1
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2025; 25:153-166. [PMID: 39681638 PMCID: PMC12124142 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Kim KY, Lee JM, Lee EJ, Jung D, Goh AR, Choi MC, Jung SG, Park H, Hwang S, Kang H, An HJ. Establishment and Its Utility of a Patient-Derived Cell Xenografts (PDCX) Model with Cryopreserved Cancer Cells from Human Tumor. Cells 2025; 14:325. [PMID: 40072054 PMCID: PMC11898490 DOI: 10.3390/cells14050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Patient-derived xenograft (PDX) models are powerful tools in cancer research, offering an accurate platform for evaluating cancer treatment efficacy and predicting responsiveness. However, these models necessitate surgical techniques for tumor tissue transplantation and face challenges with non-uniform tumor growth among animals. To address these issues, we attempted to develop a new PDX modeling method using high-grade serous ovarian cancer (HGSC), a fatal disease with a 5-year survival rate of 29%, which requires personalized research due to its morphological, genetic, and molecular heterogeneities. In this study, we developed a new patient-derived cancer cell xenograft (PDCX) model with high engraftment efficiency (64%) that utilizes primary cancer cells instead of patient tissues. Primary cancer cells can be stably cryopreserved for extended periods (up to 485 days), and when transplanted into female NSGA mice, they maintain morphological and molecular characteristics without significant genetic differences compared to their original primary tumors. Furthermore, PDCX models can be easily produced using a syringe, allowing for uniform tumor sizes across multiple animals. Additionally, M2 PDCXs exhibited a significantly faster growth rate compared to M2 PDTXs. Consequently, our PDCX model offers a streamlined approach for evaluating personalized cancer treatments with minimal experimental variability.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
| | - Ji Min Lee
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Eun Ji Lee
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
| | - Daun Jung
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
| | - Ah-Ra Goh
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Min Chul Choi
- Department of Gynecologic Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.C.C.); (S.G.J.); (H.P.)
| | - Sang Geun Jung
- Department of Gynecologic Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.C.C.); (S.G.J.); (H.P.)
| | - Hyun Park
- Department of Gynecologic Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.C.C.); (S.G.J.); (H.P.)
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
| | - Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (K.Y.K.); (J.M.L.); (E.J.L.); (D.J.); (A.-R.G.); (S.H.); (H.K.)
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
3
|
Atre T, Nguyen V, Chow V, Reid GSD, Vercauteren S. A Comparative Study of B Cell Blast Isolation Methods from Bone Marrow Aspirates of Pediatric Leukemia Patients. Biopreserv Biobank 2025; 23:46-52. [PMID: 38686645 DOI: 10.1089/bio.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Density gradient centrifugation is a conventional technique widely utilized to isolate bone marrow mononuclear cells (BM-MNC) from bone marrow (BM) aspirates obtained from pediatric B-cell acute lymphoblastic leukemia (B-ALL) patients. Nevertheless, this technique achieves incomplete recovery of mononuclear cells and is relatively time-consuming and expensive. Given that B-ALL is the most common childhood malignancy, alternative methods for processing B-ALL samples may be more cost-effective. In this pilot study, we use several readouts, including immune phenotype, cell viability, and leukemia-initiating capacity in immune-deficient mice, to directly compare the density gradient centrifugation and buffy coat processing methods. Our findings indicate that buffy coat isolation yields comparable BM-MNC product in terms of both immune and leukemia cell content and could provide a viable, lower cost alternative for biobanks processing pediatric leukemia samples.
Collapse
Affiliation(s)
- Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Vi Nguyen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
| | - Veronica Chow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Suzanne Vercauteren
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
4
|
Safont MM, Leitch C, Popa M, Gjerstad ME, Caulier B, Inderberg EM, Wälchli S, Gelebart P, McCormack E. Protocol for the development of a bioluminescent AML-PDX mouse model for the evaluation of CAR T cell therapy. STAR Protoc 2024; 5:103522. [PMID: 39673705 PMCID: PMC11699402 DOI: 10.1016/j.xpro.2024.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Patient-derived xenograft (PDX) models of acute myeloid leukemia (AML-PDX) offer advantages over cell line models by capturing the complexity and heterogeneity of patient-derived samples. Here, we present a protocol for developing a bioluminescent AML-PDX model in mice to evaluate chimeric antigen receptor (CAR) T cell therapy. We describe steps for transducing, engrafting, expanding, and enriching AML-PDX cells. We then detail procedures for in vitro and in vivo validation of the AML-PDX model for the evaluation of CAR T cell immunotherapy. For complete details on the use and execution of this protocol, please refer to Caulier et al.1.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Luminescent Measurements/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mireia Mayoral Safont
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Kinn Therapeutics, Bergen, Norway.
