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, People's Republic of China.
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, 250023, People's Republic of China.
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
9
|
Cajanding RJM. Implementation of chimeric antigen receptor (CAR) T-cell therapy in the NHS: prospects, promises and pitfalls. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2025; 34:S20-S30. [PMID: 40063539 DOI: 10.12968/bjon.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The approval, introduction, and provision of chimeric antigen receptor (CAR) T-cell therapy in the UK NHS presents a innovative and revolutionary approach in cancer treatment and management. CAR T-cell therapy is a highly specialised and personalised type of immunotherapy that involves reprogramming a patient's immune system by synthetically modifying their T-cells to specifically target and eliminate cancer cells. This therapy offers the potential to cure malignancies that were previously deemed incurable or refractory to conventional chemotherapy. CAR T-cell therapy, however, is associated with significant risks and life-threatening complications, and it entails substantial financial cost. The implementation of CAR T-cell therapy in the NHS marks a new era of personalised medicine, offering a promising approach not only for improving cancer outcomes, but for enhancing survivorship and quality of life among patients with advanced and relapsing haematologic malignancies.
Collapse
|
10
|
Sheykhhasan M, Ahmadieh-Yazdi A, Heidari R, Chamanara M, Akbari M, Poondla N, Yang P, Malih S, Manoochehri H, Tanzadehpanah H, Mahaki H, Fayazi Hosseini N, Dirbaziyan A, Al-Musawi S, Kalhor N. Revolutionizing cancer treatment: The power of dendritic cell-based vaccines in immunotherapy. Biomed Pharmacother 2025; 184:117858. [PMID: 39955851 DOI: 10.1016/j.biopha.2025.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
In the modern time, cancer immunotherapies have increasingly become vital treatment options, joining long-established methods like surgery, chemotherapy, and radiotherapy treatment. Central to this emerging approach are dendritic cells (DCs), which boast a remarkable ability for antigen presentation. This ability is being leveraged to modulate T and B cell immunity, offering a groundbreaking strategy for tackling cancer. However, the percentage of patients experiencing meaningful benefits from this treatment remains relatively low, underscoring the ongoing necessity for further research and development in this field. This review offers a comprehensive analysis of the present-day progress in dendritic cell (DC)-based vaccines and recent efforts to enhance their efficacy. We explore the intricacies of DC function, from antigen capture to T cell stimulation, and discuss the outcomes of both preclinical and clinical trials across various cancer types. While the results are promising, the real-world application of DC-based vaccines is still nascent, posing multiple challenges that need to be overcome. These obstacles include optimizing the methods for DC generation and antigen loading, overcoming the immunosuppressive nature of the tumor microenvironment, and enhancing specificities of the immunologic response through personalized vaccines. The review concludes by emphasizing prospective opportunities for future research and emphasizing the critical need for extensive clinical trials. These trials are essential to validate the effectivity of DC-based vaccines and solidify their role in the broader spectrum of cancer immunotherapy options.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Heidari
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran; Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Student research committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College & Hospital, Chennai, India
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
11
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
14
|
Besliu C, Tanase AD, Rotaru I, Espinoza J, Vidal L, Poelman M, Juan M, de Larrea CF, Saini KS. The Evolving Landscape in Multiple Myeloma: From Risk Stratification to T Cell-Directed Advanced Therapies. Cancers (Basel) 2025; 17:525. [PMID: 39941892 PMCID: PMC11817212 DOI: 10.3390/cancers17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Multiple myeloma is biologically and clinically a complex and heterogeneous disease which develops late in life, with the median age at the time of initial diagnosis being 66 years. In 1975, Durie and Salmon developed the first broadly adopted staging system in multiple myeloma, and in the ensuing decades, the risk stratification tools have improved and now incorporate different parameters to better predict the prognosis and to guide the treatment decisions. The International Staging System (ISS) was initially developed in 2005, revised in 2015 (R-ISS), and again in 2022 (R2-ISS). Tremendous progress has been achieved in multiple myeloma therapy over the past 25 years with the approval of immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies, resulting in a major paradigm shift. The dysfunction of the innate and adaptive immune system, especially in the T cell repertoire, represents a hallmark of multiple myeloma evolution over time, supporting the need for additional therapeutic approaches to activate the host's immune system and to overcome the immunosuppressive tumor microenvironment. Novel T cell-directed therapies include chimeric antigen receptor (CAR) T cell therapies and bispecific antibodies that leverage the immune system's T cells to recognize and attack the tumor cells. Second-generation anti-BCMA CAR T cell therapies and bispecific antibodies that bind the tumor antigen BCMA or GPRC5D onto myeloma cells and CD3 on the T cell's surface are currently available for the treatment of relapsed/refractory multiple myeloma. Despite impressive results obtained with currently approved treatments, multiple myeloma remains incurable, and almost all patients eventually relapse. Moreover, patients with extramedullary disease and plasma cell leukemia represent an unmet medical need that require additional strategies to improve the outcome. In this review, we provide an overview of the evolution of risk stratification and the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Carmen Besliu
