1
|
Yamaguchi T, Hamano T, Sada K, Asano R, Kanaan NM, Sasaki H, Yen SH, Kitazaki Y, Endo Y, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Fujita Y, Aoki K, Naiki H, Morishima M, Saito Y, Murayama S, Nakamoto Y. Syk inhibitors reduce tau protein phosphorylation and oligomerization. Neurobiol Dis 2024; 201:106656. [PMID: 39233131 DOI: 10.1016/j.nbd.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
Spleen tyrosine kinase (Syk), a non-receptor-type tyrosine kinase, has a wide range of physiological functions. A possible role of Syk in Alzheimer's disease (AD) has been proposed. We evaluated the localization of Syk in the brains of patients with AD and control participants. Human neuroblastoma M1C cells harboring wild-type tau (4R0N) were used with the tetracycline off (TetOff) induction system. In this model of neuronal tauopathy, the effects of the Syk inhibitors-BAY 61-3606 and R406-on tau phosphorylation and oligomerization were explored using several phosphorylated tau-specific antibodies and an oligomeric tau antibody, and the effects of these Syk inhibitors on autophagy were examined using western blot analyses. Moreover, the effects of the Syk inhibitor R406 were evaluated in vivo using wild-type mice. In AD brains, Syk and phosphorylated tau colocalized in the cytosol. In M1C cells, Syk protein (72 kDa) was detected using western blot analysis. Syk inhibitors decreased the expression levels of several tau phosphoepitopes including PHF-1, CP13, AT180, and AT270. Syk inhibitors also decreased the levels of caspase-cleaved tau (TauC3), a pathological tau form. Syk inhibitors increased inactivated glycogen synthase kinase 3β expression and decreased active p38 mitogen-activated protein kinase expression and demethylated protein phosphatase 2 A levels, indicating that Syk inhibitors inactivate tau kinases and activate tau phosphatases. Syk inhibitors also activated autophagy, as indicated by increased LC3II and decreased p62 levels. In vivo, the Syk inhibitor R406 decreased phosphorylated tau levels in wild-type mice. These findings suggest that Syk inhibitors offer novel therapeutic strategies for tauopathies, including AD.
Collapse
Affiliation(s)
- Tomohisa Yamaguchi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Rei Asano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, MI, USA
| | - Hirohito Sasaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Yuki Kitazaki
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Endo
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Soichi Enomoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Youshi Fujita
- Department of Neurology, Fujita Neurological Hospital, Fukui, Japan
| | - Koji Aoki
- Department of Pharmacology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maho Morishima
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
3
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Du Y, Wang D, Katis VL, Zoeller EL, Qui M, Levey AI, Gileadi O, Fu H. Development of a time-resolved fluorescence resonance energy transfer ultra-high throughput screening assay targeting SYK and FCER1G interaction. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100177. [PMID: 39154664 DOI: 10.1016/j.slasd.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as a TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as an acceptor. We have optimized the assay into a 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Elizabeth L Zoeller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Min Qui
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I Levey
- Department of Neurology, Emory Goizueta Alzheimer's Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Du Y, Wang D, Katis VL, Zoeller EL, Qui M, Levey AI, Gileadi O, Emory-SAGE-SGC TREAT-AD Center, Fu H. Development of a Time-Resolved Fluorescence Resonance Energy Transfer ultra-high throughput screening assay for targeting SYK and FCER1G interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598473. [PMID: 38915662 PMCID: PMC11195132 DOI: 10.1101/2024.06.11.598473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as acceptor. We have optimized the assay into 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vittorio L. Katis
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Elizabeth L. Zoeller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Min Qui
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I. Levey
- Department of Neurology, Emory Goizueta Alzheimer’s Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Opher Gileadi
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | | | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Alshafie W, Fotouhi M, Ayoubi R, Southern K, Laflamme C, NeuroSGC/YCharOS collaborative group. Identification of high-performing antibodies for tyrosine-protein kinase SYK for use in Western Blot, immunoprecipitation and immunofluorescence. F1000Res 2024; 12:1222. [PMID: 38948505 PMCID: PMC11214040 DOI: 10.12688/f1000research.140456.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Tyrosine-protein kinase SYK, encoded by the SYK gene, is a non-receptor type protein kinase which mediates immune signal transduction through immunoreceptors. Tyrosine-protein kinase SYK expression has been associated with the development of various inflammatory diseases, cancer and neurodegenerative conditions. The reproducibility of tyrosine-protein kinase SYK research would help elucidate the mechanism in which it causes neuroinflammation as well as its potential as a novel target to treat Alzheimer's disease. This would be facilitated with the availability of high-quality tyrosine-protein kinase SYK. In this study, we characterized thirteen tyrosine-protein kinase SYK commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - NeuroSGC/YCharOS collaborative group
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| |
Collapse
|
7
|
Gomez AR, Byun HR, Wu S, Muhammad AG, Ikbariyeh J, Chen J, Muro A, Li L, Bernstein KE, Ainsworth R, Tourtellotte WG. Angiotensin Converting Enzyme (ACE) expression in microglia reduces amyloid β deposition and neurodegeneration by increasing SYK signaling and endolysosomal trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590837. [PMID: 38712251 PMCID: PMC11071489 DOI: 10.1101/2024.04.24.590837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Genome-wide association studies (GWAS) have identified many gene polymorphisms associated with an increased risk of developing Late Onset Alzheimer's Disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing microglia innate immune responses and lipid metabolism. Angiotensin Converting Enzyme (ACE), a GWAS LOAD risk-associated gene best known for its role in regulating systemic blood pressure, also enhances innate immunity and lipid processing in peripheral myeloid cells, but a role for ACE in modulating the function of myeloid-derived microglia remains unexplored. Using novel mice engineered to express ACE in microglia and CNS associated macrophages (CAMs), we find that ACE expression in microglia reduces Aβ plaque load, preserves vulnerable neurons and excitatory synapses, and greatly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of Alzheimer's Disease (AD). ACE-expressing microglia show enhanced Aβ phagocytosis and endolysosomal trafficking, increased clustering around amyloid plaques, and increased SYK tyrosine kinase activation downstream of the major Aβ receptors, TREM2 and CLEC7A. Single microglia sequencing and digital spatial profiling identifies downstream SYK signaling modules that are expressed by ACE expression in microglia that mediate endolysosomal biogenesis and trafficking, mTOR and PI3K/AKT signaling, and increased oxidative phosphorylation, while gene silencing or pharmacologic inhibition of SYK activity in ACE-expressing microglia abrogates the potentiated Aβ engulfment and endolysosomal trafficking. These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing microglia as a cell-based therapy to augment endogenous microglial responses to Aβ in AD.
