1
|
Lin P, Liu X, Gao Z, Yuan Y, Liu H, Huang L, He Z, Zeng Q, Wang S. Microplastics magnify inhibitive effects of perfluorooctanoic acid on the marine microbial loop. ENVIRONMENTAL RESEARCH 2025; 273:121223. [PMID: 40015436 DOI: 10.1016/j.envres.2025.121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The marine microbial loop comprising picophytoplankton, bacteria and microzooplankton is essential in global carbon cycling, which is currently affected by anthropogenic pollutants. Nonetheless, the impact of anthropogenic pollutants on the marine microbial loop remains elusive. In this study, perfluorooctanoic acid (PFOA) and microplastics (MPs) were selected as representative anthropogenic pollutants to investigate their impacts on the marine microbial loop with Prochlorococcus MED4 (picophytoplankton), Alteromonas macleodii EZ55 (bacteria), Pseudocohnilembus persalinus and Cafeteria roenbergensis (microzooplankton) as model microorganisms. The picophytoplankton was identified to be most sensitive to PFOA with a sensitivity order of MED4 > EZ55 > C. roenbergensis > P. persalinus. In contrast, polystyrene (PS) as a representative MP had less inhibition on the microbial loop, but synergistically magnified the inhibitive effects of PFOA on those four microorganisms. Moreover, PS significantly (p < 0.05) enhanced the bioconcentration and biomagnification of PFOA in the marine microbial loop, e.g., 1.89, 1.33, 1.22, and 2.18-fold increase in bioconcentration factor values in MED4, EZ55, P. persalinus and C. roenbergensis, respectively, compared to sole PFOA exposure. These results highlighted the exacerbated ecological risk of the co-existence of PFOA and MPs and provides the first insight into impacts of PFOA and PS on the marine microbial loop.
Collapse
Affiliation(s)
- Peichun Lin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaokun Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Zuyuan Gao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Yelinzi Yuan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Zhili He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Sánchez-Gallego J, Curtis NP, Paerl HW, Paerl RW. New perspectives on picocyanobacteria and understudied cyanobacterial diversity in the Albemarle Pamlico sound system, North Carolina, USA. Front Microbiol 2025; 16:1539050. [PMID: 40415923 PMCID: PMC12099654 DOI: 10.3389/fmicb.2025.1539050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/25/2025] [Indexed: 05/27/2025] Open
Abstract
Cyanobacteria are important primary producers, sources of secondary metabolites, and sentinels of environmental change in aquatic ecosystems - including large estuaries. Here, we newly investigated cyanobacterial diversity within the Albemarle Pamlico Sound System (APES) using (16S rRNA) gene amplicon sequencing analyses. Substantial cyanobacterial diversity including lineages lacking current isolates were recovered (46 genera, 17 potentially cyanotoxic), with oligohaline waters of the Albemarle Sound and its tributaries being notable regional hotspot for diversity. Salinity and temperature were influential drivers of cyanobacterial community composition. Picocyanobacteria (cells <3 µm in diameter) were abundant in amplicon sequence libraries (72% of cyanobacterial sequences) - especially populations within Synechococcus SubClade 5.2. Picocyanobacteria along with picoeukaryotes were large contributors to total phytoplankton biomass comprising ~47% of chlorophyll a. Further, the picocyanobacterial genera Synechococcus, Cyanobium, and Synechocystis (55.4%, 14.8%, and 12.9% of cyanobacterial sequences, respectively) formed a core community spanning from freshwater regions (eastern AST, D949) to polyhaline environments (NRE100 downstream stations to PS5), suggesting resilience to significant salinity fluctuations and associated environmental changes. Amplicon sequence variant (ASV) and environmental data indicate the presence of several putative ecotypes, as well as distinct abundance patterns among closely related populations, highlighting substantial fitness variability among subspecies. Notably, potentially cyanotoxic genera, Synechocystis, Planktothrix, Plectonema, and Dolichospermum were the four more abundant detected in polyhaline APES regions, far beyond conspicuous freshwater sources. These findings reveal previously unrecognized potential sources of cyanotoxics in estuarine food webs and habitats, underscoring the ecological significance of cyanobacterial community dynamics across salinity gradients.
