1
|
Raina R, Suchan A, Soundararajan A, Brown AM, Davenport A, Shih WV, Nada A, Irving SY, Mannemuddhu SS, Vitale VS, Crugnale AS, Keller GL, Berry KG, Zieg J, Alhasan K, Guzzo I, Lussier NH, Yap HK, Bunchman TE, Sethi SK. Nutrition in critically ill children with acute kidney injury on continuous kidney replacement therapy: a 2023 executive summary. Nutrition 2024; 119:112272. [PMID: 38118382 DOI: 10.1016/j.nut.2023.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVES Nutrition plays a vital role in the outcome of critical illness in children, particularly those with acute kidney injury. Currently, there are no established guidelines for children with acute kidney injury treated with continuous kidney replacement therapy. Our objective was to create clinical practice points for nutritional assessment and management in critically ill children with acute kidney injury receiving continuous kidney replacement therapy. METHODS An electronic search using PubMed and an inclusive academic library search (including MEDLINE, Cochrane, and Embase databases) was conducted to find relevant English-language articles on nutrition therapy for children (<18 y of age) receiving continuous kidney replacement therapy. RESULTS The existing literature was reviewed by our work group, comprising pediatric nephrologists and experts in nutrition. The modified Delphi method was then used to develop a total of 45 clinical practice points. The best methods for nutritional assessment are discussed. Indirect calorimetry is the most reliable method of predicting resting energy expenditure in children on continuous kidney replacement therapy. Schofield equations can be used when indirect calorimetry is not available. The non-intentional calories contributed by continuous kidney replacement therapy should also be accounted for during caloric dosing. Protein supplementation should be increased to account for the proteins, peptides, and amino acids lost with continuous kidney replacement therapy. CONCLUSIONS Clinical practice points are provided on nutrition assessment, determining energy needs, and nutrient intake in children with acute kidney injury and on continuous kidney replacement therapy based on the existing literature and expert opinions of a multidisciplinary panel.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, Ohio, USA; Akron Children's Hospital, Akron, Ohio, USA.
| | - Andrew Suchan
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | | | - Ann-Marie Brown
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA; ECU Health, Greenville, North Carolina, USA
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Weiwen V Shih
- Children's Hospital Colorado, University of Colorado, Section of Pediatric Nephrology, Aurora, Colorado, USA
| | - Arwa Nada
- Division of Pediatric Nephrology, Department of Pediatrics, Le Bonheur Children's Hospital and St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sharon Y Irving
- University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sai Sudha Mannemuddhu
- Division of Pediatric Nephrology, East Tennessee Children's Hospital, Knoxville, Tennessee, USA; Department of Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Aylin S Crugnale
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, Ohio, USA
| | | | - Katarina G Berry
- University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Khalid Alhasan
- Pediatrics Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Isabella Guzzo
- Division of Nephrology and Dialysis, Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | | | - Hui Kim Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Timothy E Bunchman
- Department of Pediatrics, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sidharth K Sethi
- Department of Pediatric Nephrology, Kidney Institute, Medanta-The Medicity, Gurgaon, India
| |
Collapse
|
2
|
Raina R, Suchan A, Sethi SK, Soundararajan A, Vitale VS, Keller GL, Brown AM, Davenport A, Shih WV, Nada A, Irving SY, Mannemuddhu SS, Crugnale AS, Myneni A, Berry KG, Zieg J, Alhasan K, Guzzo I, Lussier NH, Yap HK, Bunchman TE. Nutrition in Critically Ill Children with AKI on Continuous RRT: Consensus Recommendations. KIDNEY360 2024; 5:285-309. [PMID: 38112754 PMCID: PMC10914214 DOI: 10.34067/kid.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Nutrition plays a vital role in the outcome of critically ill children, particularly those with AKI. Currently, there are no established guidelines for children with AKI treated with continuous RRT (CRRT). A thorough understanding of the metabolic changes and nutritional challenges in AKI and CRRT is required. Our objective was to create clinical practice points for nutritional assessment and management in critically ill children with AKI receiving CRRT. METHODS PubMed, MEDLINE, Cochrane, and Embase databases were searched for articles related to the topic. Expertise of the authors and a consensus of the workgroup were additional sources of data in the article. Available articles on nutrition therapy in pediatric patients receiving CRRT through January 2023. RESULTS On the basis of the literature review, the current evidence base was examined by a panel of experts in pediatric nephrology and nutrition. The panel used the literature review as well as their expertise to formulate clinical practice points. The modified Delphi method was used to identify and refine clinical practice points. CONCLUSIONS Forty-four clinical practice points are provided on nutrition assessment, determining energy needs, and nutrient intake in children with AKI and on CRRT on the basis of the existing literature and expert opinions of a multidisciplinary panel.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
- Akron Children's Hospital, Akron, Ohio
| | - Andrew Suchan
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Sidharth K. Sethi
- Department of Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, India
| | - Anvitha Soundararajan
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | | | | | - Ann-Marie Brown
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
- ECU Health, Greenville, North Carolina
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Weiwen V. Shih
- Section of Pediatric Nephrology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Arwa Nada
- Department of Pediatrics, Division of Pediatric Nephrology, Le Bonheur Children's & St. Jude Children's Research Hospitals, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sharon Y. Irving
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Sai Sudha Mannemuddhu
- Division of Pediatric Nephrology, East Tennessee Children's Hospital, Knoxville, Tennessee
- Department of Medicine, University of Tennessee at Knoxville, Knoxville, Tennessee
| | - Aylin S. Crugnale
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Archana Myneni
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Katarina G. Berry
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Khalid Alhasan
- Pediatrics Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Isabella Guzzo
- Division of Nephrology and Dialysis, Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | | | - Hui Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Timothy E. Bunchman
- Department of Pediatrics, Childrens Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Fishman G, Singer P. Metabolic and nutritional aspects in continuous renal replacement therapy. JOURNAL OF INTENSIVE MEDICINE 2023; 3:228-238. [PMID: 37533807 PMCID: PMC10391575 DOI: 10.1016/j.jointm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/04/2023]
Abstract
Nutrition is one of the foundations for supporting and treating critically ill patients. Nutritional support provides calories, protein, electrolytes, vitamins, and trace elements via the enteral or parenteral route. Acute kidney injury (AKI) is a common and devastating problem in critically ill patients and has significant metabolic and nutritional consequences. Moreover, renal replacement therapy (RRT), whatever the modality used, also profoundly impacts metabolism. RRT and of the extracorporeal circuit impede 'effect the evaluation of a patient's energy requirements by clinicians. Substrates added and removed within the extracorporeal treatment are not always taken into consideration, making treatment even more challenging. Furthermore, evidence on nutritional support during continuous renal replacement therapy (CRRT) is scarce, and there are no clinical guidelines for nutrition adaptations during CRRT in critically ill patients. Most recommendations are based on expert opinions. This review discusses the complex interaction between nutritional support and CRRT and presents some milestones for nutritional support in critically ill patients on CRRT.