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Alina Daniela Tanase
- Department of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute Bucharest, 022328 Bucharest, Romania;
| | - Ionela Rotaru
- Department of Hematology, Municipal Hospital Craiova, 010024 Craiova, Romania;
| | - Jose Espinoza
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Laura Vidal
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Martine Poelman
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Manel Juan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Carlos Fernández de Larrea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Kamal S. Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
15
|
Xiong S, Zhang S, Yue N, Cao J, Wu C. CAR-T cell therapy in the treatment of relapsed or refractory primary central nervous system lymphoma: recent advances and challenges. Leuk Lymphoma 2025:1-13. [PMID: 39898872 DOI: 10.1080/10428194.2025.2458214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma that is isolated in the central nervous system (CNS) or vitreoretinal space. High-dose methotrexate (HD-MTX)-based immunochemotherapy is the frontline for its treatment, with a high early response rate. However, relapsed or refractory (R/R) patients present numerous difficulties and challenges in clinical treatment. Chimeric antigen receptor (CAR)-T cells offer a promising option for the treatment of hematologic malignancies, especially in the R/R B-cell lymphoma and multiple myeloma. Despite the exclusion of most PCNSL cases from pivotal CAR-T cell trials due to their specific tumor microenvironment (TME), available preclinical and clinical studies with small cohorts suggest an overall acceptable safety profile and remarkable anti-tumor effects. In this review, we will provide the development process of CAR-T cells and summarize the research progress, limitations, and future perspectives of CAR-T cell therapy in patients with R/R PCNSL.
Collapse
Affiliation(s)
- Shuzhen Xiong
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | |
Collapse
|
16
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1433-1446. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
17
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
18
|
Joseph T, Sanchez J, Abbasi A, Zhang L, Sica RA, Duong TQ. Cardiotoxic Effects Following CAR-T Cell Therapy: A Literature Review. Curr Oncol Rep 2025; 27:135-147. [PMID: 39836349 PMCID: PMC11861112 DOI: 10.1007/s11912-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity. RECENT FINDINGS CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern. There were only a few studies on CAR-T cardiotoxicity published to date with limited sample sizes, and their findings were heterogeneous. It was difficult to reach generalizable conclusions. CAR-T therapy was associated with significant risks for acute and subacute cardiotoxicity, as measured by echocardiograms, EKG, and blood biomarkers. Patients with cytokine release syndrome (CRS) grade 2 or higher were more likely to exhibit cardiotoxicity. The most prevalent cardiac events included hypotension-requiring inotropic or vasopressor support, tachycardia, heart failure/decompensation, atrial fibrillation, new or worsening cardiomyopathy, arrhythmia, myocarditis, cardiac arrest, and cardiovascular death. The most prevalent echocardiographic changes were systolic dysfunction and diastolic dysfunction, and abnormal echocardiogram findings. There were differences in findings between adult and pediatric patients. The long-term effects beyond a year post treatment remain largely unknown and long-term follow-up studies are warranted.
Collapse
Affiliation(s)
- Tony Joseph
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA
- Department of Chemistry, CUNY Brooklyn College, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
| | - Jimmy Sanchez
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA
| | - Ahmed Abbasi
- Department of Oncology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA
| | - Lili Zhang
- Department of Medicine, Cardiology Division, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA
| | - R Alejandro Sica
- Department of Oncology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA.
| |
Collapse
|
19
|
Brownlee E, Turley M, Nations H. Chimeric antigen receptor therapy in hematologic malignancies. JAAPA 2025; 38:17-24. [PMID: 39761467 DOI: 10.1097/01.jaa.0000000000000176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy has led to significant advances in the treatment of blood cancers such as leukemia, lymphoma, and multiple myeloma, and now shows promise for solid tumors. This type of immunotherapy can achieve high response rates in patients with hematologic malignancies, but carries serious adverse reactions, including cytokine release syndrome and immune-effector cell-associated neurotoxicity syndrome. This article describes CAR T-cell therapy, guidance for primary care providers caring for patients undergoing therapy, and the ongoing need for research to enhance CAR T-cell therapy's safety and effectiveness.