| | - Calum Leitch
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Mihaela Popa
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Kinn Therapeutics, Bergen, Norway
| | - May Eriksen Gjerstad
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal Gelebart
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Hematology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Emmet McCormack
- Precision Oncology Research Group, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Hematology, Haukeland University Hospital, Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Cases‐Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024; 18:2951-2965. [PMID: 38899375 PMCID: PMC11619802 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and GliomaInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Lea L. Friker
- Institute of NeuropathologyUniversity Hospital BonnBonnGermany
| | - Philipp Müller
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Albert J. Becker
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | | |
Collapse
|
6
|
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F. Esophageal adenocarcinoma models: a closer look. Front Mol Biosci 2024; 11:1440670. [PMID: 39600303 PMCID: PMC11589788 DOI: 10.3389/fmolb.2024.1440670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer with significant morbidity and mortality rates worldwide. Despite advancements in tumor models, the underlying cellular and molecular mechanisms driving EAC pathogenesis are still poorly understood. Therefore, gaining insights into these mechanisms is crucial for improving patient outcomes. Researchers have developed various models to better understand EAC and evaluate clinical management strategies. However, no single model fully recapitulates the complexity of EAC. Emerging technologies, such as patient-derived organoids and immune-competent mouse models, hold promise for personalized EAC research and drug development. In this review, we shed light on the various models for studying EAC and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Selma Maacha
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Domanskyi S, Srivastava A, Kaster J, Li H, Herlyn M, Rubinstein JC, Chuang JH. Nextflow pipeline for Visium and H&E data from patient-derived xenograft samples. CELL REPORTS METHODS 2024; 4:100759. [PMID: 38626768 PMCID: PMC11133696 DOI: 10.1016/j.crmeth.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.
Collapse
Affiliation(s)
- Sergii Domanskyi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Haiyin Li
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Jill C Rubinstein
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Hartford HealthCare Cancer Institute at St. Vincent's Medical Center, Bridgeport, CT 06606, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; UCONN Health Department of Genetics and Genome Sciences, Farmington, CT 06032, USA.
| |
Collapse
|
9
|
Xu J, Gong J, Li M, Kang Y, Ma J, Wang X, Liang X, Qi X, Yu B, Yang J. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim Biophys Acta Gen Subj 2024; 1868:130566. [PMID: 38244703 DOI: 10.1016/j.bbagen.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous disease featuring many various histological and molecular subtypes. Therefore, it is imperative to have well-characterized in vitro models for personalized treatment development. Gastric cancer patient-derived organoids (PDOs), re-capitulating in vivo conditions, exhibit high clinical efficacy in predicting drug sensitivity to facilitate the development of cancer precision medicine. METHODS PDOs were established from surgically resected GC tumor tissues. Histological and molecular characterization of PDOs and primary tissues were performed via IHC and sequencing analysis. We also conducted drug sensitivity tests using PDO cultures with five chemotherapeutic drugs and twenty-two targeted drugs. RESULTS We have successfully constructed a PDOs biobank that included EBV+, intestinal/CIN, diffuse/GS, mixed and Her2+ GC subtypes, and these PDOs captured the pathological and genetic characteristics of corresponding tumors and exhibited different sensitivities to the tested agents. In a clinical case study, we performed an additional drug sensitivity test for a patient who reached an advanced progressive stage after surgery. We discovered that the combination of napabucasin and COTI-2 exhibited a stronger synergistic effect than either drug alone. CONCLUSION PDOs maintained the histological and genetic characteristics of original cancer tissues. PDOs biobank opens up new perspectives for studying cancer cell biology and personalized medicine as a preclinical study platform.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Kang
- MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinrong Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
10
|
Xiang K, Wang E, Mantyh J, Rupprecht G, Negrete M, Sanati G, Hsu C, Randon P, Dohlman A, Kretzschmar K, Bose S, Giroux N, Ding S, Wang L, Balcazar JP, Huang Q, Sundaramoorthy P, Xi R, McCall SJ, Wang Z, Jiang C, Kang Y, Kopetz S, Crawford GE, Lipkin SM, Wang XF, Clevers H, Hsu D, Shen X. Chromatin Remodeling in Patient-Derived Colorectal Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303379. [PMID: 38380561 DOI: 10.1002/advs.202303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Indexed: 02/22/2024]
Abstract
Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - John Mantyh
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Gabrielle Rupprecht
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Golshid Sanati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Carolyn Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Peggy Randon
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Anders Dohlman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Nicholas Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| | | | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shannon Jones McCall
- Department of Pathology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Zhaohui Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Yubin Kang
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Steven M Lipkin
- Department of Medicine and Program in Mendelian Genetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| |
Collapse
|
11
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
12
|
Behrens D, Pfohl U, Conrad T, Becker M, Brzezicha B, Büttner B, Wagner S, Hallas C, Lawlor R, Khazak V, Linnebacher M, Wartmann T, Fichtner I, Hoffmann J, Dahlmann M, Walther W. Establishment and Thorough Characterization of Xenograft (PDX) Models Derived from Patients with Pancreatic Cancer for Molecular Analyses and Chemosensitivity Testing. Cancers (Basel) 2023; 15:5753. [PMID: 38136299 PMCID: PMC10741928 DOI: 10.3390/cancers15245753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Patient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and the identification of signatures defining responsiveness toward drug treatment. In total, 45 PC-PDXs were generated from 120 patient tumor specimens and the identity of PDX and corresponding patient tumors was validated. The majority of engrafted PDX models represent ductal adenocarcinomas (PDAC). The PDX growth characteristics were assessed, with great variations in doubling times (4 to 32 days). The mutational analyses revealed an individual mutational profile of the PDXs, predominantly showing alterations in the genes encoding KRAS, TP53, FAT1, KMT2D, MUC4, RNF213, ATR, MUC16, GNAS, RANBP2 and CDKN2A. Sensitivity of PDX toward standard of care (SoC) drugs gemcitabine, 5-fluorouracil, oxaliplatin and abraxane, and combinations thereof, revealed PDX models with sensitivity and resistance toward these treatments. We performed correlation analyses of drug sensitivity of these PDX models and their molecular profile to identify signatures for response and resistance. This study strongly supports the importance and value of PDX models for improvement in therapies of PC.