Collapse
Affiliation(s)
- Guy Fishman
- Corresponding author at: General Intensive Care and Institute for Nutrition Research.
| | | |
Collapse
|
4
|
Strudthoff LJ, Focke J, Hesselmann F, Kaesler A, Martins Costa A, Schlanstein PC, Schmitz-Rode T, Steinseifer U, Steuer NB, Wiegmann B, Arens J, Jansen SV. Novel Size-Variable Dedicated Rodent Oxygenator for ECLS Animal Models-Introduction of the "RatOx" Oxygenator and Preliminary In Vitro Results. MICROMACHINES 2023; 14:800. [PMID: 37421033 DOI: 10.3390/mi14040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
The overall survival rate of extracorporeal life support (ECLS) remains at 60%. Research and development has been slow, in part due to the lack of sophisticated experimental models. This publication introduces a dedicated rodent oxygenator ("RatOx") and presents preliminary in vitro classification tests. The RatOx has an adaptable fiber module size for various rodent models. Gas transfer performances over the fiber module for different blood flows and fiber module sizes were tested according to DIN EN ISO 7199. At the maximum possible amount of effective fiber surface area and a blood flow of 100 mL/min, the oxygenator performance was tested to a maximum of 6.27 mL O2/min and 8.2 mL CO2/min, respectively. The priming volume for the largest fiber module is 5.4 mL, while the smallest possible configuration with a single fiber mat layer has a priming volume of 1.1 mL. The novel RatOx ECLS system has been evaluated in vitro and has demonstrated a high degree of compliance with all pre-defined functional criteria for rodent-sized animal models. We intend for the RatOx to become a standard testing platform for scientific studies on ECLS therapy and technology.
Collapse
Affiliation(s)
- Lasse J Strudthoff
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Jannis Focke
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Hesselmann
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Kaesler
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ana Martins Costa
- Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, 7522 LW Enschede, The Netherlands
| | - Peter C Schlanstein
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrich Steinseifer
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Niklas B Steuer
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hanover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hanover, Germany
- German Center for Lung Research (DLZ), 30625 Hanover, Germany
| | - Jutta Arens
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, 7522 LW Enschede, The Netherlands
| | - Sebastian V Jansen
- Institute of Applied Medical Engineering, Department of Cardiovascular Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Battaglini D, Fazzini B, Silva PL, Cruz FF, Ball L, Robba C, Rocco PRM, Pelosi P. Challenges in ARDS Definition, Management, and Identification of Effective Personalized Therapies. J Clin Med 2023; 12:1381. [PMID: 36835919 PMCID: PMC9967510 DOI: 10.3390/jcm12041381] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Over the last decade, the management of acute respiratory distress syndrome (ARDS) has made considerable progress both regarding supportive and pharmacologic therapies. Lung protective mechanical ventilation is the cornerstone of ARDS management. Current recommendations on mechanical ventilation in ARDS include the use of low tidal volume (VT) 4-6 mL/kg of predicted body weight, plateau pressure (PPLAT) < 30 cmH2O, and driving pressure (∆P) < 14 cmH2O. Moreover, positive end-expiratory pressure should be individualized. Recently, variables such as mechanical power and transpulmonary pressure seem promising for limiting ventilator-induced lung injury and optimizing ventilator settings. Rescue therapies such as recruitment maneuvers, vasodilators, prone positioning, extracorporeal membrane oxygenation, and extracorporeal carbon dioxide removal have been considered for patients with severe ARDS. Regarding pharmacotherapies, despite more than 50 years of research, no effective treatment has yet been found. However, the identification of ARDS sub-phenotypes has revealed that some pharmacologic therapies that have failed to provide benefits when considering all patients with ARDS can show beneficial effects when these patients were stratified into specific sub-populations; for example, those with hyperinflammation/hypoinflammation. The aim of this narrative review is to provide an overview on current advances in the management of ARDS from mechanical ventilation to pharmacological treatments, including personalized therapy.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Brigitta Fazzini
- Adult Critical Care Unit, Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 15145 Genoa, Italy
| |
Collapse
|
6
|
Lee JY, Ko K, Chung H. Application of colorimetric sensor in monitoring dissolved CO 2 in natural waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114893. [PMID: 35313147 DOI: 10.1016/j.jenvman.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Dissolved CO2 originating from underground structures at high concentrations may pose a threat to public and environmental health. Therefore, a convenient monitoring technique that allows fast detection of dissolved CO2 needs to be developed. In this study, a low-cost colorimetric CO2 sensor was applied for monitoring dissolved CO2. The sensor is composed of an acrylic reactor, cresol red pH indicator solution, and a gas-permeable membrane, and the performance of the sensor was tested for the detection of dissolved CO2 at the range of 2-800 mg CO2 L-1. Color change of the detection solution within the sensor was mainly dependent on CO2 dissolved in the water sample. This was analyzed using an RGB program that extracts the red, green, and blue intensity of a target color on a scale of 0-255. ΔGB, an index of CO2 concentration corresponding to the change in intensity of green (G) and blue (B) extracted by the RGB program, exhibited a linear relationship with dissolved CO2 concentrations (r2 > 0.95, p < 0.005). In the field, the sensor was able to measure dissolved CO2 between 10 and 411 mg CO2 L-1 within 1 min. Overall, our CO2 sensor has high potential to be used in detection of dissolved CO2 in groundwater and surface waters.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Department of Environmental Engineering, Konkuk University, Seoul, 143-701, 05029, Republic of Korea.
| | - Kwanyoung Ko
- Department of Environmental Engineering, Konkuk University, Seoul, 143-701, 05029, Republic of Korea.