Collapse
Affiliation(s)
- Elizabeth Brownlee
- In the PA program at the University of Florida in Gainesville, Fla., Elizabeth Brownlee is director of didactic education and Melissa Turley is interim program director and a clinical assistant professor. Heather Nations practices in obstetrics and gynecology at UF Health Physicians in Gainesville. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
20
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Regulating white blood cell activity through the novel Universal Receptive System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631232. [PMID: 39896476 PMCID: PMC11785007 DOI: 10.1101/2025.01.06.631232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The understanding of the mechanisms that control key features of immune cells in various disease contexts remains limited, and few techniques are available for manipulating immune cells. Thus, discovering novel strategies for regulating immune cells is essential for gaining insight into their roles in health and disease. In this study, we investigated the potential of the recently described Universal Receptive System to regulate human immune cell functions. This was achieved for the first time by specifically targeting newly discovered surface-bound DNA and RNA-based receptors on leukocytes and generating "Leukocyte-Tells." This approach upregulated numerous genes related to immune cell signaling, migration, endocytosis, and phagocytosis pathways. The antimicrobial and anticancer activities of Leukocyte-Tells exceeded the activity of control leukocytes in vitro . In some settings, such as in antibiofilm experiments, the Leukocyte-Tells showed up to 1,000,000-fold higher activities than control leukocytes. Our findings reveal, for the first time, that the Universal Receptive System can orchestrate fundamental properties of immune cells, including enhanced antimicrobial and anti-tumor activities. This novel approach offers a new avenue for understanding the biology and regulation of white blood cells.
Collapse
|
21
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Khan SH, Choi Y, Veena M, Lee JK, Shin DS. Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Front Immunol 2025; 15:1489827. [PMID: 39835140 PMCID: PMC11743624 DOI: 10.3389/fimmu.2024.1489827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles. We discuss the importance of antigen identification by emphasizing the identification of tumor-specific and tumor-associated antigens and the development of CAR T therapies targeting these antigens. Furthermore, we highlight key structural innovations, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors, to enhance tumor infiltration and activity within the immunosuppressive microenvironment. Additionally, novel manufacturing approaches, such as the Sleeping Beauty transposon system, mRNA-based CAR transfection, and in vivo CAR T cell production, are discussed as scalable solution to improve the accessibility of CAR T cell therapies. Finally, we address critical therapeutic limitations, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and suboptimal persistence of CAR T cells. An examination of emerging strategies for countering these limitations reveals that CRISPR-Cas9-mediated genetic modifications and combination therapies utilizing checkpoint inhibitors can improve CAR T cell functionality and durability. By integrating insights from preclinical models, clinical trials, and innovative engineering approaches, this review addresses advances in CAR T cell therapies and their performance in solid tumors.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Antigens, Neoplasm/immunology
- Tumor Microenvironment/immunology
- Animals
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Safwaan H. Khan
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yeonjoo Choi
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - John K. Lee
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
23
|
Harrop R, Blount DG, Khan N, Soyombo M, Moyce L, Drayson MT, Down J, Lawson MA, O'Connor D, Nimmo R, Lad Y, Souberbielle B, Mitrophanous K, Ettorre A. Targeting Tumor Antigen 5T4 Using CAR T Cells for the Treatment of Acute Myeloid Leukemia. Mol Cancer Ther 2025; 24:93-104. [PMID: 39387839 DOI: 10.1158/1535-7163.mct-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors. However, very little is known about its expression in hematologic malignancies. In this study, we assess the expression of 5T4 in different types of leukemias, specifically acute myeloid leukemia (AML), and normal hematopoietic stem cells (HSC). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR T cells against HSCs and AML tumor cell lines. 5T4 expression was seen in about 50% of AML cases; AML with mutated nucleophosmin 1, AML-myelodysplasia-related, and AML not otherwise specified showed the highest percentage of 5T4+ cases. 5T4 CAR T cells efficiently and specifically killed AML tumor cell lines, including leukemic stem cells. Coculture of 5T4 CAR T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A proof-of-concept study using a murine model for AML demonstrated that CAR T cells recognize 5T4 expressed on cells and can kill tumor cells both in vitro and in vivo. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR T cells can be considered a powerful personalized therapeutic approach to treat AML.