Collapse
|
8
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Bashore FM, Katis VL, Du Y, Sikdar A, Wang D, Bradshaw WJ, Rygiel KA, Leisner TM, Chalk R, Mishra S, Williams CA, Gileadi O, Brennan PE, Wiley JC, Gockley J, Cary GA, Carter GW, Young JE, Pearce KH, Fu H, the Emory-Sage-SGC TREAT-AD Center, Axtman AD. Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM. PLoS One 2024; 19:e0293548. [PMID: 38359047 PMCID: PMC10868801 DOI: 10.1371/journal.pone.0293548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/15/2023] [Indexed: 02/17/2024] Open
Abstract
RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.
Collapse
Affiliation(s)
- Frances M. Bashore
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Vittorio L. Katis
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Arunima Sikdar
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - William J. Bradshaw
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Karolina A. Rygiel
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Tina M. Leisner
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rod Chalk
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - C. Andrew Williams
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Opher Gileadi
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Paul E. Brennan
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | | | - Jake Gockley
- Sage Bionetworks, Seattle, WA, United States of America
| | - Gregory A. Cary
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Kenneth H. Pearce
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | | | - Alison D. Axtman
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
10
|
Mansour HM. The interference between SARS-COV-2 and Alzheimer's disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res Rev 2024; 94:102195. [PMID: 38244862 DOI: 10.1016/j.arr.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has infected over 700 million people, with up to 30% developing neurological manifestations, including dementias. However, there is a lack of understanding of common molecular brain markers causing Alzheimer's disease (AD). COVID-19 has etiological cofactors with AD, making patients with AD a vulnerable population at high risk of experiencing more severe symptoms and worse consequences. Both AD and COVID-19 have upregulated several shared kinases, leading to the repositioning of kinase inhibitors (KIs) for the treatment of both diseases. This review provides an overview of the interactions between the immune system and the nervous system in relation to receptor tyrosine kinases, including epidermal growth factor receptors, vascular growth factor receptors, and non-receptor tyrosine kinases such as Bruton tyrosine kinase, spleen tyrosine kinase, c-ABL, and JAK/STAT. We will discuss the promising results of kinase inhibitors in pre-clinical and clinical studies for both COVID-19 and Alzheimer's disease (AD), as well as the challenges in repositioning KIs for these diseases. Understanding the shared kinases between AD and COVID-19 could help in developing therapeutic approaches for both.
Collapse
Affiliation(s)
- Heba M Mansour
- General Administration of Innovative Products, Central Administration of Biological, Innovative Products, and Clinical Studies (Bio-INN), Egyptian Drug Authority (EDA), Giza, Egypt.
| |
Collapse
|
11
|
Bashore FM, Katis VL, Du Y, Sikdar A, Wang D, Bradshaw WJ, Rygiel KA, Leisner TM, Chalk R, Mishra S, Williams AC, Gileadi O, Brennan PE, Wiley JC, Gockley J, Cary GA, Carter GW, Young JE, Pearce KH, Fu H, Axtman AD. Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551026. [PMID: 37547005 PMCID: PMC10402180 DOI: 10.1101/2023.07.28.551026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM.