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, Seoul, 143-701, 05029, Republic of Korea.
| |
Collapse
|
7
|
|
8
|
Allescher J, Rasch S, Wiessner JR, Perez Ruiz de Garibay A, Huberle C, Hesse F, Schulz D, Schmid RM, Huber W, Lahmer T. Extracorporeal carbon dioxide Removal (ECCO 2 R) with the Advanced Organ Support (ADVOS) system in critically ill COVID-19 patients. Artif Organs 2021; 45:1522-1532. [PMID: 34309036 PMCID: PMC8444686 DOI: 10.1111/aor.14044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Disturbed oxygenation is foremost the leading clinical presentation in COVID‐19 patients. However, a small proportion also develop carbon dioxide removal problems. The Advanced Organ Support (ADVOS) therapy (ADVITOS GmbH, Munich, Germany) uses a less invasive approach by combining extracorporeal CO2‐removal and multiple organ support for the liver and the kidneys in a single hemodialysis device. The aim of our study is to evaluate the ADVOS system as treatment option in‐COVID‐19 patients with multi‐organ failure and carbon dioxide removal problems. COVID‐19 patients suffering from severe respiratory insufficiency, receiving at least two treatments with the ADVOS multi system (ADVITOS GmbH, Munich, Germany), were eligible for study inclusion. Briefly, these included patients with acute kidney injury (AKI) according to KDIGO guidelines, and moderate or severe ARDS according to the Berlin definition, who were on invasive mechanical ventilation for more than 72 hours. In total, nine COVID‐19 patients (137 ADVOS treatment sessions with a median of 10 treatments per patient) with moderate to severe ARDS and carbon dioxide removal problems were analyzed. During the ADVOS treatments, a rapid correction of acid‐base balance and a continuous CO2 removal could be observed. We observed a median continuous CO2 removal of 49.2 mL/min (IQR: 26.9‐72.3 mL/min) with some treatments achieving up to 160 mL/min. The CO2 removal significantly correlated with blood flow (Pearson 0.421; P < .001), PaCO2 (0.341, P < .001) and HCO3‐ levels (0.568, P < .001) at the start of the treatment. The continuous treatment led to a significant reduction in PaCO2 from baseline to the last ADVOS treatment. In conclusion, it was feasible to remove CO2 using the ADVOS system in our cohort of COVID‐19 patients with acute respiratory distress syndrome and multiorgan failure. This efficient removal of CO2 was achieved at blood flows up to 300 mL/min using a conventional hemodialysis catheter and without a membrane lung or a gas phase.
Collapse
Affiliation(s)
- Julia Allescher
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sebastian Rasch
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Johannes R Wiessner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Christina Huberle
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Felix Hesse
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Dominik Schulz
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Wolfgang Huber
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
9
|
|
10
|
Battaglini D, Sottano M, Ball L, Robba C, Rocco PR, Pelosi P. Ten golden rules for individualized mechanical ventilation in acute respiratory distress syndrome. JOURNAL OF INTENSIVE MEDICINE 2021; 1:42-51. [PMID: 36943812 PMCID: PMC7919509 DOI: 10.1016/j.jointm.2021.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/22/2022]
Abstract
Considerable progress has been made over the last decades in the management of acute respiratory distress syndrome (ARDS). Mechanical ventilation(MV) remains the cornerstone of supportive therapy for ARDS. Lung-protective MV minimizes the risk of ventilator-induced lung injury (VILI) and improves survival. Several parameters contribute to the risk of VILI and require careful setting including tidal volume (VT), plateau pressure (Pplat), driving pressure (ΔP), positive end-expiratory pressure (PEEP), and respiratory rate. Measurement of energy and mechanical power allows quantification of the relative contributions of various parameters (VT, Pplat, ΔP, PEEP, respiratory rate, and airflow) for the individualization of MV settings. The use of neuromuscular blocking agents mainly in cases of severe ARDS can improve oxygenation and reduce asynchrony, although they are not known to confer a survival benefit. Rescue respiratory therapies such as prone positioning, inhaled nitric oxide, and extracorporeal support techniques may be adopted in specific situations. Furthermore, respiratory weaning protocols should also be considered. Based on a review of recent clinical trials, we present 10 golden rules for individualized MV in ARDS management.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Medicine, University of Barcelona, Barcelona 08007, Spain
| | - Marco Sottano
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Patricia R.M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
- Corresponding author: Paolo Pelosi, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16132, Italy.
| |
Collapse
|
11
|
Rubin DM. Stewart’s approach to quantitative acid-base physiology should replace traditional bicarbonate-centered models. J Appl Physiol (1985) 2021; 130:2019-2021. [DOI: 10.1152/japplphysiol.00042.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- David M. Rubin
- Biomedical Engineering Research Group, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Comparison of Circular and Parallel-Plated Membrane Lungs for Extracorporeal Carbon Dioxide Elimination. MEMBRANES 2021; 11:membranes11060398. [PMID: 34072067 PMCID: PMC8227238 DOI: 10.3390/membranes11060398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices.
Collapse
|
13
|
Ficial B, Vasques F, Zhang J, Whebell S, Slattery M, Lamas T, Daly K, Agnew N, Camporota L. Physiological Basis of Extracorporeal Membrane Oxygenation and Extracorporeal Carbon Dioxide Removal in Respiratory Failure. MEMBRANES 2021; 11:225. [PMID: 33810130 PMCID: PMC8004966 DOI: 10.3390/membranes11030225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023]
Abstract
Extracorporeal life support (ECLS) for severe respiratory failure has seen an exponential growth in recent years. Extracorporeal membrane oxygenation (ECMO) and extracorporeal CO2 removal (ECCO2R) represent two modalities that can provide full or partial support of the native lung function, when mechanical ventilation is either unable to achieve sufficient gas exchange to meet metabolic demands, or when its intensity is considered injurious. While the use of ECMO has defined indications in clinical practice, ECCO2R remains a promising technique, whose safety and efficacy are still being investigated. Understanding the physiological principles of gas exchange during respiratory ECLS and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. In this review, we will present the physiological basis of gas exchange in ECMO and ECCO2R, and the implications of their interaction with native lung function. We will also discuss the rationale for their use in clinical practice, their current advances, and future directions.