Collapse
Affiliation(s)
| | | | - Naeem Khan
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | | | - Laura Moyce
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | - Jenny Down
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Michelle A Lawson
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | | | - Rachael Nimmo
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Yatish Lad
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | | | | | - Anna Ettorre
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| |
Collapse
|
24
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
25
|
Zang PD, Angeles A, Pal SK. CD70: An Emerging Anticancer Target in Renal Cell Carcinoma and Beyond. Annu Rev Med 2025; 76:257-266. [PMID: 39570653 DOI: 10.1146/annurev-med-070623-045906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
CD70 is an emerging target for anticancer therapies. It is an ideal antigen target given its limited expression in normal physiologic tissues and propensity to be aberrantly expressed in a variety of malignancies, thus limiting off-target toxicities. It is also heavily involved in immune homeostasis, and disruption of this pathway can help overcome tumor-related immune cell exhaustion. Recent phase I/II trials using cellular therapies targeting CD70, such as chimeric antigen receptor-T cells, have shown promising effectiveness and safety in treating relapsed or refractory renal cell carcinoma. Noncellular therapies targeting CD70, such as antibody-drug conjugates, monoclonal antibodies, radionuclides, and cytokines, are currently under investigation, with early data showing encouraging results as well. Efforts are already underway to further improve and optimize CD70-based therapies.
Collapse
Affiliation(s)
- Peter D Zang
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA;
| | | | - Sumanta K Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA;
| |
Collapse
|
26
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial chimeric antigen receptor T cell and chemotherapies. Pharmacol Rev 2025; 77:100011. [PMID: 39952691 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for treatment of solid and brain tumors has been met with many challenges, including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across patients with cancer. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this because chemotherapeutics could augment CAR T cells for improved antitumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts toward achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics because these will be more easily translated to the clinic but also review nonapproved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Overall, this review highlights the promise of CAR T cell and chemotherapy combinations with a specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for patients with cancer. SIGNIFICANCE STATEMENT: Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts toward studying CAR T and chemotherapy combinatorial therapies and offer perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amber B Jones
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
27
|
Recktenwald M, Bhattacharya R, Benmassaoud MM, MacAulay J, Chauhan VM, Davis L, Hutt E, Galie PA, Staehle MM, Daringer NM, Pantazes RJ, Vega SL. Extracellular Peptide-Ligand Dimerization Actuator Receptor Design for Reversible and Spatially Dosed 3D Cell-Material Communication. ACS Synth Biol 2024. [PMID: 39705005 DOI: 10.1021/acssynbio.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors. Intracellularly, Stimulatory EPDAs phosphorylate a substrate that merges two protein halves, whereas Inhibitory EPDAs revert split proteins back to their unmerged, inactive state via substrate dephosphorylation. To identify ligand-receptor pairs, over 2000 candidate monobodies were built in silico using PETEI, a novel computational algorithm we developed. The top 30 monobodies based on predicted peptide binding affinity were tested experimentally, and monobodies that induced the highest change in protein merging (green fluorescent protein, GFP) were incorporated in the final EPDA receptor design. In soluble form, stimulatory peptides induce intracellular GFP merging in a time- and concentration-dependent manner, and varying levels of green fluorescence were observed based on stimulatory and inhibitory peptide-ligand dosing. EPDA-programmed cells encapsulated in thiol-norbornene hydrogels patterned with stimulatory and inhibitory domains exhibited 3D activation or deactivation based on their location within peptide-patterned hydrogels. EPDA receptors can recognize a myriad of peptide-ligands bound to 3D materials, can reversibly induce cellular responses beyond fluorescence, and are widely applicable in biological research and regenerative medicine.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Ritankar Bhattacharya