Collapse
Affiliation(s)
- Joel Sánchez-Gallego
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
- Coiba Scientific Station, City of Knowledge, Clayton, Panama
| | - Nathaniel P. Curtis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Hans W. Paerl
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Ryan W. Paerl
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Sher D, George EE, Wietz M, Gifford S, Zoccarato L, Weissberg O, Koedooder C, Valiya Kalladi WB, Barreto Filho MM, Mireles R, Malavin S, Liddor Naim M, Idan T, Shrivastava V, Itelson L, Sade D, Abu Hamoud A, Soussan-Farhat Y, Barak N, Karp P, Moore LR. Collaborative metabolic curation of an emerging model marine bacterium, Alteromonas macleodii ATCC 27126. PLoS One 2025; 20:e0321141. [PMID: 40273159 PMCID: PMC12021255 DOI: 10.1371/journal.pone.0321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Inferring the metabolic capabilities of an organism from its genome is a challenging process, relying on computationally-derived or manually curated metabolic networks. Manual curation can correct mistakes in the draft network and add missing reactions based on the literature, but requires significant expertise and is often the bottleneck for high-quality metabolic reconstructions. Here, we present a synopsis of a community curation workshop for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome database in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. Due to the scarcity of biochemical information or gene knock-outs, the curation process relied primarily on published growth phenotypes and bioinformatic analyses, including comparisons with related Alteromonas strains. We report full pathways for the utilization of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of growth on methanol and formate. Pathways for amino acid degradation are ubiquitous across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known pathways. Our evidence highlights the value of joint and interactive curation efforts, but also shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated metabolic reconstruction is available as a "Tier-2" database on BioCyc.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Emma E. George
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Scott Gifford
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luca Zoccarato
- Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Bioinformatics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | - Raul Mireles
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,
| | - Stas Malavin
- Israel Oceanographic and Limnological Research, Haifa, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Michal Liddor Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Idan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vibhaw Shrivastava
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Lynne Itelson
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dagan Sade
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alhan Abu Hamoud
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Yara Soussan-Farhat
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Noga Barak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Peter Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| |
Collapse
|
4
|
Lu Z, Entwistle E, Kuhl MD, Durrant AR, Barreto Filho MM, Goswami A, Morris JJ. Coevolution of marine phytoplankton and Alteromonas bacteria in response to pCO2 and coculture. THE ISME JOURNAL 2025; 19:wrae259. [PMID: 39716385 PMCID: PMC11748131 DOI: 10.1093/ismejo/wrae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 12/25/2024]
Abstract
As a result of human activity, Earth's atmosphere and climate are changing at an unprecedented pace. Models based on short-term experiments predict major changes will occur in marine phytoplankton communities in the future ocean, but rarely consider how evolution or interactions with other microbes may influence these changes. Here, we experimentally evolved several phytoplankton in coculture with a heterotrophic bacterium, Alteromonas sp. EZ55, under either present-day or predicted future pCO2 conditions. Growth rates of phytoplankton generally increased over time under both conditions, but only Thalassiosira oceanica had evidence of a growth rate tradeoff in the ancestral environment after evolution at elevated pCO2. The growth defects observed in ancestral Prochlorococcus cultures at elevated pCO2 and in axenic culture were diminished after evolution, possibly due to regulatory mutations in antioxidant genes. Except for Prochlorococcus, mutational profiles suggested phytoplankton experienced primarily purifying selection, but most Alteromonas lineages showed evidence of directional selection, where evolution appeared to favor a metabolic switch between growth on small organic acids with cyanobacteria versus catabolism of more complex carbon substrates with eukaryotic phytoplankton. Evolved Alteromonas were also poorer "helpers" for Prochlorococcus, consistent with that interaction being a competitive Black Queen process rather than a true mutualism. This work provides new insights on how phytoplankton will respond to increased pCO2 and on the evolutionary mechanisms governing phytoplankton:bacteria interactions. It also clearly demonstrates that both evolution and interspecies interactions must be considered to predict future marine biogeochemistry.
Collapse
Affiliation(s)
- Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Elizabeth Entwistle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew D Kuhl
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alexander R Durrant
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | - Anuradha Goswami
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Saha G, Chandrasekaran N. A comprehensive review on the adverse effect of microplastics in the gastrointestinal system of Artemia sp. Heliyon 2024; 10:e37720. [PMID: 39309788 PMCID: PMC11416537 DOI: 10.1016/j.heliyon.2024.e37720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastic waste in aquatic environments can lead to the mortality of large marine creatures, as it increases the risk of entanglement, strangulation, and starvation. Even though micro- and nano-plastics pose a hidden threat, researchers still know little about them. The food source is an essential factor in gut microbial diversity. A well-balanced intestinal microbiome impacts animal development and health. According to research, microplastics (MPs) like polyethylene (PE) and polystyrene (PS) affected the gut microbiota of Artemia sp., increasing their genetic diversity. Therefore, the present study examined the negative impacts of MPs within the gastrointestinal tract of Artemia sp., the primary protein source of fish. A comprehensive literature review showed that microplastic contamination and its additives impair environmental and aquatic health. The findings of this research show that MPs alter the gut microbiota of Artemia, which in turn affects fish and, ultimately, human health via a cascade of impacts.