Collapse
Affiliation(s)
- Barbara Ficial
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Francesco Vasques
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Joe Zhang
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Stephen Whebell
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Michael Slattery
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Tomas Lamas
- Department of Critical Care, Unidade de Cuidados Intensivos Polivalente, Egas Moniz Hospital, Rua da Junqueira 126, 1300-019 Lisbon, Portugal;
| | - Kathleen Daly
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Nicola Agnew
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 7EH, UK; (B.F.); (F.V.); (J.Z.); (S.W.); (M.S.); (K.D.); (N.A.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
14
|
Lukitsch B, Ecker P, Elenkov M, Janeczek C, Jordan C, Krenn CG, Ullrich R, Gfoehler M, Harasek M. Suitable CO 2 Solubility Models for Determination of the CO 2 Removal Performance of Oxygenators. Bioengineering (Basel) 2021; 8:bioengineering8030033. [PMID: 33801555 PMCID: PMC8000709 DOI: 10.3390/bioengineering8030033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
CO2 removal via membrane oxygenators during lung protective ventilation has become a reliable clinical technique. For further optimization of oxygenators, accurate prediction of the CO2 removal rate is necessary. It can either be determined by measuring the CO2 content in the exhaust gas of the oxygenator (sweep flow-based) or using blood gas analyzer data and a CO2 solubility model (blood-based). In this study, we determined the CO2 removal rate of a prototype oxygenator utilizing both methods in in vitro trials with bovine and in vivo trials with porcine blood. While the sweep flow-based method is reliably accurate, the blood-based method depends on the accuracy of the solubility model. In this work, we quantified performances of four different solubility models by calculating the deviation of the CO2 removal rates determined by both methods. Obtained data suggest that the simplest model (Loeppky) performs better than the more complex ones (May, Siggaard-Anderson, and Zierenberg). The models of May, Siggaard-Anderson, and Zierenberg show a significantly better performance for in vitro bovine blood data than for in vivo porcine blood data. Furthermore, the suitability of the Loeppky model parameters for bovine blood (in vitro) and porcine blood (in vivo) is evaluated.
Collapse
Affiliation(s)
- Benjamin Lukitsch
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (P.E.); (C.J.); (M.H.)
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Correspondence:
| | - Paul Ecker
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (P.E.); (C.J.); (M.H.)
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria;
| | - Martin Elenkov
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria;
| | - Christoph Janeczek
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria;
| | - Christian Jordan
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (P.E.); (C.J.); (M.H.)
| | - Claus G. Krenn
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Roman Ullrich
- CCORE Technology GmbH, 1040 Vienna, Austria; (M.E.); (C.J.); (C.G.K.); (R.U.)
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Gfoehler
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria;
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (P.E.); (C.J.); (M.H.)
| |
Collapse
|
15
|
Schönhofer B, Geiseler J, Dellweg D, Fuchs H, Moerer O, Weber-Carstens S, Westhoff M, Windisch W. Prolonged Weaning: S2k Guideline Published by the German Respiratory Society. Respiration 2020; 99:1-102. [PMID: 33302267 DOI: 10.1159/000510085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanical ventilation (MV) is an essential part of modern intensive care medicine. MV is performed in patients with severe respiratory failure caused by respiratory muscle insufficiency and/or lung parenchymal disease; that is, when other treatments such as medication, oxygen administration, secretion management, continuous positive airway pressure (CPAP), or nasal high-flow therapy have failed. MV is required for maintaining gas exchange and allows more time to curatively treat the underlying cause of respiratory failure. In the majority of ventilated patients, liberation or "weaning" from MV is routine, without the occurrence of any major problems. However, approximately 20% of patients require ongoing MV, despite amelioration of the conditions that precipitated the need for it in the first place. Approximately 40-50% of the time spent on MV is required to liberate the patient from the ventilator, a process called "weaning". In addition to acute respiratory failure, numerous factors can influence the duration and success rate of the weaning process; these include age, comorbidities, and conditions and complications acquired during the ICU stay. According to international consensus, "prolonged weaning" is defined as the weaning process in patients who have failed at least 3 weaning attempts, or require more than 7 days of weaning after the first spontaneous breathing trial (SBT). Given that prolonged weaning is a complex process, an interdisciplinary approach is essential for it to be successful. In specialised weaning centres, approximately 50% of patients with initial weaning failure can be liberated from MV after prolonged weaning. However, the heterogeneity of patients undergoing prolonged weaning precludes the direct comparison of individual centres. Patients with persistent weaning failure either die during the weaning process, or are discharged back to their home or to a long-term care facility with ongoing MV. Urged by the growing importance of prolonged weaning, this Sk2 Guideline was first published in 2014 as an initiative of the German Respiratory Society (DGP), in conjunction with other scientific societies involved in prolonged weaning. The emergence of new research, clinical study findings and registry data, as well as the accumulation of experience in daily practice, have made the revision of this guideline necessary. The following topics are dealt with in the present guideline: Definitions, epidemiology, weaning categories, underlying pathophysiology, prevention of prolonged weaning, treatment strategies in prolonged weaning, the weaning unit, discharge from hospital on MV, and recommendations for end-of-life decisions. Special emphasis was placed on the following themes: (1) A new classification of patient sub-groups in prolonged weaning. (2) Important aspects of pulmonary rehabilitation and neurorehabilitation in prolonged weaning. (3) Infrastructure and process organisation in the care of patients in prolonged weaning based on a continuous treatment concept. (4) Changes in therapeutic goals and communication with relatives. Aspects of paediatric weaning are addressed separately within individual chapters. The main aim of the revised guideline was to summarize both current evidence and expert-based knowledge on the topic of "prolonged weaning", and to use this information as a foundation for formulating recommendations related to "prolonged weaning", not only in acute medicine but also in the field of chronic intensive care medicine. The following professionals served as important addressees for this guideline: intensivists, pulmonary medicine specialists, anaesthesiologists, internists, cardiologists, surgeons, neurologists, paediatricians, geriatricians, palliative care clinicians, rehabilitation physicians, intensive/chronic care nurses, physiotherapists, respiratory therapists, speech therapists, medical service of health insurance, and associated ventilator manufacturers.
Collapse
Affiliation(s)
- Bernd Schönhofer
- Klinikum Agnes Karll Krankenhaus, Klinikum Region Hannover, Laatzen, Germany,
| | - Jens Geiseler
- Klinikum Vest, Medizinische Klinik IV: Pneumologie, Beatmungs- und Schlafmedizin, Marl, Germany
| | - Dominic Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Abteilung Pneumologie II, Schmallenberg, Germany
| | - Hans Fuchs
- Universitätsklinikum Freiburg, Zentrum für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Freiburg, Germany
| | - Onnen Moerer
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Göttingen, Germany
| | - Steffen Weber-Carstens
- Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Campus Mitte, Berlin, Germany
| | - Michael Westhoff
- Lungenklinik Hemer, Hemer, Germany
- Universität Witten/Herdecke, Herdecke, Germany
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Herdecke, Germany
| |
Collapse
|
16
|
Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, Srisawat N, Cheung M, Jadoul M, Winkelmayer WC, Kellum JA. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int 2020; 98:294-309. [PMID: 32709292 PMCID: PMC8481001 DOI: 10.1016/j.kint.2020.04.020] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline on the classification and management of acute kidney injury (AKI). The guideline was derived from evidence available through February 2011. Since then, new evidence has emerged that has important implications for clinical practice in diagnosing and managing AKI. In April of 2019, KDIGO held a controversies conference entitled Acute Kidney Injury with the following goals: determine best practices and areas of uncertainty in treating AKI; review key relevant literature published since the 2012 KDIGO AKI guideline; address ongoing controversial issues; identify new topics or issues to be revisited for the next iteration of the KDIGO AKI guideline; and outline research needed to improve AKI management. Here, we present the findings of this conference and describe key areas that future guidelines may address.