Collapse
Affiliation(s)
- Diana Behrens
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Ulrike Pfohl
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Theresia Conrad
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Bernadette Brzezicha
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Britta Büttner
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Hallas
- Institut für Hämatopathologie, Fangdieckstr. 75, 22547 Hamburg, Germany
| | - Rita Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona, Piazzale A. Scuro 10, 37134 Verona, Italy
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- University Clinic for General, Visceral, Vascular and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Mathias Dahlmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany (M.D.)
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
13
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
14
|
Domanskyi S, Srivastava A, Kaster J, Li H, Herlyn M, Rubinstein JC, Chuang JH. Nextflow Pipeline for Visium and H&E Data from Patient-Derived Xenograft Samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550727. [PMID: 37546876 PMCID: PMC10402090 DOI: 10.1101/2023.07.27.550727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Highlights We have developed an automated data processing pipeline to quantify mouse and human data from patient-derived xenograft samples assayed by Visium spatial transcriptomics with matched hematoxylin and eosin (H&E) stained image. We enable deconvolution of reads with Xenome, quantification of spatial gene expression from host and graft species with Space Ranger, extraction of B-allele frequencies, and splicing quantification with Velocyto. In the H&E image processing sub-workflow, we generate morphometric and deep learning-derived feature quantifications complementary to the Visium spots, enabling multi-modal H&E/expression comparisons. We have wrapped the pipeline into Nextflow DSL2 in a scalable, portable, and easy-to-use framework. Summary We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole slide image (WSI), optimized for Patient-Derived Xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genomes input and stand-alone image analysis. We showed the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of imaging features of H&E data reveal similar patterns arising from the two data modalities.
Collapse
|
15
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Zhang B, Li Y, Zhu X, Chen Z, Huang X, Gong T, Zheng W, Bi Z, Zhu C, Qian J, Li X, Jin C. OncoVee™-MiniPDX-guided anticancer treatment for HER2-negative intermediate-advanced gastric cancer patients: a single-arm, open-label phase I clinical study. Discov Oncol 2023; 14:46. [PMID: 37093368 PMCID: PMC10126180 DOI: 10.1007/s12672-023-00661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Chemotherapy is the main treatment strategy for patients with advanced HER2-negative gastric cancer (GC); yet, many patients do not respond well to treatment. This study evaluated the sensitivity of a mini patient-derived xenograft (MiniPDX) animal model in patients with HER2-negative intermediate-advanced GC. METHODS In this single-arm, open-label clinical study, we consecutively recruited patients with HER2-negative advanced or recurrent GC from September 2018 to July 2021. Tumor tissues were subjected to MiniPDX drug sensitivity tests for screening individualized anti-tumor drugs; appropriate drug types or combinations were selected based on drug screening results. The primary endpoints were progression-free survival (PFS) and safety, and the secondary endpoints were overall survival (OS) and objective response rate (ORR). RESULTS A total of 17 patients were screened, and 14 eligible patients were included.The median follow-up time was 9 (2-34) months. The median PFS time was 14.1 (2-34) months, the median OS time was 16.9 (2-34) months, ORR was 42.9% (6/14), and DCR was 92.9% (13/14). The most common treatment-related adverse events (TRAE) were fatigue (14 (100%)), anorexia (13 (93%)) and insomnia (12 (86%)), and the most common grade 3 or worse TRAE was fatigue (6 (43%)), and anorexia (6 (43%)). The occurrence rate of myelosuppression, nausea and vomiting, abnormal liver enzymes, and other grade 3-4 chemotherapy adverse reactions were relatively low, and no grade 5 treatment-related adverse events occurred. CONCLUSION Screening HER2-negative medium-advanced GC/GJC chemotherapy regimens and targeted drugs based on MiniPDX animal models showed good tumor activity and safety.