Collapse
Affiliation(s)
- Guria Saha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
6
|
Ndotono EW, Tanga CM, Kelemu S, Khamis FM. Mitogenomic profiling and gut microbial analysis of the newly identified polystyrene-consuming lesser mealworm in Kenya. Sci Rep 2024; 14:21370. [PMID: 39266593 PMCID: PMC11393456 DOI: 10.1038/s41598-024-72201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Plastic waste has recently become a major global environmental concern and one of the biggest challenges has been seeking for alternative management options. Several studies have revealed the potential of several coleopteran species to degrade plastics, and this is the first research paper on plastic-degradation potential by lesser mealworms from Africa. This study evaluated the whole mitogenomic profile of the lesser mealworm to further identify the insect. The ability of the mealworm to consume Polystyrene (PS) was also evaluated alongside its associated gut microbiota diversity. Our results showed a complete circular mitochondrial genome which clustered closely to the Alphitobius genus but also suggested that our insect might be a new subspecies which require further identification. During the PS feeding trials, overall survival rates of the larvae decreased when fed a sole PS diet while PS intake was observed to increase over a 30-day period. The predominant bacteria observed in larvae fed PS diets were Kluyvera, Lactococcus, Klebsiella, Enterobacter, and Enterococcus, while Stenotrophomonas dominated the control diet. These findings demonstrated that the newly identified lesser mealworm can survive on a PS diet and has a consortium of important bacteria strongly associated with PS degradation. This work provides a better understanding of bioremediation applications, paving the way for further research into the metabolic pathways of plastic-degrading microbes and bringing hope to solving plastic waste pollution while providing high-value insect protein towards a circular economy.
Collapse
Affiliation(s)
- Evalyne W Ndotono
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
7
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
8
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Eigemann F, Rahav E, Grossart HP, Aharonovich D, Voss M, Sher D. Phytoplankton Producer Species and Transformation of Released Compounds over Time Define Bacterial Communities following Phytoplankton Dissolved Organic Matter Pulses. Appl Environ Microbiol 2023; 89:e0053923. [PMID: 37409944 PMCID: PMC10370336 DOI: 10.1128/aem.00539-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Phytoplankton-bacterium interactions are mediated, in part, by phytoplankton-released dissolved organic matter (DOMp). Two factors that shape the bacterial community accompanying phytoplankton are (i) the phytoplankton producer species, defining the initial composition of released DOMp, and (ii) the DOMp transformation over time. We added phytoplankton DOMp from the diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 to natural bacterial communities from the eastern Mediterranean and determined the bacterial responses over a time course of 72 h in terms of cell numbers, bacterial production, alkaline phosphatase activity, and changes in active bacterial community composition based on rRNA amplicon sequencing. Both DOMp types were demonstrated to serve the bacterial community as carbon and, potentially, phosphorus sources. Bacterial communities in diatom-derived DOM treatments maintained higher Shannon diversities throughout the experiment and yielded higher bacterial production and lower alkaline phosphatase activity compared to cyanobacterium-derived DOM after 24 h of incubation (but not after 48 and 72 h), indicating greater bacterial usability of diatom-derived DOM. Bacterial communities significantly differed between DOMp types as well as between different incubation times, pointing to a certain bacterial specificity for the DOMp producer as well as a successive utilization of phytoplankton DOM by different bacterial taxa over time. The highest differences in bacterial community composition with DOMp types occurred shortly after DOMp additions, suggesting a high specificity toward highly bioavailable DOMp compounds. We conclude that phytoplankton-associated bacterial communities are strongly shaped by the phytoplankton producer as well as the transformation of its released DOMp over time. IMPORTANCE Phytoplankton-bacterium interactions influence biogeochemical cycles of global importance. Phytoplankton photosynthetically fix carbon dioxide and subsequently release the synthesized compounds as dissolved organic matter (DOMp), which becomes processed and recycled by heterotrophic bacteria. Yet the importance of phytoplankton producers in combination with the time-dependent transformation of DOMp compounds on the accompanying bacterial community has not been explored in detail. The diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 belong to globally important phytoplankton genera, and our study revealed that DOMp of both species was selectively incorporated by the bacterial community. The producer species had the highest impact shortly after DOMp appropriation, and its effect diminished over time. Our results improve the understanding of the dynamics of organic matter produced by phytoplankton in the oceans as it is utilized and modified by cooccurring bacteria.