Collapse
Affiliation(s)
- Frances M Bashore
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, University of North Carolina, Chapel Hill, NC, USA
| | - Vittorio L Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arunima Sikdar
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - William J Bradshaw
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Karolina A Rygiel
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Tina M Leisner
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Rod Chalk
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | | | | | - Opher Gileadi
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
- Current address: Structural Genomics Consortium, Department of Medicine, Karolinska Hospital and Karolinska Institute, 171 76 Stockholm, Sweden
| | - Paul E Brennan
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | | | | | | | | | | | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison D Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Intrathecal Pseudodelivery of Drugs in the Therapy of Neurodegenerative Diseases: Rationale, Basis and Potential Applications. Pharmaceutics 2023; 15:pharmaceutics15030768. [PMID: 36986629 PMCID: PMC10059785 DOI: 10.3390/pharmaceutics15030768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Intrathecal pseudodelivery of drugs is a novel route to administer medications to treat neurodegenerative diseases based on the CSF-sink therapeutic strategy by means of implantable devices. While the development of this therapy is still in the preclinical stage, it offers promising advantages over traditional routes of drug delivery. In this paper, we describe the rationale of this system and provide a technical report on the mechanism of action, that relies on the use of nanoporous membranes enabling selective molecular permeability. On one side, the membranes do not permit the crossing of certain drugs; whereas, on the other side, they permit the crossing of target molecules present in the CSF. Target molecules, by binding drugs inside the system, are retained or cleaved and subsequently eliminated from the central nervous system. Finally, we provide a list of potential indications, the respective molecular targets, and the proposed therapeutic agents.
Collapse
|
13
|
Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, Bolte AC, Lammert CR, Kulas JA, Ulland TK, Lukens JR. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 2022; 185:4135-4152.e22. [PMID: 36257314 PMCID: PMC9617784 DOI: 10.1016/j.cell.2022.09.030] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aβ) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aβ deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3β-signaling, and restrict Aβ phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aβ load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Daniel A Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Coco Holliday
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA
| | - Gabrielle Voithofer
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Ashley C Bolte
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, UVA, Charlottesville, VA 22908, USA; Medical Scientist Training Program, UVA, Charlottesville, VA 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - Joshua A Kulas
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, UVA, Charlottesville, VA 22908, USA; Medical Scientist Training Program, UVA, Charlottesville, VA 22908, USA.
| |
Collapse
|
14
|
Schafer DP, Stillman JM. Microglia are SYK of Aβ and cell debris. Cell 2022; 185:4043-4045. [PMID: 36306731 DOI: 10.1016/j.cell.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 01/05/2023]
Abstract
During neurodegenerative disease, resident CNS macrophages termed "microglia" assume a neuroprotective role and engulf toxic protein aggregates and cell debris. In this issue of Cell, two groups independently show how spleen tyrosine kinase (SYK) acts downstream of microglial surface receptors to propagate this neuroprotective program in vivo.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Jacob M Stillman
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| |
Collapse
|
15
|
Pharmacological Inhibition of Spleen Tyrosine Kinase Suppressed Neuroinflammation and Cognitive Dysfunction in LPS-Induced Neurodegeneration Model. Cells 2022; 11:cells11111777. [PMID: 35681471 PMCID: PMC9179326 DOI: 10.3390/cells11111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tyrosine-protein kinase (Syk) plays a potential role in neuroinflammation and adaptive immune responses in several neurodegenerative conditions. Seeing the significant role of Syk in the pathophysiology of neurodegeneration, several pharmacological inhibitors have been developed. One of the known inhibitors of Syk is BAY61-3606, which has shown efficacies in Alzheimer’s disease (AD) through regulating amyloid production. However, little is known about its efficacies in neuroinflammation and neurodegeneration. Our finding showed that Syk expression was up-regulated by lipopolysaccharide (LPS)-dependent manner, and BAY61-3606 significantly suppressed the activated microglia (ionized calcium-binding adaptor molecule 1 [Iba-1]) and the inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interleukin 1-beta [IL-1β], IL-6) and other inflammatory mediators (nuclear factor kappa B [NF-κB], cyclooxygenase-2 [Cox-2], and inducible nitric axide synthase [iNOS]) in the lipopolysaccharide (LPS)-treated in vivo and in vitro models. Moreover, BAY61-3606 significantly reduced microglia-mediated neuronal cell death by regulating the expression of Cytochrome C and Bim (B-cell lymphoma 2 [BCL-2] interacting mediator of cell death) in the LPS-treated mice brain and HT22 cells. Furthermore, the expression of synaptic markers, synaptosomal-associated protein, 25 kDa (SNAP25), synaptophysin (Syp), and postsynaptic density protein-95 (PSD95) in LPS-challenged mice showed that BAY61-3606 significantly recovered the synaptic markers. Finally, we have analyzed the effects of BAY61-3606 against memory and cognitive dysfunctions in the LPS injected mice. The Y-maze test and Passive avoidance test suggested that BAY61-3606 significantly protected against LPS-induced cognitive and memory dysfunctions. The current findings not only highlight the mechanisms of Syk in the pathophysiology of neuro-inflammation, but also support the therapeutic efficacy of BAY61-3606 in the management of neurodegeneration.
Collapse
|
16
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
17
|
Brain Research Bulletin Special Issue: Brain–body communication in health and diseases Brain–spleen axis in health and diseases: a review and future perspective. Brain Res Bull 2022; 182:130-140. [PMID: 35157987 DOI: 10.1016/j.brainresbull.2022.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
|
18
|
Xu J, Zhang P, Huang Y, Zhou Y, Hou Y, Bekris LM, Lathia J, Chiang CW, Li L, Pieper AA, Leverenz JB, Cummings J, Cheng F. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Res 2021; 31:1900-1912. [PMID: 33627474 PMCID: PMC8494225 DOI: 10.1101/gr.272484.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
Because disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, P < 1.0 × 10-8). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, P < 1.0 × 10-8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.