Collapse
Affiliation(s)
- Baonan Zhang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Yuzhen Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Zhe Chen
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaona Huang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Tingjie Gong
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Weiwang Zheng
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Zhenle Bi
- Department of Medical, Co. Ltd. Shanghai, Shanghai LIDE Biotech, China
| | - Chenyang Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Jingyi Qian
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Xiaoqiang Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, 8 West Zhongnan Road, Wuxi, 214071, China.
| |
Collapse
|
17
|
Grigore FN, Yang SJ, Chen CC, Koga T. Pioneering models of pediatric brain tumors. Neoplasia 2023; 36:100859. [PMID: 36599191 PMCID: PMC9823239 DOI: 10.1016/j.neo.2022.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
Among children and adolescents in the United States (0 to 19 years old), brain and other central nervous system tumors are the second most common types of cancers, surpassed in incidence only by leukemias. Despite significant progress in the diagnosis and treatment modalities, brain cancer remains the leading cause of death in the pediatric population. There is an obvious unfulfilled need to streamline the therapeutic strategies and improve survival for these patients. For that purpose, preclinical models play a pivotal role. Numerous models are currently used in pediatric brain tumor research, including genetically engineered mouse models, patient-derived xenografts and cell lines, and newer models that utilize novel technologies such as genome engineering and organoids. Furthermore, extensive studies by the Children's Brain Tumor Network (CBTN) researchers and others have revealed multiomic landscapes of variable pediatric brain tumors. Combined with such integrative data, these novel technologies have enabled numerous applicable models. Genome engineering, including CRISPR/Cas9, expanded the flexibility of modeling. Models generated through genome engineering enabled studying particular genetic alterations in clean isogenic backgrounds, facilitating the dissection of functional mechanisms of those mutations in tumor biology. Organoids have been applied to study tumor-to-tumor-microenvironment interactions and to address developmental aspects of tumorigenesis, which is essential in some pediatric brain tumors. Other modalities, such as humanized mouse models, could potentially be applied to pediatric brain tumors. In addition to current valuable models, such novel models are anticipated to expedite functional tumor biology study and establish effective therapeutics for pediatric brain tumors.
Collapse
Affiliation(s)
- Florina-Nicoleta Grigore
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Serena Johanna Yang
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
19
|
Serra-Camprubí Q, Verdaguer H, Oliveros W, Lupión-Garcia N, Llop-Guevara A, Molina C, Vila-Casadesús M, Turpin A, Neuzillet C, Frigola J, Querol J, Yáñez-Bartolomé M, Castet F, Fabregat-Franco C, Escudero-Iriarte C, Escorihuela M, Arenas EJ, Bernadó-Morales C, Haro N, Giles FJ, Pozo ÓJ, Miquel JM, Nuciforo PG, Vivancos A, Melé M, Serra V, Arribas J, Tabernero J, Peiró S, Macarulla T, Tian TV. Human Metastatic Cholangiocarcinoma Patient-Derived Xenografts and Tumoroids for Preclinical Drug Evaluation. Clin Cancer Res 2023; 29:432-445. [PMID: 36374558 PMCID: PMC9873249 DOI: 10.1158/1078-0432.ccr-22-2551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.
Collapse
Affiliation(s)
- Queralt Serra-Camprubí
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Helena Verdaguer
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Núria Lupión-Garcia
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Llop-Guevara
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Molina
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Vila-Casadesús
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anthony Turpin
- Université de Lille, CNRS INSERM UMR9020-U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Medical Oncology Department, CHRU Lille, Lille, France
| | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Curie Institute, Versailles St-Quentin-Paris Saclay University, Saint-Cloud, France
| | - Joan Frigola
- Clinical Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jessica Querol
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mariana Yáñez-Bartolomé
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carles Fabregat-Franco
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Escudero-Iriarte
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Escorihuela
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J. Arenas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Bernadó-Morales
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Noemí Haro
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Óscar J. Pozo
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep M. Miquel
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo G. Nuciforo
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Violeta Serra
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain.,Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Tabernero
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Peiró
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Tian V. Tian
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| |
Collapse
|
20
|