Collapse
Affiliation(s)
- Falk Eigemann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
- Leibniz-Institute for Baltic Sea Research, Warnemuende, Germany
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Potsdam University, Potsdam, Germany
| | | | - Maren Voss
- Leibniz-Institute for Baltic Sea Research, Warnemuende, Germany
| | - Daniel Sher
- Leon H. Charney School of Marine Sciences, University Haifa, Israel
| |
Collapse
|
10
|
Berta-Thompson JW, Thomas E, Cubillos-Ruiz A, Hackl T, Becker JW, Coe A, Biller SJ, Berube PM, Chisholm SW. Draft genomes of three closely related low light-adapted Prochlorococcus. BMC Genom Data 2023; 24:11. [PMID: 36829130 PMCID: PMC9951446 DOI: 10.1186/s12863-022-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2022] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVES The marine cyanobacterium Prochlorococcus is a critical part of warm ocean ecosystems and a model for studying microbial evolution and ecology. To expand the representation of this organism's vast wild diversity in sequence collections, we performed a set of isolation efforts targeting low light-adapted Prochlorococcus. Three genomes resulting from this larger body of work are described here. DATA DESCRIPTION We present draft-quality Prochlorococcus genomes from enrichment cultures P1344, P1361, and P1363, sampled in the North Pacific. The genomes were built from Illumina paired reads assembled de novo. Supporting datasets of raw reads, assessments, and sequences from co-enriched heterotrophic marine bacteria are also provided. These three genomes represent members of the low light-adapted LLIV Prochlorococcus clade that are closely related, with 99.9% average nucleotide identity between pairs, yet vary in gene content. Expanding the powerful toolkit of Prochlorococcus genomes, these sequences provide an opportunity to study fine-scale variation and microevolutionary processes.
Collapse
Affiliation(s)
- Jessie W Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Research and Conservation, Denver Botanic Gardens, Denver, CO, 80206, USA.
| | - Elaina Thomas
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Andrés Cubillos-Ruiz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, 9700 CC, The Netherlands
| | - Jamie W Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Science and Mathematics, Alvernia University, Reading, PA, 19607, USA
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
12
|
Fadeev E, Carpaneto Bastos C, Hennenfeind JH, Biller SJ, Sher D, Wietz M, Herndl GJ. Characterization of membrane vesicles in Alteromonas macleodii indicates potential roles in their copiotrophic lifestyle. MICROLIFE 2022; 4:uqac025. [PMID: 37223730 PMCID: PMC10117737 DOI: 10.1093/femsml/uqac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
Bacterial membrane vesicles (MVs) are abundant in the oceans, but their potential functional roles remain unclear. In this study we characterized MV production and protein content of six strains of Alteromonas macleodii, a cosmopolitan marine bacterium. Alteromonas macleodii strains varied in their MV production rates, with some releasing up to 30 MVs per cell per generation. Microscopy imaging revealed heterogenous MV morphologies, including some MVs aggregated within larger membrane structures. Proteomic characterization revealed that A. macleodii MVs are rich in membrane proteins related to iron and phosphate uptake, as well as proteins with potential functions in biofilm formation. Furthermore, MVs harbored ectoenzymes, such as aminopeptidases and alkaline phosphatases, which comprised up to 20% of the total extracellular enzymatic activity. Our results suggest that A. macleodii MVs may support its growth through generation of extracellular 'hotspots' that facilitate access to essential substrates. This study provides an important basis to decipher the ecological relevance of MVs in heterotrophic marine bacteria.