Collapse
Affiliation(s)
- Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Pengyue Zhang
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA
| | - Yin Huang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Justin Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland 44106, Ohio, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York 10065, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
19
|
Shen Y, Zhang T, Zhang Y, Wang Y, Yao J. Stress Granules Modulate SYK to Cause Tau-Associated Neurocognitive Deterioration in 5XFAD Mouse After Anesthesia and Surgery. Front Aging Neurosci 2021; 13:718701. [PMID: 34512311 PMCID: PMC8430336 DOI: 10.3389/fnagi.2021.718701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common type of dementia. However, no curative therapy has been found effective to slow down the process of AD. It is reported that anesthesia and surgery will induce neurocognitive deterioration in AD, but the mechanism is not quite clear. In this study, we aim to compare the cognitive impairment between 5XFAD transgenic (Tg) mice and its littermate (LM) after isoflurane anesthesia and surgery to clarify the specific impacts of anesthesia and surgery on individuals with AD and to explore the mechanisms. Methods We performed abdominal surgery in cognitively impaired, 4-month-old female 5XFAD mice and LM control mice. Isoflurane anesthesia (1.4%) was induced and maintained over 2 h. Open field and fear conditioning tests were conducted on 1, 3 and 7 days after anesthesia and surgery. The total distance, velocity and freezing time were the major outcomes. P-tau (AT8), tau oligomers (T22), stress granules (SGs), the SYK tyrosine kinase and p-SYK in the hippocampus at postoperative day 1 were evaluated by Western Blot assays. The colocalization of SGs, SYK, p-SYK, and neurons in the hippocampus section was assessed using qualitative immunofluorescence. Results In the open field test, no difference between the distance moved and the velocity of LM mice and 5XFAD Tg mice were found on day 1 after anesthesia and surgery. 5XFAD Tg mice exhibited reduced freezing time of fear conditioning context test on postoperative day 3, but not on day 7; the LM mice showed no changes in FCTs. Furthermore, p-tau, tau oligomers, SGs, SYK and p-SYK were evident in the hippocampus region of 5XFAD Tg mice on a postoperative day 1. In addition, SGs, SYK, p-SYK were colocalized with hippocampus neurons, as shown by immunofluorescence. Conclusion This study demonstrates that anesthesia and surgery may induce tau-associated neurocognitive deterioration in individuals with AD. The mechanism under it may be associated with SGs and the tyrosine kinase, SYK. After anesthesia and surgery, in 5XFAD Tg mice, SGs were formed and SYK was phosphorylated, which may contribute to the phosphorylation of tau protein. This study provided hints that individuals with AD may be more vulnerable to anesthesia and surgery.
Collapse
Affiliation(s)
- Yang Shen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinglin Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
21
|
Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, Corbo M, Vanacore N, Canevelli M. Anticancer drugs repurposed for Alzheimer's disease: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:96. [PMID: 33952306 PMCID: PMC8101105 DOI: 10.1186/s13195-021-00831-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Background The relationship between cancer and dementia is triggering growing research interest. Several preclinical studies have provided the biological rationale for the repurposing of specific anticancer agents in Alzheimer’s disease (AD), and a growing number of research protocols are testing their efficacy and safety/tolerability in patients with AD. Methods The aim of the present systematic review was to provide an overview on the repurposing of approved anticancer drugs in clinical trials for AD by considering both ongoing and completed research protocols in all phases. In parallel, a systematic literature review was conducted on PubMed, ISI Web, and the Cochrane Library to identify published clinical studies on repurposed anticancer agents in AD. Results Based on a structured search on the ClinicalTrials.gov and the EudraCT databases, we identified 13 clinical trials testing 11 different approved anticancer agents (five tyrosine kinase inhibitors, two retinoid X receptor agonists, two immunomodulatory agents, one histone deacetylase inhibitor, and one monoclonal antibody) in the AD continuum. The systematic literature search led to the identification of five published studies (one phase I, three phase II, and one phase IIb/III) reporting the effects of antitumoral treatments in patients with mild cognitive impairment or AD dementia. The clinical findings and the methodological characteristics of these studies are described and discussed. Conclusion Anticancer agents are triggering growing interest in the context of repurposed therapies in AD. Several clinical trials are underway, and data are expected to be available in the near future. To date, data emerging from published clinical studies are controversial. The promising results emerging from preclinical studies and identified research protocols should be confirmed and extended by larger, adequately designed, and high-quality clinical trials.