Frederico SC, Zhang X, Hu B, Kohanbash G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 2023; 13:1092399. [PMID: 36700223 PMCID: PMC9870312 DOI: 10.3389/fimmu.2022.1092399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas have an extremely poor prognosis in both adult and pediatric patient populations as these tumors are known to grow aggressively and respond poorly to standard of care treatment. Currently, treatment for gliomas involves surgical resection followed by chemoradiation therapy. However, some gliomas, such as diffuse midline glioma, have more limited treatment options such as radiotherapy alone. Even with these interventions, the prognosis for those diagnosed with a glioma remains poor. Immunotherapy is highly effective for some cancers and there is great interest in the development of effective immunotherapies for the treatment of gliomas. Clinical trials evaluating the efficacy of immunotherapies targeted to gliomas have largely failed to date, and we believe this is partially due to the poor choice in pre-clinical mouse models that are used to evaluate these immunotherapies. A key consideration in evaluating new immunotherapies is the selection of pre-clinical models that mimic the glioma-immune response in humans. Multiple pre-clinical options are currently available, each one with their own benefits and limitations. Informed selection of pre-clinical models for testing can facilitate translation of more promising immunotherapies in the clinical setting. In this review we plan to present glioma cell lines and mouse models, as well as alternatives to mouse models, that are available for pre-clinical glioma immunotherapy studies. We plan to discuss considerations of model selection that should be made for future studies as we hope this review can serve as a guide for investigators as they choose which model is best suited for their study.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Gary Kohanbash,
| |
Collapse
|
21
|
Shin J, Piao Y, Bang D, Kim S, Jo K. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer. Int J Mol Sci 2022; 23:13919. [PMID: 36430395 PMCID: PMC9699175 DOI: 10.3390/ijms232213919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Some of the recent studies on drug sensitivity prediction have applied graph neural networks to leverage prior knowledge on the drug structure or gene network, and other studies have focused on the interpretability of the model to delineate the mechanism governing the drug response. However, it is crucial to make a prediction model that is both knowledge-guided and interpretable, so that the prediction accuracy is improved and practical use of the model can be enhanced. We propose an interpretable model called DRPreter (drug response predictor and interpreter) that predicts the anticancer drug response. DRPreter learns cell line and drug information with graph neural networks; the cell-line graph is further divided into multiple subgraphs with domain knowledge on biological pathways. A type-aware transformer in DRPreter helps detect relationships between pathways and a drug, highlighting important pathways that are involved in the drug response. Extensive experiments on the GDSC (Genomics of Drug Sensitivity and Cancer) dataset demonstrate that the proposed method outperforms state-of-the-art graph-based models for drug response prediction. In addition, DRPreter detected putative key genes and pathways for specific drug-cell-line pairs with supporting evidence in the literature, implying that our model can help interpret the mechanism of action of the drug.
Collapse
Affiliation(s)
- Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
22
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
23
|
Kiblitskaya AA, Maksimov AY, Goncharova AS, Nepomnyashchaya YM, Zlatnik YY, Yegorov GY, Lukbanova YA, Zaikina YV, Volkova AV. Variants of creating heterotopic and orthotopic PDX models of human colorectal cancer. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-50-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To create heterotopic and orthotopic patient-derived xenograft (PDX) models of colorectal cancer (CRC) by transplantation of patient’s tumor samples into immunodeficient BALB / c Nude mice.Materials and methods. The study was performed on 15 female BALB / c Nude mice aged 6–8 weeks weighing 21–25 g. All animals underwent transplantation of the tumor material obtained from CRC patients into the following sites: heterotopic transplantation (under the skin of the thigh and into the omentum), orthotopic transplantation (into the descending and ascending colon and into the cecum). Weight and general condition of the animals and the size of the tumor nodule had been monitored for 80 days. The success of each model was assessed by the degree of engraftment, the dynamics of tumor growth, and the reproducibility of histopathologic characteristics. At the end of the experiment, the animals were euthanized by cervical dislocation.Results. 100% survival of the animals and similar tumor growth dynamics in the xenograft models were observed throughout the experiment. The analysis of histologic specimens obtained from the xenografts and patient’s tumor showed their correspondence to moderately differentiated intestinal adenocarcinoma. The main advantages and disadvantages of different variants of PDX models were described.Conclusion. Heterotopic and orthotopic PDX models reproduce the morpho-histologic characteristics of human tumors and demonstrate stable growth dynamics. Therefore, they are a suitable tool for the development, testing, and validation of potential anticancer drugs.
Collapse
|
24
|
Xu Y, Pachnikova G, Wang H, Wu Y, Przybilla D, Schäfer R, Chen Z, Zhu S, Keilholz U. IC50: an unsuitable measure for large-sized prostate cancer spheroids in drug sensitivity evaluation. Bosn J Basic Med Sci 2022; 22:580-592. [PMID: 35694767 PMCID: PMC9392968 DOI: 10.17305/bjbms.2022.7279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023] Open
Abstract
Preclinical models of tumors have the potential to become valuable tools for commercial drug research and development, and 3D culture systems are gaining traction in this area, particularly in prostate cancer (PCa) research. However, nearly all 3D drug design and screening assessments are based on 2D experiments, suggesting limitations of 3D drug testing. To simulate the natural response of human cells to the drug, we detected the half-maximal inhibitory concentration (IC50) changes of 2D/3D LNCaP cells in the drug docetaxel, as well as the sensitivity of different morphologies of 2D/3D LNCaP to docetaxel treatment. In contrast to 2D LNCaP cells, the evaluation of LNCaP spheroids' susceptibility to treatment was more complicated; the fitness of IC50 curves of 2D and 3D tumor cell preclinical models differs significantly. IC50 curves were unsuitable for large-sized LNCaP spheroids. More evaluation indexes (such as max inhibition) and experiments (such as spheroids formation) should be explored and performed to evaluate the susceptibility systematically.