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammed Mehdi Benmassaoud
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Varun M Chauhan
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
- Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
28
|
Saleh K, Khalife N, Arbab A, Khoury R, Chahine C, Ibrahim R, Tikriti Z, Masri N, Hachem M, Le Cesne A. Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma. Biomedicines 2024; 12:2810. [PMID: 39767716 PMCID: PMC11674015 DOI: 10.3390/biomedicines12122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
CD19-targeting chimeric antigen receptor (CAR) T-cells have changed the treatment paradigm of patients with large B-cell lymphoma (LBCL). Three CAR T-cells were approved by the Food and Drug Administration (FDA) for patients with relapsed and/or refractory (R/R) LBCL in the third-line setting: tisagenlecleucel (tisa-cel), axicabtagene ciloleucel (axi-cel), and lisocabtagene maraleucel (liso-cel), with an ORR ranging from 58% to 82%. More recently, axi-cel and liso-cel were approved as second-line treatments for patients with R/R disease up to 12 months after the completion of first-line chemo-immunotherapy. The safety profile was acceptable with cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome being the two most frequent acute adverse events. Potential long-term toxicities of CD19-targeting CAR T-cells have also been described. Overall, 30% to 40% of patients are cured with a single infusion of CAR T-cells. However, 60% to 70% of patients relapse after being treated with CAR T-cells and have a dismal prognosis. The advent of bispecific antibodies (BsAb) offers an additional treatment modality for patients with R/R LBCL. The aim of this review is to describe the clinical efficacy of the three CAR T-cells, as well as their safety profile. We also compare these three CAR T-cells in terms of their efficacy and safety profile as well as evaluating the place of CAR T-cells and BsAb in the treatment arsenal of patients with R/R LBCL.
Collapse
Affiliation(s)
- Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Nadine Khalife
- Department of Head and Neck, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Ahmadreza Arbab
- Department of Biopathology, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Zamzam Tikriti
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Nohad Masri
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Mohamad Hachem
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| |
Collapse
|
29
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
30
|
Alsuliman T, Marjanovic Z, Rimar D, Tarte K, Avcin T, Hagen M, Schett G, Farge D. Harnessing the potential of CAR-T cell in lupus treatment: From theory to practice. Autoimmun Rev 2024; 23:103687. [PMID: 39532175 DOI: 10.1016/j.autrev.2024.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is a rare, heterogeneous, potentially life-threatening autoimmune disease. Presence of kidney or other major organ (brain, heart or lung) involvement are predictors of poor outcome and in a subset of patients resistant to 1st or 2nd line conventional treatment. The 10-year mortality remains around 10-15 %. Chimeric Antigen Receptors (CAR) are molecules that allow to redirect the engineered immune cells towards specific target antigens and to simultaneously boost their activation. Following breakthrough results observed in the treatment of hematological malignancies, conventional CAR T-cell therapy has recently been applied to refractory SLE patients. Compared to the use of monoclonal antibodies, anti-CD19 CAR T-cells allow to achieve deeper depletion of autoreactive B cells, notably at site of inflamed tissues and lymphoid organs (i.e. lymph node), to suppress interferon signature and to restore the immune tolerance with the reemergence of naïve B-cells with a new repertoire. All clinical data reported in SLE patients so far showed that autologous anti-CD19 CAR T-cell treatment allowed impressive short- and longer-term resolution of lupus nephritis and other severe disease-related manifestations, without major toxicities and only mild cytokine-release syndrome. These clinical effects persisted after B-cell reconstitution and were associated with normalization of double-stranded DNA antibodies and complement levels in drug-free patients until three years after the procedure. Overall, these pioneering experiences show unique clinical and immunological response to CAR T-cell therapy in SLE, and the need for extended follow-up to determine its long-term efficacy.