Collapse
Affiliation(s)
- Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Giulia Sarti
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.,Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
22
|
Tsuji S, Hase T, Yachie-Kinoshita A, Nishino T, Ghosh S, Kikuchi M, Shimokawa K, Aburatani H, Kitano H, Tanaka H. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:92. [PMID: 33941241 PMCID: PMC8091739 DOI: 10.1186/s13195-021-00826-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Identifying novel therapeutic targets is crucial for the successful development of drugs. However, the cost to experimentally identify therapeutic targets is huge and only approximately 400 genes are targets for FDA-approved drugs. As a result, it is inevitable to develop powerful computational tools that can identify potential novel therapeutic targets. Fortunately, the human protein-protein interaction network (PIN) could be a useful resource to achieve this objective. METHODS In this study, we developed a deep learning-based computational framework that extracts low-dimensional representations of high-dimensional PIN data. Our computational framework uses latent features and state-of-the-art machine learning techniques to infer potential drug target genes. RESULTS We applied our computational framework to prioritize novel putative target genes for Alzheimer's disease and successfully identified key genes that may serve as novel therapeutic targets (e.g., DLG4, EGFR, RAC1, SYK, PTK2B, SOCS1). Furthermore, based on these putative targets, we could infer repositionable candidate-compounds for the disease (e.g., tamoxifen, bosutinib, and dasatinib). CONCLUSIONS Our deep learning-based computational framework could be a powerful tool to efficiently prioritize new therapeutic targets and enhance the drug repositioning strategy.
Collapse
Affiliation(s)
- Shingo Tsuji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Takeshi Hase
- The Systems Biology Institute, Saisei Ikedayama Bldg. 5-10-25 Higashi Gotanda Shinagawa, Tokyo, 141-0022, Japan.,Institute of Education, Tokyo Medical and Dental University, 20F, M&D Tower, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,SBX BioSciences, Inc, 1600 - 925 West Georgia Street, Vancouver, BC V6C 3L2, Canada.,Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ayako Yachie-Kinoshita
- The Systems Biology Institute, Saisei Ikedayama Bldg. 5-10-25 Higashi Gotanda Shinagawa, Tokyo, 141-0022, Japan.,SBX BioSciences, Inc, 1600 - 925 West Georgia Street, Vancouver, BC V6C 3L2, Canada
| | - Taiko Nishino
- The Systems Biology Institute, Saisei Ikedayama Bldg. 5-10-25 Higashi Gotanda Shinagawa, Tokyo, 141-0022, Japan
| | - Samik Ghosh
- The Systems Biology Institute, Saisei Ikedayama Bldg. 5-10-25 Higashi Gotanda Shinagawa, Tokyo, 141-0022, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuro Shimokawa
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka City, Osaka, 560-8531, Japan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Saisei Ikedayama Bldg. 5-10-25 Higashi Gotanda Shinagawa, Tokyo, 141-0022, Japan
| | - Hiroshi Tanaka
- Institute of Education, Tokyo Medical and Dental University, 20F, M&D Tower, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
23
|
Qorri B, Tsay M, Agrawal A, Au R, Gracie J. Using machine intelligence to uncover Alzheimer’s disease progression heterogeneity. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Research suggests that Alzheimer’s disease (AD) is heterogeneous with numerous subtypes. Through a proprietary interactive ML system, several underlying biological mechanisms associated with AD pathology were uncovered. This paper is an introduction to emerging analytic efforts that can more precisely elucidate the heterogeneity of AD.
Methods: A public AD data set (GSE84422) consisting of transcriptomic data of postmortem brain samples from healthy controls (n = 121) and AD (n = 380) subjects was analyzed. Data were processed by an artificial intelligence platform designed to discover potential drug repurposing candidates, followed by an interactive augmented intelligence program.
Results: Using perspective analytics, six perspective classes were identified: Class I is defined by TUBB1, ASB4, and PDE5A; Class II by NRG2 and ZNF3; Class III by IGF1, ASB4, and GTSE1; Class IV is defined by cDNA FLJ39269, ITGA1, and CPM; Class V is defined by PDE5A, PSEN1, and NDUFS8; and Class VI is defined by DCAF17, cDNA FLJ75819, and SLC33A1. It is hypothesized that these classes represent biological mechanisms that may act alone or in any combination to manifest an Alzheimer’s pathology.
Conclusions: Using a limited transcriptomic public database, six different classes that drive AD were uncovered, supporting the premise that AD is a heterogeneously complex disorder. The perspective classes highlighted genetic pathways associated with vasculogenesis, cellular signaling and differentiation, metabolic function, mitochondrial function, nitric oxide, and metal ion metabolism. The interplay among these genetic factors reveals a more profound underlying complexity of AD that may be responsible for the confluence of several biological factors. These results are not exhaustive; instead, they demonstrate that even within a relatively small study sample, next-generation machine intelligence can uncover multiple genetically driven subtypes. The models and the underlying hypotheses generated using novel analytic methods may translate into potential treatment pathways.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mike Tsay
- NetraMark Corp, Toronto, ON M4E 1G8, Canada
| | | | - Rhoda Au
- Department of Anatomy & Neurobiology, Neurology and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA 02218, USA
| | - Joseph Gracie
- NetraMark Corp, Toronto, ON M4E 1G8, Canada 5Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
24
|
Morin A, Mouzon B, Ferguson S, Paris D, Browning M, Stewart W, Mullan M, Crawford F. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathol Commun 2020; 8:166. [PMID: 33076989 PMCID: PMC7574534 DOI: 10.1186/s40478-020-01045-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Repeated exposure to mild TBI (mTBI) has been linked to an increased risk of Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE) and other neurodegenerative diseases. Some pathological features typically observed in AD have been found in postmortem brains of TBI and CTE, hence treatments tested for AD have a potential to be effective against r-mTBI outcomes. Neuroinflammation may present a possible answer due to its central role both in acute brain injury and in chronic degenerative-like disorders. Our previous studies have shown that drug nilvadipine, acting as an inhibitor of spleen tyrosine kinase (SYK), is effective at reducing inflammation, tau hyperphosphorylation and amyloid production in AD mouse models. To demonstrate the effect of nilvadipine in the absence of age-related variables, we introduced the same treatment to young r-mTBI mice. We further investigate therapeutic mechanisms of nilvadipine using its racemic properties. Both enantiomers, (+)-nilvadipine and (-)-nilvadipine, can lower SYK activity, whereas (+)-nilvadipine is also a potent L-type calcium channel blocker (CCB) and shown to be anti-hypertensive. All r-mTBI mice exhibited increased neuroinflammation and impaired cognitive performance and motor functions. Treatment with racemic nilvadipine mitigated the TBI-induced inflammatory response and significantly improved spatial memory, whereas (-)-enantiomer decreased microgliosis and improved spatial memory but failed to reduce the astroglial response to as much as the racemate. These results suggest the therapeutic potential of SYK inhibition that is enhanced when combined with the CCB effect, which indicate a therapeutic advantage of multi-action drugs for r-mTBI.