Collapse
Affiliation(s)
- Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St. Thomas' Hospital, King's College London, London, UK.
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emmanuel A Burdmann
- Laboratório de Investigação Médica 12, Division of Nephrology, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, Brazil
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Zoltan H Endre
- Prince of Wales Hospital and Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Sandra L Kane-Gill
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kathleen D Liu
- Department of Medicine, Division of Nephrology, University of California, San Francisco, San Francisco, California, USA; Department of Anesthesia, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| | - John R Prowle
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Andrew D Shaw
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nattachai Srisawat
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Critical Care Nephrology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Abstract
This review focuses on the use of veno-venous extracorporeal membrane oxygenation for respiratory failure across all blood flow ranges. Starting with a short overview of historical development, aspects of the physiology of gas exchange (i.e., oxygenation and decarboxylation) during extracorporeal circulation are discussed. The mechanisms of phenomena such as recirculation and shunt playing an important role in daily clinical practice are explained.Treatment of refractory and symptomatic hypoxemic respiratory failure (e.g., acute respiratory distress syndrome [ARDS]) currently represents the main indication for high-flow veno-venous-extracorporeal membrane oxygenation. On the other hand, lower-flow extracorporeal carbon dioxide removal might potentially help to avoid or attenuate ventilator-induced lung injury by allowing reduction of the energy load (i.e., driving pressure, mechanical power) transmitted to the lungs during mechanical ventilation or spontaneous ventilation. In the latter context, extracorporeal carbon dioxide removal plays an emerging role in the treatment of chronic obstructive pulmonary disease patients during acute exacerbations. Both applications of extracorporeal lung support raise important ethical considerations, such as likelihood of ultimate futility and end-of-life decision-making. The review concludes with a brief overview of potential technical developments and persistent challenges.
Collapse
|
18
|
A Proof of Concept Study, Demonstrating Extracorporeal Carbon Dioxide Removal Using Hemodialysis with a Low Bicarbonate Dialysate. ASAIO J 2020; 65:605-613. [PMID: 30281542 DOI: 10.1097/mat.0000000000000879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) devices remove CO2 directly from blood, facilitating ultraprotective ventilation or even providing an alternative to mechanical ventilation. However, ECCO2R is not widely available, whereas dialysis is available in most intensive care units (ICUs). Prior attempts to provide ECCO2R with dialysis, by removing CO2 in the form of bicarbonate, have been plagued by metabolic acidosis. We hypothesized that bicarbonate dialysis is feasible, provided the plasma strong ion difference is maintained. We used a mathematical model to investigate the effects of bicarbonate removal on pH and CO2 in plasma, and performed in-vitro experiments to test CO2 removal using three dialysates with different bicarbonate concentrations (0, 16, and 32 mmol·L). Our modeling predicted a reduction in partial pressures of CO2 (PCO2) and increased pH with progressive lowering of plasma bicarbonate, provided strong ion difference and plasma proteins (Atot) were maintained. In our in-vitro experiments, total CO2 removal, scaled up to an adult size filter, was highest with our dialysate containing no bicarbonate, where we removed the equivalent of 94 ml·min (±3.0) of CO2. Under the same conditions, our dialysate containing a conventional bicarbonate concentration (32 mmol·L) only removed 5 ml·min (±4; p < 0.001). As predicted, pH increased following bicarbonate removal. Our data show that dialysis using low bicarbonate dialysates is feasible and results in a reduction in plasma PCO2. When scaled up, to estimate equivalent CO2 removal with an adult dialysis circuit, the amount removed competes with existing low-flow ECCO2R devices.
Collapse
|
19
|
Joannidis M, Forni LG, Klein SJ, Honore PM, Kashani K, Ostermann M, Prowle J, Bagshaw SM, Cantaluppi V, Darmon M, Ding X, Fuhrmann V, Hoste E, Husain-Syed F, Lubnow M, Maggiorini M, Meersch M, Murray PT, Ricci Z, Singbartl K, Staudinger T, Welte T, Ronco C, Kellum JA. Lung-kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup. Intensive Care Med 2020; 46:654-672. [PMID: 31820034 PMCID: PMC7103017 DOI: 10.1007/s00134-019-05869-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multi-organ dysfunction in critical illness is common and frequently involves the lungs and kidneys, often requiring organ support such as invasive mechanical ventilation (IMV), renal replacement therapy (RRT) and/or extracorporeal membrane oxygenation (ECMO). METHODS A consensus conference on the spectrum of lung-kidney interactions in critical illness was held under the auspices of the Acute Disease Quality Initiative (ADQI) in Innsbruck, Austria, in June 2018. Through review and critical appraisal of the available evidence, the current state of research, and both clinical and research recommendations were described on the following topics: epidemiology, pathophysiology and strategies to mitigate pulmonary dysfunction among patients with acute kidney injury and/or kidney dysfunction among patients with acute respiratory failure/acute respiratory distress syndrome. Furthermore, emphasis was put on patients receiving organ support (RRT, IMV and/or ECMO) and its impact on lung and kidney function. CONCLUSION The ADQI 21 conference found significant knowledge gaps about organ crosstalk between lung and kidney and its relevance for critically ill patients. Lung protective ventilation, conservative fluid management and early recognition and treatment of pulmonary infections were the only clinical recommendations with higher quality of evidence. Recommendations for research were formulated, targeting lung-kidney interactions to improve care processes and outcomes in critical illness.