Collapse
Affiliation(s)
- Yipeng Xu
- Department of Urology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China,The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, China,Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Gabriela Pachnikova
- Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - He Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yaoyao Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Dorothea Przybilla
- Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Zihao Chen
- Department of Urology, Southern Medical University, Guangzhou, China
| | - Shaoxing Zhu
- Department of Urology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China,The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, China,Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China,Corresponding authors: Shaoxing Zhu, Department of Urology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China. E-mail:
| | - Ulrich Keilholz
- Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany,
Ulrich Keilholz; Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. E-mail:
| |
Collapse
|
25
|
Liu Q, Wang X, Yang Y, Wang C, Zou J, Lin J, Qiu L. Immuno-PET imaging of PD-L1 expression in patient-derived lung cancer xenografts with [ 68Ga]Ga-NOTA-Nb109. Quant Imaging Med Surg 2022; 12:3300-3313. [PMID: 35655844 PMCID: PMC9131318 DOI: 10.21037/qims-21-991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 09/17/2023]
Abstract
Background Accurate evaluation of programmed death-ligand 1 (PD-L1) expression levels in cancer patients may be useful in the identification of potential candidates for anti-programmed death-1/PD-L1 (anti-PD-1/PD-L1) immune checkpoint therapy to improve the response rate of immune checkpoint blockade therapy. This study evaluated the feasibility of the nanobody-based positron emission tomography (PET) tracer [68Ga]Ga-NOTA-Nb109 for immuno-PET imaging of PD-L1 in lung cancer patient-derived xenograft (PDX). Methods We constructed 2 PDXs of lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SCC) and used them for immuno-PET imaging. A 2-hour dynamic PET scanning was performed on the samples and the in vivo biodistribution and metabolism of [68Ga]Ga-NOTA-Nb109 were investigated using region of interest (ROI) analysis. The ex vivo biodistribution of [68Ga]Ga-NOTA-Nb109 in the 2 PDXs was investigated by static PET scanning. In addition, tumor PD-L1 expression in the 2 PDXs was evaluated by autoradiography, western blot, and immunohistochemical (IHC) analysis. Results Noninvasive PET imaging showed that [68Ga]Ga-NOTA-Nb109 can accurately and sensitively assess the PD-L1 expression in non-small cell lung cancer (NSCLC) PDX models. The maximum [68Ga]Ga-NOTA-Nb109 uptake by the ADC PDX LU6424 and the SCC PDX LU6437 were 3.13%±0.35% and 2.60%±0.32% injected dose per milliliter of tissue volume (ID/mL), respectively, at 20 min post injection. In vivo and ex vivo biodistribution analysis showed that [68Ga]Ga-NOTA-Nb109 was rapidly cleared through renal excretion and an enhanced signal-to-noise ratio (SNR) was achieved. Ex vivo PD-L1 expression analysis showed good agreement with in vivo PET imaging results. Conclusions This study demonstrated that [68Ga]Ga-NOTA-Nb109 could be applied with PET imaging to noninvasively and accurately monitor PD-L1 expression in vivo for screening patients who may be responsive to immunotherapy and to guide the development of appropriate treatment strategies for such patients.
Collapse
Affiliation(s)
- Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaodan Wang
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yanling Yang
- Suzhou Smart Nuclide Biopharmaceutical Co. Ltd., Suzhou Industrial Park, Suzhou, China
| | - Chao Wang
- Suzhou Smart Nuclide Biopharmaceutical Co. Ltd., Suzhou Industrial Park, Suzhou, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Oswald E, Bug D, Grote A, Lashuk K, Bouteldja N, Lenhard D, Löhr A, Behnke A, Knauff V, Edinger A, Klingner K, Gaedicke S, Niedermann G, Merhof D, Feuerhake F, Schueler J. Immune cell infiltration pattern in non-small cell lung cancer PDX models is a model immanent feature and correlates with a distinct molecular and phenotypic make-up. J Immunother Cancer 2022; 10:jitc-2021-004412. [PMID: 35483746 PMCID: PMC9052060 DOI: 10.1136/jitc-2021-004412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The field of cancer immunology is rapidly moving towards innovative therapeutic strategies, resulting in the need for robust and predictive preclinical platforms reflecting the immunological response to cancer. Well characterized preclinical models are essential for the development of predictive biomarkers in the oncology as well as the immune-oncology space. In the current study, gold standard preclinical models are being refined and combined with novel image analysis tools to meet those requirements. METHODS A panel of 14 non-small cell lung cancer patient-derived xenograft models (NSCLC PDX) was propagated in humanized NOD/Shi-scid/IL-2Rnull mice. The models were comprehensively characterized for relevant phenotypic and molecular features, including flow cytometry, immunohistochemistry, histology, whole exome sequencing and cytokine secretion. RESULTS Models reflecting hot (>5% tumor-infiltrating lymphocytes/TILs) as opposed to cold tumors (<5% TILs) significantly differed regarding their cytokine profiles, molecular genetic aberrations, stroma content, and programmed cell death ligand-1 status. Treatment experiments including anti cytotoxic T-lymphocyte-associated protein 4, anti-programmed cell death 1 or the combination thereof across all 14 models in the single mouse trial format showed distinctive tumor growth response and spatial immune cell patterns as monitored by computerized analysis of digitized whole-slide images. Image analysis provided for the first time qualitative evaluation of the extent to which PDX models retain the histological features from their original human donors. CONCLUSIONS Deep phenotyping of PDX models in a humanized setting by combinations of computational pathology, immunohistochemistry, flow cytometry and proteomics enables the exhaustive analysis of innovative preclinical models and paves the way towards the development of translational biomarkers for immuno-oncology drugs.