Collapse
Affiliation(s)
- Eduard Fadeev
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Cécile Carpaneto Bastos
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jennifer H Hennenfeind
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Steven J Biller
- Department of Biological Sciences, Wellesley College, Central Street 106, MA 02481, Wellesley, United States
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Aba Khoushy Ave. 199, 3498838 Haifa, Israel
| | - Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Gerhard J Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University,1790 AB Den Burg, The Netherlands
- Vienna Metabolomics & Proteomics Center, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
13
|
Nair S, Zhang Z, Li H, Zhao H, Shen H, Kao SJ, Jiao N, Zhang Y. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. SCIENCE ADVANCES 2022; 8:eabf4792. [PMID: 36179022 PMCID: PMC9524826 DOI: 10.1126/sciadv.abf4792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Mutualism between Synechococcus and heterotrophic bacteria has been found to support their prolonged survival in nutrient-depleted conditions. However, environmental interference on the fate of their mutualism is not understood. Here, we show that exogenous nutrients disrupt their established mutualism. Once the exogenous nutrients were exhausted, Synechococcus and heterotrophic bacteria gradually reestablished their metabolic mutualism during 450 days of culture, which revived unhealthy Synechococcus cells. Using metagenomics, metatranscriptomics, and the 15N tracer method, we reveal that the associated bacterial nitrogen fixation triggered the reestablishment of the mutualism and revival of Synechococcus health. During this process, bacterial community structure and functions underwent tremendous adjustments to achieve the driving effect, and a cogeneration of nitrogen, phosphorus, iron, and vitamin by the heterotrophic bacteria sustained Synechococcus's prolonged healthy growth. Our findings suggest that Synechococcus and heterotrophic bacteria may have an inherent tendency toward mutualism despite environmental interference. This may exhibit their coevolutionary adaptations in nutrient-deficient environments.
Collapse
Affiliation(s)
- Shailesh Nair
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zenghu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanshuang Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Rodrigues CJC, de Carvalho CCCR. Cultivating marine bacteria under laboratory conditions: Overcoming the “unculturable” dogma. Front Bioeng Biotechnol 2022; 10:964589. [PMID: 36061424 PMCID: PMC9428589 DOI: 10.3389/fbioe.2022.964589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Underexplored seawater environments may contain biological resources with potential for new biotechnological applications. Metagenomic techniques revolutionized the study of bacterial communities but culture dependent methods will still be important to help the biodiscovery of new products and enzymes from marine bacteria. In this context, we promoted the growth of bacteria from a marine rock pond by culture dependent techniques and compared the results with culture independent methods. The total number of bacteria and diversity were studied in different agar plate media during 6 weeks. Agar plate counting was of the same order of magnitude of direct microscopy counts. The highest efficiency of cultivation was 45% attained in marine agar medium. Molecular analysis revealed 10 different phyla of which only four were isolated by the culture dependent method. On the other hand, four taxonomic orders were detected by cultivation but not by the molecular technique. These include bacteria from the phyla Bacillota and Actinomycetota. Our study shows that it is possible to grow more than the traditionally considered 1% of bacteria from a seawater sample using standard agar plate techniques and laboratorial conditions. The results also demonstrate the importance of culture methods to grow bacteria not detected by molecular approaches for future biotechnological applications.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Carla C. C. R. de Carvalho,
| |
Collapse
|
15
|
Kearney SM, Coe A, Castro KG, Chisholm SW. Filter Plating Method for Rendering Picocyanobacteria Cultures Free of Heterotrophic Bacterial Contaminants and Clonal. Front Microbiol 2022; 13:821803. [PMID: 35250937 PMCID: PMC8888907 DOI: 10.3389/fmicb.2022.821803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
Isolates of the marine picocyanobacteria, Prochlorococcus and Synechococcus, are often accompanied by diverse heterotrophic “contaminating” bacteria, which can act as confounding variables in otherwise controlled experiments. Traditional microbiological methods for eliminating contaminants, such as direct streak-plating, are often unsuccessful with this particular group of microorganisms. While they will grow in pour plates, colonies often remain contaminated with heterotrophic bacteria that can migrate through the soft agar. Additionally, axenic clones of picocyanobacteria can be recovered via dilution-to-extinction in liquid medium, but the efficiency of recovery is low, often requiring large numbers of 96-well plates. Here, we detail a simple and effective protocol for rendering cultures of Synechococcus and Prochlorococcus strains free of bacterial contaminants while at the same time yielding clonal isolates. We build on the fact that co-culture with specific heterotrophs—“helper heterotrophs”—is often necessary to grow colonies of picocyanobacteria from single cells in agar. Suspecting that direct physical contact between the helper and the picocyanobacterial cells was not necessary for the “helper effect,” we developed a protocol in which the helper cells are embedded in soft agar pour plates, a filter overlaid on the surface, and a picocyanobacterial culture is diluted and then spotted on top of the filter. With this approach, motile contaminants cannot swim to the colonies, and it is possible to obtain the expected number of colonies from a given input (i.e., a Poisson distribution of colonies with an expected value equal to the input number of cells), thus ensuring clonal colonies. Using this protocol, we rendered three strains of Synechococcus, two strains of Prochlorococcus, and 19 new strains of Synechococcus from coastal seawater clonal and free of heterotrophic bacteria. The simplicity of this approach should expand the repertoire of axenic picocyanobacterial strains available for controlled physiological experiments. It will also enable the study of microdiversity in populations of picocyanobacteria by facilitating large-scale isolation of picocyanobacterial clones from a single source, including direct isolation from natural seawater.