Collapse
Affiliation(s)
- Alexander Morin
- The Roskamp Institute, Sarasota, FL, USA.
- The Open University, Milton-Keynes, UK.
- James A Haley Veterans Administration, Tampa, FL, USA.
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | | | | | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| |
Collapse
|
25
|
Ringland C, Schweig JE, Paris D, Shackleton B, Lynch CE, Eisenbaum M, Mullan M, Crawford F, Abdullah L, Bachmeier C. Apolipoprotein E isoforms differentially regulate matrix metallopeptidase 9 function in Alzheimer's disease. Neurobiol Aging 2020; 95:56-68. [PMID: 32758917 DOI: 10.1016/j.neurobiolaging.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (APOE) has been shown to influence amyloid-β (Aβ) clearance from the brain in an isoform-specific manner. Our prior work showed that Aβ transit across the blood-brain-barrier was reduced by apoE4, compared to other apoE isoforms, due to elevated lipoprotein receptor shedding in brain endothelia. Recently, we demonstrated that matrix metallopeptidase 9 (MMP-9) induces lipoprotein receptor proteolysis in an apoE isoform-dependent manner, which impacts Aβ elimination from the brain. The current studies interrogated the relationship between apoE and MMP-9 and found that apoE impacted proMMP-9 cellular secretion from brain endothelia (apoE2 < apoE3 = apoE4). In a cell-free assay, apoE dose-dependently reduced MMP-9 activity, with apoE4 showing a significantly weaker ability to inhibit MMP-9 function than apoE2 or apoE3. Finally, we observed elevated MMP-9 expression and activity in the cerebrovasculature of both human and animal AD brain specimens with an APOE4 genotype. Collectively, these findings suggest a role for apoE in regulating MMP-9 disposition and may describe the effect of apoE4 on Aβ pathology in the AD brain.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK.
| | | | | | | | | | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
26
|
Schweig JE, Yao H, Jin C, Crawford F, Mullan M, Paris D. Neuronal Spleen tyrosine kinase (SYK) mediates cytokine release in Transgenic Tau P301S mice organotypic brain slice cultures. Neurosci Lett 2020; 729:134992. [PMID: 32334108 DOI: 10.1016/j.neulet.2020.134992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
The Spleen Tyrosine Kinase (SYK) is known for its involvement in B-cell and T-cell signaling, modulating the peripheral immune response. We have previously shown that SYK is overactive in the brains of human Alzheimer's Disease (AD) patients, as well as mouse models of AD and tauopathy including Tg Tau P301S mice. More specifically, SYK activation occurs mainly in neurons in human AD brain specimens and mouse models of AD and colocalizes with tau pathogenic species, suggesting it could play a role in AD pathobiology. To assess the possible contribution of SYK to the inflammatory response induced by tau pathology, we analyzed cytokine production in organotypic brain slices cultures from Tg Tau P301S mice and wild-type littermates. Organotypic brains slices from Tau P301S mice produce more cytokines than brain slices from wild-type littermates while SYK inhibition completely antagonizes cytokine production from Tg Tau P301S brain slices. Interestingly, LPS exacerbates the production of pro-inflammatory cytokines in Tg Tau P301S brain sections compared to wild-type organotypic sections while SYK inhibition alleviates the release of pro-inflammatory cytokines induced by LPS. Given that SYK is mainly activated in neurons in Tg Tau P301S mice and not in glial cells, these data suggest that neuronal SYK contributes to the neuroinflammation triggered by the tau pathology. SYK represents an attractive target for regulating the underlying neuroinflammatory component induced by tau pathology.