Collapse
Affiliation(s)
- Eva Oswald
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Daniel Bug
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Anne Grote
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Kanstantsin Lashuk
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Nassim Bouteldja
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Dorothee Lenhard
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anne Löhr
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anke Behnke
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Volker Knauff
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anna Edinger
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Kerstin Klingner
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Simone Gaedicke
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | | | - Julia Schueler
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| |
Collapse
|
28
|
Multicellular Modelling of Difficult-to-Treat Gastrointestinal Cancers: Current Possibilities and Challenges. Int J Mol Sci 2022; 23:ijms23063147. [PMID: 35328567 PMCID: PMC8955095 DOI: 10.3390/ijms23063147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5–20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.
Collapse
|
29
|
Shin HY, Lee EJ, Yang W, Kim HS, Chung D, Cho H, Kim JH. Identification of Prognostic Markers of Gynecologic Cancers Utilizing Patient-Derived Xenograft Mouse Models. Cancers (Basel) 2022; 14:cancers14030829. [PMID: 35159096 PMCID: PMC8834149 DOI: 10.3390/cancers14030829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Patient-derived xenografts (PDXs) are important in vivo models for the development of precision medicine. However, challenges exist regarding genetic alterations and relapse after primary treatment. Thus, PDX models are required as a new approach for preclinical and clinical studies. We established PDX models of gynecologic cancers and analyzed their clinical information. We subcutaneously transplanted 207 tumor tissues from patients with gynecologic cancer into nude mice from 2014 to 2019. The successful engraftment rate of ovarian, cervical, and uterine cancer was 47%, 64%, and 56%, respectively. The subsequent passages (P2 and P3) showed higher success and faster growth rates than the first passage (P1). Using gynecologic cancer PDX models, the tumor grade is a common clinical factor affecting PDX establishment. We found that the PDX success rate correlated with the patient’s prognosis, and also that ovarian cancer patients with a poor prognosis had a faster PDX growth rate (p < 0.0001). Next, the gene sets associated with inflammation and immune responses were shown in high-ranking successful PDX engraftment through gene set enrichment analysis and RNA sequencing. Up-regulated genes in successful engraftment were found to correlate with ovarian clear cell cancer patient outcomes via Gene Expression Omnibus dataset analysis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Wookyeom Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hyo Sun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
- Correspondence: ; Tel.: +82-02-2019-3430
| |
Collapse
|
30
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
31
|
Kiblitskaya AA, Goncharova AS, Anisimov AE, Snezhko AV, Dimitriadi SN, Maslov AA, Gevorkyan YA, Kolesnikov EN. Antitumor effect of radiation therapy on orthotopic PDX models of human esophageal adenocarcinoma. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a rule, esophageal adenocarcinoma develops in the lower esophagus. Life expectancy and survival rates depend on the cancer stage and the general health of the patient. Chemoradiotherapy is the most successful treatment approach to this type of cancer. The choice of optimal radiation doses for achieving the best possible therapeutic effect is still a challenge. The aim of this paper was to study effective radiation doses and assess response of human esophageal adenocarcinoma to radiation using a PDX model. The study was conducted in female Balb/c nude mice (n = 25). Fragments of the donor tumor were implanted into the cervical esophagus of immunodeficient mice. Effects of radiation on the obtained orthotopic xenografts were studied after each of 3 irradiation sessions (4, 6, 8, and 10 Gy in each of the experimental groups, respectively). First-passage xenografts reproduced the morphology of the donor tumor. The mean tumor volume differed significantly between the control group and the experimental groups exposed to 6, 8 or 10 Gy (р ≤ 0.01) after each irradiation session. Tumor growth delay was significant after exposure to the total dose of 18 Gy. The further radiation dose increase was ineffective. The reduction of tumor volume in the xenografts was correlated to the increase in the one-time radiation dose. The total dose over 18 Gy produced a detrimental effect on the hematopoietic system and blood biochemistry of the experimental mice.