Collapse
Affiliation(s)
- Tamim Alsuliman
- Saint-Antoine Hospital, AP-HP, Service d'hématologie et thérapie cellulaire, 75012 Paris, France; Sorbonne University, Paris, France
| | - Zora Marjanovic
- Saint-Antoine Hospital, AP-HP, Service d'hématologie et thérapie cellulaire, 75012 Paris, France; Sorbonne University, Paris, France
| | - Doron Rimar
- Rheumatology unit, Bnai Zion medical center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Karin Tarte
- SITI, CHU Rennes, UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, F-35000 Rennes, France
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center Ljubljana and Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Melanie Hagen
- Department of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dominique Farge
- Internal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France, AP-HP, St-Louis Hospital, France; Paris-Cité University, IRSL, Recherche clinique appliquée à l'hématologie, URP 3518, F-75010 Paris, France; Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Arjmand B, Alavi-Moghadam S, Khorsand G, Sarvari M, Arjmand R, Rezaei-Tavirani M, Rajaeinejad M, Mosaed R. Cell-Based Vaccines: Frontiers in Medical Technology for Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:480-499. [DOI: 10.1007/s40883-024-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025]
|
32
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
33
|
Zhang W, Wei W, Ma L, Du H, Jin A, Luo J, Li X. Mapping the landscape: a bibliometric study of global chimeric antigen receptor T cell immunotherapy research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9227-9241. [PMID: 38953967 DOI: 10.1007/s00210-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The rise of immunotherapy provided new approaches to cancer treatment. We aimed to describe the contribution of chimeric antigen receptor T cell immunotherapy to future prospects. We analyzed 8035 articles from the Web of Science Core Collection with CiteSpace that covered with various aspects with countries, institutions, authors, co-cited authors, journals, keywords, and references. The USA was the most prolific country, with the University of Pennsylvania being the most published institution. Among individual authors, June Carl H published the most articles, while Maude SL was the most frequently co-cited author. "Blood" emerged as the most cited journal. Keyword clustering revealed six core themes: "Expression," "Chimeric Antigen Receptor," "Tumor Microenvironment," "Blinatumomab," "Multiple Myeloma," and "Cytokine Release Syndrome." In the process of researching the timeline chart of keywords and references, "Large B-cell lymphoma" was located on the right side of the timeline. In the keyword prominence analysis, we found that the keywords "biomarkers," "pd-1," "antibody drug conjugate," "BCMA," and "chimeric antigen" had high explosive intensity in the recent past. We found that in terms of related diseases, "large B-cell lymphoma" and "cytokine release syndrome" are still difficult problems in the future. In the study of therapeutic methods, "BCMA," "PD-1," "chimeric antigen," and "antibody drug conjugate" deserve more attention from researchers in the future.
Collapse
Affiliation(s)
- Wenhao Zhang
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenzhuo Wei
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - He Du
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Anran Jin
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Jinyi Luo
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Xiaoming Li
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
34
|
Zhou Y, Wei S, Xu M, Wu X, Dou W, Li H, Zhang Z, Zhang S. CAR-T cell therapy for hepatocellular carcinoma: current trends and challenges. Front Immunol 2024; 15:1489649. [PMID: 39569202 PMCID: PMC11576447 DOI: 10.3389/fimmu.2024.1489649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers worldwide, highlighting the urgent need for improved diagnostic and therapeutic methodologies. The standard treatment regimen generally involves surgical intervention followed by systemic therapies; however, the median survival rates for patients remain unsatisfactory. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a pivotal advancement in cancer treatment. Both clinical and preclinical studies emphasize the notable efficacy of CAR T cells in targeting HCC. Various molecules, such as GPC3, c-Met, and NKG2D, show significant promise as potential immunotherapeutic targets in liver cancer. Despite this, employing CAR T cells to treat solid tumors like HCC poses considerable challenges within the discipline. Numerous innovations have significant potential to enhance the efficacy of CAR T-cell therapy for HCC, including improvements in T cell trafficking, strategies to counteract the immunosuppressive tumor microenvironment, and enhanced safety protocols. Ongoing efforts to discover therapeutic targets for CAR T cells highlight the need for the development of more practical manufacturing strategies for CAR-modified cells. This review synthesizes recent findings and clinical advancements in the use of CAR T-cell therapies for HCC treatment. We elucidate the therapeutic benefits of CAR T cells in HCC and identify the primary barriers to their broader application. Our analysis aims to provide a comprehensive overview of the current status and future prospects of CAR T-cell immunotherapy for HCC.