Collapse
Affiliation(s)
- Jonas Elias Schweig
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
| | - Hailan Yao
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| | - Chao Jin
- The Roskamp Institute, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| | | | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| |
Collapse
|
27
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
28
|
Lim SL, Tran DN, Kieu Z, Chen C, Villanueva E, Ghiaar S, Gallup V, Zumkehr J, Cribbs DH, Rodriguez-Ortiz CJ, Kitazawa M. Genetic Ablation of Hematopoietic Cell Kinase Accelerates Alzheimer's Disease-Like Neuropathology in Tg2576 Mice. Mol Neurobiol 2020; 57:2447-2460. [PMID: 32146679 DOI: 10.1007/s12035-020-01894-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-β (Aβ), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aβ clearance, leading to the accelerated buildup of Aβ pathology and cognitive decline during the early stage of neuropathological development. To elucidate the pivotal role of HCK in AD, we generated a constitutive knockout of HCK in the Tg2576 mouse model of AD. We found that HCK deficiency accelerated cognitive decline along with elevated Aβ level and plaque burden, attenuated microglial Aβ phagocytosis, induced iNOS expression in microglial clusters, and reduced pre-synaptic protein at the hippocampal regions. Our findings substantiate that HCK plays a prominent role in regulating microglial neuroprotective functions and attenuating early AD neuropathology.
Collapse
Affiliation(s)
- Siok Lam Lim
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Diana Nguyen Tran
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Zanett Kieu
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Christine Chen
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Emmanuel Villanueva
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Sagar Ghiaar
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Victoria Gallup
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Joannee Zumkehr
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - David H Cribbs
- Department of Neurology, University of California, Irvine, CA, 92697, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Masashi Kitazawa
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA. .,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
29
|
Schweig JE, Yao H, Coppola K, Jin C, Crawford F, Mullan M, Paris D. Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. J Biol Chem 2019; 294:13378-13395. [PMID: 31324720 DOI: 10.1074/jbc.ra119.008033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spleen tyrosine kinase (SYK) plays a major role in inflammation and in adaptive immune responses and could therefore contribute to the neuroinflammation observed in various neurodegenerative diseases. Indeed, previously we have reported that SYK also regulates β-amyloid (Aβ) production and hyperphosphorylation of Tau protein involved in these diseases. Moreover, SYK hyperactivation occurs in a subset of activated microglia, in dystrophic neurites surrounding Aβ deposits, and in neurons affected by Tau pathology both in individuals with Alzheimer's disease (AD) and in AD mouse models. SYK activation increases Tau phosphorylation and accumulation, suggesting that SYK could be an attractive target for treating AD. However, the mechanism by which SYK affects Tau pathology is not clear. In this study, using cell biology and biochemical approaches, along with immunoprecipitation and immunoblotting, quantitative RT-PCR, and ELISAs, we found that SYK inhibition increases autophagic Tau degradation without impacting Tau production. Using neuron-like SH-SY5Y cells, we demonstrate that SYK acts upstream of the mammalian target of rapamycin (mTOR) pathway and that pharmacological inhibition or knockdown of SYK decreases mTOR pathway activation and increases autophagic Tau degradation. Interestingly, chronic SYK inhibition in a tauopathy mouse model profoundly reduced Tau accumulation, neuroinflammation, neuronal and synaptic loss, and also reversed defective autophagy. Our results further suggest that the SYK up-regulation observed in the brains of individuals with AD contributes to defective autophagic clearance leading to the accumulation of pathogenic Tau species. These findings further highlight SYK as a therapeutic target for the treatment of tauopathies and other neurodegenerative proteinopathies associated with defective autophagic clearance.
Collapse
Affiliation(s)
- Jonas Elias Schweig
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612.
| | - Hailan Yao
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Kyle Coppola
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Chao Jin
- Roskamp Institute, Sarasota, Florida 34243
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Daniel Paris
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
30
|
Bonham LW, Sirkis DW, Yokoyama JS. The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Front Immunol 2019; 10:1170. [PMID: 31214167 PMCID: PMC6557985 DOI: 10.3389/fimmu.2019.01170] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Microglia, the brain-resident myeloid cells, are strongly implicated in Alzheimer's disease (AD) pathogenesis by human genetics. However, the mechanisms by which microglial gene expression is regulated in a region-specific manner over the course of normal aging and in neurodegenerative disease are only beginning to be deciphered. Herein, we used a specific marker of microglia (TMEM119) and a cell-type expression profiling tool (CellMapper) to identify a human microglial gene expression module. Surprisingly, we found that microglial module genes are robustly expressed in several healthy human brain regions known to be vulnerable in AD, in addition to other regions affected only later in disease or spared in AD. Surveying the microglial gene set for differential expression over the lifespan in mouse models of AD and a related tauopathy revealed that the majority of microglial module genes were significantly upregulated in cortex and hippocampus as a function of age and transgene status. Extending these results, we also observed significant upregulation of microglial module genes in several AD-affected brain regions in addition to other regions using postmortem brain tissue from human AD samples. In pathologically confirmed AD cases, we found preliminary evidence that microglial genes may be dysregulated in a sex-specific manner. Finally, we identified specific and significant overlap between the described microglial gene set—identified by unbiased co-expression analysis—and genes known to impart risk for AD. Our findings suggest that microglial genes show enriched expression in AD-vulnerable brain regions, are upregulated during aging and neurodegeneration in mice, and are upregulated in pathologically affected brain regions in AD. Taken together, our data-driven findings from multiple publicly accessible datasets reemphasize the importance of microglial gene expression alterations in AD and, more importantly, suggest that regional and sex-specific variation in microglial gene expression may be implicated in risk for and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel W Sirkis
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Hu W, Wen L, Cao F, Wang Y. Down-Regulation of Mir-107 Worsen Spatial Memory by Suppressing SYK Expression and Inactivating NF-ΚB Signaling Pathway. Curr Alzheimer Res 2019; 16:135-145. [DOI: 10.2174/1567205016666181212154347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Background:
Alzheimer’s Disease (AD) is a chronic progressive neurodegenerative disorder
in a central nervous system seen.