Collapse
Affiliation(s)
- AA Kiblitskaya
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - AS Goncharova
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - AE Anisimov
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - AV Snezhko
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - SN Dimitriadi
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - AA Maslov
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - YA Gevorkyan
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| | - EN Kolesnikov
- National Medical Research Center for Oncology, Rostov-on-Don, Russia
| |
Collapse
|
32
|
Strüder D, Momper T, Irmscher N, Krause M, Liese J, Schraven S, Zimpfer A, Zonnur S, Burmeister AS, Schneider B, Frerich B, Mlynski R, Große-Thie C, Junghanss C, Maletzki C. Establishment and characterization of patient-derived head and neck cancer models from surgical specimens and endoscopic biopsies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:246. [PMID: 34362423 PMCID: PMC8344210 DOI: 10.1186/s13046-021-02047-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/16/2021] [Indexed: 01/31/2023]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is heterogeneous in etiology, phenotype and biology. Patient-derived xenografts (PDX) maintain morphology and molecular profiling of the original tumors and have become a standard “Avatar” model for human cancer research. However, restricted availability of tumor samples hindered the widespread use of PDX. Most PDX-projects include only surgical specimens because reliable engraftment from biopsies is missing. Therefore, sample collection is limited and excludes recurrent and metastatic, non-resectable cancer from preclinical models as well as future personalized medicine. Methods This study compares the PDX-take rate, -growth, histopathology, and molecular characteristics of endoscopic specimens with surgical specimens. HNSCC samples (n = 55) were collected ad hoc, fresh frozen and implanted into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Results Engraftment was successful in both sample types. However, engraftment rate was lower (21 vs. 52%) and growth delayed (11.2 vs. 6.7 weeks) for endoscopic biopsies. Following engraftment, growth kinetic was similar. Comparisons of primary tumors and corresponding PDX models confirmed preservation of histomorphology (HE histology) and molecular profile (Illumina Cancer Hotspot Panel) of the patients’ tumors. Accompanying flow cytometry on primary tumor specimens revealed a heterogeneous tumor microenvironment among individual cases and identified M2-like macrophages as positive predictors for engraftment. Vice versa, a high PD-L1 expression (combined positive score on tumor/immune cells) predicted PDX rejection. Conclusion Including biopsy samples from locally advanced or metastatic lesions from patients with non-surgical treatment strategies, increases the availability of PDX for basic and translational research. This facilitates (pre-) clinical studies for individual response prediction based on immunological biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02047-w.
Collapse
Affiliation(s)
- Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Theresa Momper
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Nina Irmscher
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Mareike Krause
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Jan Liese
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Sebastian Schraven
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Zonnur
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Ann-Sophie Burmeister
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
33
|
Mattei F, Andreone S, Mencattini A, De Ninno A, Businaro L, Martinelli E, Schiavoni G. Oncoimmunology Meets Organs-on-Chip. Front Mol Biosci 2021; 8:627454. [PMID: 33842539 PMCID: PMC8032996 DOI: 10.3389/fmolb.2021.627454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Oncoimmunology represents a biomedical research discipline coined to study the roles of immune system in cancer progression with the aim of discovering novel strategies to arm it against the malignancy. Infiltration of immune cells within the tumor microenvironment is an early event that results in the establishment of a dynamic cross-talk. Here, immune cells sense antigenic cues to mount a specific anti-tumor response while cancer cells emanate inhibitory signals to dampen it. Animals models have led to giant steps in this research context, and several tools to investigate the effect of immune infiltration in the tumor microenvironment are currently available. However, the use of animals represents a challenge due to ethical issues and long duration of experiments. Organs-on-chip are innovative tools not only to study how cells derived from different organs interact with each other, but also to investigate on the crosstalk between immune cells and different types of cancer cells. In this review, we describe the state-of-the-art of microfluidics and the impact of OOC in the field of oncoimmunology underlining the importance of this system in the advancements on the complexity of tumor microenvironment.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.,Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.,Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
34
|
Dupont CA, Riegel K, Pompaiah M, Juhl H, Rajalingam K. Druggable genome and precision medicine in cancer: current challenges. FEBS J 2021; 288:6142-6158. [PMID: 33626231 DOI: 10.1111/febs.15788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The past decades have seen tremendous developments with respect to "specific" therapeutics that target key signaling molecules to conquer cancer. The key advancements with multiomics technologies, especially genomics, have allowed physicians and molecular oncologists to design "tailor-made" solutions to the specific oncogenes that are deregulated in individual patients, a strategy which has turned out to be successful though the patients quickly develop resistance. The swift integration of multidisciplinary approaches has led to the development of "next generation" therapeutics and, with synergistic therapeutic regimes combined with immune checkpoint inhibitors to reactivate the dampened immune response, has provided the much-needed promise for cancer patients. Despite these advances, a large portion of the druggable genome remains understudied, and the role of druggable genome in the immune system needs further attention. Establishment of patient-derived organoid models has fastened the preclinical validation of novel therapeutics for swift clinical translation. We summarized the current advances and challenges and also stress the importance of biobanking and collection of longitudinal data sets with structured clinical information, as well as the critical role these "high content data sets" will play in designing new therapeutic regimes in a tailor-made fashion.
Collapse
Affiliation(s)
- Camille Amandine Dupont
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Juhl
- Indivumed GmbH, Hamburg, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| |
Collapse
|
35
|
Akter F, Simon B, de Boer NL, Redjal N, Wakimoto H, Shah K. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875:188458. [PMID: 33148506 PMCID: PMC7856042 DOI: 10.1016/j.bbcan.2020.188458] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Farhana Akter
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Brennan Simon
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Nadine Leonie de Boer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Navid Redjal
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|