Collapse
Affiliation(s)
- Yexin Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- The General Hospital of Western Theater Command, Chengdu, China
| | - Shanshan Wei
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghui Xu
- The General Hospital of Western Theater Command, Chengdu, China
| | - Xinhui Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenbo Dou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huakang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhonglin Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Liu H, Zhang T, Zheng M, Xie Z. Tumor associated antigens combined with carbon dots for inducing durable antitumor immunity. J Colloid Interface Sci 2024; 673:594-606. [PMID: 38897061 DOI: 10.1016/j.jcis.2024.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Although therapeutic nanovaccines have made a mark in cancer immunotherapy, the shortcomings such as poor homing ability of lymph nodes (LNs), low antigen presentation efficiency and low antitumor efficacy have hindered their clinical transformation. Accordingly, we prepared advanced nanovaccines (CMB and CMC) by integrating carbon dots (CDs) with tumor-associated antigens (B16F10 and CT26). These nanovaccines could forwardly target tumors harbouring LNs, induce strong immunogenicity for activating cytotoxic T cells (CTLs), thereby readily eliminating tumor cells and suppressing primary/distal tumor growth. This work provides a promising therapeutic vaccination strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Tao Zhang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.
| |
Collapse
|
36
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
37
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
38
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
39
|
Jawdekar R, Mishra V, Hatgoankar K, Tiwade YR, Bankar NJ. Precision medicine in cancer treatment: Revolutionizing care through proteomics, genomics, and personalized therapies. J Cancer Res Ther 2024; 20:1687-1693. [DOI: 10.4103/jcrt.jcrt_108_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACT
Recent developments in biotechnology have allowed us to identify unique and complicated biological traits associated with cancer. Genomic profiling through next-generation sequencing (NGS) has revolutionized cancer therapy by evaluating hundreds of genes and biomarkers in a single assay. Proteomics offers blood-based biomarkers for cancer detection, categorization, and therapy monitoring. Immune oncology and chimeric antigen receptor (CAR-T cell) therapy use the immune system to combat cancer. Personalized cancer treatment is on the rise. Although precision medicine holds great promise, its widespread application faces obstacles such as lack of agreement on nomenclature, the difficulty of classifying patients into distinct groups, the difficulties of multimorbidity, magnitude, and the need for prompt intervention. This review studies advances in the era of precision medicine for cancer treatment; the application of genomic profiling techniques, NGS, proteomics, and targeted therapy; and the challenge in the application of precision medicine and the beneficial future it holds in cancer treatment.
Collapse
Affiliation(s)
- Riddhi Jawdekar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Vaishnavi Mishra
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Kajal Hatgoankar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Yugeshwari R. Tiwade
- Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Nandkishor J. Bankar
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
40
|
Ahmed EN, Cutmore LC, Marshall JF. Syngeneic Mouse Models for Pre-Clinical Evaluation of CAR T Cells. Cancers (Basel) 2024; 16:3186. [PMID: 39335157 PMCID: PMC11430534 DOI: 10.3390/cancers16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies. Unfortunately, this improvement has yet to be translated into the solid tumor field. Current immunodeficient models used in pre-clinical testing often overestimate the efficacy of CAR T cell therapy as they fail to recapitulate the immunosuppressive tumor microenvironment characteristic of solid tumors. As CAR T cell monotherapy is unlikely to be curative for many solid tumors, combination therapies must be investigated, for example, stromal remodeling agents and immunomodulators. The evaluation of these combination therapies requires a fully immunocompetent mouse model in order to recapitulate the interaction between the host's immune system and the CAR T cells. This review will discuss the need for improved immunocompetent murine models for the pre-clinical evaluation of CAR T cells, the current use of such models and future directions.
Collapse
Affiliation(s)
- Eman N Ahmed
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
41
|
Gandhi M, Sharma B, Nair S, Vaidya ADB. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm Res 2024; 41:1757-1773. [PMID: 39187686 DOI: 10.1007/s11095-024-03761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bhirisha Sharma
- University of Mumbai, Santa Cruz (East), Mumbai, 400055, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd, Mumbai, 400022, India.
- Phytoveda Pvt. Ltd, Mumbai, 400022, India.