Collapse
Affiliation(s)
- Sean M Kearney
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kurt G Castro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Prochlorococcus Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen. mBio 2022; 13:e0257121. [PMID: 35012332 PMCID: PMC8749424 DOI: 10.1128/mbio.02571-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus, was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph's ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.
Collapse
|
17
|
Bejarano S, Diemel V, Feuring A, Ghilardi M, Harder T. No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata. Sci Rep 2022; 12:1468. [PMID: 35087129 PMCID: PMC8795188 DOI: 10.1038/s41598-022-05420-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Investigations of encounters between corals and microplastics have, to date, used particle concentrations that are several orders of magnitude above environmentally relevant levels. Here we investigate whether concentrations closer to values reported in tropical coral reefs affect sediment shedding and heterotrophy in reef-building corals. We show that single-pulse microplastic deposition elicits significantly more coral polyp retraction than comparable amounts of calcareous sediments. When deposited separately from sediments, microplastics remain longer on corals than sediments, through stronger adhesion and longer periods of examination by the coral polyps. Contamination of sediments with microplastics does not retard corals' sediment clearing rates. Rather, sediments speed-up microplastic shedding, possibly affecting its electrostatic behaviour. Heterotrophy rates are three times higher than microplastic ingestion rates when corals encounter microzooplankton (Artemia salina cysts) and microplastics separately. Exposed to cysts-microplastic combinations, corals feed preferentially on cysts regardless of microplastic concentration. Chronic-exposure experiments should test whether our conclusions hold true under environmental conditions typical of inshore marginal coral reefs.
Collapse
Affiliation(s)
- Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
| | - Valeska Diemel
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Bund Für Umwelt Und Naturschutz (BUND) E.V., Am Dobben 44, 28203, Bremen, Germany
| | - Anna Feuring
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Biological Oceanography Department, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119, Rostock, Germany
| | - Mattia Ghilardi
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Tilmann Harder
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| |
Collapse
|
18
|
Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. ENVIRONMENTAL MICROBIOME 2022; 17:3. [PMID: 35033203 PMCID: PMC8760730 DOI: 10.1186/s40793-022-00398-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). CONCLUSIONS Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Paul Jankowski
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jaydon Gan
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Michaela McKennitt
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
- Institute of the Environment, University of Ottawa, Ottawa, ON, Canada
| | - Audrey Garcia
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Miguel Uyaguari-Diaz
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
19
|
Abstract
Microalgal cultures are often maintained in xenic conditions, i.e., with associated bacteria, and many studies indicate that these communities both are complex and have significant impacts on the physiology of the target photoautotroph. Here, we investigated the structure and stability of microbiomes associated with a diverse sampling of diatoms during long-term maintenance in serial batch culture. We found that, counter to our initial expectation, evenness diversity increased with time since cultivation, driven by a decrease in dominance by the most abundant taxa in each culture. We also found that the site from which and time at which a culture was initially collected had a stronger impact on microbiome structure than the diatom species; however, some bacterial taxa were commonly present in most cultures despite having widely geographically separated collection sites. Our results support the conclusion that stochastic initial conditions (i.e., the local microbial community at the collection site) are important for the long-term structure of these microbiomes, but deterministic forces such as negative frequency dependence and natural selection exerted by the diatom are also at work. IMPORTANCE Natural microbial communities are extremely complex, with many more species coexisting in the same place than there are different resources to support them. Understanding the forces that allow this high level of diversity has been a central focus of ecological and evolutionary theory for many decades. Here, we used stock cultures of diatoms, which were maintained for years in continuous growth alongside populations of bacteria, as proxies for natural communities. We show that the bacterial communities remained relatively stable for years, and there is evidence that ecological forces worked to stabilize coexistence instead of favoring competition and exclusion. We also show evidence that, despite some important regional differences in bacterial communities, there was a globally present core microbiome potentially selected for in these diatom cultures. Understanding interactions between bacteria and diatoms is important both for basic ecological science and for practical science, such as industrial biofuel production.
Collapse
|