Objective:
We aimed to study the miR-107 in Alzheimer's Disease (AD) pathology through regulating
SYK and NF-κB signaling pathway.
</P><P>
Method: Bioinformatics analysis was performed to screen NF-κB signaling pathway and differentially
expressed genes. The target relationship between miR-107 and SYK was verified by dual luciferase assay.
QRT-PCR and western blot analysis were used to verify the expression level of miR-107, SYK and NF-
κB signaling pathway related proteins of hippocampus primary neurons. BAY61-3606 and BAY11-7082
were purchased for functional examination. Morris water maze tests were performed to access spatial
memory of AD mice with SYK and NF-κB signaling pathway inhibition. Fluorescence microscope dyeing
experiment investigated the neurons nuclear form and apoptosis.
Results:
MiR-107 was lowly expressed while SYK was highly expressed in Tg19959 mouse model. Luciferase
Assay confirmed the target relationship in miR-107 and SYK. With the inhibition of miR-107,
SYK was up-regulated and the increase of p-p65 and the decrease of p-IκB-α suggested that NF-κB signaling
pathway was activated in vitro. Morris water maze test indicated that the spatial memory of
Tg19959 mice was increased with the treatment. The result of DAPI staining indicated that the inhibition
of SYK or NF-κB signaling pathway reduced the apoptosis of Tg19959 mice neuron cell.
Conclusion:
MiR-107 exerts its effects through suppression of the NF-κB signaling pathway and SYK,
the inhibition of SYK and NF-κB signaling pathway can improve spatial memory and suppress cell apoptosis.
Collapse
Affiliation(s)
- Wenjie Hu
- Qingdao Mental Health Center, Qingdao 266034, Shandong, China
| | - Lin Wen
- Qingdao Mental Health Center, Qingdao 266034, Shandong, China
| | - Fang Cao
- Qingdao Mental Health Center, Qingdao 266034, Shandong, China
| | - Yexin Wang
- Qingdao Mental Health Center, Qingdao 266034, Shandong, China
| |
Collapse
|
32
|
Lim SL, Tran DN, Zumkehr J, Chen C, Ghiaar S, Kieu Z, Villanueva E, Gallup V, Rodriguez-Ortiz CJ, Kitazawa M. Inhibition of hematopoietic cell kinase dysregulates microglial function and accelerates early stage Alzheimer's disease-like neuropathology. Glia 2018; 66:2700-2718. [PMID: 30277607 DOI: 10.1002/glia.23522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 11/08/2022]
Abstract
Emerging evidence have posited that dysregulated microglia impair clearance and containment of amyloid-β (Aβ) species in the brain, resulting in aberrant buildup of Aβ and onset of Alzheimer's disease (AD). Hematopoietic cell kinase (Hck) is one of the key regulators of phagocytosis among the Src family tyrosine kinases (SFKs) in myeloid cells, and its expression is found to be significantly altered in AD brains. However, the role of Hck signaling in AD pathogenesis is unknown. We employed pharmacological inhibition and genetic ablation of Hck in BV2 microglial cells and J20 mouse model of AD, respectively, to evaluate the impact of Hck deficiency on Aβ-stimulated microglial phagocytosis, Aβ clearance, and resultant AD-like neuropathology. Our in vitro data reveal that pharmacological inhibition of SFKs/Hck in BV2 cells and genetic ablation of their downstream kinase, spleen tyrosine kinase (Syk), in primary microglia significantly attenuate Aβ oligomers-stimulated microglial phagocytosis. Whereas in Hck-deficient J20 mice, we observed exacerbated Aβ plaque burden, reduced microglial coverage, containment, and phagocytosis of Aβ plaques, and induced iNOS expression in plaque-associated microglial clusters. These multifactorial changes in microglial activities led to attenuated PSD95 levels in hippocampal DG and CA3 regions, but did not alter the postsynaptic dendritic spine morphology at the CA1 region nor cognitive function of the mice. Hck inhibition thus accelerates early stage AD-like neuropathology by dysregulating microglial function and inducing neuroinflammation. Our data implicate that Hck pathway plays a prominent role in regulating microglial neuroprotective function during the early stage of AD development.
Collapse
Affiliation(s)
- Siok Lam Lim
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Diana Nguyen Tran
- Molecular and Cell Biology, University of California, Merced, California
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Christine Chen
- Molecular and Cell Biology, University of California, Merced, California
| | - Sagar Ghiaar
- Molecular and Cell Biology, University of California, Merced, California
| | - Zanett Kieu
- Molecular and Cell Biology, University of California, Merced, California
| | | | - Victoria Gallup
- Molecular and Cell Biology, University of California, Merced, California
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| |
Collapse
|