Collapse
Affiliation(s)
- Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Lui G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University of Surrey, Guildford, UK
- Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Sebastian J Klein
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Doctoral College Medical Law and Healthcare, Faculty of Law, University Innsbruck, Innsbruck, Austria
| | - Patrick M Honore
- Department of Intensive Care Medicine, CHU Brugmann University Hospital, Brussels, Belgium
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's and St Thomas' Hospital, London, UK
| | - John Prowle
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont "A. Avogadro", Maggiore della Carità University Hospital, Novara, Italy
| | - Michael Darmon
- Medical ICU, Saint-Louis University Hospital, AP-HP, Paris, France
- Faculté de Médecine, Université Paris-Diderot, Sorbonne-Paris-Cité, Paris, France
- ECSTRA Team, Biostatistics and Clinical Epidemiology, UMR 1153 (Center of Epidemiology and Biostatistic Sorbonne Paris Cité, CRESS), INSERM, Paris, France
| | - Xiaoqiang Ding
- Department of Nephrology, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine B, University Muenster, Muenster, Germany
| | - Eric Hoste
- ICU, Ghent University Hospital, Ghent, Belgium
- Research Fund-Flanders (FWO), Brussels, Belgium
| | - Faeq Husain-Syed
- Division of Nephrology, Pulmonology and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Giessen, Germany
| | - Matthias Lubnow
- Department of Cardiology, Pulmonary and Critical Care Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marco Maggiorini
- Medical Intensive Care Unit, Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Melanie Meersch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Patrick T Murray
- School of Medicine, University College Dublin, Dublin, Ireland
- UCD Catherine McAuley Education and Research Centre, Dublin, Ireland
| | - Zaccaria Ricci
- Department of Cardiology and Cardiac Surgery, Paediatric Cardiac Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kai Singbartl
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Thomas Staudinger
- Department of Medicine I, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Tobias Welte
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padua, Italy
- International Renal Research Institute of Vicenza, San Bortolo Hospital, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - John A Kellum
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Dual Carbon Dioxide Capture to Achieve Highly Efficient Ultra-Low Blood Flow Extracorporeal Carbon Dioxide Removal. Ann Biomed Eng 2020; 48:1562-1572. [PMID: 32072384 DOI: 10.1007/s10439-020-02477-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
Extracorporeal CO2 removal is a highly promising support therapy for patients with hypercapnic respiratory failure but whose clinical implementation and patient benefit is hampered by high cost and highly specialized expertise required for safe use. Current approaches target removal of the gaseous CO2 dissolved in blood which limits their ease of clinical use as high blood flow rates are required to achieve physiologically significant CO2 clearance. Here, a novel hybrid approach in which a zero-bicarbonate dialysis is used to target removal of bicarbonate ion coupled to a gas exchange device to clear dissolved CO2, achieves highly efficiently total CO2 capture while maintaining systemic acid-base balance. In a porcine model of acute hypercapnic respiratory failure, a CO2-reduction of 61.4 ± 14.4 mL/min was achieved at a blood flow rate of 248 mL/min using pediatric-scale priming volumes. The dialyzer accounted for 81% of total CO2 capture with an efficiency of 33% with a minimal pH change across the entire circuit. This study demonstrates the feasibility of a novel hybrid CO2 capture approach capable of achieving physiologically significant CO2 removal at ultralow blood flow rates with low priming volumes while leveraging widely available dialysis platforms to enable clinical adoption.
Collapse
|
21
|
Jonckheer J, Spapen H, Malbrain MLNG, Oschima T, De Waele E. Energy expenditure and caloric targets during continuous renal replacement therapy under regional citrate anticoagulation. A viewpoint. Clin Nutr 2020; 39:353-357. [PMID: 30852030 DOI: 10.1016/j.clnu.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Indirect calorimetry (IC) is the gold standard for measuring energy expenditure in critically ill patients However, continuous renal replacement therapy (CRRT) is a formal contraindication for IC use. AIMS To discuss specific issues that hamper or preclude an IC-based assessment of energy expenditure and correct caloric prescription in CRRT-treated patients. METHODS Narrative review of current literature. RESULTS Several relevant pitfalls for validation of IC during CRRT were identified. First, IC measures CO2 production (VCO2) and O2 consumption to calculate resting energy expenditure (REE) with the Weir equation. VCO2 measurements are influenced by CRRT because CO2 is exchanged during the blood purification process. CO2 exchange also depends on type of pre- and/or postdilution fluid(s). CO2 dissolves in different forms with dynamic but unpredictable impact on VCO2. Second, the effect of immunologic activation and heat loss on REE caused by extracorporeal circulation during CRRT is poorly documented. Third, caloric prescription should be adapted to CRRT-induced in- and efflux of different nutrients. Finally, citrate, which is the preferred anticoagulant for CRRT, is a caloric source that may influence IC measurements and REE. CONCLUSION Better understanding of CRRT-related processes is needed to assess REE and provide individualized nutritional therapy in this condition.
Collapse
Affiliation(s)
- J Jonckheer
- Intensive Care, UZ Brussel, Laarbeeklaan 101, Jette, Brussel, 1090, Belgium.
| | - H Spapen
- Intensive Care, UZ Brussel, Laarbeeklaan 101, Jette, Brussel, 1090, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - M L N G Malbrain
- Intensive Care, UZ Brussel, Laarbeeklaan 101, Jette, Brussel, 1090, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - T Oschima
- Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba City, 260-8677, Japan.
| | - E De Waele
- Intensive Care, UZ Brussel, Laarbeeklaan 101, Jette, Brussel, 1090, Belgium; Department of Nutrition, UZ Brussel, Laarbeeklaan 101, Jette, Brussel, 1090, Belgium.
| |
Collapse
|
22
|
Perez Ruiz de Garibay A, Kellum JA, Honigschnabel J, Kreymann B. Respiratory and metabolic acidosis correction with the ADVanced Organ Support system. Intensive Care Med Exp 2019; 7:56. [PMID: 31535309 PMCID: PMC6751235 DOI: 10.1186/s40635-019-0269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Background The lung, the kidney, and the liver are major regulators of acid-base balance. Acidosis due to the dysfunction of one or more organs can increase mortality, especially in critically ill patients. Supporting compensation by increasing ventilation or infusing bicarbonate is often ineffective. Therefore, direct removal of acid may represent a novel therapeutic approach. This can be achieved with the ADVanced Organ Support (ADVOS) system, an enhanced renal support therapy based on albumin dialysis. Here, we demonstrate proof of concept for this technology. Methods An ex vivo model of either hypercapnic (i.e., continuous CO2 supply) or lactic acidosis (i.e., lactic acid infusion) using porcine blood was subjected to hemodialysis with ADVOS. A variety of operational parameters including blood and dialysate flows, different dialysate pH settings, and acid and base concentrate compositions were tested. Comparisons with standard continuous veno-venous hemofiltration (CVVH) using high bicarbonate substitution fluid and continuous veno-venous hemodialysis (CVVHD) were also performed. Results Sixty-one milliliters per minute (2.7 mmol/min) of CO2 was removed using a blood flow of 400 ml/min and a dialysate pH of 10 without altering blood pCO2 and HCO3− (36 mmHg and 20 mmol/l, respectively). Up to 142 ml/min (6.3 mmol/min) of CO2 was eliminated if elevated pCO2 (117 mmHg) and HCO3− (63 mmol/l) were allowed. During continuous lactic acid infusion, an acid load of up to 3 mmol/min was compensated. When acidosis was triggered, ADVOS multi normalized pH and bicarbonate levels within 1 h, while neither CVVH nor CVVHD could. The major determinants to correct blood pH were blood flow, dialysate composition, and initial acid-base status. Conclusions In conclusion, ADVOS was able to remove more than 50% of the amount of CO2 typically produced by an adult human. Blood pH was maintained stable within the physiological range through compensation of a metabolic acid load by albumin dialysate. These in vitro results will require confirmation in patients.