| | - Ashok D B Vaidya
- Kasturba Health Society-Medical Research Centre, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
42
|
Zhu Z, Li H, Lu Q, Zhang Z, Li J, Wang Z, Yang N, Yu Z, Yang C, Chen Y, Lu H, Wang W, Niu T, Nie C, Tong A. mRNA-Engineered CD5-CAR-γδT CD5- Cells for the Immunotherapy of T-Cell Acute Lymphoblastic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400024. [PMID: 39013083 PMCID: PMC11425277 DOI: 10.1002/advs.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Indexed: 07/18/2024]
Abstract
Clinical trials of Chimeric Antigen Receptor T-cell (CAR-T) therapy have demonstrated remarkable success in treating both solid tumors and hematological malignancies. Nanobodies (Nbs) have emerged as promising antigen-targeting domains for CARs, owing to their high specificity, robust stability, and strong affinity, leading to significant advancements in the field of Nb-CAR-T. In the realm of T-cell acute lymphoblastic leukemia (T-ALL) targets, CD5 stands out as a potentially excellent candidate for T-cell-based CAR therapy, due to its distinct expression on the surface of malignant T-ALL cells. To mitigate graft-versus-host disease associated with allogeneic CAR-T, γδT cells are selected and stimulated from peripheral blood mononuclear cells, and γδT cells are engineered via CRISPR/Cas9 to eliminate fratricide, enabling the creation of fratricide-resistant CAR-γδTCD5- cells. In vitro transcribed (IVT) mRNA is used to construct CAR-T, presenting a safer, faster, and cost-effective method compared to traditional viral vector approaches. In this study, a CD5-VHH library is constructed, and specific CD5-nanobodies are screened for subsequent use in CD5-CAR-γδTCD5- therapy. IVT-mRNA-CD5-CAR-γδTCD5- cells exhibited favorable functional characteristics and demonstrated antitumor efficacy against malignant T cell lines, underlining the potential for advancing mRNA-CD5-CAR-γδTCD5- therapy.
Collapse
Affiliation(s)
- Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengyu Yu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
43
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
44
|
Drougkas K, Karampinos K, Karavolias I, Gomatou G, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Kotteas E. CAR-T Cell Therapy in Pancreatic and Biliary Tract Cancers: An Updated Review of Clinical Trials. J Gastrointest Cancer 2024; 55:990-1003. [PMID: 38695995 DOI: 10.1007/s12029-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Pancreatic and biliary tract cancers are digestive system tumors with dismal prognosis and limited treatment options. The effectiveness of conventional surgical interventions, radiation therapy, and systemic therapy is restricted in these cases. Furthermore, clinical trials have shown that immunotherapy using immune checkpoint inhibitors has only demonstrated modest clinical results when applied to patients with pancreatobiliary tumors. This highlights the importance of implementing combination immunotherapy approaches or exploring alternative therapeutic strategies to improve treatment outcomes. MATERIALS AND METHODS We reviewed the relevant literature on chimeric antigen receptor (CAR)-T cell therapy for pancreatobiliary cancers from PubMed/Medline and ClinicalTrials.gov and retrieved the relevant data accordingly. Attention was additionally given to the examination of grey literature with the aim of obtaining additional details regarding ongoing clinical trials. We mainly focused on abstracts and presentations and e-posters and slides of recent important annual meetings (namely ESMO Immuno-Oncology Congress, ESMO Congress, ASCO Virtual Scientific Program, ASCO Gastrointestinal Cancers Symposium). RESULTS CAR-T cell therapy has emerged as a promising and evolving treatment approach for pancreatic and biliary tract cancer. This form of adoptive cell therapy utilizes genetic engineering to modify the expression of specific antibodies on the surface of T cells enabling them to target specific cancer-associated antigens and to induce potent anti-tumor activity. The aim of this review is to provide an updated summary of the available evidence from clinical trials that have explored the application of CAR-T cell therapy in treating pancreatobiliary cancers. CONCLUSIONS While the utilization of CAR-T cell therapy in pancreatobiliary cancers is still in its initial phases with only a limited amount of clinical data available, the field is advancing rapidly, incorporating novel technologies to mitigate potential toxicities and enhance antigen-directed tumor eradication.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Karampinos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Karavolias
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioanna Ploumaki
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
46
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
47
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
48
|
Hu J, Zhong L, Wang Y, Hu S, Zhang L, Tian Q. Cell membrane patches transfer CAR molecules from a cellular depot to conventional T cells for constructing innovative fused-CAR-T cells without necessitating genetic modification. Exp Hematol Oncol 2024; 13:75. [PMID: 39103961 DOI: 10.1186/s40164-024-00545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.
Collapse
Affiliation(s)
- Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang, 311121, China
| | - Luyi Zhong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yiqiu Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang, 311121, China
| | - Shiyi Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang, 311121, China
| | - Lijiaqi Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang, 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
49
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
50
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|