Collapse
Affiliation(s)
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | | | | |
Collapse
|
23
|
Morales-Quinteros L, Del Sorbo L, Artigas A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure. Ann Intensive Care 2019; 9:79. [PMID: 31267300 PMCID: PMC6606679 DOI: 10.1186/s13613-019-0551-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/24/2019] [Indexed: 02/11/2023] Open
Abstract
In the past, the only treatment of acute exacerbations of obstructive diseases with hypercapnic respiratory failure refractory to medical treatment was invasive mechanical ventilation (IMV). Considerable technical improvements transformed extracorporeal techniques for carbon dioxide removal in an attractive option to avoid worsening respiratory failure and respiratory acidosis, and to potentially prevent or shorten the duration of IMV in patients with exacerbation of COPD and asthma. In this review, we will present a summary of the pathophysiological rationale and evidence of ECCO2R in patients with severe exacerbations of these pathologies.
Collapse
Affiliation(s)
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Barcelona, Spain.,Critical Care Center, ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Jonckheer J, Spapen H, Debain A, Demol J, Diltoer M, Costa O, Lanckmans K, Oshima T, Honoré P, Malbrain M, De Waele E. CO 2 and O 2 removal during continuous veno-venous hemofiltration: a pilot study. BMC Nephrol 2019; 20:222. [PMID: 31208356 PMCID: PMC6580471 DOI: 10.1186/s12882-019-1378-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 05/10/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Carbon dioxide (CO2) accumulation is a challenging issue in critically ill patients. CO2 can be eliminated by renal replacement therapy but studies are scarce and clinical relevance is unknown. We prospectively studied CO2 and O2 behavior at different sample points of continuous veno-venous hemofiltration (CVVH) and build a model to calculate CO2 removal bedside. METHODS In 10 patients receiving standard CVVH under citrate anticoagulation, blood gas analysis was performed at different sample points within the CVVH circuit. Citrate was then replaced by NaCl 0.9% and sampling was repeated. Total CO2 (tCO2), CO2 flow (V̇CO2) and O2 flow (V̇O2) were compared between different sample points. The effect of citrate on transmembrane tCO2 was evaluated. Wilcoxon matched-pairs signed rank test was performed to evaluate significance of difference between 2 data sets. Friedman test was used when more data sets were compared. RESULTS V̇CO2 in the effluent (26.0 ml/min) correlated significantly with transmembrane V̇CO2 (24.2 ml/min). This represents 14% of the average expired V̇CO2 in ventilated patients. Only 1.3 ml/min CO2 was removed in the de-aeration chamber, suggesting that CO2 was almost entirely cleared across the membrane filter. tCO2 values in effluent, before, and after the filter were not statistically different. Transmembrane tCO2 under citrate or NaCl 0.9% predilution also did not differ significantly. No changes in V̇O2 were observed throughout the CVVH circuit. Based on recorded data, formulas were constructed that allow bedside evaluation of CVVH-attributable CO2 removal. CONCLUSION A relevant amount of CO2 is removed by CVVH and can be quantified by one simple blood gas analysis within the circuit. Future studies should assess the clinical impact of this observation. TRIAL REGISTRATION The trial was registered at https://clinicaltrials.gov with trial registration number NCT03314363 on October 192,017.
Collapse
Affiliation(s)
- Joop Jonckheer
- Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Herbert Spapen
- Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Aziz Debain
- Geriatrics, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Joy Demol
- Department of Nutrition, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Marc Diltoer
- Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Olivier Costa
- Department of Clinical Laboratory, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Katrien Lanckmans
- Department of Clinical Laboratory, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Taku Oshima
- Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba City, 260-8677 Japan
| | - Patrick Honoré
- Intensive Care, CHU Brugmann, A. Van Gehuchtenplein 4, 1020, Brussel, Belgium
| | - Manu Malbrain
- Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
| | - Elisabeth De Waele
- Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Jette, Belgium
- Department of Nutrition, Laarbeeklaan 101, 1090 Jette, Belgium
| |
Collapse
|
25
|
[Current techniques for extracorporeal decarboxylation]. Med Klin Intensivmed Notfmed 2019; 114:733-740. [PMID: 31020339 DOI: 10.1007/s00063-019-0567-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
The widespread use of extracorporeal lung assist (ECLA) in recent years has led to the introduction of different decarboxylation systems into clinical practice. Due to the large CO2 transport capacity of the blood such systems require considerably lower extracorporeal blood flows and therefore allow for effective decarboxylation with reduced invasiveness and complexity. While systems derived from classical lung assist are mainly used to control severe acute hypercapnic respiratory failure, recently a growing number of therapies based on renal replacement platforms have become available ("respiratory dialysis"). Such low-flow systems still allow for effective partial CO2 elimination and can control respiratory acidosis as well as facilitate or even enable protective and ultraprotective ventilation strategies in acute lung failure (ARDS). While the use of extracorporeal CO2 elimination (ECCO2R) has been shown to decrease ventilator-induced lung injury (VILI), positive effects on hard clinical endpoints such as mortality or duration of mechanical ventilation are still unproven. In light of limited evidence, ECCO2R must be regarded as an experimental procedure. Its use should therefore at present be restricted to centers with appropriate experience.
Collapse
|
26
|
Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, Sinderby C, Windisch W. Control of respiratory drive by extracorporeal CO 2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:135. [PMID: 31014366 PMCID: PMC6480839 DOI: 10.1186/s13054-019-2404-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
Abstract
Background Veno-venous extracorporeal CO2 removal (vv-ECCO2R) and non-invasive neurally adjusted ventilator assist (NIV-NAVA) are two promising techniques which may prevent complications related to prolonged invasive mechanical ventilation in patients with acute exacerbation of COPD. Methods A physiological study of the electrical activity of the diaphragm (Edi) response was conducted with varying degrees of extracorporeal CO2 removal to control the respiratory drive in patients with severe acute exacerbation of COPD breathing on NIV-NAVA. Results Twenty COPD patients (SAPS II 37 ± 5.6, age 57 ± 9 years) treated with vv-ECCO2R and supported by NIV-NAVA were studied during stepwise weaning of vv-ECCO2R. Based on dyspnea, tolerance, and blood gases, weaning from vv-ECCO2R was successful in 12 and failed in eight patients. Respiratory drive (measured via the Edi) increased to 19 ± 10 μV vs. 56 ± 20 μV in the successful and unsuccessful weaning groups, respectively, resulting in all patients keeping their CO2 and pH values stable. Edi was the best predictor for vv-ECCO2R weaning failure (ROC analysis AUC 0.95), whereas respiratory rate, rapid shallow breathing index, and tidal volume had lower predictive values. Eventually, 19 patients were discharged home, while one patient died. Mortality at 90 days and 180 days was 15 and 25%, respectively. Conclusions This study demonstrates for the first time the usefulness of the Edi signal to monitor and guide patients with severe acute exacerbation of COPD on vv-ECCO2R and NIV-NAVA. The Edi during vv-ECCO2R weaning was found to be the best predictor of tolerance to removing vv-ECCO2R. Electronic supplementary material The online version of this article (10.1186/s13054-019-2404-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
| | - Stephan Strassmann
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Sarah Schwarz
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Michaela Merten
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Extracorporeal Life Support Program, Toronto General Hospital, Toronto, Canada
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science and Department of Critical Care Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science and Department of Critical Care Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| |
Collapse
|
27
|
Vu LH, Kellum JA, Federspiel WJ, Cove ME. Carbon dioxide removal using low bicarbonate dialysis in rodents. Perfusion 2019; 34:578-583. [DOI: 10.1177/0267659119839284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Extracorporeal carbon dioxide removal may be used to manage hypercapnia, but compared to dialysis, it’s not widely available. A recent in vitro study showed that dialysis with low bicarbonate dialysates removes CO2. Objective: To show that bicarbonate dialysis removes CO2 in an animal model to validate in-vitro findings and quantify the effect on arterial pH. Methods: Male Sprague-Dawley hypercapnic rats were dialyzed with either a conventional dialysate (PrismasolTM) or a bicarbonate-free dialysate (Bicarb0). The effect of dialysis on standard blood gases and electrolytes was measured. Results: Partial pressure of CO2 and bicarbonate concentration in blood decreased significantly after exposure to Bicarb0 compared to PrismasolTM (filter outflow values 12.8 vs 81.1 mmHg; p < 0.01 for CO2 and 3.5 vs 22.0 mmol/L; p < 0.01 for bicarbonate). Total CO2 content of blood was reduced by 459 mL/L during dialysis with Bicarb0 (filter inflow 546 ± 91 vs filter outflow 87 ± 52 mL/L; p < 0.01), but was not significantly reduced with PrismasolTM. Conclusions: Bicarbonate dialysis removes CO2 at rates comparable to existing low-flow ECCO2R.
Collapse
Affiliation(s)
- Lien H Vu
- Division of Respiratory Medicine and Critical Care and Department of Medicine, National University of Singapore, Singapore
| | - John A Kellum
- Center for Critical Care Nephrology, Clinical Research Investigation and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William J Federspiel
- McGowan Institute for Regenerative Medicine, Departments of Bioengineering and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew E Cove
- Division of Respiratory Medicine and Critical Care and Department of Medicine, National University of Singapore, Singapore
- Center for Critical Care Nephrology, Clinical Research Investigation and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Jonckheer J, Vergaelen K, Spapen H, Malbrain MLNG, De Waele E. Modification of Nutrition Therapy During Continuous Renal Replacement Therapy in Critically Ill Pediatric Patients: A Narrative Review and Recommendations. Nutr Clin Pract 2018; 34:37-47. [PMID: 30570180 PMCID: PMC7379206 DOI: 10.1002/ncp.10231] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Nutrition is an important part of treatment in critically ill children. Clinical guidelines for nutrition adaptations during continuous renal replacement therapy (CRRT) are lacking. We collected and evaluated current knowledge on this topic and provide recommendations. Methods Questions were produced to guide the literature search in the PubMed database. Results Evidence is scarce and extrapolation from adult data was often required. CRRT has a direct and substantial impact on metabolism. Indirect calorimetry is the preferred method to assess resting energy expenditure (REE). Moderate underestimation of REE is common but not clinically relevant. Formula‐based calculation of REE is inaccurate and not validated in critically ill children on CRRT. The nutrition impact of nonintentional calories delivered as citrate, lactate, and glucose during CRRT must be considered. Quantifying nitrogen balance is not feasible during CRRT. Protein delivery should be increased by 25% to compensate for losses in the effluent. Fats are not removed by CRRT and should not be adapted during CRRT. Electrolyte disturbances are frequently present and should be treated accordingly. Vitamins B1, B6, B9, and C are lost in the effluent and should be adapted to the effluent dose. Trace elements, with the exception of selenium, are not cleared in relevant quantities. Manganese accumulation is of concern because of potential neurotoxicity. Conclusion Current recommendations regarding nutrition support in pediatric CRRT must be extrapolated from adult studies. Recommendations are provided, based on the weak level of evidence. Additional research on this topic is warranted.
Collapse
Affiliation(s)
- Joop Jonckheer
- Intensive Care Department, University Hospital Brussels, Brussels, Belgium
| | - Klaar Vergaelen
- Pediatric Intensive Care Unit, University Hospital Brussels, Brussels, Belgium
| | - Herbert Spapen
- Intensive Care Department, University Hospital Brussels, Brussels, Belgium
| | - Manu L N G Malbrain
- Intensive Care Department, University Hospital Brussels, Brussels, Belgium.,Pediatric Intensive Care Unit, University Hospital Brussels, Brussels, Belgium
| | - Elisabeth De Waele
- Intensive Care Department, University Hospital Brussels, Brussels, Belgium.,Department of Nutrition, University Hospital Brussels, Brussels, Belgium
| |
Collapse
|